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ABSTRACT

In the task of hyper-long context question answering (QA), a key challenge is ex-
tracting accurate answers from vast and dispersed information, much like finding a
needle in a haystack. Existing approaches face major limitations, particularly the
input-length constraints of Large Language Models (LLMs), which hinder their
ability to understand hyper-long contexts. Furthermore, Retrieval-Augmented
Generation (RAG) methods, which heavily rely on semantic representations, of-
ten experience semantic loss and retrieval errors when answers are spread across
different parts of the text. Therefore, there is a pressing need to develop more
effective strategies to optimize information extraction and reasoning. In this pa-
per, we propose a multi-grained entity graph-based QA method that constructs
an entity graph and dynamically combines both local and global contexts. Our
approach captures information across three granularity levels (i.e., micro-level,
feature-level, and macro-level), and incorporates iterative retrieval and reasoning
mechanisms to generate accurate answers for hyper-long contexts. Specifically,
we first utilize EntiGraph to extract entities, attributes, relationships, and events
from hyper-long contexts, and aggregate them to generate multi-grained QA pairs.
Then, we retrieve the most relevant QA pairs according to the query. Addition-
ally, we introduce LoopAgent, an iterative retrieval mechanism that dynamically
refines queries across multiple retrieval rounds, combining reasoning mechanisms
to enhance the accuracy and effectiveness of answering complex questions. We
evaluated our method on various datasets from LongBench and InfiniteBench, and
the experimental results demonstrate the effectiveness of our approach, signifi-
cantly outperforming existing methods in both the accuracy and granularity of
the extracted answers. Furthermore, it has been successfully deployed in online
novel-based applications, showing significant improvements in handling long-tail
queries and answering detail-oriented questions.

1 INTRODUCTION

Long documents often contain a wealth of critical information, particularly in fields such as law,
medicine, or finance. The task of hyper-long context question answering (QA) (Georgiev et al.,
2024; Wang et al., 2024a) requires models to process vast amounts of information while maintaining
precise contextual understanding, which is pivotal for advancing the capabilities of Large Language
Models (LLMs) to process and understand extensive textual data. In recent years, LLMs, such as
GPT-4 (Brown, 2020), LLaMA (Touvron et al., 2023a), (Touvron et al., 2023b), and PaLM (Chowd-
hery et al., 2023), have demonstrated exceptional performance in tasks involving dialogue genera-
tion and reasoning (Dagdelen et al., 2024). These models are capable of generating knowledge-rich
responses and have broad applications across various domains.

Although LLMs have considerable capabilities, they still struggle to process hyper-long texts over
100K tokens (Brown et al., 2020). It is challenging for them to maintain contextual coherence and
effectively capture long-range dependencies when the input text surpasses the predefined window
length (Li et al., 2023a). To alleviate the problem of processing hyper-length texts, some atten-
tion mechanisms (e.g., long-range attention mechanisms) have been widely integrated into models
to capture contextual information across long sequences (Peng et al., 2024). However, training
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work as a
laborer in a
coal mine

Which of the following occupations did Sun Shaoping engage in: salesperson, teacher or coal miner?

... He wants to become a salesperson ... but he hasn't attended the interview ... He taught the students
not to be late .. and he was dismissed from his position and sent to work as a laborer in a coal mine ... 

LLM-only

RAG

Ours

...it was mentioned that he taught students not to be late, so he
worked as a teacher. 

Query

Original
Context

But he hasn't
attended the

interview.

work as a
laborer in a
coal mine

retrieve salesperson
teacher

refer

teacher
coal-miner

teacherCoT

But he hasn't
attended the

interview.
occ

Sun

teacher
coal miner

infer

missed one

incorrect

He wants to
become a

salesperson.

Q: Did Sun ever work as a
salesperson?  
A:  No, he didn’t pass the
interview.

Q: What occupations has
Sun worked in? 
A:  Teacher and Coal Miner

Figure 1: Comparison of QA approaches facing challenges: LLM-only is limited by context length
constraints and RAG methods rely on semantic representations. Our approach integrates multi-
grained knowledge with RAG, effectively overcoming these challenges to provide accurate answers.

LLMs from scratch with extended context capabilities incurs prohibitive computational costs, re-
quiring substantial hardware resources and extensive time. To mitigate these costs, techniques such
as chunking and context window expansion (Chen et al., 2023b) have been introduced to expand
the context-processing capabilities of LLMs without significantly increasing computational costs.
Some researchers have proposed various context extension techniques, such as long-context fine-
tuning methods like LongChat (Li et al., 2023a) and Longlora (Chen et al., 2023d). These ap-
proaches adapt pre-trained models for extended context usage, thus reducing the need for training
from scratch. However, the maximum context length these methods can handle remains limited,
typically reaching only several hundred thousand tokens (Zhang et al., 2024).

Moreover, LLMs often exhibit high hallucination rates when applied to Knowledge-Intensive Gen-
eration tasks (Petroni et al., 2020), especially in cases where they must deal with unstructured or
domain-specific datasets. These limitations are particularly evident when extracting fine-grained or
deep information from large-scale texts, where the sheer volume and dispersed nature of relevant
details hinder the models’ ability to retrieve accurate and comprehensive answers. As shown in Fig-
ure 1, the text “work as a laborer in a coal mine” appears later in the text, falling beyond the context
window and leading to a lack of understanding. Although Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020; Li et al., 2023c; Wang et al., 2023) methods attempt to address this by retriev-
ing relevant information from various chunks, their effectiveness heavily relies on the precision of
extracted embeddings to map queries into relevant documents. In the provided example, while the
model correctly recalls that “Sun wants to become a teacher” from one chunk, it fails to integrate the
information from another chunk indicating that he did not succeed in securing the position. These
chunked retrieval techniques are often too coarse-grained to capture the nuanced contextual details
and can result in incorrect conclusions and misinterpretations.

In this paper, we propose a Multi-grained Knowledge Retrieval-Augmented Generation (i.e.,
MKRAG) for hyper-long context question answering. Specifically, we first extract fine-grained enti-
ties from hyper-length texts, covering entities and their corresponding attributes, relationships, and
events. This extraction process goes beyond merely identifying core entities; it also captures the
surrounding contextual information, ensuring that the model can synthesize multiple layers of detail
when responding to complex queries. Then, we employ context aggregation algorithms to integrate
both local and global contexts of the same entity, and utilize an LLM, EntiGraph, to generate multi-
grained QA pairs (i.e., micro-level, feature-level, and macro-level). This multi-level strategy not
only ensures that the model produces highly accurate answers for complex queries, but also miti-
gates the fragmentation of information that often hampers traditional methods. Finally, we propose
LoopAgent, an iterative retrieval mechanism that refines queries over multiple retrieval rounds, com-
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bining advanced reasoning mechanisms to enhance the retrieval and answering accuracy for complex
queries. By integrating multi-grained knowledge with retrieval-augmented LLMs, our approach not
only overcomes the limitations posed by traditional models’ context window size but also transcends
the dependency on semantic representations in retrieval-based methods by fully leveraging the rich
contextual information embedded in long texts. In summary, our contributions are as follows:

1. We propose a Multi-grained Knowledge Retrieval-Augmented Generation approach, MKRAG,
for hyper-long context question answering, which combines multi-grained entity graphs with iter-
ative retrieval and reasoning. By aggregating multi-grained information and refining the retrieval
process, our approach maintains higher consistency and overcomes the length limitations posed by
context window constraints in traditional models.

2. We introduce LoopAgent, an iterative retrieval mechanism that refines queries over multiple
retrieval rounds, which combines advanced reasoning mechanisms to enhance the retrieval and an-
swering accuracy and addresses the information loss in traditional single-round retrieval strategies,
especially in complex multi-entity scenarios.

3. We validate the effectiveness of our approach on several benchmark datasets, including Long-
Bench and InfiniteBench. The experimental results demonstrate that our model consistently outper-
forms state-of-the-art methods in terms of accuracy and consistency for complex long-text question-
answering. Compared with previous methods, our approach enhances precision in information cap-
ture while avoiding the high computational costs associated with expanding context windows or
extensive fine-tuning of large models.

4. Our approach dynamically handles real-time knowledge and private data queries without relying
on continuous model updates. It has been successfully deployed in various real-world applications,
particularly in vertical industries that require precise handling of long-tail queries and detailed in-
formation extraction, highlighting its practical value and applicability.

2 RELATED WORK

The task of question answering with LLMs can be divided into two categories: long-context model
optimization and RAG techniques. This section will provide a detailed overview of these two ap-
proaches and introduce how they enhance performance in long-context QA tasks.

2.1 LONG-CONTEXT MODEL OPTIMIZATION APPROACHES

Early approaches to long-context tasks focus on optimizing LLMs during pretraining to handle
longer inputs. Many methods (Zaheer et al., 2020; Wang et al., 2020; Chen et al., 2023a; Xiao
et al., 2023; Mohtashami & Jaggi, 2023; Tworkowski et al., 2024) introduce attention mechanisms
and positional encoding to extend context length. For example, Press et al. (2022) proposes to bias
query-key scores based on token distance, allowing models to handle longer sequences. Similarly,
xPOS (Sun et al., 2023) improves long-sequence extrapolation by introducing rotational positional
encoding. These methods extend model context length during pretraining to handle long input se-
quences. Besides, architectural innovations, like sparse patterns in transformers (Beltagy et al.,
2020; Kitaev et al., 2020), are developed to reduce memory and computation demands for process-
ing longer sequences using sparse attention mechanisms.

While pretraining methods improve long-sequence handling, they are computationally expensive,
especially for sequences over 100k tokens, due to significant memory, storage, and processing de-
mands. To mitigate this, researchers (Chen et al., 2023c; Tworkowski et al., 2024) focus on positional
encoding optimization and fine-tuning strategies instead of full retraining. RoPE (Su et al., 2024)
adjusts positional encodings during inference, LongLoRA (Chen et al., 2023d) combines low-rank
adaptation with attention optimization, and LongChat (Li et al., 2023b) fine-tunes using rotary em-
beddings and conversational datasets. However, these methods still face challenges in maintaining
coherence and understanding for extremely long sequences.
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2.2 RETRIEVAL-AUGMENTED APPROACHES

RAG efficiently integrates external knowledge retrieval with LLM, making it well-suited for un-
structured or domain-specific datasets. This process involves retrieving pertinent information from
a vast data corpus in response to a user query, which is then fed into the LLM to enrich the generation
process. The RAG strategy typically utilizes chunk-based retrieval (Guu et al., 2020; Lewis et al.,
2020; Borgeaud et al., 2022; Izacard & Grave, 2021; Ram et al., 2023; Finardi et al., 2024; Setty
et al., 2024), dividing long texts into smaller segments and summarizing them to improve indexing
accuracy. This kind of approach relies on precise embeddings and retrieval techniques. For example,
(Lewis et al., 2020) introduces dense vector representations to better align queries with document
segments. To address limitations in retrieval fusion, FiD (Izacard & Grave, 2021) integrates retrieved
passages during the generation process to synthesize more accurate responses.

However, chunk-based methods have limitations, such as losing coherence when dividing text and
relying heavily on the semantic understanding of both the query and document. They may also
retrieve fragmented or incomplete information, resulting in fragmented or incomplete answers. To
overcome these limitations, graph-based RAG methods (Pan et al., 2024; Wang et al., 2024b; Zhang
et al., 2023; Sen et al., 2023; Xu et al., 2024; Jiang et al., 2024; Shao et al., 2023; Hu et al., 2024; Ma
et al., 2024) incorporate relational information from knowledge graphs, improving reasoning across
chunks and enhancing information integration. For example, GNN-RAG (Mavromatis & Karypis,
2024) enhances retrieval by preserving relationships between entities using structured graph infor-
mation. Similarly, (Ma et al., 2024) introduced a RAG framework guided by knowledge graphs,
leveraging multi-hop relationships and key entities to address long-range dependencies and ensure
logical consistency in complex reasoning tasks. Graph-based RAG methods advance reasoning but
struggle with simplistic graphs and shallow entity relationships, limiting complex reasoning and
context-dependent tasks. These limitations lead to knowledge loss and slower inference. Our work
introduces multi-grained knowledge with RAG to address these challenges.

3 TASK DEFINITION

Definition: Knowledge-Intensive QA for Hyper-Long Contexts. Hyper-long contexts refer to
contexts whose length is over 100K tokens, making it infeasible to process the entire context. The
task aims to generate an accurate answer A to a query Q based on such extensive contexts, where the
pertinent information is often dispersed across multiple sections. To address the complexities posed
by this task, we propose a novel multi-grained entity graph-based QA generation framework. This
method decomposes the hyper-long document T into a set of sub-blocks Ti, from which entities,
attributes, relationships, and event-related information are extracted to construct an entity set E.
By dynamically aggregating this information across different levels of granularity, our approach
facilitates the generation of precise QA pairs. This progress can be formulated as following:

A = f(T,Q; Θ) = argmaxP (A | Q,Emicro, Efeature, Emacro; Θ) (1)

where f(·) represents our multi-grained entity graph-based QA generation model, and Θ represents
the model parameters. QA pairs are constructed on three granularities of entity information to
store local and global information: micro-granularity (Emicro), feature-level granularity (Efeature),
and macro-granularity (Emacro). By synthesizing information from these levels, the model effectively
reduces information loss and mitigates semantic inconsistency, thus enhancing the accuracy of QA
generation in hyper-length contexts.

4 METHOD

As illustrated in Figure 2, we propose a comprehensive approach for knowledge extraction from
hyper-long contexts and response generation. The framework consists of two core components:
multi-grained knowledge generation and iterative retrieval agent. In the first component, the model
targets the extraction of entities, attributes, relationships, and events from extended contexts, gen-
erating multi-grained knowledge. This involves constructing micro, feature, and macro-level QA
pairs, which are essential for capturing intricate details within complex, lengthy texts. Sections 4.1
through 4.4 provide a detailed explanation of this process. The retrieval and agent components are
covered in Section 4.5.
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Hyper-long
Context

① Multi-Grained Knowledge Generation

Micro      <Q1, A1> <Q2, A2>...<Qn,An>
Feature  <Q1, A1> <Q2, A2>...<Qn,An>
Macro     <Q1, A1> <Q2, A2>...<Qn,An>

Knowledge Retrieval

② Iterative Retrieval Agent

Query

Sub Query  <Entity>

<Query1, Question1, Answer1>
<Query2, Question2, Answer2>

...
<Queryk, Questionk, Answerk>

× n

Agent

... 768-D

QueryQuestion Answer

Encoder

... 256-D

Query Question Answer

Encoder

Knowledge Retrieval

Result

Final Answer

E1 E3 E5E2

Chunk He was an old man who

fished alone in a skiff in

the Gulf Stream and he

had gone eighty-four

days without a fish. In the

first forty days a boy had

Entity Aggregation

Multi-grained 
Representation

Solved

Not Solved: Rewrite Q

Nearest Top-K

E1

E2

E3

E4 E5

<Attributes>  <Relationships>  < Events>

EntiGraph (LLM)-
Entity Extract E1

E3

E5

...

Section1 Sectioni

Entity Pruning

Figure 2: The method has two main components: multi-grained knowledge generation and iterative
retrieval agent, where hyper-long context is processed to capture entities with attributes, relation-
ships and events, and an iterative retrieval agent that refines queries to retrieve relevant information
for generating the final answer.

4.1 ENTITY EXTRACTION

Given a long text T consisting of multiple sentences, we group these sentences into chunks, where
each chunk Ti is composed of a consecutive sequence of sentences. Formally, the segmentation
process divides the text into m sub-blocks, expressed as:

T = {T1, T2, ..., Tm}, where Ti = {sl(i−1)+1, sl(i−1)+2, ..., sli} (2)

Here, li represents the index of the last sentence in each chunk Ti, allowing the chunk sizes to
vary as needed. For each chunk Ti, we employ an LLM, named EntiGraph, to extract entities
along with their associated attributes, relationships, and events. The entity extraction process can be
implemented in the following two ways:

• Few-shot Learning Adaptation. We incorporate both positive and negative samples into the
prompt design, which can enhance the model’s ability to accurately extract entities across different
domains. Positive samples represent the entities the model should extract, while negative samples
help reduce the likelihood of incorrect or irrelevant extractions.
For each sub-block Ti, we utilize a LLM to perform entity extraction. It generates an entity set
Ei by leveraging the few-shot learning approach, where the positive and negative samples are
integrated into the prompts used for inference. The extraction process is formalized as:

Ei = argmax
E

P (E | Ti,S; θpre) (3)

where θpre represents the model parameters, and Ei denotes the set of entities extracted from
sub-block Ti. Samples S refers to the positive and negative samples included in the prompt. By
incorporating these samples, the model better adapts to varying domain-specific contexts, reduc-
ing extraction errors and improving accuracy in entity recognition tasks across diverse domains.

• Specialized Model Fine-tuning. Another approach is to fine-tune the model on domain-specific
datasets to enhance its performance in entity extraction tasks. The core of this method lies
in constructing diverse training samples that comprehensively cover entity types, complex re-
lationships, and fine-grained attributes relevant to the target domain. These training samples
not only include common entity categories but also encompass similar entities in different con-
texts, complex entity relationship structures, and nested entities with multiple attributes. This
diverse sample-construction significantly improves the model’s ability to understand and extract
fine-grained semantic information. Specifically, the entity extraction task can be formulated as:
Ei = EntiGraph(Ti; θft), where θft denotes the fine-tuned model parameters.
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Furthermore, to better utilize the extracted entity information, the fine-tuning process can incorpo-
rate training samples that map entity information to QA pairs. These samples align the extracted
entities and their attributes with corresponding QA pairs, enhancing the model’s understanding
of contextual information. In Section 4.4, this fine-tuning strategy helps the generation of more
accurate and coherent QA outputs within the multi-grained representation framework. It is worth
noting that this fine-tuning strategy enables the use of a compact model with a parameter size of
around 1B to achieve excellent performance.

4.2 ENTITY AGGREGATION AND TEMPORAL CONTEXTUALIZATION

To effectively capture the temporal relationship between entities in a long document, we propose
to aggregate entities based on their occurrences across different sub-blocks while preserving their
temporal order. An entity ej may appear in multiple sub-blocks Ti, with each occurrence potentially
associated with different attributes, relationships, and events. To build a comprehensive understand-
ing of the entity’s role throughout the document, these occurrences are aggregated chronologically,
ensuring that both the entity’s evolution and temporal context are maintained.

The aggregation process collects all instances of an entity across the sub-blocks and organizes them
according to their order of appearance in the text. For each entity ej , the attributes, relationships,
and events from different sub-blocks are combined, preserving the associated temporal information
to form a unified, time-sensitive representation. The aggregated entity is formalized as:

E′ =

N⋃
j=1

{(ej , {aj , rj , evj , tj})} (4)

where aj , rj , and evj denote the sets of attributes, relationships, and events associated with ej ,
respectively. The tj refers to the timestamp indicating when the entity appears in the text. This
aggregation method ensures that temporal contextual information is retained during the entity ag-
gregation, preventing information loss or inconsistency.

4.3 ENTITY PRUNING

To enhance computational efficiency and reduce redundancy, we developed an entity pruning algo-
rithm aimed at improving the precision of QA pair generation by eliminating ambiguous or superflu-
ous entities. We define a pruning function P (ej) to determine whether an entity should be retained,
and if the importance of the entity ej falls below a predefined threshold τ , the entity is pruned:

P (ej) =

{
1, if

∑K
k=1 wk · I(ekj ) ≥ τ and tij is a specific timestamp

0, otherwise
(5)

where wk represents the importance weight of the entity, assigned by a large language model (Ernie-
3.5-8k) based on predefined scoring rules to evaluate the entity’s significance (details provided in
Appendix A.3.2); and I(ekj ) is an indicator function that signifies whether the entity attribute ekj
exists. Additionally, temporal expressions associated with ej are checked: if tij is a generalized
temporal expression, the entity is either pruned or the temporal information is discarded, unless a
clear and specific time point is provided (e.g., “1981 AD”).

The selection of the pruning threshold (τ ) was determined based on a detailed analysis of its impact
on entity pruning effectiveness. As shown in Table 7 in the Appendix, we conducted experiments to
evaluate the trade-offs between the number of retained entities and performance metrics (Precision,
Recall, and F1). This analysis demonstrates that a threshold of τ = 0.5 achieves the best balance
between Precision and Recall.

4.4 MULTI-GRAINED REPRESENTATION

The entities and information are modeled as nodes in a graph, and generating QA pairs corresponds
to finding the shortest paths between these nodes. Based on aggregated entity information, QA
pairs are constructed at three different granularities to capture semantic-rich information. The QA
generation process can be unified into a single formulation:

(Q,A) = argmax
q,a

P (q, a | e,Γ) (6)

6
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where Γ represents the information set at a particular granularity level:

• Micro-Grained Granularity. Γ = κ, with κ ∈ {α, ρ, ϵ} representing a specific attribute (α),
relationship (ρ), or event (ϵ).

• Feature-Level Granularity. Γ = K, where K ∈ {A,R, EV} denotes the complete set of at-
tributes, relationships, or events within a given dimension.

• Macro-Grained Granularity. Γ = G = {A,R, EV}, representing the global information set of
the entity.

This unified formulation captures QA generation across all granularities by varying the information
set Γ. The multi-grained QA generation framework dynamically adjusts the granularity of QA pairs
based on the amount of information available for each entity, ensuring both efficiency and accuracy.
For entities with sparse information (e.g., niche or less significant entities), only macro-level QA
pairs are generated to reduce computational overhead.

Let the information set for an entity e be I(e) = {A,R, EV}, with size |I(e)|. The granularity of
QA pairs is determined by |I(e)| as follows:

(Q,A) =


(Qmacro, Amacro), if |I(e)| < τ1
(Qmacro, Amacro), (Qfeature, Afeature), if τ1 ≤ |I(e)| < τ2
(Qmacro, Amacro), (Qfeature, Afeature), (Qmicro, Amicro), if |I(e)| ≥ τ2

(7)

where τ1 and τ2 are thresholds defining the granularity levels. This adaptive strategy optimizes
computational efficiency by tailoring the QA generation process to the richness of the entity’s in-
formation. The distribution of representation granularity across datasets is provided in Appendix
Figure 3, highlighting the proportions of basic, feature, and global representations.

4.5 ITERATIVE RETRIEVAL AGENT

The LoopAgent uses a multi-round iterative retrieval strategy, dynamically adjusting queries to re-
fine results with each round. This approach overcomes the limitations of single-round retrieval,
which often misses critical information in complex, multi-entity scenarios.

The retrieval process begins by decomposing the original query Q into K sub-queries, each derived
from a specific entity in the query. These sub-queries are processed in two phases: Retrieval and
Re-ranking. In the Retrieval stage, the model employs a 12-layer encoder to process the query,
and the question and answer are concatenated and fed into another 6-layer encoder. By encoding
the query and QA pairs separately, the dual-encoder model (Yates et al., 2021; Fan et al., 2022;
Luan et al., 2021) calculates their similarity in the shared vector space, enabling the selection of the
most relevant QA pairs that align with the query intent. The system retrieves and ranks the top-K1

relevant question-answer pairs from a corpus based on their similarity to the sub-query:

TOPK = argmaxi=1...n sim(f(Q;α), g(QAi;β)) (8)

where Q is the input query, QAi is the candidate from the corpus, and f and g are the encoders
parameterized by α and β. The similarity function sim measures the relevance between the encoded
query and candidate pairs. After retrieving the top-K1 results, a Re-ranking stage refines them using
a cross-encoder (Qiao et al., 2019), recalculating relevance and producing a new top-K2 ranking by
incorporating additional attributes.

If the first-round results lack sufficient information, the agent identifies gaps and generates an ad-
justed query RewriteQ. A second retrieval round based on RewriteQ produces a new result set
R2, which is merged with R1 to create a more comprehensive set. Through multiple rounds of re-
trieval and query adjustment, LoopAgent captures as much relevant information as possible. Once
sufficient data is gathered, the results are passed through a language model to generate a fluent,
accurate, and coherent final answer, balancing efficiency with precision.

5 EXPERIMENTS

In this section, we present the details of experimental setup, with the results and a detailed analysis.

7
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Table 1: Comparison with state-of-the-art on InfiniteBench dataset.

Methods GPT-4 YaRN-Mistral Kimi-Chat Claude 2 Yi-6B-200K Yi-34B-200K ChatGLM3-128K Ours
F1 25.96% 16.98% 17.93% 9.64% 15.07% 13.61% <5% 45.61%(↑)

Table 2: Comparison with state-of-the-art on MultiFieldQA and DuReader datasets.

Methods GPT-3.5
Turbo-16k

Llama2-7B
chat-4k

LongChat-v1.5
7B-32k

XGen
7B-8k

InternLM
7B-8k

ChatGLM2
6B-32k

Vicuna-v1.5
7B-16k

ChatGLM3
6B-32k Ours

MultiFieldQA-en(F1) 52.3 36.8 41.4 37.7 23.4 46.2 38.5 51.7 63.3(↑)
MultiFieldQA-zh(F1) 61.2 11.9 29.1 14.8 33.6 51.6 43.0 62.3 65.6(↑)
DuReader(Rouge-L) 28.7 5.2 19.5 11.0 11.1 37.6 19.3 44.7 31.4

5.1 EXPERIMENTAL SETUP

In this study, we utilize two benchmark evaluations: LongBench (Bai et al., 2023) and InfiniteBench
(Zhang et al., 2024), each comprising distinct datasets aimed at assessing language models’ per-
formance in long context understanding. Detailed descriptions of these datasets are provided in
Appendix A.1. Based on the official evaluation metrics, we assess the model’s performance on each
task as follows: The DuReader (He et al., 2018) was evaluate using ROUGE scores (ROUGE-1/2/L)
as the primary metrics. For the MultiFieldQA-zh, MultiFieldQA-en, and tasks within InfiniteBench,
F1 scores are used to evaluate the model’s accuracy in question-answering. The baseline model used
in our study is Ernie-3.5-8k, with a context token limit of 4k.

5.2 COMPARISONS WITH STATE-OF-THE-ARTS

In this study, we evaluate the performance of multiple models on the InfiniteBench and LongBench
benchmarks, with a particular emphasis on long-context comprehension and multi-domain question
answering. The results indicate that our model’s strengths in long-context understanding become
increasingly evident as text length grows. A comprehensive analysis is presented below.

Performance on Long Context Datasets. As shown in Table 1, our model consistently outperforms
baseline models on the hyper-long context dataset, specifically InfiniteBench (Zh.QA). It achieves an
F1 score of 45.61%, surpassing GPT-4 (OpenAI, 2023) (25.96%) and other models such as Kimi-
Chat (AI, 2023) (17.93%) and Claude 2 (Anthropic, 2023) (9.64%). These results highlight our
model’s ability to maintain relevance as the input text length exceeds 100K tokens, particularly
in tasks requiring the processing of hyper-long contexts. This demonstrates the model’s superior
capability in understanding and reasoning over extremely long text.

Performance on Shorter Text Datasets.

For datasets with shorter texts like MultiFieldQA-en, MultiFieldQA-zh, and DuReader, where doc-
ument lengths fit within the context window of baseline models (e.g., GPT-3.5-Turbo-16k and
ChatGLM3-6B-32k (Zeng et al., 2022)), our model remains competitive (Table 2). In MultiFieldQA,
it achieves the highest F1 scores in English (63.3%) and Chinese (65.6%), showcasing strong gen-
eralization and robust multilingual comprehension.

In DuReader, our model attains a ROUGE-L score of 31.4, below ChatGLM3-6B-32k (44.78%) but
still demonstrates strong generative abilities for long Chinese documents. However, ROUGE-L, as a
lexical metric, may miss semantic accuracy. For instance, given the query “What rank is Gatanothor
in the monster list?” with the reference answer “Top 7. Gatanothor (Ruler of Darkness),” our model’s
response, “Ranked seventh in the monster list,” is semantically correct despite a ROUGE-L score
of 0, highlighting ROUGE-L’s limitations. To address this, we propose an LLM-based evaluation
(Section 5.3) to assess semantic correctness, offering a more comprehensive performance measure.

5.3 ABLATION STUDY

We conducted ablation experiments to evaluate the contributions of different components in the
proposed model, comparing the baseline LLM (Ernie-3.5-8k), chunk-based retrieval combined with
the baseline, the EntiGraph module, and the Multi-Grained Representation Module, culminating in
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Table 3: Comparison of Different Methods across Datasets

Methods InfiniteBench(Zh.QA) MultiFieldQA-en MultiFieldQA-zh DuReader
Baseline (Ernie-3.5-8k) <5% 27% 56% <5%
RAG <5% 16% 35% 71%

Ours 53%(↑) 79%(↑) 78%(↑) 73%(↑)

Table 4: Evaluation of Entity Extraction Methods.

Methods Accuracy (%) Recall (%) F1 Score (%) Extracted Entities (#)
DeepKE 52.9 18 27.4 164

Ours 97.4 82 89.3 1,018

the full MKRAG framework. Table 3 summarizes performance across four datasets: InfiniteBench,
MultiFieldQA-en, MultiFieldQA-zh, and DuReader.

The baseline LLM (Ernie-3.5-8k), constrained by its 4k token limit, showed limited performance
on long-context datasets, achieving only 27% accuracy in MultiFieldQA-en and less than 5% in
DuReader due to token overflow. Adding chunk-based retrieval (500 tokens per chunk) improved
accuracy, particularly in DuReader (71%), benefiting from smaller dataset sizes and distinct features.
However, this approach struggled with tasks requiring comprehensive contextual understanding, as
it heavily relied on retrieving similar chunks without effectively integrating dispersed information.

EntiGraph. To evaluate entity extraction reliability, we compared our method with DeepKE (Zhang
et al., 2022) using GPT-4-extracted ground truth (518 entities). Metrics included accuracy, recall, F1
score, and total entities extracted. As shown in Table 4, our method outperformed DeepKE across
all metrics, achieving 97.4% accuracy, 82% recall, and 89.3% F1, compared to DeepKE’s 52.9%,
18%, and 27.4%, respectively. Our approach also extracted more entities (1,018 vs. 164), demon-
strating higher precision and recall, effectively addressing sparse or ambiguous entity relationships.
This improvement is critical for downstream tasks like knowledge graph construction and question
answering, ensuring robust performance.

Multi-grained Representation Module. To further evaluate the impact of Multi-Grained Represen-
tation, we conducted additional ablation experiments focusing on micro, feature, and macro granu-
larities across datasets. Table 5 illustrates the improvements in accuracy and F1 score at each granu-
larity, demonstrating the significant contributions of MKRAG. For instance, in the MultiFieldQA-zh
dataset, macro-level accuracy and F1 score increased by 16% and 13.3%, respectively, showcasing
the model’s ability to capture global contextual information. Similarly, micro-level improvements
highlight enhanced detailed reasoning, particularly in the InfiniteBench dataset. These results reaf-
firm the necessity of multi-grained representation for handling hyper-long contexts.

MKRAG. Our full model, MKRAG, excels in all datasets, particularly in long-context tasks. In In-
finiteBench, it achieves 53% accuracy, surpassing baselines and chunk retrieval, with the EntiGraph
module enhancing representation for hyper-long inputs. For shorter datasets like MultiFieldQA-zh
and MultiFieldQA-en, despite less pronounced gains, MKRAG achieves 78% and 79% accuracy,
nearly doubling the baseline in the latter. Ablation studies confirm its strength in long-context tasks,
overcoming token limits and query-document mapping issues in chunk retrieval. The multi-grained
RAG approach proves effective for high accuracy across diverse datasets.

5.4 EFFICIENCY EVALUATION

To evaluate the computational efficiency of our proposed iterative retrieval agent (Section 4.5), we
conducted experiments on the InfiniteBench (a long-document dataset) and MultiFieldQA-zh (a rel-
atively short-document dataset). Table 6 reports inference time, accuracy, F1 score, and average
iteration rounds under a maximum of two retrieval iterations. Our method achieves improvements
in accuracy and F1 scores compared to GPT-3.5 Turbo-16k and RAG (Ernie-3.5-8k), while main-
taining competitive inference times across both datasets. The average iteration rounds demonstrate
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Table 5: Performance of Multi-Grained Representation on Various Datasets

Dataset Granularity Acc
(%)

F1
(%)

MKRAG
(Acc, %)

MKRAG
(F1, %)

∆Acc
(%)

∆F1
(%)

DuReader
micro 63 22.4

73 31.4
+10 +9.0

feature 51 21.8 +22 +9.6
macro 64 23.7 +9 +7.7

MultiFieldQA-en
micro 63 35.5

79 63.3
+16 +27.8

feature 65 33.0 +14 +30.3
macro 73 34.8 +6 +28.5

MultiFieldQA-zh
micro 63 47.5

78 65.6
+12 +18.1

feature 59 44.6 +16 +21.0
macro 74 52.3 +1 +13.3

InfiniteBench
micro 46.88 40.00

53 45.61
+6.12 +5.61

feature 42 34.70 +11 +10.91
macro 37 32.00 +16 +13.61

Table 6: Comparison of Inference Efficiency and Iterative Performance.

Dataset Methods Time(s) Acc. (%) F1 Score (%) Avg. Iters

InfiniteBench
(Long)

GPT-3.5 Turbo-16k 2.57 12 6.2 1
RAG (Ernie-3.5-8k) 1.32 48 34.3 1

Ours 2.03 53 45.6 1.34

MultiFieldQA-zh
(Short)

GPT-3.5 Turbo-16k 1.91 74 61.2 1
RAG (Ernie-3.5-8k) 1.80 75 60.7 1

Ours 1.89 78 65.6 1.09

the adaptability of our iterative retrieval mechanism, dynamically refining retrieval results based
on query complexity. This configuration effectively balances retrieval quality and computational
efficiency, showcasing the practicality of our approach for both long and short-text scenarios.

5.5 ONLINE TEST

Our method underwent multiple rounds of experiments, demonstrating high accuracy in specific task
domains and successfully being deployed in real-world systems. It shows significant advantages in
managing updates and scaling large datasets, such as financial data and literary texts. Compared
to existing large models, accuracy improves from a baseline of 33.33% to 54.91%, with detailed
answer accuracy rising further to 88.24%. The F1 score increases from 15.38% to 44.72%, and user
satisfaction reaches 82.35%. These results highlight the method’s efficiency and accuracy in pro-
cessing complex long-context and real-time information, underscoring its practical value in handling
large-scale and complex data tasks.

6 CONCLUSION

In this study, we present a multi-grained knowledge approach for question answering over hyper-
long contexts. Our method constructs a knowledge graph organizing information at micro, feature,
and macro levels, enhancing LLMs’ ability to process extensive, distributed data. Unlike traditional
models struggling with fragmented context, it integrates fine-grained entities and context aggrega-
tion to deliver precise, rich responses. Experimental results show a 54.91% accuracy improvement
in extracting dispersed details in domains like finance and literature. With plug-and-play function-
ality, lower costs, and real-world efficacy, our approach reduces reliance on high-parameter models
while excelling in knowledge-intensive tasks.
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A APPENDIX

A.1 DATASET DETAILS

LongBench LongBench is a multi-task, bilingual benchmark for long-context comprehension in
Chinese and English, featuring tasks like single-document and multi-document QA, with task
lengths ranging from 5k to 15k tokens. MultiFieldQA (en zh) spans domains such as legal doc-
uments, government reports, encyclopedias, and academic papers in both languages. DuReader,
based on Baidu Search and Zhidao queries, focuses on multi-step reasoning and generate answers
in complex Chinese long-text documents, with an average length of 15,768 characters.

InfiniteBench InfiniteBench is a benchmark designed for hyper-long contexts (100k+ tokens), ex-
tending context length far beyond conventional tasks to challenge model capabilities in such scenar-
ios. Zh.QA, the longest dataset in InfiniteBench, is based on newly curated books, with an average
input length of 2,068.6k tokens and an average output of 6.3 tokens.

A.2 ADDITIONAL RESULTS

Figure 3: Distribution of Representation Granularity Across Datasets.

A.2.1 DISTRIBUTION OF REPRESENTATION GRANULARITY

Figure 3 demonstrates the representation granularity distribution across four datasets—DuReader,
MultiFieldQA-en, MultiFieldQA-zh, and InfiniteBench. The dominance of basic representations
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(53.0–59.8%) across datasets reflects the inherent need for core entity information in understanding
hyper-long contexts. However, the significant proportions of feature-level (23.0–30.5%) and global
representations (9.8–22.6%) underline the importance of capturing nuanced and contextual informa-
tion. These findings validate the necessity of multi-grained representations to address the diversity
of queries and context complexities in hyper-long documents.

A.3 ADDITIONAL EXPERIMENTAL SETUP

A.3.1 ENTITY PRUNING THRESHOLDS

To determine the optimal threshold (τ ) for entity pruning, we conducted experiments to evaluate
the trade-offs between Precision, Recall, and F1 score across different values of τ . Table 7 presents
the results, demonstrating that increasing τ reduces the number of retained entities but improves
Precision by eliminating less relevant entities. While higher thresholds lead to a drop in Recall, the
F1 score peaks at τ = 0.5, indicating the best balance between Precision and Recall for downstream
tasks. These results validate our choice of τ and its alignment with the module’s objective of efficient
and accurate entity selection.

Table 7: Impact of Entity Pruning Thresholds (τ ) on Performance Metrics

Thresholds (τ ) Precision (%) Recall (%) F1 (%) nums (Entities Retained)
0 86.3 84.6 85.5 1272

0.3 90.5 80.8 85.3 1107

0.5 95.2 80.8 87.5 688
0.7 88.2 65.4 75.1 398

1 90.1 42.3 57.7 268

A.3.2 DEFINITION OF IMPORTANCE WEIGHT wk

The importance weight wk in Equation (6) is assigned to each entity based on its contextual relevance
and semantic characteristics, as determined by a large language model (e.g., Ernie-3.5-8k). The
scoring rules are as follows:

Weight 0.3: Generic or vague entities, such as ”villager” or ”merchant.” These entities are typically
less informative and have minimal contextual contribution. Weight 0.5: Entities that are contextually
relevant and describe specific subjects, such as ”Zhu Bajie’s wife.” These entities provide clear and
actionable information in the context.

Weight 0.7: Rare or specific entities with unique names or backgrounds, such as ”White Bone
Demon.” These entities are often critical for understanding specific events or descriptions.

Weight 1.0: Core entities, which are indispensable to the context, such as ”Sun Wukong.” These
entities are essential for reasoning and often central to the context.

A.3.3 MODEL PARAMETERS

The configurations of three models: ErnieBot, retrieval-Ernie, and rerank-Ernie. ErnieBot’s archi-
tecture and key parameters remain unpublished, with a version of 3.5. Both retrieval-Ernie and
rerank-Ernie use the Transformer architecture, version 2.0. Retrieval-Ernie has 12 layers, a hidden
size of 768, 12 attention heads, and employs the infoNCE loss function. Rerank-Ernie, with 6 lay-
ers, shares the same hidden size and attention heads but uses the hinge loss function, optimizing for
ranking tasks.

A.4 PROMPTS

A.4.1 ENTITY EXTRACTION
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Table 8: Model Parameters in Experiments

Model Architecture Version Layers Hidden Size Attention heads Loss Function
Ernie-3.5-8k Transformer 3.5 - - - -

retrieval-Ernie Transformer 2.0 12 768 12 infoNCE
rerank-Ernie Transformer 2.0 6 768 12 hinge loss

Please extract all specific information about the all
↪→ entities from the following text in the style of
↪→ in-depth reading comprehension, including
↪→ attributes (such as the functions or
↪→ characteristics of objects, or detailed
↪→ descriptions of people, places, etc.),
↪→ relationships (the logical connections between
↪→ entities, such as cause-effect, belonging,
↪→ contrast, etc.), and events (summarize the core
↪→ events in which the entities participated and
↪→ their key details).

[Guidelines]
{guidelines}

[Example]
{example}

Please analyze the following text in accordance with
↪→ the above requirements and extract relevant
↪→ information. If no relevant information is found,
↪→ return {{}}:

"
{content}
"

A.4.2 MULTI-GRAINED QA PAIRS GENERATION

{instruction}
The following are question-and-answer pairs generated

↪→ based on provided entities and
↪→ attributes/relationships/events.

[Guidelines]
{guidelines}

{few_shot_examples}
**Entity Relationships:** {content}

**Question:**
{question}
**Answer:**

Begin!
Entity Relationships:
"
{content}
"

A.4.3 QUERY STAGE 1: DECOMPOSE SUB-QUERIES

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Decompose the original query into multiple short
↪→ queries based on the entity information. The
↪→ decomposed queries must remain consistent with
↪→ the original query and should not be expanded.

{instruction}

[Guidelines]
{guidelines}

[Example]
{examples}

[Thought]
{thought}

Begin!
Question:
"
{query}
"

A.4.4 QUERY STAGE 2: LOOPAGENT

[Task]
Understand the Question, extract or deduce the answer

↪→ based on the Knowledge, and if the answer cannot
↪→ be derived, reconstruct the Question based on the
↪→ missing information. Finally, output the answer.

Knowledge: {Knowledge}
Question: {Question}

[Observation]
{Observation}

[Example]
{examples}

Begin!
Question:
"
{Question}
"
Knowledge:
"
{Knowledge}
"

A.5 EXAMPLE

A.5.1 ENTITY EXAMPLE

{
"Attributes": {

"Personality Traits": [
"Generous and bold",
"Witty and humorous",

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

"Skilled in martial arts",
"Sinister but with underlying grievances"

],
"Associates": "Beautiful woman (wife)",
"Identity": [

"Leader of the Northern Branch of Tianlong
↪→ Sect",

"Person who met Hu Yitong years ago at
↪→ Shangjiabao",

"Acquainted with Miao Qiaowei and Hu
↪→ Cuishan",

"Head of a major martial arts sect",
"Leader of Tianlong Sect",
"Figure in Hua Quan Sect"

],
"Attire": "Luxurious",
"Complexion": "Pale like paper",
"Relationship": "Husband of the beautiful

↪→ woman",
"Appearance": [

"Handsome and dashing",
"Long eyebrows and bright eyes, exuding

↪→ elegance"
],
"Character": [

"Charming",
"Appears superior but is actually cautious",
"Strategic and prudent",
"Fond of teasing others"

],
"Martial Arts": [

"Not particularly skilled"
],
"Weapons": [

"Long sword",
"Short knife",
"Treasure sword",
"Long sword and Tianlong Treasure Blade"

],
"Behavioral Traits": [

"Suddenly standing up",
"Gripping the hilt of a long sword at the

↪→ waist, drawing it five inches with a
↪→ clang, and returning it to the
↪→ scabbard",

"Saying softly, ’Lanmei, l e t s go.’",
"Eyes fixed on the silver scabbards in the

↪→ carriage",
"Speaking with a trembling voice"

],
"Character Traits": [

"Dashing and efficient",
"Fearful inside",
"Greedy for silver scabbards"

],
"Characteristics": [

"Extremely sinister schemes",
"Terrified of the Iron Bodhi"

],
"Goal": "Pursuing wealth and power",
"Current Actions": "Leading a group to capture

↪→ Miao Qiaowei",
"Swordsmanship": "Tianlong Sect One-Stroke

↪→ Sword Technique",
"Condition": [
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"Seriously injured",
"Bleeding profusely from the chest, in a

↪→ sorry state"
],
"Sect": "Northern Branch of Tianlong Sect",
"Aura": "Impressive",
"Clothing": "Long robe and mandarin jacket",
"Followers Count": "Eight",
"Skills": [

"Swordplay",
"Pressure point striking"

],
"Preferred Weapon": "Sword",
"Grudge with Hu Yitong": "Had his treasure

↪→ blade taken and was struck to the ground
↪→ spitting blood"

},
"Relationships": {

"Targets of Teasing": [
"Ma Chunhua",
"Xu Zheng"

],
"Old Acquaintance": "Yan Ji",
"Opponent": "Ma Xingkong",
"Object of Fear": "Golden-faced Hero Miao",
"Relationship with Miao Qiaowei": [

"Conflict",
"Rival, due to abducting Miao Q i a o w e i s

↪→ wife Nanlan"
],
"Relationship with Nanlan": "Eloped",
"Feelings Toward Nanlan": "Initially passionate

↪→ and infatuated, later diminished due to
↪→ her disdain",

"Enemies": [
"Miao Qiaowei",
"Hu Yitong"

],
"Rivals": [

"Hu Yitong",
"Li Tingbao"

],
"Subordinates": [

"Warriors"
],
"Daughter": "Tian Qingwen",
"Comparison Target": "Hu Yitong",
"Brother": "Tang Pei (Elder Brother)",
"Challenger": "Tong Huaidao",
"Elder Brother": "Tang Pei",
"Chief Disciple": "Cao Yunqi",
"Relationship with Fu Qilong": "Treated

↪→ respectfully by Fu Qilong",
"Relationship with Tang Pei of Ganlin and Seven

↪→ Provinces": "Very close",
"Relationship with Mr. Shi": "Acquainted and

↪→ have communicated",
"Blinded Miao Qiaowei with Poison Grass": "Yes",
"Searching for": "Nanlan"

}
}
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A.5.2 END-TO-END WORKFLOW DEMONSTRATION

Table 9: Example of the Question-Answer Process in EntiGraph and LoopAgent

EntiGraph
Original Context Pierre Curie was a renowned French physicist known for his work on radioactivity. He was

married to Marie Curie, who was also a distinguished scientist. Together, they conducted
groundbreaking research that significantly advanced the understanding of radioactive ele-
ments. Pierre was born in Paris, France, where he also spent most of his life working and
living. In 1903, Marie Curie was awarded the Nobel Prize in Physics, an achievement that
highlighted their collaborative efforts in the field of radioactivity. Pierre himself made sig-
nificant contributions to the study of magnetism and radioactivity... Marie Curie, born in
Warsaw, Poland, moved to Paris to pursue her scientific career. She began her research on
radioactivity, which led to the discovery of polonium and radium. In 1911, she was awarded
the Nobel Prize in Chemistry for her services to the advancement of chemistry by the dis-
covery of the elements radium and polonium, by the isolation of radium, and the study of the
nature and compounds of this remarkable element...

Extracted Entities

Entity: Pierre Curie
Relationships:

Wife: Marie Curie
Attributes:

Occupation: Physicist
Place of Birth: Paris, France
Current Residence: Paris, France
Work Location: Paris, France

Events:
Event 1: 1903 - Wife Marie Curie awarded the Nobel Prize in Physics
Event 2: Conducted significant research on radioactivity and magnetism

Entity: Marie Curie
Events:

Event 1: Began research on radioactivity, discovered polonium and radium
Event 2: 1911 - Awarded the Nobel Prize in Chemistry

Generated QA pairs
(Micro)

Q: Who is Pierre Curie’s wife?
A: Marie Curie.

Generated QA pairs
(Feature)

Q: What were Pierre Curie’s achievements?
A: Pierre Curie made important achievements in radioactivity and magnetism research, and
he and his wife Marie Curie jointly studied radioactivity.
Q: What were Marie Curie’s achievements?
A: Marie Curie made breakthrough progress in radioactivity research, discovered polonium
and radium, and won the Nobel Prize in Physics and the Nobel Prize in Chemistry for this.

Generated QA pairs
(Macro)

Q: Who won the Nobel Prize in Physics?
A: Marie Curie.

LoopAgent
Query What did Marie Curie and Pierre Curie contribute to science?

Sub-queries - What did Marie Curie contribute to science?
- What did Pierre Curie contribute to science?

Sub-query Answers

- Marie Curie made breakthrough progress in radioactivity research, discovered polonium
and radium, and won the Nobel Prize in Physics and the Nobel Prize in Chemistry for this.
- Pierre Curie made important achievements in radioactivity and magnetism research, and he
and his wife Marie Curie jointly studied radioactivity.

If Answer is Incom-
plete

Generate new sub-queries based on related entities or events (not needed here).

Final Answer Marie Curie conducted pioneering research on radioactivity, discovered polonium and ra-
dium, and won Nobel Prizes in Physics and Chemistry. Pierre Curie was a notable physicist
who conducted research on radioactivity and magnetism, and contributed significantly to the
understanding of radioactive elements.
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