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Abstract

Representation Topology Divergence (RTD) has emerged as a powerful tool for analyzing
topological differences in point clouds (Barannikov et al., 2021), especially within neural
network representations. However, unlike symmetric distance metrics, our two-directional
divergence calculations often yield vastly different values. While we currently average these
two quantities to enforce symmetry, this approach lacks a clear theoretical justification
and interpretability. Its variant, mentioned by Trofimov et al. (2023), has been rarely
discussed or explored. Furthermore, unlike CKA (Kornblith et al., 2019), the full potential
of RTD has not been thoroughly investigated and applied across various domains of machine
learning, particularly in Large Language Models (LLMs). In this paper, we reveal the
complementary nature of RTD and its symmetric version. We introduce a more faithful
and comprehensive Symmetric Representation Topology Divergence (SRTD), enriching the
interpretability of the RTD framework. We explore a series of mathematical properties for
SRTD and its lightweight variant inspired by Tulchinskii et al. (2025), SRTD-lite. Through
experiments on both synthetic and real-world data, we demonstrate that SRTD and SRTD-
lite outperform their one-sided divergence counterparts in terms of computational efficiency
and accuracy. Additionally, by applying SRTD to compare the representation spaces of
various LLMs, we showcase its strong capability in distinguishing models from different
origins.

Keywords: Topological Data Analysis, Representation Learning, Neural Network Analy-
sis, Large Language Models Fingerprinting

1. Introduction

Understanding and comparing the internal representations of neural networks is a central
topic in the field of deep learning. As models become increasingly complex, developing tools
that can provide insight into their internal mechanisms has become crucial. In recent years,
researchers have proposed various methods for measuring representation similarity, ranging
from linear decodability probes to kernel-based techniques like Centered Kernel Alignment
(CKA) (Kornblith et al., 2019), which haveve become a popular tool for comparing the
geometric structures of representation spaces between different network layers or models.

Among these methods, Topological Data Analysis (TDA) offers a unique perspective
that goes beyond traditional geometric metrics to focus on the intrinsic ’shape’ and connec-
tivity of data.In this context, Representation Topology Divergence (RTD) was introduced
as a powerful tool specifically designed to quantify topological differences in point cloud
data (Barannikov et al., 2021), such as neural network representations. By comparing the
topological features of two representation spaces and their union, RTD effectively mea-
sures the structural differences between them. Since computing persistent homology is
very time-consuming, it is difficult to use on large-scale datasets.Then, Tulchinskii et al.
(2025) proposed RTD-lite as a computationally efficient optimization method that focuses
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solely on 0-dimensional homology (clustering and connectivity information), addressing this
computational bottleneck.

However, RTD also faces several challenges. The divergence between two point clouds
is typically calculated as the average of two directional divergences1. The two values being
averaged often show significant discrepanciesTable 5(c)2, a phenomenon that no current
work has explained, and the same issue is present in RTD-lite.Trofimov et al. (2023) pack-
aged RTD as a differentiable function for gradient optimization. While they also mentioned
another variant, which we term Max-RTD, and noted its similar properties, they did not
conduct an in-depth investigation. Instead, they merely added it to the loss function to
enrich gradient information, leaving this area of research unexplored. Furthermore, RTD
has not yet demonstrated its power on AI frontiers such as Large Language Models; previ-
ous applications focused on Variational Autoencoders, and its potential has not been fully
realized, unlike CKA(Kornblith et al., 2019). To further enhance the theoretical framework
of RTD and promote its application in LLMs, we propose SRTD and SRTD-lite. Our
improved version is the first in the RTD series (including the lite series) to have symmetry,
interpretability, and the lowest computational overhead, which facilitates more trustworthy
representation analysis in LLMs. Our main contributions are as follows:

We provide a theoretical explanation for the asymmetry of RTD by formally defining
Max-RTD and our proposed SRTD, along with their lightweight variants, and prove their
mathematical properties. We then experimentally demonstrate that SRTD is more effective
than one-sided divergences when used as a penalty term or for model comparison. Finally,
we showcase SRTD’s potential by applying it to analyze the representations of LLMs.

2. Preliminary

We consider two point clouds, P and P ′, of the same size with a one-to-one correspon-
dence. Their pairwise distance matrices are w and w̃, respectively. We define the fol-
lowing Vietoris-Rips complexes: A = Rα(Gw), B = Rα(Gw̃), A ∪ B = Rα(Gmin(w,w̃)), and
A∩B = Rα(Gmax(w,w̃)). We first revisit the idea behind RTD. RTD computes the persistent
homology of the complex represented by the distance matrix mmin2

3, and defines the sum
of its barcode lengths as RTD(w, w̃), with the other direction defined symmetrically. RTD
focuses on the difference in topological features between A,B and their union A∪B. Trofi-
mov et al. (2023) mentioned integrating an RTD variant as an optimization term into the
original RTD loss to enrich gradient information. This variant focuses on the relationship
between A,B and their intersection A∩B, and exhibits behavior similar to RTD. Here, we
provide a formal definition for this variant Definition 6.

3. Symmetric Representation Topology Divergence (SRTD)

In practice, we observe a complementary phenomenon between RTD and Max-RTD 5(c).
WhenRTD(w, w̃) > RTD(w̃, w), we consistently find thatMax-RTD(w, w̃) < Max-RTD(w̃, w).
This suggests that the topological structural differences between A ∪B and A ∩B seem to

1. For example, RTD(P, P ′) = RTD(w,w̃)+RTD(w̃,w)
2

. The same applies to Max-RTD and SRTD.
2. The Min column in the table shows the difference between the divergences in the two directions.
3. The three important matrices, mmin, mmax, and msym, are defined in Appendix A
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be the core reason for the asymmetry in RTD. Therefore, we propose to directly measure
this difference as the Symmetric Representation Topology Divergence (SRTD) of P and P ′.

Definition 1 (SRTD) For two point clouds P and P ′ with a one-to-one correspondence,
the distance matrix of their auxiliary graph Ĝ′sym is msym1. The sum of the lengths of its
persistent homology barcodes is defined as SRTD(P, P ′). Its chain complex is homotopy
equivalent to the mapping cone of the inclusion map f ′ : C∗(A ∩B)→ C∗(A ∪B).

Tulchinskii et al. (2025) proposed RTD-Lite, pointing out that mst(w)+mst(w̃)−2mst(min(w,w̃))
2

is equivalent to the information related only to clustering (i.e., 0-dimensional homology) in
RTD1(w,w̃)+RTD1(w̃,w)

2 , where mst(w) is the length of the minimum spanning tree for the
distance matrix w. Building upon RTD-lite, we can similarly define its ’max’ variant, Max-
RTD-Lite, and a symmetric version, SRTD-Lite, which focuses on the clustering differences
between min(w, w̃) and max(w, w̃).

Definition 2 (SRTD-Lite) By comparing the minimum spanning trees of min(w, w̃) and
max(w, w̃)(see Algorithm A.6), we can obtain a series of barcodes, SRTD-L-barcode(w, w̃).
We define the sum of the lengths of these barcodes as SRTD-Lite(w, w̃).

3.1. Mathematical Properties

SRTD, RTD, and Max-RTD satisfy some elegant mathematical properties. The mapping
cones corresponding to their auxiliary graphs fit into the following long exact sequence:

· · · → Hn(Rα(Gw), Rα(Gmax(w,w̃)))
γn−→ Hn(Rα(Gmin(w,w̃)), Rα(Gmax(w,w̃)))

βn−→ Hn(Rα(Gmin(w,w̃)), Rα(Gw))
δn−→ Hn−1(Rα(Gw), Rα(Gmax(w,w̃)))

γn−1−−−→ · · ·

Theorem 3 For any dimension i, point clouds P, P ′ and distance matrices w, w̃, the three
divergences satisfy the following relationship:

RTDi(w, w̃)+Max-RTDi(w, w̃)−SRTDi(P, P
′) =

∫ ∞

0
(dim(ker(γi))+dim(ker(γi−1)))dα

By swapping the positions of w and w̃ in Theorem 3, we obtain a similar equality. We denote
RTDi(w, w̃)+Max-RTDi(w, w̃) as minmax(w, w̃),and RTDi(w̃, w)+Max-RTDi(w̃, w)as
minmax(w̃, w). Both are strictly greater than SRTD, but in our experiments, we find this
gap to be very small, as shown in the Table 5(b).

The introduction of SRTD provides a more mathematically elegant explanation for the
RTD family of divergences. The terms minmax(w, w̃) and minmax(w̃, w) can be seen as
mixed divergences calculated from the perspectives of w and w̃, respectively. Their minimal
difference stems from their large shared component, SRTD(w, w̃). Their ’private’ parts can
be understood as topological features that do not exist in Gmax(w,w̃), are born only in Gw or
Gw̃, and die in Gmin(w,w̃). Consequently, calculating the divergence from different directions
does not yield significant discrepancies, and this difference becomes interpretable. In the
lite version, this relationship is even more elegant:

Corollary 4 Max-RTD-Lite(w, w̃) +RTD-Lite(w, w̃) = SRTD-Lite(w, w̃)

Corollary 5 Max-RTD-Lite(P, P ′) ≥ SRTD-Lite(P, P ′) ≥ RTD-Lite(P, P ′)
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4. Experiments

4.1. Behavioral Similarity on Synthetic Data

Clusters Experiment We conduct an experiment on a 300-point point cloud, using a
single-cluster point cloud as a baseline. Our results first confirm the behavioral similarity
of the three divergences, the complementarity between RTD and Max-RTD, and that the
gap in Theorem 4 is negligible. Furthermore, we find that the RTD-lite divergence exhibits
anomalous behavior, with its direction of change being completely opposite to the expected
trend. In contrast, both Max-RTD-lite and SRTD, which incorporate information from
max(w, w̃), correctly reflect the trend. This finding highlights the inadequacy of calculating
divergence based solely on min(w, w̃). A detailed description is provided in Appendix F.

Sensitivity Experiment In our sensitivity experiment, we use 5 point clusters where
points move radially outwards from their respective fixed centers. The distance of each
point to its center, denoted by α, is varied from 0.1 to 12. When compared to the baseline
configuration at α = 0.1, we find that as the points move further apart, RTD becomes
progressively less sensitive to the changes. However, SRTD and Max-RTD remain effective
at detecting these structural variations, see Appendix E for details.

4.2. UMAP Embedding Analysis

We conduct an experiment on the 2D representations from UMAP with varying numbers
of neighbors. The results show the behavioral similarity among the three divergences, the
complementarity between RTD and Max-RTD, and that the gap in Theorem 4 is negligible.
A detailed experimental description is provided in Appendix C

4.3. Gradient optimization for autoencoder

Following RTD-AE and RTD-lite (Trofimov et al., 2023; Tulchinskii et al., 2025), we use
a small autoencoder to project COIL-20 and F-MNIST into a 16-dimensional space with
SRTD and SRTD-lite. Both SRTD and SRTD-lite achieve the best performance in their
respective series. Furthermore, SRTD is nearly twice as fast as RTD. Detailed experimental
settings and descriptions can be found in Appendix D.

5. LLM fingerprinting

We propose using SRTD to reveal the homology of large language models, for which we
conducted preliminary validation experiments. Zhang et al. (2024) has shown that Centered
Kernel Alignment is significantly effective in identifying pruned and fine-tuned versions
of various large language models. In our initial experiments, we selected a few models
and their instruction-tuned versions(13 models) and extracted their representations on the
TrustfulQA dataset(Lin et al., 2021). We found that SRTD has the potential to identify
models from different origins, as illustrated in Appendix G.
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Appendix A. Important Matrix and Algorithm

In the definitions below, for any given matrix M , we denote M+ as the matrix obtained by
replacing its strictly upper triangular part with infinity (∞).

A.1. Symmetric Auxiliary Matrix

This matrix is central to the definition of Symmetric Representation Topology Divergence
(SRTD).

msym =

 max(w, w̃) (max(w, w̃)+)T 0
max(w, w̃)+ min(w, w̃) ∞

0 ∞ 0

 (1)
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A.2. Min Auxiliary Matrix

This matrix is used to compute the standard Representation Topology Divergence (RTD).

mmin =

 w (w+)T 0
w+ min(w, w̃) ∞
0 ∞ 0

 (2)

A.3. Max Auxiliary Matrix

This matrix is used in the definition of Max-RTD.

mmax =

 max(w, w̃) (max(w, w̃)+)T 0
max(w, w̃)+ w ∞

0 ∞ 0

 (3)

A.4. Max-RTD

Definition 6 (Max-RTD) For two point clouds P and P ′ with a one-to-one correspon-
dence, the distance matrix of their auxiliary graph Ĝ′max is given by mmax3. The sum of the
lengths of the persistent homology barcodes of Ĝ′max is defined asMax-RTD(w, w̃). Its chain
complex is homotopy equivalent to the mapping cone of the inclusion map f ′ : C∗(A∩B)→
C∗(A).

A.5. SRTD algorithm

Algorithm 1: Symmetric Divergence Score Calculation (SRTD)

Input: Pairwise distance matrices w, w̃
Output: Symmetric divergence scores Sym-Divergencei
Normalize w, w̃ by their 0.9 quantiles;
Let mmax+← max(w, w̃), and replace its upper triangular part with +∞;
Construct the symmetric auxiliary matrix msym1 Compute barcodes
Sym-Barcodei ← B(vr(msym), i);

Compute divergence Sym-Divergencei ←
∑

(b,d)∈Sym-Barcodei
(d− b);
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A.6. SRTD lite Barcode Algorithm

Algorithm 2 Computation of SRTD-Lite Barcode

Input: D1, D2 — weight matrices of two models.
Require:
MST (·) — function computing Minimal Spanning Tree, returns list of edges.
Sort(·) — function sorting list of edges by their weights.

Output: Multiset of pairs (intervals constructing SRTD-L-Barcode(D1, D2))

procedure SRTD-L-Barcode(D1, D2)
D′

1, D
′
2 ← D1, D2 divided by their 0.9 quantiles

Dmin ← element-wise minimum of D′
1 and D′

2

Dmax ← element-wise maximum of D′
1 and D′

2

Emin ← Sort(MST (Dmin))
Emax ← Sort(MST (Dmax))
BarcodeSet← []
SubTree← empty graph with N vertices
for each edge e = (u, v) with weight wbirth in Emin do
if u and v are not connected in SubTree then
TemporaryGraph← copy(SubTree)
for each edge e′ = (u′, v′) with weight wdeath in Emax do

Add e′ to TemporaryGraph
if u and v are connected in TemporaryGraph then

Add (wbirth, wdeath) to BarcodeSet
break

end if
end for
Add e to SubTree

end if
end for
return BarcodeSet

end procedure

Appendix B. Proofs

B.1. statement in definition

We first prove the following lemmas, they are stated in Definition 6 and Definition 1:

Lemma 7 There exists a specially constructed auxiliary graph Ĝ′max such that its chain
complex is homotopy equivalent to the mapping cone Cone(f ′), where f ′ : C∗(A ∩ B) →
C∗(A) is a chain map induced by the inclusion.

Rα(Ĝ′max) ∼ Cone
(
Rα(Gmax(w,w̃))→ Rα(Gw)

)
Lemma 8 Similarly, there exists a specially constructed auxiliary graph Ĝ′sym such that its
chain complex is homotopy equivalent to the mapping cone Cone(f ′), where f ′ : C∗(A∩B)→
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C∗(A ∪B) is a chain map induced by the inclusion.

Rα(Ĝ′sym) ∼ Cone
(
Rα(Gmax(w,w̃))→ Rα(Gmin(w,w̃))

)
Proof

The mapping cone we are interested in is constructed from the direct sum of the following
chain complexes:

Cone(f ′) = C∗(A ∩B)[−1]⊕ C∗(A)

Following the construction from the RTD paper, we can propose two auxiliary graph
schemes: The vertex set of the auxiliary graph Ĝ′max is composed of the original vertices
v′i, mirrored vertices vi, and a special vertex O. Its distance rules are defined as follows:
d′vivj = max(wij , w̃ij),d

′
v′iv

′
j
= wij ,d

′
viv′i

= 0,d′Ovi
= 0, d′Ov′i

= +∞,d′viv′j
= max(wij , w̃ij)

The vertex set of the auxiliary graph Ĝ′sym is composed of twice the number of original
vertices and O. d′vivj = max(wij , w̃ij),d

′
v′iv

′
j
= min(wij , w̃ij),d

′
viv′i

= 0 ,d′Ovi
= 0, d′Ov′i

=

+∞,d′viv′j
= max(wij , w̃ij)

For the auxiliary graph Rα(Ĝ′max), there are three types of simplices:

• Ai1 . . . AikA
′
ik
. . . A′

in
, where max(wAirAis

, w̃AirAis
) ≤ α for r ≤ k, and wAirAis

≤ α
for r, s ≥ k.

• Ai1 . . . AikA
′
ik+1

. . . A′
in
, where max(wAirAis

, w̃AirAis
) ≤ α for r ≤ k, and wAirAis

≤ α
for r, s ≥ k + 1.

• OAi1Ai2 . . . Ain , where max(wAirAis
, w̃AirAis

) ≤ α.

Forward Map

ψ′ : Cone(f ′)→ Rα(Ĝ′max)

• For c ∈ C∗(A ∩B)[−1] (of the form Ai1 . . . Ain [−1]):

ψ′(c) = OAi1 . . . Ain +

n∑
k=1

Ai1 . . . AikA
′
ik
. . . A′

in

• For a ∈ C∗(A) (of the form Ai1 . . . Ain):

ψ′(a) = A′
i1 . . . A

′
in

Backward Map

ψ̃′ : Rα(Ĝ′max)→ Cone(f ′)

• ψ̃′(OAi1 . . . Ain) = Ai1 . . . Ain [−1]

• ψ̃′(A′
i1
. . . A′

in
) = Ai1 . . . Ain

• ψ̃′(∆) = 0 (for all other types of simplices ∆)
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Homotopy Operator H For the second type of simplex:

H : Ai1 . . . AikA
′
ik+1

. . . A′
in →

k∑
l=1

Ai1 . . . AilA
′
il
. . . A′

in , 1 ≤ k ≤ n

For all other simplices:
H(∆) = 0

Therefore, ψ̃′ ◦ψ′ = Id and ψ′ ◦ ψ̃′−Id = H∂−∂H. This proves Lemma 7, and Lemma 8
can be proven similarly.

B.2. proof of Theorem 3

Lets proof Theorem 3. To proof the theorem,we just need to proof the following theorem:

Theorem 9 For any dimension i, the Betti numbers of the three auxiliary graphs satisfy
the following relation:

βmin
i (α) + βmax

i (α)− βsymi (α) = dim(ker(γi)) + dim(ker(γi−1))

Proof We have the following inclusion of simplicial complexes:

Rα(Gmax(w,w̃)) ⊆ Rα(Gw) ⊆ Rα(Gmin(w,w̃))

This forms a triple of complexes, which gives rise to a standard short exact sequence of
their chain complexes:

0→ C∗(Rα(Gw), Rα(Gmax(w,w̃)))→ C∗(Rα(Gmin(w,w̃)), Rα(Gmax(w,w̃)))→ C∗(Rα(Gmin(w,w̃)), Rα(Gw))→ 0

This, in turn, induces the following long exact sequence in homology:

· · · → Hn(Rα(Gw), Rα(Gmax(w,w̃)))→ Hn(Rα(Gmin(w,w̃)), Rα(Gmax(w,w̃)))

→ Hn(Rα(Gmin(w,w̃)), Rα(Gw))
∂∗−→ Hn−1(Rα(Gw), Rα(Gmax(w,w̃)))→ · · ·

Since the relative homology groups are isomorphic to the homology groups of the cor-
responding mapping cones, we have the following long exact sequence for the auxiliary
graphs:

· · · → Hi(Rα(Ĝ′max))
γi−→ Hi(Rα(Ĝ′sym))

βi−→ Hi(Rα(Ĝ′min))
δi−→ Hi−1(Rα(Ĝ′max)) → · · ·

where γi, βi, δi are the homomorphism maps in the sequence. For any segment of an ex-

act sequence of vector spaces U
f−→ V

g−→ W , we have im(f) = ker(g). By the rank-
nullity theorem, dim(V ) = dim(ker(g)) + dim(im(g)). Substituting im(f) = ker(g), we get
dim(V ) = dim(im(f)) + dim(im(g)). Therefore, the dimensions of the homology groups of
the auxiliary graphs (i.e., the Betti numbers βi(α)) can be expressed as:

βmax
i (α) = dim(Hi(Rα(Ĝ′max))) = dim(im(δi+1)) + dim(im(γi)) (4)

βsymi (α) = dim(Hi(Rα(Ĝ′sym))) = dim(im(γi)) + dim(im(βi)) (5)

βmin
i (α) = dim(Hi(Rα(Ĝ′min))) = dim(im(βi)) + dim(im(δi)) (6)
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By substituting equations (4), (5), and (6), we obtain:

βmin
i (α) + βmax

i (α)− βsymi (α)

=
(
dim(im(βi)) + dim(im(δi))

)
+
(
dim(im(δi+1)) + dim(im(γi))

)
−
(
dim(im(γi)) + dim(im(βi))

)
= dim(im(δi+1)) + dim(im(δi))

= dim(ker(γi)) + dim(ker(γi−1))

By integrating both sides of Theorem 9 with respect to filtration radius α, we obtain its
conclusion. This completes the proof of Theorem 9 and Theorem 3.

B.3. proof of corollary

proof of Corollary 4 From definition, we have

RTD-lite(P, P ′) =
(mst(Gw)−mst(Gmin(w,w̃))) + (mst(Gw̃)−mst(Gmin(w,w̃)))

2

Max-RTD-lite(P, P ′) =
(mst(Gmax(w,w̃))−mst(Gw)) + (mst(Gmax(w,w̃))−mst(Gw̃))

2

SRTD-lite(P, P ′) = mst(Gmax(w,w̃))−mst(Gmin(w,w̃))

Summing the three equations above completes the proof.

proof of Corollary 5 This corollary holds if and only if the following expression is true,
where A and B are two non-negative, symmetric distance matrices of the same size with
zeros on the diagonal.

Proof

MST(max(A,B)) +MST(min(A,B)) ≥ MST(A) +MST(B). (⋆)

Let the graph have n vertices and an edge set E. We can view a weight matrix W as a
function that assigns a non-negative weight We to each edge e ∈ E. For any non-negative
weight matrix W , let E≤t(W ) := {e ∈ E : We ≤ t} be the set of edges with weight at
most t, and let κW (t) be the number of connected components in the graph (V,E≤t(W )).
A standard result from Kruskal’s algorithm gives the MST weight as an integral:

MST(W ) =

∫ ∞

0

(
κW (t)− 1

)
dt. (7)

The element-wise min and max operations on weight matrices correspond to the union
and intersection of their threshold edge sets:

E≤t(max(A,B)) = E≤t(A) ∩ E≤t(B), (8)

E≤t(min(A,B)) = E≤t(A) ∪ E≤t(B).
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Let κ(S) be the number of connected components of the graph induced by an edge set
S ⊆ E. A fundamental result in graph theory and matroid theory is that the rank function
r(S) = n− κ(S) is submodular. Consequently, κ(S) is supermodular:

κ(X ∩ Y ) + κ(X ∪ Y ) ≥ κ(X) + κ(Y ), ∀X,Y ⊆ E. (9)

Substituting (8) into (9) with X = E≤t(A) and Y = E≤t(B), we get for every t ≥ 0:

κmax(A,B)(t) + κmin(A,B)(t) ≥ κA(t) + κB(t).

Integrating over t ∈ [0,∞), and applying the formula (7) yields the desired inequality (⋆).

Appendix C. UMAP Experiment

UMAP is a state-of-the-art dimensionality reduction technique for visualization(Damrich
and Hamprecht, 2021), excelling at preserving both the local and global structure of the
data. We select a range for the n neighbors parameter: (10, 20, 50, 100, and 200).
We then compute the pairwise RTD, Max-RTD, and SRTD between their 2D represen-
tations. From Figure 1(b), we can observe the similarity among the three divergences.
From Figure 2(a) shows RTD(w, w̃)−RTD(w̃, w) (left column) and Max−RTD(w, w̃)−
Max − RTD(w̃, w) (right column), reflecting their asymmetry and complementarity.From
Figure 2(b), we observe the minimal difference between minmax(w, w̃), minimax(w̃, w),
and SRTD,Definition of E1 is the same as above.

(a) UMAP(10,20,50,100,200) (b) Divergence scores

Figure 1: Similarity of 3 divergence measures.

(a) Symmetry and Complementarity (b) Minimal Difference Between SRTD and
Minmax Divergence

Figure 2: Sensitivity analysis of divergence measures.
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Appendix D. Experiment on Autoencoder and Experimental Setup

D.1. Experiment on autoencoder

Following the approach of RTD-AE and RTD-lite (Trofimov et al., 2023; Tulchinskii et al.,
2025),we train our autoencoder using a combined loss function. This objective includes
a standard reconstruction loss alongside our proposed SRTD (or SRTD lite) divergence,
which is computed between the high-dimensional input data and its low-dimensional latent
representation. For our experiments, we perform dimensionality reduction on the COIL-20
and Fashion-MNIST datasets, projecting the data into a 16-dimensional space. To evaluate
the quality of the reduction, we compare the original and latent representations using the
following metrics: (1) linear correlation of pairwise distances, (2) the Wasserstein distance of
theH0 persistent homology barcodes (Chazal and Michel, 2021), (3) triplet distance ranking
accuracy (Wang et al., 2021), (4) RTD (Barannikov et al., 2021) (5) SRTD. The results of
RTD series are summarized in Table 1 and Table 2,. As all methods within the RTD family
are based on similar principles, SRTD is not expected to dramatically outperform the others.
Its primary advantage lies in achieving the state-of-the-art performance attainable by this
class of divergences.

Table 1: Dimensionality Reduction Quality Metrics(COIL-20).

Method Dist Corr Triplet Acc H0 Wass RTD SRTD

RTD 0.942 0.893 ± 0.01 40.1±0.0 1.28 ± 0.4 1.29 ± 0.4
Max-RTD 0.924 0.879 ± 0.01 32.3±0.0 1.17 ± 0.3 1.17 ± 0.3
SRTD 0.948 0.899 ± 0.01 36.7±0.0 1.21 ± 0.4 1.21 ± 0.4

Table 2: Dimensionality Reduction Quality Metrics(F-mnist).

Method Dist Corr Triplet Acc H0 Wass RTD SRTD

RTD 0.954 0.907 ± 0.00 98.2 ± 4.3 1.28 ± 0.1 1.35 ± 0.2
Max-RTD 0.937 0.895 ± 0.01 94.1 ± 4.1 1.51 ± 0.1 1.55 ± 0.1
SRTD 0.957 0.910 ± 0.01 94.0 ± 2.7 1.29 ± 0.1 1.34 ± 0.2

Table 3and Table 4 illustrate the dimensionality reduction performance of the lite series
divergences.

Table 3: Dimensionality Reduction Quality Metrics(COIL-20).

Method Dist Corr Triplet Acc H0 Wass RTD SRTD

RTD lite 0.904 0.855 ± 0.01 26.0±0.0 0.99 ± 0.3 1.00 ± 0.3
Max-RTD lite 0.935 0.886 ± 0.01 29.9 ± 0.0 1.03 ± 0.3 1.04 ± 0.3
SRTD lite 0.930 0.882 ± 0.01 28.2 ± 0.0 1.00 ± 0.2 1.01 ± 0.2
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Table 4: Dimensionality Reduction Quality Metrics(F-mnist).

Method Dist Corr Triplet Acc H0 Wass RTD SRTD

RTD lite 0.937 0.896 ± 0.01 90.2 ± 3.9 1.38 ± 0.1 1.43 ± 0.1
Max-RTD lite 0.940 0.897 ± 0.00 92.0 ± 3.6 1.47 ± 0.1 1.51 ± 0.2
SRTD lite 0.941 0.897 ± 0.00 91.4 ± 5.1 1.42 ± 0.1 1.47 ± 0.1

D.2. Experimental Setup

Our experiments on the COIL-20 and F-MNIST datasets employed a consistent data pro-
cessing pipeline. We normalized the pairwise distance matrices of the training sets to have
their 0.9 quantiles equal to 1. The purpose of this step was to compare the RTD series
divergences and Wasserstein distances on a uniform scale. Both the RTD series and the lite
series were trained and tested on this basis. Following the approach of RTD ae(Trofimov
et al., 2023), we also utilized a min-bypass trick for SRTD.

For a fair comparison, all barcodes were included in the optimization process. Our
experiments were designed to measure whether SRTD could achieve the same
level of performance as the RTD family of divergences, all while reducing com-
putational costs. As our follow-up work is focused on using SRTD to study large
language model representations, we did not perform a detailed comparison with
other dimensionality reduction methods.

The specific parameters used in our experiments are detailed below:

Table 5: Experimental Parameters

Dataset Name Batch Size LR Hidden Dim Layers Epochs Metric Start Epoch

F-MNIST 256 10−4 512 3 250 60
COIL-20 256 10−4 512 3 250 60

Table 6: Dataset Characteristics

Dataset Classes Train Size Test Size Image Size

F-MNIST 10 60,000 10,000 28x28 (784)
COIL-20 20 1,440 - 128x128 (16384)

Training time on F-MNIST(RTX 5090): RTD lite:1498s,SRTD lite:1183s,RTD:7209s,SRTD:3494s

Appendix E. Sensitive Experiment

The max-divergence offers more than just a uniform vertical shift of the min-divergence. As
max(w, w̃) enhances the overall separation of the point cloud, it is more sensitive to changes
in the data structure compared tomin(w, w̃). To demonstrate this, we designed a sensitivity
experiment. We select 5 fixed centers, with 50 points positioned on the circumference of
a circle of radius α around each center. We maintain a constant direction for each point
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relative to its respective center(baseline α = 0.1), only increasing their distance to the center
to generate a series of point clouds, as shown in Figure 3. As α gradually increases, the
standard RTD becomes less effective at capturing the changes. However, Max-RTD and
SRTD, which incorporate information from max(w, w̃), continue to detect these changes
effectively.

Figure 3: sensitivity experiment

Appendix F. Clusters Experiment

We generated point clouds with varying numbers of clusters. The initial point cloud consists
of 300 points, which are subsequently arranged into 2, 3, 4, . . . , up to 12 clusters. We com-
pare the initial point cloud (w) as a baseline against the subsequent point clouds (w̃). Let

E1 = minmax(w,w̃)−SRTD(w,w̃)
2 , and E2 is defined similarly. ’Percentage’ represents the ratio

minmax(w,w̃)−SRTD(w,w̃)
SRTD(w,w̃) expressed as a percentage. As shown in Figure 5(a), the behaviors of

the three divergence metrics are highly similar. Table 5(b) indicates that the right-hand side
of theorem 3 actually constitutes a very small proportion. Furthermore, Table 5(c) reveals
that RTD and Max-RTD exhibit a high degree of asymmetry and complementarity.

Figure 4: Divergence scores on synthetic cluster datasets.

Here Figure 6 are the performances of the lite series divergences and CKA on point clouds
of clusters, with a single-cluster point cloud as the baseline. It can be seen that RTD lite
shows an anomaly here; while the RTD series, along with max rtd lite and srtd lite, are
able to recognize that similarity gradually decreases as the number of point clouds increases,
RTD lite exhibits a completely different trend. CKA fails to identify any pattern in this
task. This once again reflects the bias and anomalies that can arise when analyzing differ-
ences solely by using min(w, w̃). By introducing min(w, w̃), both max rtd lite and srtd lite
manage to avoid this anomaly and identify the correct pattern.
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(a) Divergence

Clust. E1 E2 Percent

2 0.357 0.000 3.16(0.00)
3 0.493 0.013 3.32(0.09)
4 0.441 0.061 2.47(0.34)
5 0.451 0.039 2.26(0.20)
6 0.347 0.060 1.57(0.27)
10 0.263 0.043 0.95(0.15)
12 0.226 0.046 0.76(0.15)

(b) Diff

Min Max

13.0976 -12.3839
11.2554 -10.2954
10.8131 -10.0535
10.3320 -9.5084
9.4315 -8.8572
8.3074 -7.8674
7.6888 -7.3296

(c) Asymmetry

Figure 5: Comprehensive analysis of synthetic cluster datasets. In table (b), E1 =
minmax(w,w̃)−SRTD(w,w̃)

2 ,E2 similarly

(a) RTD-lite (b) CKA Similarity

(c) SRTD-lite (d) Max-RTD-lite

Figure 6: scores on synthetic cluster datasets.
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Here are the barcodes of the RTD series divergences from the clusters experimentFig-

ure 7. It can be observed that the shape of the SRTD barcode (line 1) resembles a combi-
nation of the RTD(w, w̃) and Max-RTD(w, w̃) barcode(line 2 and 4), or the RTD(w̃, w)
and Max-RTD(w̃, w) barcodes(line 3 and 5). The SRTD barcode is also richer in quantity,
which provides evidence that SRTD can simultaneously extract the common features of
both divergences in a single analysis.

Figure 7: RTD series barrcodes

Appendix G. LLM Fingerprinting

We selected the following models for our experiment: Qwen2.5-Coder-7B, Qwen2.5-7B-Instruct,
Qwen2.5-7B, mathstral-7B-v0.1, Mistral-7B-v0.1, Mistral-7B-It, Qwen1.5-7B-Chat,
Qwen1.5-7B, internlm2 5-7b-chat, internlm2 5-7b, LLama-2-7b, LLama-2-7b-chat, and
llemma 7b. To analyze them, we randomly sampled 1000 question-answer pairs from the
TrustfulQA dataset and fed them into each model to extract their sixth-layer represen-
tations. We chose these high-level representations because they tend to remain relatively
stable throughout the training process. Subsequently, we employed REEF and SRTD lite
to perform a similarity comparison on these representations.We filtered out barcodes with
a length less than 0.04 and calculated the sum of squares of the remaining barcodes. This
soft and hard filtering approach penalizes longer barcodes more. Our findings indicate that
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REEF often assigns high similarity scores to the vast majority of high-level representations,
demonstrating poor reliability. In contrast, SRTD lite can very clearly distinguish between
models from the same family and those from different families, as illustrated in Figure 8.
Figure Figure 9 shows the srtd lite barcode for the homologous and non-homologous models.

(a) CKA (b) SRTD

Figure 8: LLM fingerprinting

(a) Qwen2.5-7B and Qwen2.5-7B-it (b) Mistral-7B-it and internlm2.5-7b

Figure 9: Barcodes example
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