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ABSTRACT

Recent advances in the field of out-of-distribution (OOD) detection have placed
great emphasis on learning better representations suited to this task. While there
have been distance-based approaches, distributional awareness has seldom been
exploited for better performance. We present HACk-OOD, a novel OOD detection
method that makes no distributional assumption about the data, but automatically
adapts to its distribution. Specifically, HACk-OOD constructs a set of hypercones
by maximizing the angular distance to neighbors in a given data-point’s vicinity
to approximate the contour within which in-distribution (ID) data-points lie. Ex-
perimental results show state-of-the-art FPR@95 and AUROC performance on
Near-OOD detection and on Far-OOD detection on the challenging CIFAR-100
benchmark without explicitly training for OOD performance.

1 INTRODUCTION

Machine learning models are trained on a particular set of data, called the in-distribution (ID) set.
During inference, it is possible that the trained model will receive samples drawn from a different
distribution to the one it has been trained on. These observations are said to be out-of-distribution
(OOD). It is important to be able to distinguish between ID and OOD instances for safe model
deployment.

Existing OOD detection methods can be broadly categorized into training-based methods and post-
processing distance-based methods Yang et al. (2024). Training-based methods aim to incorporate
OOD detection capabilities directly into the model via train-time regularization Lu et al. (2024);
Ming et al. (2022a). These methods typically modify the objective function or architecture to enhance
sensitivity to OOD inputs, e.g., using auxiliary classifiers or network branches targeted at OOD
detection Papadopoulos et al. (2021); Mohseni et al. (2020), adversarial training Yi et al. (2021);
Chen et al. (2021), or self-supervised learning objectives Sehwag et al. (2021); Mohseni et al. (2020);
Hendrycks et al. (2019a); Sun et al. (2022a). They may also take a two-step modeling approach Liang
et al. (2017), or directly train an OOD detection model to be applied after the initial model Sun et al.
(2022a). While effective, they often require tuning and may sacrifice primary task performance.

Distance-based methods treat OOD detection as a separate post-training step Bibas et al. (2021);
Hendrycks and Gimpel (2016); Liu et al. (2021); Wang et al. (2022); Sehwag et al. (2021); Sun et al.
(2022b); Lee et al. (2018a); Ren et al. (2021); Techapanurak et al. (2019); Chen et al. (2022); Huang
et al. (2020); Ming et al. (2023); Denouden et al. (2018); Zhou (2023); Yang et al. (2022); Jiang
et al. (2023); Li et al. (2023). They assume OOD data falls far from ID data in the output space and
utilize scoring functions like maximum softmax probability Hendrycks and Gimpel (2016), maximum
logits Hendrycks et al. (2022a), maximum likelihood Bibas et al. (2021), energy Liu et al. (2021),
and reconstruction error Denouden et al. (2018); Zhou (2023); Yang et al. (2022); Jiang et al. (2023);
Li et al. (2023) to measure distance between samples. Certain works construct scoring functions in
the penultimate layer’s feature space Sehwag et al. (2021); Sun et al. (2022b); Chen et al. (2022);
Huang et al. (2020); Ming et al. (2023). Distance-based methods are model-agnostic and applicable
to pre-trained models if the feature space adequately separates ID and OOD.

We propose a new approach, HACk-OOD (Hypercone Assisted Contour Generation for OOD
Detection), which leverages post-training distance-based OOD concepts. It assumes there is no access
to OOD samples, as obtaining a representative sample is infeasible. This allows us to flexibly map
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the ID feature space by building a set of multidimensional hypercones, and treating the union of the
built hypercones as the new ID class shape.

This paper makes the following contributions. (1) We present, to the best of our knowledge, the
first study of class contour generation by employing hypercone projections, effectively providing a
new representation for the ID manifold in the feature space. We provide a formalized mathematical
definition of the method, and analyze its dynamics in experimental settings. Our work shows the
efficacy of this method in the OOD detection setting. (2) Contrary to methods in the literature,
we do not make strong distributional assumptions about the feature space, other than that ID and
OOD data are separable in the space. The generated contour separates ID from OOD data by
considering the variability of the ID data in the directions of the projected hypercones from the class
centroid. (3) We show through experimental results that HACk-OOD+SHE, a variant of HACk-OOD,
reaches state-of-the-art (SOTA) performance in Far-OOD detection and Near-OOD detection using
Supervised Contrastive Learning for CIFAR-100, and performs on par with other SOTA methods on
benchmark datasets for CIFAR-10. Experiments with Supervised Cross Entropy show that our method
is competitive with SOTA methods on models trained with this loss function. The HACk-OOD+SHE
performance in Near-OOD detection detection proves that it performs well even in cases where ID
and OOD classes have significant semantic overlap.

2 PRELIMINARIES

In line with other distance-based methods for OOD detection Sun et al. (2022b); Sehwag et al. (2021),
we frame the task as a multi-class classification problem. We present results on OOD detection for
image classification, but this framework can be easily extended beyond image data Liu et al. (2024).
Let X ⊆ RD represent the input space, where D = C ×W ×H , in which C denotes the number of
channels, and W ×H denotes the size of the image. The output space Y is defined as {1, . . . , |Y |}.
The goal of the classification problem is to learn a mapping f : X → Y , which assigns each input
observation to one of the |Y | classes. We employ a neural network f trained on samples drawn from
the joint distribution PXY , where Pin represents the marginal distribution over X . The network
outputs a set of logits, used to predict the label for a given input.

Given a classifier model, such as the one outlined above, our goal during testing is to accurately
classify images into one of the |Y | labels (ID), while also being able to detect unknown observations
(OOD). Historically, distance-based methods in OOD detection have utilized level set estimation Sun
et al. (2022b) in a binary classification approach to determine whether or not observations are drawn
from Pin.

Level set estimation involves partitioning the input space into regions where the classifier’s output
lies above or below a certain threshold. Let f(x) represent the output (e.g., logits or probabilities) of
the classifier for input x. The decision boundary is determined by a threshold λ, such that:

Decision(x) = 1{S(f(x)) > λ} (1)

where 1{·} describes the binary classifier in the form of an indicator function. It classifies a sample
as ID when the scoring function S(·) produces a score greater than the scalar threshold value λ. The
threshold λ is typically chosen based on properties of the training data and/or through validation
techniques to optimize performance. This approach effectively creates a boundary in the input space,
separating regions where the model is confident in its predictions (ID) from regions where it is
uncertain or likely to make errors (OOD).

3 RELATED WORK

As mentioned in Section 1, OOD detection methods can be broadly categorized into post-training
and training-based approaches. Our proposed method, HACk-OOD, falls into the post-training
category, so we will focus primarily on these techniques while briefly touching on training-based
methods for context. In our experiments, we compare HACk-OOD to several post-training methods,
demonstrating its effectiveness across various OOD detection scenarios. Our approach builds upon
the strengths of existing feature-space methods, while offering greater flexibility in mapping the
embedding space.
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3.1 POST-TRAINING METHODS

Post-training methods can be divided into feature space methods, uncertainty estimation methods,
gradient-based methods, activation rectification methods, and hybrid methods, each leveraging
different information from the trained model. In this section we introduce key post-training based
methods from all categories which will later be used as benchmarks for HACk-OOD.

Feature Space Methods: These methods leverage the rich information encoded in the feature space
of neural networks, typically using embeddings from the classifier’s penultimate layer. SSD+ Sehwag
et al. (2021) assumes a Gaussian distribution of ID observations, while the Mahalanobis method Lee
et al. (2018b) uses class-conditional Gaussian distributions for features to define a confidence score
based on the Mahalanobis distance. In contrast, KNN+ Sun et al. (2022b) and HACk-OOD make no
distributional assumptions, offering greater flexibility in mapping the embedding space.

Uncertainty Estimation Methods: These methods use the final layer outputs. Probability-
based approaches like Maximum Softmax Probability (MSP) Hendrycks and Gimpel (2016) and
MaxLogit Hendrycks et al. (2022a) classify observations based on maximum softmax probability and
maximum logits, respectively. The Generalized Entropy (GEN) method Liu et al. (2023a) introduces
an entropy-based score function applicable to any pre-trained softmax-based classifier, designed to
amplify minor deviations from ideal one-hot encodings. The Energy method Liu et al. (2021) com-
putes an energy function using logits, attributing higher negative energy values to ID data. Similarly,
KL Matching Hendrycks et al. (2022b) forms templates of class posterior distributions, and computes
an anomaly score based on the minimum KL divergence between the test input’s posterior and these
templates.

Gradient-Based Methods: GradNorm Huang et al. (2021a) uses gradient space information, noting
higher gradient magnitudes for ID data relative to OOD data. It employs the vector norm of gradients,
back-propagated from the KL divergence between the softmax output and a uniform probability
distribution.

Activation Rectification Methods: ReAct and ASH enhance OOD detection by modifying feature
activations. ReAct Sun et al. (2021) truncates activations in the classifier’s penultimate layer above a
specific value (the p-th percentile of model activations) to reduce noise, and aligns activation patterns
with well-behaved cases. ASH Djurisic et al. (2023) employs an on-the-fly method to remove a
significant portion of a sample’s activation at a late layer.

Hybrid Methods: ViM Wang et al. (2022) and NNGuide Park et al. (2023) combine information
from multiple sources. ViM uses both feature space and logit information, while NNGuide guides
classifier-based scores for detection.

3.2 OTHER METHODS

Training-Based Methods: While not the focus of our work, training-based methods offer comple-
mentary approaches to OOD detection. Non-parametric Outlier Synthesis (NPOS) Tao et al. (2023)
and Mixture Outlier Exposure (MixOE) Zhang et al. (2021) generate artificial OOD training data.
CIDER Ming et al. (2022a), on the other hand, jointly optimizes dispersion and compactness losses
to promote ID-OOD separability.

Multi-Modal Approaches: Recent work has explored leveraging multiple modalities for OOD
detection. Maximum Concept Matching (MCM) Ming et al. (2022b) and LoCoOp Miyai et al. (2024)
align visual features with textual concepts utilizing CLIP local features for OOD regularization.

4 METHOD

As embedding-based methods tend to outperform probability-based metrics in distance-based OOD
detection, we focus our efforts in this space Ming et al. (2022a); Lu et al. (2024); Sun et al. (2022b);
Sehwag et al. (2021). Parametric distance-based methods in the literature, however, necessitate
assumptions on the distribution of ID data in the feature space. Thus, they are likely to fail in
cases where the distribution has an irregular shape, and are less likely to capture areas of the
distribution which do not adhere to the assumptions. HACk-OOD presents a novel approach to OOD
detection which captures the contour of ID data without making assumptions on the distribution of
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the embedding space. It uses hypercones which flexibly map the embedding space locally, allowing
more precise separation of ID and OOD data.

More specifically, HACk-OOD extends SSD+ by relaxing the normality assumption that constrains
the class contour to a hypersphere (or multidimensional ellipsoid). Instead, HACk-OOD approximates
it with a set of hypercones parameterized by a pre-specified angle. Consequently, our method refrains
from assuming a Gaussian distribution for the feature space, and describes its borders not by using
multidimensional ellipsoids, but rather by projecting multidimensional hypercones in appropriate
directions. This approach allows for a more flexible representation of the class contour.

Unlike the classical distance-based methods, where a single distance cutoff threshold is selected for
the full dataset, we adopt a more nuanced strategy. We assign a distinct distance cutoff per projected
hypercone, determined by the observed variation in ID distances along that direction. The goal is
to accommodate a diverse set of thresholds across different directions. By doing so, our method is
unrestricted in shaping the contour of ID observations, fostering greater flexibility and adaptability.
Pseudo-code describing hypercone construction and inference is available in Appendix Section A.5.

4.1 EMBEDDING EXTRACTION

We use a pre-trained classification network (Section 2), and extract multi-dimensional embedding
space features from the penultimate layer which serves as the feature encoder layer. Let fencoder(x)
represent the feature encoder network, a subset of the full classification network, which maps input
data x to the extracted features z, where fencoder : X → Z is the mapping function from the input
space X to the output space Z. The training set Xtrain and the test set Xtest for a given supervised
classification task are considered to be ID, and we define Xood to contain the instances of a candidate
dataset for the OOD task.

We extract the embedding features of the training set of ID observations Ztrain =
{ztrain1

, . . . , ztrainn
}, the test set of ID observations Ztest = {ztest1 , . . . , ztestm}, and the unseen

test set of observations Zood = {zood1
, . . . , zoodv

}.

4.2 HYPERCONE NOTATION

Let us now introduce key terminology necessary for describing the hypercone. The apex or vertex
of a hypercone, V , is the central point from which all generating lines originate. The axis of the
hypercone, a⃗, is a straight line passing through the apex, V , and some other point P . It acts as the
central axis of symmetry, defining the primary direction along which the hypercone extends and
maintains its symmetry. The slant height of a hypercone is the length of the line segment connecting
the apex to any point on the hypercone’s surface. The opening angle of the hypercone is the angle
between the hypercone axis and any line starting at the apex and extending along its slant height.
This opening angle measures how much the hypercone widens or narrows as it extends from the apex
along its axis. Mathematically, if we denote a line along the slant height as s⃗, the opening angle θ can
be expressed as:

cos θ =
a⃗ · s⃗

∥a⃗∥∥s⃗∥
(2)

Here, · denotes the dot product and ∥ · ∥ denotes the magnitude (length) of a vector. Therefore, for
the purposes of this paper, we denote a hypercone h according to its parameters as (h(⃗a, θ)). Please
refer to the Figure 2 in Appendix Section A.1 for a three dimensional representation of the hypercone
and its key components.

4.3 HYPERCONE CONSTRUCTION FOR ID DATA CONTOURING

In this section, we describe how to create hypercones, each defined by an axis and opening angle,
using the ID features. First, we compute the class contours for the ID training set observations in the
embedding space, with one contour per label. The goal is to best describe the boundaries of each
class in the embedding space with a set of hypercones. For each class, HACk-OOD computes its
centroid Cl as the mean of all ID train set observations belonging to that class. This creates a set

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of centroids, C. 1 Each centroid will be the apex of all hypercones for its class. To reposition the
embedding features centered at one of the centroids, rather than at the origin of the feature space,
HACk-OOD computes a centered version of each Z.

Ztrain = {{z − Cl} ∀ l ∈ Y, z ∈ Ztrainl
} (3)

Ztest = {{z − Cl} ∀ l ∈ Y, z ∈ Ztestl} (4)

For Zood, we do not have labels. Therefore, we center the embeddings relative to each label,
effectively generating a new set of OOD embeddings per label, as follows:

Zood = {{z − Cl}∀z ∈ Zood, l ∈ Y } (5)

From here onwards, Ztrain, Ztest and Zood will refer to the centered versions of the respective
original set of embeddings. HACk-OOD now proceeds to construct the set of all hypercones which
are parameterized by axis and opening angle. The set of all axes for all hypercones for label l can be
defined as:

Al = {
−→
Clz ∀z ∈ Ztrainl

} (6)

The set of all axes for all labels can therefore be defined as A = {Al ∀l ∈ Y }.

HACk-OOD determines each hypercone’s opening angle θ by calculating the cosine distance between
its axis and its k-th nearest neighbor, where k is a parameter. Given that the axis of the hypercone
belongs to one of the train set classes, its set of nearest neighbors is taken to be the set of all train
set observations belonging to that class. By determining the angle to the k-th nearest neighbor, we
ensure that the hypercones include at least k observations within their boundaries. Let KNNAngle(·)
be a function that takes as input a hypercone’s axis and the set of all neighbors for the axis, and finds
the axis’ k-th nearest neighbor in cosine distance and consequently the angle between the two. Then,
the set of opening angles for all hypercones for label l can be defined as:

Tl = {KNNAngle(−→αj , Ztrainl
) ∀j ∈ {1, . . . , |Al|}} (7)

The set of all opening angles for all labels can therefore be defined as T = {Tl ∀l ∈ Y }.

From Equations 6 and 7, HACk-OOD extracts the axes and angles to define the set of hypercones for
label l. More specifically, for every j ∈ {1, . . . , |Al|}, it extracts θj ∈ Tl, αj ∈ Al, and define Hl

as:

Hl = {h(−→aj , θj) ∀j ∈ {1, . . . , |Al|}} (8)

The set of all hypercones for all labels is therefore defined as H = {Hl ∀l ∈ Y }. The hypercones H
initially extend outwards from the pre-computed centroids C without a boundary, serving as filters
within the embedding space. While hypercones have a boundary established by a height parameter,
we loosely modify this definition to include a radial boundary. To determine the appropriate radial
boundary for hypercone h, we examine the distribution of Ztrainl

and Ztestl contained in h, or in
other words, the ID feature vectors which fall within the angular boundary of hypercone h. First, we
need to define this set for each h. For each z ∈ {Ztrainl

, Ztestl}, we compute the angle between the
hypercone axis a⃗ corresponding to h and the vector

−→
Clz extending from the centroid of the cluster Cl

to the feature observation z. We denote this angle as τ . If τ < θ, where θ is the opening angle of h,
then z falls within the angular boundary of hypercone h.

For a given hypercone hl,i, let Gl,i be the set of observations falling within its angular boundaries.

1In cases where the model architecture dictates that the embeddings be normalized, we need to choose
different centroids to reflect the new normalized cluster shapes. Normalizing the features effectively projects
them onto a unit sphere in the embedding space, resulting in clusters with a disk-like shape. Since the normalized
cluster shapes are non-convex, the initial centroids may fall outside the cluster boundaries. To obtain a good
approximation of the class centroids within the cluster, each centroid is replaced by its nearest train set observation
using cosine distance.
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Gl,i = {z ∀z ∈ Ztrainl
∪ Ztestl | τ < θl,i} (9)

Such that τ is the angle between observation z, and θl,i is the opening angle of hl,i. We compute the
distances between the apex point Cl, of hypercone hl,i, and each observation g ∈ Gl,i. This set of
distances for hypercone hl,i is then given by:

Dl,i = {
−−→
|Clg| ∀g ∈ Gl,i} (10)

We use the distribution of distances in set Dl,i to determine a preliminary radial boundary for
hypercone hl,i, which is taken to be the mean, µ, plus two standard deviations, 2σ, of set Dl,i.

bl,i = µ+ 2σ (11)

We have chosen this boundary to exclude points which lie far from the class centroid and ensure
that the hypercones are robust against outliers. The computed distances are normalized by the radial
boundary as follows:

Dnorm
l,i =

{
d

bl,i
∀d ∈ Dl,i

}
(12)

The aforementioned steps are applied to all generated hypercones and observations. This normaliza-
tion step provides us with the scoring function S(·) for HACk-OOD as defined in 1. The computed
scores can then be used in level set estimation (from Section 2), and ensure that the results are
reported at a pre-determined true positive rate (TPR). The TPR is set to 95%, effectively ensuring
that 95% of all ID observations are correctly classified as in distribution. The score at the 95-th
percentile, λ, effectively becomes the final radial boundary of the hypercones. The final contour per
class comprises of the union of the constructed hypercones for that class. Please refer to Figure 3 in
Appendix Section A.2 which illustrates the process of hypercone construction.

4.4 OOD INFERENCE

During inference, the hypercones are employed to determine whether a new observation in the
embedding space, z, is ID or OOD. This decision is made by checking whether or not the observation
falls within both the angular and radial boundaries of any of the generated hypercones, in any of the
clusters, using the same method described in Section 4.3. We use z ∈ hi to mean that observation z
falls within both angular and radial boundaries of hypercone hi. If it does, it is labeled as ID, and
OOD otherwise. Thus, the level-set estimation formulation from Section 2 transforms to an OOD
detector framework defined as:

Decision(z) =
{

ID if ∃ hi ∈ Hl ∀l ∈ Y s.t. z ∈ hi

OOD otherwise (13)

The hypercones inherently aim to delineate the contour of ID observations by allowing for fluid
boundaries between ID and OOD observations in different areas of the embedding space, as opposed
to existing approaches that rely on a single distance threshold for the entire space Sehwag et al.
(2021); Sun et al. (2022b). Additionally, by utilizing ID observations as the hypercone axes, we not
only ensure that we generate the contour by scanning the appropriate directions, but also facilitate the
generation of overlapping hypercones in densely populated areas of the embedding space. This ap-
proach smooths out the contour’s surface, dimming the effects of outliers, akin to fitting a polynomial
curve using interpolation techniques.

5 EXPERIMENTS

5.1 BENCHMARKS AND EVALUATION METRICS

We evaluate HACk-OOD relative to 12 other post-training OOD detection methods: MSP Hendrycks
and Gimpel (2016), Mahalanobis Lee et al. (2018c) MaxLogit Hendrycks et al. (2022a), Energy
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Liu et al. (2021), ViM Wang et al. (2022), GradNorm Huang et al. (2021b), SSD+ Sehwag et al.
(2021), KL matching Hendrycks et al. (2019b), KNN+ Sun et al. (2022b), GEN Liu et al. (2023b),
NNGuide Park et al. (2023), and SHE Zhang et al. (2023). We also combine HACk-OOD and
Mahalanobis Lee et al. (2018c) with Simplified Hopfield Energy (SHE) Zhang et al. (2023). SHE
introduces a "store-then-compare" framework, transforming penultimate layer outputs into stored
patterns representing ID data, which we have used in a potentially novel way as centroids in HACk-
OOD+SHE and Mahalanobis+SHE. For consistency, we reproduce the results of the 12 benchmarks
as well as the additional variants of HACk-OOD and Mahalanobis. Experiments combining HACk-
OOD and activation clipping method ReAct are found in Appendix Section A.4. The metrics we
report on are consistent with standard metrics in the OOD literature: the false positive rate of OOD
data when the TPR is 95% (FPR95), and AUROC.

5.2 CLASSIFICATION NETWORKS

We train two classification networks. The first one is a ResNet trained on ID data using NT-Xent Sohn
(2016) for Supervised Contrastive Learning with an embedding dimension of 128, a batch size of
2000, learning rate of 0.5, and cosine annealing for 500 epochs. The network is warmed up for
10 epochs. For logit-based methods, we train a linear classifier on top of the trained backbone as
in Khosla et al. (2020). Moreover, we extract the logits from the last layer of the network. For
embedding-based methods, we extract the embeddings from the penultimate layer of the network.
The second classification network is identical to the first one, but using a cross-entropy loss to show
that HACk-OOD is training agnostic. We expect to obtain better results using Supervised Contrastive
Learning, as it is known to generate embeddings with a greater degree of separability.

5.3 DATASETS

We test HACk-OOD’s performance on CIFAR-100 Krizhevsky (2009) as our ID dataset. It has
100 classes, and is considered a challenging dataset in the OOD detection literature. In Appendix
Section A.4, we present results for CIFAR-10 (see tables 4, 5), which represents a simpler case with
only 10 classes. We evaluate HACk-OOD’s performance for five OOD datasets: Textures Cimpoi
et al. (2014), iSUN Xu et al. (2015), LSUN Yu et al. (2016), Places365 Zhou et al. (2018), and
SVHN Netzer et al. (2011). We also evaluate its performance for CIFAR-100 on Near-OOD detection
on special LSUN and Imagenet Deng et al. (2009) splits proposed by Tack et al. (2020) along with
CIFAR-10 an OOD dataset this time.

5.4 HACk-OOD PARAMETERS

As discussed in Section 4, each hypercone’s opening angle is determined by the cosine distance
to its k-th nearest neighbor, where k is a tunable parameter. We propose an automatic selection
method called Adaptive k, which, though not optimal, performs well across datasets and architectures.
Selecting k optimally would require a holdout OOD set, but, as noted in Section 1, we assume no
access to such data. Thus, we take a heuristic approach that chooses a specific k for each l ∈ Y
by regularizing an informed upper bound for k by a factor of the number of class observations and
feature dimensions, while at the same time incorporating the point density of the class. This is further
discussed in Appendix Section A.3. The objective of using this method to choose k is to remove the
burden of searching for the best k, which is further explored in 5.6.

5.5 RESULTS

Table 1 shows the results for CIFAR-100 trained on ResNet-18, 34, and 50 with Supervised Con-
trastive Learning. The results indicate that using SHE’s stored patterns as centroids significantly
enhances performance compared to using the original centroids, producing state-of-the art perfor-
mance in both average FPR95 and AUROC on all tested architectures. Moreover, HACk-OOD+SHE
shows a clear performance increase as the size of the classification network grows, with FPR95 values
of 51.86%, 46.93%, and 35.91% for ResNet-18, 34, and 50 respectively, resulting in a 10.03% and
2.47% gap in average FPR95 and AUROC respectively over the best baseline method when using
ResNet-50. We attribute this effect to two main factors: (1) Larger networks create better separation
between classes, which HACk-OOD+SHE and HACk-OOD can leverage and (2) SHE improves
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centroid calculation by excluding noisy training samples, using only correctly classified samples,
allowing HACk-OOD+SHE to more accurately position the centroid, reduce angular errors, and
prevent the over-extension of radial boundaries.

Elaborating upon the first factor, unlike most baseline methods, HACk-OOD creates class-specific
decision boundaries rather than a single global boundary for all classes. Larger networks can better
capture subtle patterns in the data, such as sub-hierarchies within clusters. Distribution assumption-
free methods, like HACk-OOD, SHE, NNGuide and KNN+, are better suited to handle these cases
as they do not assume normality and can vary in different directions. In contrast, smaller models
like ResNet-18 struggle to capture these subtle patterns, making baseline methods with simplifying
assumptions, such as SSD+ and Mahalanobis, perform better.

The results in Table 2 demonstrate significant improvements in Near-OOD detection performance over
previous SOTA methods on CIFAR-100. Near-OOD detection is a more challenging task due to the
similarity between unseen observations and the ID dataset. As in the Far-OOD detection experiments,
HACk-OOD+SHE consistently improves as the capacity of the network increases (78.46%, 74.61%,
and 73.89% FPR95 on ResNet-18, 34, and 50 respectively), leading to SOTA performance in both
average FPR95 and AUROC on ResNet-34 and ResNet-50. Moreover, ResNet-50 not only surpasses
other architectures but also widens the performance gap between HACk-OOD+SHE and the best
baseline method, from 2.12% to 6.81% in average FPR95 and from 0.53% to 2.27% in AUROC.
Additionally, HACk-OOD+SHE and HACk-OOD outperform all baseline methods in three out of
five datasets across both metrics. This supports our theory that HACk-OOD excels due to its ability
to generate class contours that better capture the dataset’s variability, which is crucial for Near-OOD
detection. Consistent with the results in Table 1, HACk-OOD’s performance improves with larger
classifiers, enhancing cluster separability. ResNet-18 results further confirm our previous conclusions.

Experiments show that HACk-OOD+SHE is computationally efficient, having an average inference
time of 1.00, 0.95 and 2.22 ms per sample on ResNet-18, 34 and 50 respectively on an 16 core,
128GB RAM server.

Finally, Table 3, in Appendix Section A.4, shows a similar trend for HACk-OOD and HACk-
OOD+SHE when models are trained with Cross Entropy Loss. HACk-OOD and HACk-OOD+SHE
show consistent performance improvement with increased network capacity, resulting in a 16.09% and
16.20% drop in FPR95 respectively from ResNet-18 to ResNet-50. Furthermore, HACk-OOD+SHE
outperforms baseline methods in 2 out of 5 OOD datasets on ResNet-34 and ResNet-50, achieving
SOTA performance in both average FPR95 and AUROC on ResNet-34. These results align with the
Supervised Contrastive Learning results in Tables 1 and 2, further supporting our hypothesis.

Figure 1: Relationship between hyperparameter k and FPR95 on CIFAR-10 (left) and CIFAR-100
(right) for ResNet-34 Supervised Contrastive classifier features. The blue line shows HACk-OOD
for fixed k values. The orange line represents Adaptive k with different k values per label and
regularization. The green line shows Adaptive k without regularization.
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Table 1: Far-OOD detection CIFAR-100 Supervised Contrastive Learning.

Backbone Method
OOD Datasets

Textures iSUN LSUN Places365 SVHN Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ResNet-18

MSP 78.55 79.83 72.92 82.29 75.62 79.85 80.51 77.34 70.18 84.77 75.56 80.82
MaxLogit 74.29 83.92 67.5 86.03 68.81 85.04 79.02 78.95 65.54 87.73 71.03 84.33
Energy 68.56 85.00 62.54 87.04 60.87 86.6 78.02 79.13 60.62 88.49 66.12 85.25
ViM 62.43 86.92 86.15 82.44 50.14 90.63 78.12 79.09 27.59 94.8 60.89 86.78
GradNorm 71.81 83.31 64.53 85.82 64.57 84.64 78.71 78.77 62.52 87.72 68.43 84.05
Mahalanobis 55.05 88.79 85.55 82.42 40.36 92.81 76.32 79.84 19.3 96.32 55.32 88.04
KL Matching 75.83 79.78 69.7 82.43 74.78 79.23 78.22 77.07 69.66 84.53 73.64 80.61
KNN+ 55.9 87.91 74.06 84.92 48.72 89.14 79.36 77.35 44.49 91.84 60.51 86.23
SSD+ 52.68 89.51 89.78 78.56 28.84 95.07 80.49 76.88 18.76 96.44 54.11 87.29
GEN 69.18 84.78 63.2 86.87 61.7 86.32 78.29 79.09 61.14 88.38 66.70 85.09
NNGuide 64.2 86 67.73 85.9 59.37 86.81 78.53 78.87 59.61 88.95 65.89 85.31
SHE 52.48 88.89 76.08 83.03 52.14 88.24 81.93 75.5 57.2 89.57 63.97 85.05
ASH 41.37 91.38 70.76 83.62 27.61 95.02 78.31 78.15 63.02 87.05 56.21 87.04
SCALE 37.68 92.03 71.8 82.62 25.02 95.53 78.21 77.82 63.33 87.00 55.21 87.00
HACk-OOD 52.7 88.03 75.91 83.52 31.89 93.52 76.30 79.71 52.95 89.78 57.95 86.91
Mahalanobis+SHE 55.04 88.79 85.58 82.43 40.38 92.81 76.34 79.84 19.30 96.32 55.33 88.04
HACk-OOD+SHE 45.89 90.23 73.38 84.9 25.16 95.07 72.97 80.38 41.88 92.06 51.86 88.53

ResNet-34

MSP 74.13 82.44 72.67 83.19 75.34 81.66 80.00 77.97 65.36 86.76 73.50 82.40
MaxLogit 69.18 85.26 68.55 85.51 70.69 84.54 79.14 79.06 62.33 88.50 69.98 84.57
Energy 63.94 86.03 65.12 86.08 66.21 85.28 78.03 79.23 59.42 88.89 66.54 85.10
ViM 51.28 89.61 76.85 85.00 49.35 91.69 76.64 80.14 25.14 95.28 55.85 88.34
GradNorm 65.76 84.96 65.29 85.52 68.00 84.26 78.14 79.10 59.23 88.70 67.28 84.51
Mahalanobis 47.75 90.22 72.75 85.59 38.35 93.14 74.80 80.79 19.69 96.28 50.67 89.20
KL Matching 76.45 81.47 71.07 82.78 76.25 80.91 79.14 76.94 66.06 86.35 73.79 81.69
KNN+ 53.65 88.43 66.03 86.39 49.59 90.61 76.52 79.85 36.72 93.43 56.5 87.74
SSD+ 42.27 91.78 74.76 85.09 29.57 94.82 76.1 80.17 17.87 96.69 48.11 89.71
GEN 64.15 85.89 65.10 86.01 66.62 85.15 77.96 79.21 59.31 88.86 66.63 85.02
NNGuide 58.58 87.36 65.68 86.02 58.97 87.63 76.88 79.67 48.54 90.89 61.73 86.31
SHE 52.02 89.14 67.71 85.74 51.71 90.12 77.85 79.22 39.7 92.99 57.8 87.44
ASH 39.79 91.09 64.90 83.40 36.34 93.52 77.86 77.42 67.99 82.09 57.38 85.50
SCALE 34.33 90.38 67.88 78.66 27.66 94.11 78.86 73.12 71.54 75.23 56.05 82.30
HACk-OOD 46.17 90.08 61.14 87.47 33.17 93.61 71.31 81.29 29.01 94.47 48.16 89.38
Mahalanobis+SHE 47.71 90.21 72.75 85.59 38.34 93.13 74.80 80.79 19.68 96.28 50.66 89.20
HACk-OOD+SHE 44.82 90.34 62.3 87.15 28.71 94.48 70.39 81.6 28.43 94.54 46.93 89.62

ResNet-50

MSP 73.90 84.52 81.30 78.08 76.70 85.07 79.96 79.07 60.69 89.01 74.51 83.15
MaxLogit 69.93 86.99 79.34 80.72 72.16 87.80 78.89 79.83 55.9 90.64 71.24 85.20
Energy 64.13 87.96 76.36 81.43 65.58 89.02 77.92 79.97 51.29 91.26 67.06 85.93
ViM 63.44 86.52 95.87 74.29 71.71 87.48 78.17 79.95 8.37 98.4 63.51 85.33
GradNorm 67.38 87.02 78.07 80.37 68.66 88.22 78.74 79.85 52.53 90.92 69.08 85.28
Mahalanobis 50.04 89.96 95.60 74.06 51.44 92.46 77.12 80.37 5.75 98.90 55.99 87.15
KL Matching 89.93 81.26 83.85 77.03 88.74 82.34 81.51 78.12 68.04 87.67 82.41 81.28
KNN+ 34.26 93.14 78.07 80.84 30.28 94.71 75.39 80.56 13.46 97.68 46.29 89.39
SSD+ 48.01 90.28 96.03 72.46 52.3 92.37 78.84 79.39 5.24 99.01 56.08 86.70
GEN 64.82 87.80 76.77 81.3 66.46 88.86 78.04 79.96 51.82 91.19 67.58 85.82
NNGuide 48.95 90.5 79.82 80.3 50.43 91.55 76.53 80.45 34.55 94.05 58.06 87.37
SHE 26.74 94.67 79 80.86 29.62 94.81 77.03 80.08 17.32 96.99 45.94 89.48
ASH 19.11 95.81 67.46 85.4 16.27 97.09 78.54 78.03 31.74 94.22 42.62 90.11
SCALE 18.63 95.94 64.83 87.13 15.95 97.21 76.68 79.41 32.76 94.31 41.77 90.80
HACk-OOD 34.29 92.95 63.13 86.72 15.86 97.12 71.93 82.12 14.66 97.09 39.97 91.20
Mahalanobis+SHE 50.02 89.97 95.60 74.05 51.42 92.46 77.11 80.36 5.74 98.90 55.98 87.15
HACk-OOD+SHE 26.49 94.59 62.81 86.15 11.68 97.84 69.07 83.00 9.51 98.19 35.91 91.95

5.6 ABLATIONS

We now present ablation studies on choosing the value of k for HACk-OOD and on the effect that
hypercone axes directions have on HACk-OOD’s performance.

5.6.1 PARAMETERS

HACk-OOD only relies on one key parameter: the number of nearest neighbors (k) used to compute
the hypercone opening angle. As the opening angle increases, the number of observations within each
hypercone grows. A smaller angle provides a more precise contour of ID observations, assuming
sufficient data-points to avoid gaps between hypercones where ID observations may go undetected.
Narrow hypercones may also fail to represent low-density areas accurately. Conversely, a larger angle
captures more ID observations but risks including OOD observations. Figure 1 shows FPR95 for
different values of k. The blue line represents FPR95 with a fixed k for all labels, while the orange
and green lines show FPR95 using Adaptive k. Adaptive k involves an additional regularization
factor, so we test the effect with and without regularization, respectively. In the latter two cases, k
represents the maximum value of k so the actual value for each class may vary, but will always be
less than or equal to this value. The vertical black line marks N

4 , the maximum k used in our main
experiments. Its intersection with the orange line represents the results reported in Section 5.5.

The FPR95 decreases sharply as k increases, reaching a minimum before gradually rising again. As
long as k is not too small, its impact on the results remains limited. However, Adaptive k chooses a
value of k for each label that yields an FPR95 close to the observed minimum, making it a strong
approximation of the optimal k. We find that the regularization factor plays a crucial role in guiding
Adaptive k to select an effective k, particularly in datasets like CIFAR-10, where class sizes are large.
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Table 2: Near-OOD detection CIFAR-100 Supervised Contrastive Learning.

Backbone Method
OOD Datasets

LSUN-F Imagenet-F Imagenet-R CIFAR-10 Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ResNet-18

MSP 85.35 74.24 79.36 77.43 73.68 81.63 82.9 76.02 80.32 77.33
MaxLogit 86.26 74.95 74.14 78.94 69.59 85.13 83.29 76.24 79.32 78.82
Energy 86.64 74.78 76.49 79.14 65.41 86.01 83.12 76.09 77.91 79.00
ViM 85.91 74.49 76.55 79.09 84.26 81.58 84.58 74.01 82.82 77.29
GradNorm 87.11 74.68 76.89 78.96 67.31 84.94 82.81 76.58 78.53 78.79
Mahalanobis 84.73 75.28 76.54 79.34 84.26 81.04 85.43 73.14 82.74 77.20
KL-Matching 83.17 73.71 78.14 77.08 71.58 81.63 82.51 75.13 78.85 76.89
KNN+ 89.51 72.43 77.59 78.62 73.98 84.36 84.97 72.65 81.51 77.02
SSD+ 87.93 71.57 78.86 76.87 87.05 77.47 87.69 68.32 85.38 73.56
GEN 86.78 74.79 76.6 79.13 66.01 85.87 83.19 76.15 78.14 78.99
NNGuide 87.42 74.51 76.64 79.1 69.25 84.83 83.72 75.03 79.26 78.37
SHE 91.09 70.70 80.08 77.04 75.31 83.13 85.50 71.45 83.00 75.58
ASH 87.05 71.50 79.76 75.69 71.31 81.86 86.86 67.91 81.24 74.24
SCALE 88.59 70.2 80.5 74.4 73.12 80.19 88.26 64.85 82.62 72.41
HACk-OOD 76.62 78.99 77.38 78.52 79.27 81.25 87.2 71.74 80.12 77.62
Mahalanobis+SHE 84.75 75.28 76.56 79.34 84.28 81.04 85.42 73.14 82.75 77.20
HACk-OOD+SHE 78.64 77.33 74.98 79.25 76.52 82.96 83.72 74.01 78.46 78.39

ResNet-34

MSP 85.59 74.55 77.99 78.29 72.89 82.71 82.35 77.15 79.7 78.18
MaxLogit 85.56 74.98 76.62 79.34 69.8 84.85 82.18 77.28 78.54 79.11
Energy 85.62 74.95 75.13 79.51 67.08 85.33 82.28 77.22 77.53 79.25
ViM 82.51 77.34 75.08 80.23 75.5 84.7 84.18 75.73 79.32 79.5
GradNorm 85.82 75.12 75.02 79.39 67.12 84.91 81.99 77.67 77.49 79.27
Mahalanobis 80.83 78.20 73.29 80.93 73.26 85.03 83.93 76.09 77.83 80.06
KL-Matching 83.69 73.62 77.42 77.45 71.73 82.3 81.54 75.93 78.6 77.32
KNN+ 84.04 77.22 73.5 80.75 66.15 86.02 83.23 76.51 76.73 80.12
SSD+ 81.51 77.9 75.03 80.19 73.48 84.57 85.76 73.55 78.95 79.05
GEN 85.59 74.96 75.12 79.49 66.97 85.28 82.08 77.27 77.44 79.25
NNGuide 84.74 75.67 73.76 79.81 66.66 85.32 82.61 77.01 76.94 79.45
SHE 84.42 76.73 74.48 80.23 67.39 85.34 84.08 75.49 77.59 79.45
ASH 84.56 72.68 78.17 74.64 68.45 80.02 87.00 65.36 79.54 73.18
SCALE 86.57 68.32 81.18 68.08 71.78 73.07 90.61 55.03 82.54 66.12
HACk-OOD 74.59 78.91 73.8 80.35 68.6 85.64 84.03 76.68 75.26 80.4
Mahalanobis+SHE 80.81 78.20 73.28 80.93 73.24 85.02 83.92 76.09 77.81 80.06
HACk-OOD+SHE 73.74 79.42 72.67 80.75 68.79 85.41 83.23 77.03 74.61 80.65

ResNet-50

MSP 85.87 75.46 76.77 79.65 84.85 75.91 81.04 78.08 82.13 77.28
MaxLogit 86.48 75.56 74.84 80.54 83.17 78.14 81.07 77.93 81.39 78.04
Energy 86.43 75.36 73.69 80.75 81.33 78.68 81.34 77.8 80.7 78.15
ViM 84.91 76.03 76.16 80.21 95.54 70.86 87.31 75.17 85.98 75.57
GradNorm 87.17 75.46 73.69 80.61 82.44 77.83 80.85 78.28 81.04 78.04
Mahalanobis 83.23 76.98 75.87 80.00 95.16 70.99 89.19 73.04 85.86 75.25
KL Matching 83.17 74.85 78.7 78.71 86.57 75.01 78.94 77.39 81.84 76.49
KNN+ 85.94 76.31 73.11 81.02 80.47 77.86 87.53 74.34 81.76 77.38
SSD+ 85.1 75.78 77.91 78.8 95.43 69 91.02 70.13 87.36 73.43
GEN 86.62 75.39 73.82 80.73 81.69 78.57 81.29 77.86 80.86 78.14
NNGuide 86.47 75.87 71.93 81.06 82.97 77.39 83.07 76.67 81.11 77.75
SHE 87.15 76.22 74.75 80.29 79.91 78.63 88.05 72.5 82.46 76.91
ASH 86.77 72.52 77.35 75.74 71.11 83.29 89.24 62.97 81.12 73.63
SCALE 87.29 73.01 78.11 76.15 71.11 84.5 90.10 61.45 81.65 73.78
HACk-OOD 72.65 80.38 69.90 81.73 69.56 84.18 84.27 76.11 74.10 80.6
Mahalanobis+SHE 83.23 76.98 75.83 80.00 95.16 70.99 89.15 73.04 85.84 75.25
HACk-OOD+SHE 72.99 80.07 68.00 82.19 69.86 83.32 84.71 76.07 73.89 80.41

5.6.2 HYPERCONE AXES DIRECTIONS

Aligning the hypercone axes with ID train set observations is a highly effective technique for accu-
rately approximating the contour. This approach correctly identifies the majority of ID observations,
while efficiently filtering out most OOD instances. However, randomizing these directions proves
ineffective. Particularly, using uniformly sampled hypercone axis directions increases the FPR95 by
14.36% for ResNet-34 trained on CIFAR-100 and by 64.42% when trained on CIFAR-10.

6 CONCLUSION

This paper introduces HACk-OOD, a novel approach to post-training OOD detection. It constructs
class contours in a classifier’s embedding space using multi-dimensional hypercone projections. Our
method demonstrates SOTA performance in challenging feature spaces, and performs comparably to
other SOTA methods in simpler feature spaces. We plan to address in the future the optimal selection
of both k and the preliminary radial boundary, as well as explore the effect of different centroids
on HACk-OOD’s performance. We look forward to exploring the potential of hypercone-assisted
contour generation for other applications, such as classification and feature space explainability.
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A APPENDIX

A.1 HYPERCONE IN 3D

Figure 2: Hypercone in 3D space, showing the axis, opening angle, apex, and slant height.

A.2 CONTOUR CONSTRUCTION IN 2D

Figure 3: HACk-OOD steps to generate a class contour in two dimensions. It illustrates what a single
ID cluster’s contour would look like in two dimensional space. Data was generated by drawing 5000
observations sampled from 5 Gaussian distributions and placing the cluster means sufficiently close
to represent one larger cluster which varies non-uniformly. Sub-figures (a)-(f) show a representation
of how one hypercone is constructed, sub-figure (g) shows a model representation of what the shape
of the expected contour would be. Sub-figure (h) shows in blue the actual shape of HACk-OOD’s
contour when running HACk-OOD on the this synthetic data.

A.3 HEURISTIC APPROACH FOR CHOOSING k

We use θ as a proxy to arrive at the maximum value for k. Here, we would like to remind the reader
that the opening angle of the hypercone is only half of the total angle the hypercone spans (see
Figure 2). We take the limiting case of a uniformly distributed two dimensional class. To maintain the
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convexity of the hypercones, π
2 is chosen as the maximum allowable angle. As N → ∞, selecting

k = N
4 neighbors yields this angle, where N is the number of observations in a class.

In higher dimensions, however, π
2 covers a much smaller portion of the space, so k = N

4 serves as a
conservative upper bound for k in a space with greater than two dimensions.

In making a final choice for k per class we:

1. Scale k using the inverse logarithmic function of the ratio between the number of observa-
tions in the class and the dimensionality. The distribution of n points in the d dimensional
space should affect the choice of k. A large number of points in a small dimensional space
allows for narrower hypercones to be generated, while fewer points in a higher dimensional
space necessitates broader hypercones. In order to accommodate this distributional effect on
k, we scale it using a regularization factor ζ as follows:

k = k ∗ ζ(n, d) (14)

where,

ζ(n, d) =
1

1 + log(n/d)
(15)

2. Additionally, given that k = N
4 depends on a uniformly distributed space, we scale the

value by the ratio of point density between our class and a uniformly distributed class of
approximately the same size. We generate a synthetic dataset of features zi drawn from
U(α, β) such that Zuniform = {zi ∈ Rn ∀i ∈ {1, . . . , N}|zi ∼ U(α, β)}, where α is
the minimum value of our class feature observations and β the maximum, with the same
dimensions as our class. We compute the cosine distance to the i-th nearest neighbor, where
i ∈ {f ∗ k ∀f ∈ {0.05, 0.10, 0.15, ..., 1} | k = N

4 }, for both the original class in our
dataset and the synthetic uniformly distributed class. The ratio of mean cosine distance
values between the two classes is also used to scale the value k.

Note that the final approximation for k is not optimal and in future work we plan to explore optimal
selection of k.

A.4 MORE EXPERIMENTS

Results on Table 3 show that although we can reach SOTA in ResNet-34, HACk-OOD and HACk-
OOD+SHE are still not training-agnostic.

ResNet-18 and ResNet-34 resutls on CIFAR-10 trained with Supervised Contrastive Learning are
shown in Table 4, while Table 5 shows on CIFAR-10 when trained with cross entropy.

Table 6 shows HACk-OOD is not compatible with ReAct as an activation clipping method. We
believe this is due to HACk-OOD already similarly limiting the expansion of the class contour when
calculating the radial boundary. On all experiments 0.95 was used as the clipping quantile.

A.5 ALGORITHMS

Algorithm 1 details hypercone construction for ID data contouring while 2 details OOD inference.
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Table 3: Far-OOD detection CIFAR-100 Cross Entropy Loss.

Backbone Method
OOD Datasets

Textures iSUN LSUN Places365 SVHN Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ResNet-18

MSP 86.95 73.22 83.92 71.6 82.61 78.09 83.96 74.32 88.61 68.67 85.21 73.18
MaxLogit 86.61 73.78 81.15 76.13 80.65 81.25 83.37 75.10 87.53 69.80 83.86 75.21
Energy 86.37 73.67 79.54 76.77 80.55 81.55 84.11 75.03 87.33 69.90 83.58 75.38
ViM 58.74 86.01 86.57 75.06 88.4 74.37 86.98 71.58 80.46 79.55 80.23 77.31
GradNorm 86.22 74.41 79.81 74.95 80.19 80.63 83.67 75.34 87.68 69.55 83.51 74.98
Mahalanobis 65.35 80.50 93.29 62.05 95.09 61.97 93.49 61.29 80.86 77.29 85.62 68.62
KL Matching 82.73 74.06 82.98 71.33 79.91 78.29 82.96 74.10 84.27 69.78 82.57 73.51
KNN+ 71.35 79.10 91.57 65.42 91.50 65.76 91.45 64.94 89.9 71.95 87.15 69.43
SSD+ 72.73 71.55 95.78 50.59 98.86 41.84 96.83 45.89 87.94 65.49 90.43 55.07
GEN 86.54 73.84 79.69 76.62 80.53 81.48 83.99 75.11 87.48 69.87 83.65 75.38
NNGuide 85.57 75.5 78.11 78.11 79.54 81.37 83.12 75.17 87.27 70.46 82.72 76.12
SHE 85.34 69.4 82.01 76.43 78.73 81.15 85.2 71.59 81.95 70.19 82.65 73.75
ASH 56.44 85.02 89.24 66.35 58.54 85.68 89.22 66.56 47.71 89.05 68.23 78.53
SCALE 58.99 85.96 79.74 79.13 45.81 91.22 85.60 74.29 53.94 88.41 64.82 83.80
HACk-OOD 67.38 81.98 87.05 70.19 81.76 78.38 84.88 72.98 82.15 78.64 80.64 76.43
Mahalanobis+SHE 65.37 80.50 93.30 62.05 95.10 61.97 93.49 61.29 80.87 77.29 85.63 68.62
HACk-OOD+SHE 67.39 82.01 87.04 70.24 81.73 78.43 84.89 73.02 82.26 78.5 80.66 76.44

ResNet-34

MSP 81.01 75.71 82.76 73.22 82.10 77.01 81.21 75.88 77.07 79.95 80.83 76.35
MaxLogit 79.13 77.65 79.65 76.73 82.82 77.76 80.79 76.23 75.31 82.40 79.54 78.15
Energy 78.83 77.92 77.05 77.43 84.64 77.54 80.84 76.14 74.80 82.72 79.23 78.35
ViM 70.76 81.99 84.64 77.10 73.73 81.10 84.24 74.47 71.77 83.99 77.03 79.73
GradNorm 78.32 77.45 77.14 76.31 82.55 78.14 79.93 76.62 73.91 82.26 78.37 78.16
Mahalanobis 73.42 79.66 85.76 74.51 70.45 82.12 84.93 73.81 77.14 81.93 78.34 78.41
KL Matching 79.66 75.72 81.22 73.15 80.21 76.81 80.66 75.67 74.59 80.24 79.27 76.32
KNN+ 78.88 76.31 86.44 73.21 72.59 78.55 84.08 73.59 78.94 79.86 80.19 76.30
SSD+ 82.41 70.44 91.57 62.85 88.13 70.22 93.18 58.61 89.19 69.44 88.90 66.31
GEN 78.65 77.9 77.12 77.3 84.09 77.67 80.58 76.22 74.54 82.69 79.00 78.36
NNGuide 76.86 78.49 77.22 77.86 77.56 80.1 79.21 77.01 72.47 83.34 76.66 79.36
SHE 79.77 75.78 79.23 75.79 89.62 72.83 83.18 73.53 78.02 80.24 81.96 75.63
ASH 74.52 79.11 81.10 73.22 83.09 77.99 79.97 75.72 70.33 82.86 77.8 77.78
SCALE 74.95 78.98 80.85 73.28 82.72 78.44 79.42 76.09 70.12 83.03 77.61 77.96
HACk-OOD 73.67 80.07 84.36 73.63 55.55 86.13 78.00 78.00 74.21 83.69 73.16 80.30
Mahalanobis+SHE 73.46 79.67 85.77 74.51 70.52 82.12 84.97 73.81 77.18 81.93 78.38 78.41
HACk-OOD+SHE 73.6 80.13 84.34 73.68 55.49 86.15 77.97 78.03 74.25 83.72 73.13 80.34

ResNet-50

MSP 83.60 75.6 82.14 77.16 79.58 80.4 81.39 76.77 85.17 76.20 82.38 77.23
MaxLogit 82.15 76.99 78.76 80.83 77.87 82.15 80.3 77.41 85.54 77.60 80.92 79.00
Energy 81.97 77.12 76.17 81.42 77.99 82.24 80.53 77.40 86.48 77.55 80.63 79.15
ViM 36.49 92.24 57.27 87.73 72.69 83.38 81.32 76.41 37.66 91.52 57.09 86.26
GradNorm 82.34 76.90 76.99 80.05 77.93 81.75 80.32 77.76 86.19 77.42 80.75 78.78
Mahalanobis 45.69 89.88 76.13 80.41 85.29 76.45 89.89 67.10 48.05 89.60 69.01 80.69
KL Matching 80.67 76.18 80.24 77.20 76.80 80.78 80.59 76.68 81.05 76.77 79.87 77.52
KNN+ 63.94 82.46 76.54 78.78 76.37 79.82 80.48 75.63 56.91 84.32 70.85 80.20
SSD+ 51.4 86.05 80.16 74.87 90.43 66.04 92.94 57.02 55.39 86.24 74.06 74.04
GEN 82.06 77.13 76.38 81.30 78.03 82.23 80.51 77.45 86.46 77.58 80.69 79.14
NNGuide 80.43 77.84 74.62 81.86 76.69 82.38 79.71 77.83 83.07 79.1 78.9 79.80
SHE 78.51 76.49 76.46 81.07 69.78 83.51 80.87 75.68 83.1 75.96 77.74 78.54
ASH 55.43 85.74 78.11 71.82 37.1 93.22 80.1 73.53 53.61 88.63 60.87 82.59
SCALE 56.15 85.26 79.8 70.4 35.52 93.39 79.34 73.68 53.70 88.64 60.90 82.27
HACk-OOD 64.17 83.9 74.70 80.18 52.34 88.26 73.15 79.56 58.39 85.14 64.55 83.41
Mahalanobis+SHE 46.69 89.89 76.13 80.41 85.29 76.45 89.89 67.09 48.04 89.60 69.01 80.69
HACk-OOD+SHE 64.33 83.89 74.76 80.49 51.69 88.62 72.91 79.93 58.63 85.29 64.46 83.64

Table 4: Far-OOD detection CIFAR-10 with Supervised Contrastive Learning.

Backbone Method
OOD Datasets

Textures iSUN LSUN Places365 SVHN Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ResNet-18

MSP 43.53 94.21 48.18 93.33 31.24 95.82 55.53 90.65 37.83 94.74 43.26 93.75
MaxLogit 22.68 96.44 24.95 96.12 7.82 98.47 35.36 93.17 18.41 96.88 21.84 96.22
Energy 21.49 96.6 23.47 96.32 6.81 98.66 33.87 93.35 17.55 97.02 20.64 96.39
ViM 15.62 97.53 53.76 93.01 3.83 99.00 28.64 94.47 1.00 99.78 20.57 96.76
GradNorm 35.11 94.88 40.03 93.98 22.75 96.73 48.26 91.18 29.74 95.47 35.18 94.45
Mahalanobis 14.06 97.75 57.90 92.45 3.32 99.16 27.06 94.77 0.63 99.85 20.59 96.80
KL Matching 44.66 93.42 47.70 92.52 30.26 95.79 55.00 88.40 39.61 93.96 43.45 92.82
KNN+ 14.66 97.68 28.07 95.68 3.38 99.27 28.87 94.51 3.47 99.39 15.69 97.31
SSD+ 14.57 97.70 64.40 91.39 3.54 99.13 28.23 94.65 0.55 99.87 22.26 96.55
GEN 23.42 96.32 26.48 95.88 9.04 98.37 36.55 92.92 18.99 96.80 22.90 96.06
NNGuide 20.02 96.91 25.8 95.97 6.52 98.74 34.93 93.12 13.55 97.71 20.16 96.49
SHE 14.5 97.57 30.02 95.2 3.55 99.32 32.37 93.65 4.83 99.17 17.05 96.98
ASH 11.37 97.05 28.08 91.53 1.90 99.46 33.78 88.92 11.86 96.79 17.40 94.75
SCALE 12.45 97.23 25.52 93.83 1.89 99.49 33.39 90.33 14.49 96.08 17.55 95.39
HACk-OOD 16.45 97.13 26.26 95.86 3.27 99.36 26.91 94.77 6.02 98.95 15.78 97.21
Mahalanobis+SHE 14.08 97.75 57.89 92.45 3.32 99.16 27.06 94.77 0.63 99.85 20.60 96.80
HACk-OOD+SHE 15.37 97.29 27.37 95.61 3.5 99.29 27.64 94.53 5.76 98.95 15.93 97.13

ResNet-34

MSP 28.24 95.8 23.71 96.45 11.31 97.94 39.04 92.99 13.03 97.73 23.07 96.18
MaxLogit 18.62 96.76 9.73 98.09 2.40 99.21 25.25 94.94 5.09 98.83 12.22 97.57
Energy 18.81 96.80 9.65 98.16 2.30 99.29 25.17 94.99 5.02 98.88 12.19 97.62
ViM 10.32 98.11 13.82 97.34 1.95 99.15 23.08 95.35 0.81 99.84 10.00 97.96
GradNorm 28.24 96.12 23.71 96.84 11.31 98.42 39.04 93.26 13.03 98.14 23.07 96.56
Mahalanobis 8.65 98.50 14.18 97.38 1.99 99.39 21.54 95.58 0.64 99.88 9.40 98.15
KL Matching 28.30 93.91 23.28 95.05 10.71 97.82 38.16 89.84 13.25 97.27 22.74 94.78
KNN+ 13.67 97.84 13.99 97.58 2.40 99.4 24.37 95.23 2.70 99.47 11.43 97.90
SSD+ 8.17 98.55 15.68 97.23 1.59 99.39 22.72 95.50 0.54 99.89 9.74 98.11
GEN 19.08 96.81 10.97 97.98 3.05 99.18 26.57 94.78 5.70 98.79 13.07 97.51
NNGuide 17.59 97.13 11.16 97.99 3.15 99.13 27.31 94.71 7.34 98.56 13.31 97.5
SHE 13.67 97.63 17.88 96.94 2.57 99.46 27.62 94.31 2.88 99.41 12.92 97.55
ASH 10.35 98.24 16.65 97.02 2.55 99.31 26.16 94.32 11.11 97.91 13.36 97.36
SCALE 10.80 98.15 14.57 97.30 2.52 99.28 25.52 94.49 11.37 97.76 12.96 97.40
HACk-OOD 14.31 97.45 12.44 97.59 2.03 99.50 20.84 95.41 3.32 99.33 10.59 97.86
Mahalanobis+SHE 8.65 98.50 14.18 97.38 1.99 99.39 21.54 95.58 0.64 99.88 9.40 98.15
HACk-OOD+SHE 13.85 97.68 13.32 97.59 2.02 99.53 21.96 95.3 3.5 99.33 10.93 97.89

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Far-OOD detection CIFAR-10 with Cross Entropy Loss.

Backbone Method
OOD Datasets

Textures iSUN LSUN Places365 SVHN Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ResNet-18

MSP 58.49 89.66 46.11 93.2 40.26 93.81 58.88 88.2 49.99 92.79 50.75 91.53
MaxLogit 52.7 89.91 36.46 94.04 28.68 95.04 52.3 88.76 41.14 93.53 42.26 92.26
Energy 51.15 89.98 34.45 94.16 26.67 95.19 50.75 88.84 39.01 93.62 40.41 92.36
ViM 25.39 95.32 24.56 95.87 20.89 96.42 46.39 89.98 19.66 96.75 27.38 94.87
GradNorm 54.86 90 41.9 93.68 35.96 94.38 55.86 88.53 45.1 93.2 46.74 91.96
Mahalanobis 28.99 94.53 31.54 94.75 27.32 95.52 50.32 88.72 29.96 95.24 33.63 93.75
KL Matching 58.97 89.25 47.06 92.82 41.09 93.37 59.19 86.98 50.76 92.44 51.41 90.97
KNN+ 50.28 91.80 41.52 94.03 34.68 95.02 53.23 89.26 44.73 93.87 44.89 92.80
SSD+ 32.36 93.67 49.64 91.80 38.31 94.14 65.57 85.39 33.62 94.55 43.9 91.91
GEN 52.02 90.04 35.98 94.1 28.57 95.06 51.93 88.81 40.34 93.56 41.77 92.31
NNGuide 51.95 90.53 35.36 94.31 29.03 94.9 51.27 89.17 41.66 93.4 41.85 92.46
SHE 55.74 88.92 36.85 93.75 29.52 94.73 54.44 87.38 43.63 93.06 44.04 91.57
ASH 57.06 88.18 38.87 93.65 35.69 93.54 57.16 87.35 48.76 92.21 47.51 90.99
SCALE 55.71 88.70 38.38 93.81 33.66 94.04 55.93 87.77 47.21 92.60 46.18 91.38
HACk-OOD 63.01 87.91 41.23 93.09 48.85 91.32 53.79 87.05 68.2 89.51 55.02 89.78
Mahalanobis+SHE 28.99 94.53 31.54 94.75 27.32 95.52 50.32 88.72 29.96 95.24 33.63 93.75
HACk-OOD+SHE 66.84 86.04 45.13 91.95 53.36 89.75 56.29 85.41 74.23 87.56 59.17 88.14

ResNet-34

MSP 63.3 87.67 61.06 89.86 43.8 93.34 63.41 87.33 54.42 92.7 57.2 90.18
MaxLogit 56.91 87.94 52.69 90.52 31.55 94.54 55.23 87.9 43.95 93.61 48.07 90.9
Energy 56.26 88.01 51.78 90.6 30.39 94.67 54.33 87.98 42.52 93.72 47.06 91.00
ViM 33.83 93.77 41.77 92.87 16.32 97.02 50.03 90.18 23.74 96.19 33.14 94.01
GradNorm 63.3 87.84 61.06 90.08 43.8 93.77 63.41 87.53 54.42 92.98 57.2 90.44
Mahalanobis 44.02 93.14 50.63 92.41 30.76 95.86 55.89 89.94 41.24 94.68 44.51 93.21
KL Matching 63.53 86.73 61.37 88.41 44.38 92.84 63.44 85.92 54.88 92.21 57.52 89.22
KNN+ 58.37 90.3 55.94 90.79 37.12 94.92 57.31 89.38 50.53 93.29 51.85 91.74
SSD+ 29.59 94.76 41.95 93.36 17.04 96.99 53.04 90.26 17.28 96.92 31.78 94.46
GEN 57.36 87.98 53.47 90.49 32.91 94.49 56.13 87.88 45.01 93.55 48.98 90.88
NNGuide 57.32 88.61 52.68 91.04 32.89 94.64 55.22 88.65 46.01 93.32 48.82 91.25
SHE 57.93 87.93 54.38 90.49 34.27 94.11 59.27 86.4 42 94.06 49.57 90.6
ASH 58.74 87.82 56.04 90.24 38.15 93.85 60.69 86.89 46.42 93.68 52.01 90.50
SCALE 58.33 87.88 54.97 90.35 35.72 94.13 58.93 87.22 45.53 93.69 50.70 90.65
HACk-OOD 77.46 78.14 68.18 82.69 62.6 85.83 67.95 81.3 85.84 79.01 72.41 81.39
Mahalanobis+SHE 44.02 93.14 50.63 92.41 30.76 95.86 55.89 89.94 41.24 94.68 44.51 93.21
HACk-OOD+SHE 76.95 78.36 67.46 82.89 61.96 86.02 67.4 81.48 85.32 79.25 71.82 81.6

Table 6: CIFAR-100 Supervised Contrastive Learning ReAct Ablation.

Backbone Method
OOD Datasets

Textures iSUN LSUN Places365 SVHN Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ResNet-18 HACk-OOD 52.7 88.03 75.91 83.52 31.89 93.52 76.30 79.71 52.95 89.78 57.95 86.91
HACk-OOD +React 88.23 77.1 67.44 85.28 88.41 68.87 78.36 78.54 69.00 85.92 78.29 79.14

ResNet-34 HACk-OOD 46.17 90.08 61.14 87.47 33.17 93.61 71.31 81.29 29.01 94.47 48.16 89.38
HACk-OOD +React 89.13 80.01 72.25 85.91 80.3 85.28 75.98 80.92 38.81 93.65 71.29 85.15

ResNet-50 HACk-OOD 34.29 92.95 63.13 86.72 15.86 97.12 71.93 82.12 14.66 97.09 39.97 91.2
HACk-OOD +React 94.77 69.34 86.23 77.8 84.92 80.66 72.83 82.29 51.28 91.84 78.01 80.39
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Algorithm 1 Hypercone Construction for ID Data Contouring.

Input: Xtrain, Xtest, fencoder, Y, normalized
Output: H,C, λ

1: Function ExtractEmbeddings(X, fencoder): return fencoder(X)
2: Function GetObsAtClass(Z, l): return features corresponding to class l
3: Function NN(Cl, Z): return nearest neighbor to Cl among points in Z
4: Function KNNAngle(α⃗, Z): return cosine distance to k-th nearest neighbor of α⃗ in cosine

distance among points in Z
5: Ztrain = fencoder(Xtrain)
6: Ztest = fencoder(Xtest)

7: C =
{

1
|Ztrainl

|
∑|Ztrainl

|
i=1 ztrainl,i

∀l ∈ Y
}

(compute class centroids)
8: for l ∈ Y do
9: Ztrainl

= GetObsAtClass(Ztrain, l)
10: Ztestl = GetObsAtClass(Ztest, l)
11: if normalized then
12: Cl = NN(Cl, Ztrainl

)

13: Ztrainl
= {z − Cl ∀ z ∈ Ztrainl

} (center train embeddings at centroid)
14: Ztestl = {z − Cl ∀ z ∈ Ztestl} (center test embeddings at centroid)
15: Al = {

−→
Clz ∀ z ∈ Ztrainl

} (compute hypercone axes)
16: Tl = {KNNAngle(−→αj , Ztrainl

) ∀ j ∈ {1, . . . , |Al|}} (compute hypercone opening angles)
17: Hl = {h(−→aj , θj) ∀ j ∈ {1, . . . , |Al|}} (construct hypercones)
18: for hl,i ∈ Hl do
19: Gl,i = {z ∀ z ∈ Ztrainl

∪ Ztestl | τ < θl,i} (identify observations in hypercone)
20: Dl,i = {

−−→
|Clg| ∀ g ∈ Gl,i} (compute distances from centroid)

21: bl,i = µ(Dl,i) + 2σ(Dl,i) (compute distance aware radial boundary)

22: Dnorm
l,i =

{
d

bl,i
∀ d ∈ Dl,i

}
(scale distances by radial boundary)

23: λ = 95-th percentile(Dnorm)
24: return H,C, λ

Algorithm 2 OOD Inference

Input: Xnew, fencoder, Y,H,C, λ
Output: ID

1: Function InHyperconeAngular(z, α⃗l,i, θl,i): return arccos
(

α⃗l,i·z
∥α⃗l,i∥∥z∥

)
< θl,i (indicator for

whether z is within the angular boundary of hl,i parameterized by α⃗l,i and θl,i)
2: Function InHyperconeRadial(z, Cl, λ) : return ||

−→
Clz|| < λ (indicator for whether z is within

the radial boundary)
3: Znew = fencoder(Xnew)
4: ID = {0}|Znew| (initialize ID indicator vector)
5: for l ∈ Y do
6: Znewl

= {z − Cl ∀z ∈ Znew} (center embeddings at centroid)
7: for zj ∈ Znewl

do
8: if IDj = 0 and ∃ hl,i ∈ Hl s.t. InHyperconeAngular(zj , α⃗l,i, θl,i) and

InHyperconeRadial(zj , Cl, λ) then
9: IDj = 1 (if zj is in at least one hypercone’s angular and radial boundaries for one

label Y , it is ID)
10: return ID
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