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Abstract
In this position paper, we argue that
application-driven research has been system-
ically under-valued in the machine learning
community. As applications of machine learn-
ing proliferate, innovative algorithms inspired by
specific real-world challenges have become in-
creasingly important. Such work offers the po-
tential for significant impact not merely in do-
mains of application but also in machine learning
itself. In this paper, we describe the paradigm of
application-driven research in machine learning,
contrasting it with the more standard paradigm of
methods-driven research. We illustrate the bene-
fits of application-driven machine learning and
how this approach can productively synergize
with methods-driven work. Despite these ben-
efits, we find that reviewing, hiring, and teach-
ing practices in machine learning often hold back
application-driven innovation. We outline how
these processes may be improved.

1. Introduction
Machine learning (ML) is increasingly being used across di-
verse fields and sectors, with significant impacts for society.
ML is being used in healthcare to analyze genetic mark-
ers, process medical imagery, and digitize health records
(Ghassemi et al., 2020). ML is being used in climate science
to speed up physical simulations, parse satellite data, and
forecast extreme events (Monteleoni et al., 2013; Rolnick
et al., 2022). ML is being used in heavy industry to control
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complex processes, optimize supply chains, and design new
materials (Gopaluni et al., 2020). These kinds of applica-
tions, and many others (Wang et al., 2023a), involve diverse
ML tools being used in a multiplicity of ways.

The widespread use of machine learning across society
draws on decades of innovation in core ML algorithms, but
also on another type of ML research: Application-driven
innovation. ML algorithms designed in blue-sky, methods-
focused research continue to fall short when used directly for
applications. Bridging the gap requires thoughtful consider-
ation of the challenges of real-world tasks and the properties
of real-world data, and the welcoming of use cases into the
research process. This approach to ML research has much
to contribute to broader innovation in ML methods, as well
as downstream applications. However, application-driven
innovation has characteristics that have led too often to it
being under-valued within the ML community or perceived
as out-of-scope (Rudin & Wagstaff, 2014).

In this paper, we frame the paradigm of application-driven
ML (ADML) research, propose where it fits within the ML
research landscape, and discuss why it is important not just
merely to applications but to advancing ML methods. We
reflect on common failures in understanding ADML work
during reviewing, hiring, and teaching, and how such factors
serve to strongly disincentivize application-oriented work
within ML, in both academia and industry research. Finally,
we suggest steps toward an ML research ecosystem in which
application-driven approaches are recognized and supported
alongside methods-driven work.

2. Paradigms of Innovation in ML
2.1. Methods-Driven Research

The mainstream paradigm of innovation in machine learn-
ing methods, which may be referred to as methods-driven
research, focuses on the identification of algorithms with
certain target properties and evaluates these properties using
datasets. Methods-driven ML research has followed vari-
ous trends over the past several decades (see also Wagstaff
(2012)). For illustration and comparison, we review key
aspects of the paradigm as it currently exists, especially in
deep learning.
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Figure 1. We distinguish between two paradigms of research in
machine learning: Methods-driven innovation, in which algorithms
are designed based on their performance on standardized bench-
marks, and application-driven innovation, in which algorithms are
designed to meet challenges faced in real-world problems. We
argue that both paradigms contribute significantly to ML research.

1. Stereotyped benchmarks. Many of the innovations
celebrated within the ML community arise through
experiments on well-established benchmarks such as
ImageNet (Deng et al., 2009), MS COCO (Lin et al.,
2014), the OpenAI Gym (Brockman et al., 2016), etc.
While new benchmarks and variations of existing ones
continue to be introduced, the number of fundamen-
tally distinct problems remains very limited and the
most popular benchmarks have largely retained their
hegemony. For example, the three datasets and testbeds
above were cited a total of 26,000 times in 2023.

2. Narrow set of evaluation metrics. ML methods are
typically evaluated according to a very small set of
core metrics, notably test loss and accuracy. Tasks
are framed according to a relatively small set of types –
such as fine-grained classification or out-of-distribution
generalization – and within a task type, the method of
evaluation generally does not vary or depend on the
specific dataset.

3. Massive datasets. Algorithms are assumed to benefit
from more data. The subtleties of the data and how it
was collected are generally considered to be less im-
portant than the quantity (Bender et al., 2021), despite
mounting evidence that data composition is key (Fang
et al., 2022). For example, in creating ImageNet and
the training datasets for most large language models,
researchers scraped large amounts of raw Internet data,
with annotations provided at scale by teams of gener-

ally untrained annotators (Deng et al., 2009). Small
datasets are generally perceived as less important or
trustworthy in assessing an algorithm’s effectiveness.

4. Problem-agnostic methods. As with metrics for eval-
uation, the algorithms utilized are designed to be as
general as possible. It is common to use a variety of
very different datasets to evaluate a new method. It is
also increasingly common, with the rise in foundation
models (Bommasani et al., 2021), to design an algo-
rithm to simultaneously perform a range of different
tasks and expect it to generalize well to other tasks.

It is often taken for granted within the ML community that
these principles are the only way to produce meaningful
innovation in machine learning. Yet as many authors have
detailed (Birhane et al., 2022; Ghassemi & Mohamed, 2022),
these are not inevitabilities but rather are implicit choices
that reflect the values and priorities within the field.

2.2. Application-Driven Research

Machine learning researchers are frequently shocked to dis-
cover that algorithms designed using methods-driven innova-
tion fall short in many real-world use cases. For example, in
many remote sensing problems, a simple random forest ap-
proach proves more effective than highly regarded computer
vision approaches such as Vision Transformers (Dosovit-
skiy et al., 2021). Such gaps between expectation and reality
(which indeed are only apparent when ML researchers en-
gage with end users) illustrate that methods-driven research
can be usefully complemented by other types of innovation.

Communities of ML researchers working on problems in
remote sensing, health, sustainability, and other areas have
developed mature techniques through a paradigm we refer
to as application-driven machine learning (ADML). Be-
low, we detail the core aspects of ADML, as compared to
methods-driven research (see Figure 1).

1. Real-world tasks. Where methods-driven research
evaluates success based on standardized benchmarks,
application-driven ML concentrates on a real-world
problem, or a family of related problems. The goal is to
design an algorithm that satisfies the specific needs of
this problem, based on how the ML will ultimately be
used. Framing the problem as a machine learning task,
or set of tasks, is often part of the challenge. An increas-
ing number of application-specific benchmarks, such
as iNaturalist (Van Horn et al., 2018), ClimSim (Yu
et al., 2023), WILDS (Koh et al., 2020), MIMIC-CXR
(Johnson et al., 2019), CityLearn (Vazquez-Canteli
et al., 2020), and Grid2Op (Marot et al., 2021), have
been created, often with considerable time and effort.
These capture different data and task properties than
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many standard ML benchmarks and are extremely use-
ful for ADML work. However, no single fixed set of
benchmarks is sufficient to capture the full scope of
real-world uses for ML.

2. Application-specific evaluation metrics. One of the
key reasons that methods-driven ML fails to be im-
pactful in some practical applications is that the set of
appropriate evaluation metrics varies greatly between
real-world use cases. For example, labeling land cover
types from satellite imagery is a common challenge
in remote sensing, and while accuracy matters, the
computational cost is also a major factor since algo-
rithms must scale over large areas, often on limited
computational infrastructure (Robinson et al., 2019).
Identification of animals from photographs is an im-
portant challenge in biodiversity monitoring, and here
uncertainty quantification can be essential so that statis-
tics can be appropriately incorporated into ecological
models (Villon et al., 2020). From a method-driven ML
perspective, both of these tasks are image classification,
but for ADML, the downstream criteria for success are
different, so evaluation must include these metrics as
well as metrics such as test loss and accuracy.

In some cases, standard ML evaluation procedures and
frameworks may indeed not apply at all. For example,
standard uniform-at-random assignment of instances
to test splits can drastically over-estimate performance
of a model used in conditions or regions unseen during
training (Ploton et al., 2020; Meyer & Pebesma, 2022);
blocked, clustered, or buffered holdout sets are more
appropriate to assess performance in out-of-sample
use cases for prediction domains with spatial, tem-
poral, or other hierarchical structures (Roberts et al.,
2017; Le Rest et al., 2014). It is also worth noting that
common goals such as interpretability, robustness, and
generalization often have multiple nuanced definitions
depending on the particular application. The adver-
sarial robustness metrics commonly used in ML, for
example, represent a distinct notion from the Lyapunov
stability guarantees expected in certain engineered sys-
tems (see e.g. Donti et al. (2022)). In applications of
reinforcement learning, sample efficiency, sensitivity
to hyperparameter choices (because there is no analogy
of cross validation), and stability of the deployed con-
troller are especially critical, whereas method-driven
evaluation in reinforcement learning often assumes un-
fettered access to simulator data required to tune ever
increasingly complex agents for peak performance.

3. Auxiliary domain knowledge. While methods-driven
ML typically focuses on datasets that are as large as
possible, application-driven ML often does not have
this luxury. While large datasets remain very useful
if they are available, often real-world problems place

more data (especially more labeled data) at a premium.
In cases where datasets are limited, ADML approaches
instead often focus on incorporating as much domain
knowledge and auxiliary information as possible, as
well as careful selection/curation of labeled data. By
contrast, methods-driven research often is unwilling or
unable to incorporate such problem-specific informa-
tion, since distinct domain-specific challenges may be
put in a single bucket. For example, if computer vision
models pretrained on ImageNet are used on remote
sensing data, they must simplify the wide array of sen-
sors used to collect such data, which extend beyond
RGB channels. By contrast, ADML approaches for re-
mote sensing explicitly incorporate such diverse inputs
(Rußwurm et al., 2024; Tseng et al., 2023). Similarly,
location information from datapoints is increasingly
being incorporated into ADML approaches in areas
such as agriculture and ecology (Mac Aodha et al.,
2019; Tseng et al., 2022; Klemmer et al., 2023).

4. Problem-informed methods. Related to the above
point on auxiliary data is how the structure of the data
and the problem itself is reflected in the choice of algo-
rithm. At the most basic level, many machine learning
approaches are chosen based upon a high-level task
classification – thus, convolutional neural networks
may be used for image-structured data, LSTMs for
time series, etc. However, the structure of a particular
problem may be extended beyond such coarse cate-
gories. The domain of physics-informed ML often
intersects with ADML, if the underlying physics of a
problem is considered – e.g., rules such as conservation
of energy or mass, or known differential equations gov-
erning the variables (Kashinath et al., 2021). Similarly,
ML methods for engineered systems often should in-
corporate known constraints between variables (Donti
& Kolter, 2021). In cases where ML methods must
come with provable guarantees (e.g., in safety-critical
systems), incorporating some domain knowledge may
in fact be necessary, in order to enable theoretical anal-
ysis (Donti et al., 2021). Constraints or rules can often
be incorporated into the design of the algorithm, for
example, via custom neural network layers or a spe-
cial loss function (Kashinath et al., 2021). Desirable
objectives can also sometimes be encoded into a loss
function, as in the case of optimizing limited resources
in public health (Wang et al., 2023b; Mate et al., 2022).
Often, input data can be represented in a helpful way
with expert knowledge from the application domain,
as when climatological variables can be considered as
a graph and processed using graph neural networks
(Rühling Cachay et al., 2020).
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An important aspect of many ADML innovations is collabo-
ration. To conceive, build, and sustain successful research
projects, ADML researchers often need to develop close
working relationships and trust with stakeholders relevant
to the application, who may be, e.g., researchers in other
disciplines, policymakers, or local communities. Signifi-
cant time is often needed for each project to understand the
stakeholder’s needs, translate them to ML opportunities and
challenges, and then define research objectives that benefit
both the stakeholder and the ML researcher. These steps
are essential in framing a real-world problem as an ML task
with associated metrics and objectives, in understanding
the structure of the data, and in designing algorithms that
leverage it.

Note that our discussions of both methods-driven and
application-driven research refer to works introducing ma-
chine learning methodology, rather than those focused on
theory. Of course, many papers include theoretical analysis
alongside a largely empirical evaluation, and it is possible
for such works to be either methods-driven or application-
driven, since theory can be valuable in either case. As an ex-
ample of theoretical analysis in an ADML work, see Duval
et al. (2023), which introduces novel algorithms for materi-
als science applications. Here, the theoretical results justify
the property of equivariance under group transformations,
which is important for the applications in question.

2.3. Contributions to Machine Learning

Paradoxically, while ADML research is problem-centric,
this approach has not merely improved the performance of
ML in specific use cases, but has done much to advance
ML research as a whole. Methods originally tailored for
a specific problem have often proven useful to a variety
of seemingly dissimilar problems. For example, Fourier
Neural Operators (Li et al., 2021), originally developed to
solve the differential equations governing fluid flow, have
now been used in applications as diverse as climate data
superresolution and materials property prediction (Yang
et al., 2023; Rashid et al., 2022). This is counterintuitive,
but reflects the fact that real-world challenges may share
more underlying structure with each other than with the
often artificial benchmarks used in methods-driven research.

The use cases raised in ADML can also tie in to broad
challenges considered in methods-driven research, or may
raise new challenges that can be abstracted away from the
task at hand. For example, the iNaturalist benchmark was
originally constructed as a byproduct of computer vision
research on a real-world biodiversity problem (Van Horn
et al., 2018), but it has now become a popular test case for
learning very long-tailed distributions. Many problems in
ML for climate and weather modeling pose a special type

Figure 2. Application-driven innovation in machine learning is
achieved through close integration of ML research with applica-
tions and end-users. Machine learning methods are designed to be
impactful on real-world problems. In turn, applications contribute
to ML research methods via novel datasets and task framing, in-
formed by auxiliary domain information such as constraints and
metadata. End-users also help define relevant criteria for measur-
ing the success of ML methods on downstream tasks.

of nonstationarity challenge, since climate change means
that training data drawn from past observations will not
necessarily reflect patterns in future data (Monteleoni et al.,
2013).

Finally, ADML has the potential to diversify research direc-
tions. Machine learning has often been steered by trends
and hype cycles, where many researchers end up working
on variations of the same technique or problem. Assessing
the relevance of new methods with respect to a wide vari-
ety of real-world tasks may be useful, now more than ever,
in preventing the community from falling into monolithic
patterns of innovation.

3. Reviewing
It is currently quite difficult for high-quality ADML work
to be published in mainstream machine learning venues.
Papers which should fall within the scope of venues such
as ICML and NeurIPS are too often excluded, due to sys-
temic weaknesses in the review process. In this section, we
explore these weaknesses and suggest how the process may
be improved.

Of course, not every paper on applications of ML is well-
suited to ICML. Many such papers are most appropriate
to publication in the domain of application, or in a cross-
disciplinary venue such as Environmental Data Science or
Nature Digital Medicine. These papers may, for example,
be focused on applications of existing techniques to help
address a narrow problem in the domain of interest. How-
ever, other papers represent ML contributions – either in the
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methodology or in the kind of task being studied. A method-
ology contribution may be developed for one application
but end up being broadly relevant across ML. A task-related
contribution may provide a useful testbed for evaluating ML
according to real-world challenges, or highlight metrics and
considerations not previously regarded as important to ML
evaluation. Both types of contributions thus have much to
offer the ML community and fall squarely within the scope
of venues such as ICML. Examples of past works of this
form which were nevertheless published outside of main-
stream ML venues include Ronneberger et al. (2015); Raissi
et al. (2019); Kurth et al. (2023); Chen et al. (2021).

There are a number of common criticisms that will be fa-
miliar to anyone who has submitted an ADML paper to a
machine learning publication venue:

• Unfamiliar benchmarks. Reviewers are often con-
fused when a paper does not test against the suite of
benchmarks that have become standard in methods-
driven ML. Often, ADML papers do not use such
benchmarks because the structure of standard datasets,
or the goals of standard benchmarking tasks, differ sig-
nificantly from the real-world data under consideration.
For example, image classification algorithms devel-
oped for remote sensing are generally not ideal for
ImageNet and vice versa. Researchers may also avoid
certain standardized benchmarks because of toxic con-
tent (Prabhu & Birhane, 2021; Birhane et al., 2021),
ethics issues involved in their creation (Asano et al.,
2021; Perrigo, 2023), or known inaccuracies or biases
(Luccioni & Rolnick, 2023; Crawford & Paglen, 2021).
Despite these considerations, reviewers frequently call
for experiments on the “stereotypical” datasets if they
are not familiar with the datasets used in the paper,
even when such datasets are high-quality, published,
and supported by appropriate baselines.

• Limited applicability. As noted above, there are cer-
tainly applied ML papers with a very narrow focus, and
some of these should not be published in ML venues.
However, the claim of limited applicability is often
directed at application-focused papers indiscriminately,
and can indicate unfamiliarity (or hubris) on the part of
the reviewer, as when an entire field such as agriculture,
ecology, or healthcare is tacitly dismissed as niche. Re-
viewers also may have unrealistic expectations about
the number of benchmarks on which a method is evalu-
ated. For ADML papers, each benchmark may require
considerable effort, and there may also be relatively
few options for high-quality ML-ready datasets on a
given topic, even where the domain problem is very
important.

• Too simple. The common criticism that a novel

method is “too simple” is often used when the reviewer
is surprised that it outperforms complicated “SoTA”
algorithms. ML scholarship often prizes the appear-
ance of complexity, which can lead to simple insights
being disregarded where ideally they would be prized
(Wagstaff, 2012; Lipton & Steinhardt, 2018). By con-
trast, ADML researchers often have an especial focus
on usability and scalability, so the lack of unnecessary
complexity can indeed be a goal, and may be the re-
sult of distilling a complex method down to its core
innovation.

• Not innovative. Application-driven innovation often
arises from deep understanding of the challenges posed
by a task (which is itself an important contribution)
and identifying how to combine or modify existing
ingredients in a new way to address this challenge. In
such cases, as with “too simple”, the clear effectiveness
of a novel method can be used against it. A surprisingly
common review is “if this method really works so well,
then someone must have done it before.”

These failure modes of the review process do not necessarily
arise from the high-level reviewing guidelines of ML venues,
but rather are the consequence of interpreting these guide-
lines according to the methods-driven research approach
detailed above. Below, we attempt to provide guidance to re-
viewers and area chairs on how to interpret common rubrics
for ML research excellence in the case of application-driven
work. These may additionally be useful to ML venues in-
terested in specifying reviewing guidelines with a greater
degree of granularity. (See also the reviewer guidelines for
the AAAI Special Track on AI for Social Impact.)

• Originality. In the context of ADML research, origi-
nality can mean wholly novel methods, a novel com-
bination of existing methods to solve the task at hand,
or a novel task (for example where real-world data has
a special structure or metrics for success). Note that a
new task is not necessarily the same as a new dataset –
it may be a new way of framing or evaluating existing
data.

• Quality. As noted above, ADML methods are gener-
ally evaluated on datasets that fall outside the stereotyp-
ical benchmarks that many reviewers are familiar with.
Such datasets should be sufficient for evaluation if they
are well-documented and tested. Algorithms should
be compared against classical approaches, which can
sometimes be very effective in practice, as well as
any applicable “state-of-the-art” methods. Ablation
experiments for proposed methods are often especially
important.

• Clarity. A common failure of ADML papers is writ-
ing for the wrong audience. For publication in an ML
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venue, a paper should provide background in the rele-
vant application domain and dataset(s), definitions of
any jargon used, and clear motivation for the problem
at hand. The authors should, of course, also provide
ML methodological details to a higher standard than
that sometimes expected in applied venues.

• Significance. This item can be the hardest to agree
upon. Different reviewers may have different opinions
as to how to weigh the significance to ML and the
significance to the domain of application. We would
argue that for publication in an ML venue, there must
be some importance to the ML community, but signif-
icance to another field can be an important factor as
well.

In addition to following best practices and avoiding com-
mon pitfalls, the reviewer pool should include a range of
application-informed ML researchers. This can help ensure
that application-oriented papers are (i) oriented towards gen-
uinely impactful challenges, (ii) incorporate domain consid-
erations and metrics that are necessary to the use case, and
(iii) truly address the problem at hand, rather than merely
paying lip-service to impact. Ideally, each ADML paper
should have some (but not necessarily all) of its reviewers
drawn from ML researchers with experience in the relevant
domain of application. Achieving this entails expanding
the pool of ADML-aligned researchers invited to review.
It must also involve strengthening the reviewer matching
process with applications in mind (current keyword-based
approaches struggle, e.g. for terms such as “forests” and
“energy” with both methodological and application-related
meanings).

Various ML venues already have strong subcommunities of
applied researchers among the author and reviewer pools,
but these tend to be limited to certain areas. For example,
NeurIPS / ICML include a growing community in ML for
materials science, while CVPR / ECCV / ICCV have sig-
nificant communities in ML for ecology. For these areas of
work, the barriers to entry have therefore become somewhat
reduced, but are still present, while high barriers remain for
many other areas of application.

Overall, we are seeing slow but meaningful progress in
ADML publication opportunities. In addition to the growing
pool of researchers empowered within the ML community,
several ML venues have created focused tracks aimed at spe-
cific kinds of ADML publications. The NeurIPS Datasets
and Benchmarks track has become a home for papers on
innovative application-aligned tasks, while the JMLR spe-
cial issue on climate change, AAAI Social Impact track,
and IAAI conference have similarly broadened the scope of
available venues. The further development of special tracks
oriented towards application-driven work could be a valu-

Figure 3. We outline how to alleviate bottlenecks holding back
application-driven ML research across reviewing, hiring, and teach-
ing practices. In each of these settings, current practices are largely
aligned with methods-driven research and ADML work is often
under-valued.

able next step for ML publication venues. We hope, how-
ever, that ultimately such workarounds become obsolete as
ADML research becomes better recognized and supported
as part of mainstream ML innovation.

Many ADML researchers have gravitated towards subcom-
munities of the broader field of ML, which present oppor-
tunities for exchange with like-minded individuals. These
spaces include workshop series such as ML4D, “Tackling
Climate Change with Machine Learning”, and “RL for Real
Life”, and conferences such as ML4H and Climate Informat-
ics. These spaces serve an important purpose complemen-
tary to ML venues such as ICML and NeurIPS, furthering
discourse between researchers in ML and specific appli-
cation domains, and in some cases serving as publication
venues. However, they are not a replacement for the recog-
nition of ADML research within the wider ML community,
and the relegation of such work to smaller, more narrowly
focused spaces stands to silo ADML works that would be
useful and interesting to ML research at large.

4. Hiring
To enable application-driven machine learning, it is not
merely sufficient to evaluate ADML research fairly – it
is also necessary to empower ADML researchers. While
increasing numbers of trainees in ML are familiar with the
ADML paradigm of innovation as well as the traditional
methods-driven approach, such individuals continue to face
systemic obstacles to advancement in the ML community.

Most centers of ML research (in both academia and industry)
are overwhelmingly methods-driven. Indeed, many of the
senior researchers in this area did not originally pursue this

6



Application-Driven Innovation in Machine Learning

kind of work, but have shifted into more application-driven
approaches after gaining their jobs and recognition, or pur-
sue ADML research as merely a part of their toolkit. Generic
job opportunities in ML research are generally framed by
default along methods-driven principles. While specific op-
portunities in ML for healthcare, ML for climate, etc. are
increasing, these remain a small fraction of the whole, and
hiring committees also often do not know how to effectively
evaluate ADML candidates.

There are several notable benefits for removing these ob-
stacles and providing equal opportunity to ADML research.
At the level of the overall field of machine learning, we
have seen that ADML can be an integral part of the ML
innovation landscape and synergize with methods-driven
approaches. For individual organizations such as computer
science departments and industry research labs, ADML can
also be a strategic way to increase the impact of research,
forge collaborations with other fields, recruit new funders,
and demonstrate relevance in the broader space of science
and tech. Moreover, the focus of ADML on tasks relevant to
a diversity of stakeholders and use cases can often be a boon
to institutional goals of equity and inclusion, by reflecting
the varied needs of human society and motivating broader
engagement in ML innovation.

We now consider the ways in which ADML researchers
may not fall into the traditional mold expected within the
ML community, with particular emphasis on how research
institutions may counteract biases in hiring.

• Publications. The number of publications for ADML
researchers may be lower than is common in methods-
driven ML. This is because the innovation pipeline
can take longer when extensive work is required to un-
derstand, frame, and prepare real-world problems for
machine learning. Many ADML projects require cre-
ation of new datasets. Collecting and curating datasets
in real-world environments can involve extensive time
and cost for execution, especially when data collection
requires community permission and engagement. Pub-
lication venues may also be diverse, not merely the
standard ML venues (as we have noted, such venues of-
ten present obstacles to publication for ADML work).
This need not be a sign that research contributions
fall outside of ML – indeed, many foundational meth-
ods such as the U-Net and PINN were first published
outside of traditional ML venues (Ronneberger et al.,
2015; Raissi et al., 2019).

• Results. As we have already described, methods devel-
oped in ADML may not be tested on standard bench-
marks, because these benchmarks may have differently
structured data or may not test the relevant algorithmic
capabilities. In establishing effectiveness of a result,

tests on real-world data are generally more important
than theoretical guarantees, which often require unre-
alistic assumptions.

• Impact. It is common for ML research to claim use-
ful applications, and indeed many methods-focused
papers assume that testing on a variety of standard
benchmarks is sufficient to establish far-reaching real-
world impacts. However, such assumptions are not
always borne out in practice. Application-driven ML
is the most likely to be able to justify claims of impact,
providing a logical chain deriving the methodology
from the ultimate use case. When assessing claims
made in application-oriented ML research, it may in
some cases be useful to consult researchers in the rel-
evant application domain. A reference letter from an
expert outside of computer science may also be helpful.
Note that simply counting citations may not adequately
capture how impactful a research contribution is in
deployed applications.

For institutions looking to attract and retain excellent re-
searchers working in application-driven ML, we have sev-
eral pieces of advice. First, build strong frameworks for
interdisciplinary collaboration. This is essential to most
ADML work and can serve to enhance the ultimate impact
of the research both within ML and in applications. Second,
provide support for data engineering teams. Such teams can
serve to alleviate time-consuming bottlenecks to the acqui-
sition and restructuring of real-world data to fit machine
learning, giving the researchers more time to focus on the
algorithms. Finally, strengthen tech transfer pipelines from
ML research to startups and other private and public entities.
Tech transfer can enable scalable deployments, supporting
the overall innovation landscape and raising additional ques-
tions for ML research.

5. Teaching
The emphasis placed on methods-driven work within the
ML community also extends to how the next generation of
researchers is trained, leading to a self-perpetuating cycle.
Students often come into ML programs especially excited
about impactful applications, but paradigms for pedagogy,
practice, and research often deprioritize application-driven
innovation. We consider the different axes by which this
occurs:

• Coursework. Most machine learning classes present
algorithms in isolation. There is very little discussion
of how these ML methods will ultimately be used, the
characteristics of real-world data, the challenges in-
volved in working with it, and the needs of users and
other stakeholders. Performance is often simplified
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as corresponding to simple numerical measures, and
the paradigm of ML innovation is often framed as a
progression according to these measures: Method B
improves upon the accuracy of Method A, and is in
turn superseded by Method C. Such a narrative mis-
characterizes innovation as a linear journey along a
single path. The phrase “state-of-the-art” is often used
to characterize algorithms even in the absence of a
specific task or dataset, suggesting erroneously that
improvements are clear-cut and universal.

• Hands-on practice. Training in ML typically involves
hands-on projects, both within and outside of course-
work. Here the standardized tools that are used often
reinforce the methods-driven paradigm by fitting ev-
erything into a user-friendly but limited mold. For
example, the developer platform Weights & Biases
offers hyperparameter tuning for reinforcement learn-
ing algorithms, but these assume that the cost function
is deterministic, which is rarely the case in practice.
Student-oriented hackathons and Kaggle competitions
often frame impact according to leaderboards with
simple statistics that abstract away the subtleties of
the problem. Such challenges prioritize innovations
that can be produced in a short timeframe, potentially
leading students to assume that impact is something
achieved by using the most powerful algorithms on a
ready-to-use dataset. Prepackaged challenges implic-
itly under-emphasize data engineering skills, as the
careful data work necessary to tackle real-world prob-
lems has already been taken care of by someone else.
Working on problems where the data and task are al-
ready structured for ML greatly limits the number (and
importance) of problems that can be addressed.

• Research. Within research, students are gener-
ally exposed to papers following the methods-driven
paradigm. They may learn by experience or example
that an application-driven approach is more likely to
lead to rejection by major ML publication venues. Un-
derstanding a new application domain or unfamiliar
research approach takes time. Combined with the pres-
sure to publish frequently, this can make it especially
difficult for students to pursue ADML research.

With the prevalence of such methods of training, it is small
wonder that students predominantly learn methods-driven
approaches to research. This represents a loss to the ML
community, given the potential for impact and innovation
which we have seen that ADML approaches can bring.
Moreover, an exclusive focus on methods-driven work can
significantly increase attrition among researchers from tra-
ditionally underrepresented backgrounds. given that ADML
places a clear emphasis on addressing problems and needs
of a diverse set of stakeholders, creating an environment

that can be both motivating and welcoming. Indeed, ADML-
oriented subcommunities such as “AI for Good” are often
significantly more diverse across gender, ethnicity, and other
axes, compared to the ML community as a whole.

Moving forward, the goal for ML education should not
be to replace methods-driven approaches, but to augment
them. Introductory classes are a particularly important
time for students to be exposed to both the methods-driven
and application-driven perspectives on machine learning.
Courses in specific areas such as AI for Science, Climate,
and Health should be encouraged, and some exposure to
such areas of work should ideally be a required part of a
machine learning degree. In addition, students in computer
science or ML should be encouraged to take relevant courses
in other disciplines, in order to gain exposure to the different
toolkits and ways of thinking within those other fields. De-
partments should facilitate exchange between students and
researchers within and outside of ML, and encourage the
development of interdisciplinary collaboration and commu-
nication skills. Students should gain at least some practice in
the full project lifecycle, taking a problem all the way from
framing to deployment. (This is an especially highly valued
skillset in industry research, and such experience can pro-
vide a significant advantage in competitive industry research
labs.) And outside the academic domain, reform in the re-
view system can have a trickle-down effect on the behavior
incentivized in students, as can changes in the expectations
on the number of publications versus their quality.

It is also worth considering the role of education beyond
just preparing the next generation of researchers. Not ev-
ery student will go into academia or private-sector research.
The ML community, to its credit, traditionally recognizes
this fact more than many other disciplines (such as Math-
ematics), with a culture of education that often includes
internships, entrepreneurship training, and other prepara-
tion for non-research positions. However, such preparation
generally focuses on a relatively limited set of roles. The
common question posed to students: “Academia or indus-
try?” neglects public sector jobs completely, despite the
abundance of public sector positions in, for example, ML
for remote sensing, transportation, energy, and weather. Fur-
thermore the “industry” that is referred to typically means
the tech industry, rather than the ML positions increasingly
present in companies outside of tech. These kinds of posi-
tions are typically not discussed, advertised, prepared for in
classes, or structured as internships, and partnerships that
could help train students for such roles are often neglected.
Such positions, similar to many industry positions, are tied
directly to the deployment of technology and serve as a
connection point and a conduit for the translation of impact-
driven research across domains. Moving forward, we hope
that an application-mindful approach to education broadens
the kinds of preparation we are offering our students.
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6. Discussion
It has been promised that machine learning will be used
across society in a myriad ways. Some of the vaunted capa-
bilities for ML are merely techno-optimism and marketing.
Some are possible now with present-day methods. And
some may be possible in the future. In order for ML re-
search to grow impactfully to meet tomorrow’s use cases,
we need application-driven innovation.

In this paper, we presented the paradigm of ADML, which
complements the traditional paradigm of methods-driven
innovation. We outlined and compared the distinguishing
features of these two approaches, and why both fall under
the broader umbrella of machine learning research. Within
ADML, we considered common failure modes in the fair
assessment of research quality, and suggested approaches
for mitigating these issues. We also discussed bottlenecks
to the empowerment of ADML researchers and suggested
ways to improve the hiring and retention of these individuals
within research positions.

Of course, something we have largely not discussed in this
paper is how the “applications” driving ML are chosen, nor
who assesses what a “solution” entails. Every application
and ML method represents choices, either explicitly or im-
plicitly made, based on values and priorities. Some use cases
that drive ML innovation have detrimental effects on society,
and the ways in which “solutions” are created may lead to
negative or ambiguous outcomes. We largely do not attempt
to address these topics in this paper, but point the reader to
excellent treatments of related issues in e.g. Birhane (2021);
O’Neil (2017); McGovern et al. (2022). As with ADML,
values-aware innovation in machine learning is an axis of
research that is highly underappreciated.

Impact statement
This position paper focuses on the interplay between ma-
chine learning innovation and applications with a view
to real-world impact. The framework we present of
stakeholder-centric design aligns with the best practices of
“AI for Good”, and our intention in this paper is to advance
the paradigms of innovation that will help machine learning
benefit society at large. However, it is also possible to use
the application-driven ML paradigm in applications that are
detrimental to society or unethical. We do not discuss at
length the topic of aligning ML applications with particular
goals and value systems, and point the reader instead to
existing resources on this topic.
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