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ABSTRACT

With the rapid growth in the number of Large Language Models (LLMs), there has
been a recent interest in LLM routing, or directing queries to the cheapest LLM that
can deliver a suitable response. Following this line of work, we introduce CARROT,
a Cost AwaRe Rate Optimal rouTer that can select models based on any desired
trade-off between performance and cost. Given a query, CARROT selects a model
based on estimates of models’ cost and performance. Its simplicity lends CARROT
computational efficiency, while our theoretical analysis demonstrates minimax
rate-optimality in its routing performance. Alongside CARROT, we also introduce
the Smart Price-aware ROUTing (SPROUT) dataset to facilitate routing on a wide
spectrum of queries with the latest state-of-the-art LLMs. Using SPROUT and prior
benchmarks such as Routerbench and open-LLM-leaderboard-v2 we empirically
validate CARROT’s performance against several alternative routers.

1 INTRODUCTION

Large language models (LLMs) have demonstrated the capability to effectively address a diverse
array of tasks across academic, industrial, and everyday settings (Minaee et al., 2024). This continued
success has catalyzed the rapid development of new LLMs tailored for both general and specialized
applications (Myrzakhan et al., 2024). While this offers practitioners increased flexibility, the
vast number of available options may pose a daunting challenge in their real-world deployment.
Particularly, determining the optimal LLM for a given query remains a significant challenge. In a
perfect world, all queries can be routed to the most powerful model, but for many, this may quickly
become prohibitively expensive.

A common approach to address this issue is routing (Shnitzer et al., 2023; Hu et al., 2024; Ong et al.,
2024; Jain et al., 2023; Šakota et al., 2024). There are two paradigms of routing; non-predictive
routers repeatedly call LLMs and evaluate the responses to select the best one for a given query.
Examples include Fusion of Experts (FoE) (Wang et al., 2023), FrugalGPT (Chen et al., 2024),
and techniques that cascade answers from weak to strong LLMs (Yue et al., 2024). The obvious
disadvantage non-predictive routing is the required inference of many LLMS for all queries, even
those that are not suitable for the task at hand. As a workaround, researchers have also considered
predictive routers, which take LLM queries as inputs and output guesses at the most appropriate LLM.
A key limitation of the prior literature on predictive routing is the avoidance of the cost prediction
problem. In Shnitzer et al. (2023) only performance is considered. The methods RouteLLM (Ong
et al., 2024) RoRF (Jain et al., 2023) incorporates model cost by creating binary routers that select
between a large costly model and a cheap small model. While this does incorporate cost, we shall see
that the reduced flexibility of binary routing leads to performance degradation in practice. Finally, in
Šakota et al. (2024) cost prediction is considered, but the authors assume that cost may be inferred
from available API pricing; this does not hold if model responses are open-ended, and thus may vary
in length.
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To address these shortcomings, we develop CARROT: a Cost AwaRe Rate Optimal rouTer and collect
the Smart Price-aware ROUTing (SPROUT) dataset. SPROUT is representative of both performance
and cost of state-of-the-art LLMs across varying practical use-cases. Additionally, we use it to
train the final version of CARROT. CARROT is designed to function as an estimate of the oracle
router. As a concrete example of the oracle router, consider model performance and inference cost
as the metrics of interest. First, based on their needs, a practitioner selects a convex combination
of performance and cost as the model metric. Next, the oracle router takes in a query and produces
the LLM that minimizes this specific model metric. To do this selection, the oracle router needs to
perfectly predict the metrics of interest (cost, performance) for each model given any query. Inspired
by this, CARROT utilizes a simple two-stage approach. We first attain an estimator for each of the
metrics (e.g. cost and performance) for each model given a query, then we plug in these estimators to
the formed risk function and select a model that minimizes the appropriate convex combination of
the estimated metrics. Although CARROT utilizes a simple approach, it has three distinct advantages.

gpqa

MuSR

MMLU-Pro

MATH

openhermes

ragbench

0.2

0.4

0.6

0.8

1.0

10% of gpt-4o cost

20% of gpt-4o cost

30% of gpt-4o cost

Figure 1: Percent of GPT-4o performance
achieved by CARROT across datasets at var-
ious discounted costs, where the blue dotted
line indicates similar (100%) performance to
GPT-4o.

Computational efficiency: A practitioner may be
interested in several possible convex combinations to
understand the trade-offs across various metrics. In
that case, learning a router per combination may not
be practical. Our approach allows re-use of a plug-in
estimate of the metrics for each combination, easing
computational concerns. Furthermore, the metrics
of interest may vary from practitioner to practitioner.
CARROT allows the flexible addition of any met-
rics; one only needs to acquire estimators for them.
As a demonstration of CARROT’s efficiency, we uti-
lize it to estimate the Pareto frontier of performance
and cost trade-off on RouterBench1(Hu et al., 2024),
open-LLM-leaderboard-v2 2 (Fourrier et al., 2024),
and our new SPROUT dataset.

New dataset for routing: SPROUT covers 13
state-of-the-art language models (e.g. Llama-3-herd
(Grattafiori et al., 2024), GPT-4o (Achiam et al.,
2024), etc.) and approximately 45k prompts from
6 benchmarks covering RAG, science, reasoning, and
GPT-4 generated user queries. For all models, we
use zero-shot prompting and corresponding chat tem-
plates to represent practical use cases and collect input and output token counts to allow flexibility
when studying cost-performance trade-offs. We defer further details about SPROUT and its advan-
tages over other routing datasets to Section 4.1 and Appendix A.

As a sneak peek, in Figure 1, we present the ratio of CARROT’s performance to GPT-4o’s (Achiam
et al., 2024) on several key benchmarks across diverse use cases represented in SPROUT. At 30%
of the cost, CARROT matches or exceeds the performance of GPT-4o on each benchmark. Both
SPROUT and the corresponding CARROT router will be publicly released.

Statistical efficiency Collecting adequate data to train a router is quite expensive as we need to
generate and evaluate with every LLM for every query. Thus, statistical efficiency is an important
consideration for any routing procedure. To investigate statistical efficiency, we connect the routing
problem to multi-objective classification with a wide class of possible loss functions (this depends on
the convex combination of model metrics on hand). Here, identities of the possible models act as the
label space of the multi-class classification problem. Given this, one contribution of our work is to
extend previous minimax studies in nonparametric classification (Audibert and Tsybakov, 2007) on
two fronts: (1) with more than two classes, and (2) with general losses beyond 0/1-loss. Both of these

1https://huggingface.co/datasets/withmartian/routerbench
2https://huggingface.co/spaces/open-llm-leaderboard/open_llm_

leaderboard
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extensions require us to introduce a generalized definition of margin (cf. eq. equation 3.3), which
reduces to the usual margin definition as in Audibert and Tsybakov (2007) when the classification
task is binary and the loss is 0/1. Additionally, our work analyzes minimax optimality on the entire
collection of oracle classifiers in classification problems with all possible trade-offs between multiple
objectives, which, to the best of our knowledge, is a novel contribution.

For space purposes, we discuss how these contributions fit into the related literature in Appendix ??.

1.1 NOTATION AND PRELIMINARIES

To begin, let us introduce our notation. We have M pre-trained LLMs indexed as m ∈ [M ] =
{1, . . . ,M} and K metrics indexed as k ∈ [K] = {1, . . . ,K}. We denote a generic input or query
as X ∈ X , where X is the space of inputs. Thus, for any input X , the metrics of interest are stored
in a M ×K matrix. We denote this matrix as Y ∈ RM×K , whose (m, k)-th entry [Y ]m,k is the
metric value for obtaining a prediction from the m-th model evaluated with respect to k-th metric.
For all metrics, we assume that a lower value is preferred. With this convention, we shall also refer to
them as risks. For a probability distribution P in the sample space X ×RM×K we assume that the
training dataset D = {(Xi, Yi)}ni=1 is an iid sample from P .

For the probability distribution P defined on the space X × RM×K , we denote the marginal
distribution of X by PX . Let us denote supp(·) as the support of a probability distribution. Within
the space Rd, we denote Λd as the Lebesgue measure, ∥ · ∥2 and ∥ · ∥∞ as the ℓ2 and ℓ∞-norms, and
B(x, r, ℓ2) and B(x, r, ℓ∞) as closed balls of radius r and centered at x with respect to the ℓ2 and
ℓ∞-norms.

2 PLUG-IN APPROACH TO ROUTING

We will consider a convex combination of our K metrics with coefficients µ ∈ ∆K−1 ≜
{(µ1, . . . , µK) : µk ≥ 0,

∑
k µk = 1} and a generic point (X,Y ) ∼ P . The µ-th convex combina-

tion of the risks (or, µ-th risk) can be written as Y µ ∈ RM , with the risk incurred for obtaining a
prediction from the m-th model is

[Y µ]m =
∑K

k=1[Y ]m,kµk .

We want to learn a predictive router g : X → [M ], that takes X as an input and predicts the index of
the LLM to be used for inference. The average µ-th risk for using the router g is

RP (g, µ) = E
[∑M

m=1[Y µ]mI{g(X) = m}
]
. (2.1)

For a given µ let us refer to the minimizer g⋆µ as an oracle router. Remember our objective: we would
like to learn the oracle routers g⋆µ at every value of µ. While one may minimize an empirical risk
corresponding to RP (g, µ) to estimate the oracle router at a particular µ, this approach is not scalable,
any small change in µ would require refitting a new router. Given this, we develop a plug-in approach
which lets us estimate the oracle routers at every value of µ. The key intuition lies within an explicit
form of the g⋆µ that we provide in the next lemma.

Lemma 2.1. Let us define Φ(x) = E[Y | X = x] and ηµ,m(x) =
∑K

k=1 µk[Φ(x)]m,k. Then for
any µ ∈ ∆K−1 the oracle router that minimizes RP (g, µ) is

g⋆µ(X) = argminm ηµ,m(X) (2.2)

= argminm
{∑K

k=1 µk[Φ(X)]m,k

}
.

The key conclusion of 2.1 is the expression g⋆µ(X) = argminm{
∑K

k=1 µk[Φ(X)]m,k}. It suggests
a straightforward approach to estimate g⋆µ(X) at all values of µ. Namely, we only need to plug-in an
estimate of Φ(X) = E[Y | X] to the expression of g⋆µ(X). Compared to minimizing empirical risk
at different values of µ, this plug-in approach is more scalable if the practitioner plans on tuning µ.
We summarize our approach in algorithm 1.
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Algorithm 1 CARROT
Require: Dataset Dn

1: Randomly split the dataset into training and test splits: Dn = Dtr ∪ Dtest.
2: Learn an estimate Φ̂(X) of Φ(X) using the Dtr.
3: for µ ∈ ∆K−1 do
4: Define ĝµ(X) = argminmη̂µ,m(X) where η̂µ,m(X) =

∑K
k=1 µk[Φ̂(X)]m,k. Break any tie

within argmin randomly.
5: Calculate

R̂(µ, k) = 1
|Dtest|

∑
(X,R)∈Dtest

[R]m,kI{ĝµ(X) = m}

6: end for
7: Return: {ĝµ : µ ∈ ∆K−1} and {R̂(µ, k) : µ ∈ ∆K−1, k ∈ [K]}.

3 STATISTICAL EFFICIENCY OF CARROT

In this section we establish that, under certain conditions, the plug-in approach to routing is minimax
optimal. To show this, we follow two steps:

• First we establish an information theoretic lower bound on the sample complexity for learning the
oracle routers (cf. Theorem 3.6).

• Next, establish an upper bound for the minimax risk of plug-in routers (cf. Theorem 3.9). We
show that under sufficient conditions on the estimates of E[Y | X] the sample complexity in the
upper bound matches the lower bound. Together, they imply the statistical efficiency of the plug-in
approach.

We begin with a notational convention for g⋆µ(X). If the minimum is attained at multiple m’s, we
consider g⋆µ(X) as a subset of [M ]. On the contrary, if the minimum is uniquely attained, then g⋆µ(X)
refers to both the index mX where the minimum is attained and the singleton set {mX} ⊂ [M ]. The
distinction should be clear from the context.

We also generalize slightly to the setting where the last K2 metrics are known functions of X , i.e.
for m ∈ [M ], k ∈ {K − K2 + 1, . . .K} there exist known functions fm,k : X → R such that
[Y ]m,k = fm,k(X). Since E[[Y ]m,k | X] = fm,k(X) are known for k ≥ K −K2 + 1 they don’t
need to be estimated.

3.1 TECHNICAL ASSUMPTIONS

The technical assumptions of our minimax study are closely related to those in investigations of
non-parametric binary classification problems with 0/1 loss functions, e.g. Cai and Wei (2019);
Kpotufe and Martinet (2018); Maity et al. (2022); Audibert and Tsybakov (2007). In fact, our setting
generalizes the classification settings considered in these papers on multiple fronts: (i) we allow
for general loss functions, (ii) we allow for more than two classes, and (iii) we allow for multiple
objectives.

To clarify this, we discuss how binary classification is a special case of our routing problem.
Example 3.1 (Binary classification with 0/1-loss). Consider a binary classification setting with
0/1-loss: we have the pairs (X,Z) ∈ X × {0, 1} and we want to learn a classifier h : X → {0, 1}
to predict Z using X . This is a special case of our setting with M = 2 and K = 1, where for
m ∈ {0, 1} the [Y ]m,1 = I{Z ̸= m}. Then the risk for the classifier h, which can also be thought of
as a router, is

RP (h) = E
[∑

m∈{0,1}[Y ]m,1I{h(X) = m}
]

= E
[
I{h(X) ̸= Z}

]
,

the standard misclassification risk for binary classification.

We assume that supp(PX) is a compact set in Rd. This is a standard assumption in minimax
investigations for non-parametric classification problems (Audibert and Tsybakov, 2007; Cai and Wei,
2019; Kpotufe and Martinet, 2018; Maity et al., 2022). Next, we place Hölder smoothness conditions
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on the functions Φ⋆
m. This controls the difficulty of their estimation. For a tuple s = (s1, . . . , sd) ∈

(N ∪ {0})d of d non-negative integers define |s| =
∑d

j=1 sj and for a function ϕ : Rd → R and
x = (x1, . . . , xd) ∈ Rd define the differential operator:

Ds(ϕ, x) =
∂|s|ϕ(x)

∂x
s1
1 ...∂x

sd
d

, (3.1)

assuming that such a derivative exists. Using this differential operator we now define the Hölder
smoothness condition:

Definition 3.2 (Hölder smoothness). For β,Kβ > 0 we say that ϕ : Rd → R is (β,Kβ)-Hölder
smooth on a set A ⊂ Rd if it is ⌊β⌋-times continuously differentiable on A and for any x, y ∈ A

|ϕ(y)− ϕ(⌊β⌋)x (y)| ≤ Kβ∥x− y∥β2 , (3.2)

where ϕ(⌊β⌋)x (y) =
∑

|s|≤⌊β⌋Ds(ϕ, x){
∏d

j=1(yj − xj)
sj} is the ⌊β⌋-order Taylor polynomial ap-

proximation of ϕ(y) around x.

With this definition, we assume the following:

Assumption 3.3. For m ∈ [M ] and k ∈ [K1] the [Φ(X)]m,k is (γk,Kγ,k)-Hölder smooth.

This smoothness parameter will appear in the sample complexity of our plug-in router. Since the
[Φ(X)]m,k are known for k ≥ K1 + 1 we do not require any smoothness assumptions on them.

Next, we introduce margin condition, which quantifies the difficulty in learning the oracle router. For
a given µ define the margin as the difference between the minimum and second minimum of the risk
values:

∆µ(x) =

{
min

m/∈gµ(x)
ηµ,m(x)−min

m
ηµ,m(x) if g⋆µ(x) ̸= [M ]

0 otherwise.
(3.3)

Our definition of a margin generalizes the usual definition of the margin considered for binary
classification with 0/1 loss in Audibert and Tsybakov (2007). Recall the binary classification
example in 3.1, in which case, [Φ(X)]m,1 = P (Z ̸= m | X). Since K = 1 we have ηµ,m(X) =
P (Z ̸= m | X), which further implies ηµ,0(X) + ηµ,1(X) = 1. Thus for binary classification with
0/1 loss, our definition of margin simplifies to

min
m/∈g⋆

µ(x)
ηµ,m(x)−min

m
ηµ,m(x) = |ηµ,1(X)− ηµ,0(X)| = 2|ηµ,0(X)− 1/2| ,

which is a constant times the margin |P (Y = 1 | X) − 1/2| = |ηµ,0(X) − 1/2| in Audibert and
Tsybakov (2007).

Clearly, the margin determines the difficulty in learning the oracle router. A query X with a
small margin gap is difficult to route, because to have the same prediction as the oracle, i.e.
argminmη̂µ,m(X) = argminmη

⋆
µ,m(X) we need to estimate η⋆µ,m(X) with high precision. In

the following assumption, we control the probability of drawing these “difficult to route” queries.

Assumption 3.4 (Margin condition). For α,Kα > 0 and any t > 0 the margin ∆µ equation 3.3
satisfies:

PX

{
0 < ∆µ(X) ≤ t

}
≤ Kαt

α . (3.4)

Following Audibert and Tsybakov (2007), we focus on the cases where α < d and for every k the
αγk < d. This helps to avoid trivial cases where routing decisions are constant over PX for some µ.
Next, we assume that PX has a density pX that satisfies a strong density condition described below.

Assumption 3.5 (Strong density condition). Fix constants c0, r0 > 0 and 0 ≤ µmin ≤ µmax <∞.
We say PX satisfies the strong density condition if its support is a compact (c0, r0)-regular set and it
has density pX which is bounded: µmin ≤ pX(x) ≤ µmax for all x within supp(PX). A set A ⊂ Rd

is (c0, r0)-regular if it is Lebesgue measurable and for any 0 < r ≤ r0, x ∈ A it satisfies

Λd(A ∩ B(x, r, ℓ2)) ≥ c0Λd(B(x, r, ℓ2)). (3.5)
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This is another standard assumption required for minimax rate studies in nonparametric classi-
fication problems (Audibert and Tsybakov, 2007; Cai and Wei, 2019). All together, we define
P(c0, r0, µmin, µmax, βm,k,Kβ,m,k, α,Kα), or simply P , as the class of probabilities P defined on
the space X ×Y for which PX is compactly supported and satisfies the strong density assumption 3.5
with parameters (c0, r0, µmin, µmax), and the Hölder smoothness assumption 3.3 and the (α,Kα)-
margin condition in Assumption 3.4 hold. We shall establish our minimax rate of convergence within
this probability class.

3.2 THE LOWER BOUND

Rather than the actual risk RP (µ, g), we establish a lower bound on the excess risk:

EP (µ, g) = RP (µ, g)−RP (µ, g
⋆
µ) , (3.6)

that compares the risk of a proposed router to the oracle one. We denote Γ = {g : X → [M ]} as the
class of all routers. For an n ∈ N we refer to the map An : Zn → Γ, which takes the dataset Dn

as an input and produces a router An(Dn) : X → [M ], as an algorithm. Finally, call the class of
all algorithms that operate on Dn as An. The following Theorem describes a lower bound on the
minimax risk for any such algorithm An.

Theorem 3.6. For an n ≥ 1 and An ∈ An define EP (µ,An) = EDn

[
EP

(
µ,An(Dn)

)]
as the

excess risk of an algorithm An. There exists a constant c > 0 that is independent of both n and µ
such that for any n ≥ 1 and µ ∈ ∆K−1 we have the lower bound

min
An∈An

max
P∈P

EP (µ,An) ≥ c
{∑K1

k=1 µkn
− γk

2γk+d
}1+α

. (3.7)

This result is a generalization of that in Audibert and Tsybakov (2007), which considers binary
classification.

Remark 3.7. Consider the binary classification in Example 3.1. Since K = 1, the lower bound
simplifies to O(n−γ1(1+α)/2γ1+d), which matches with the rate in Audibert and Tsybakov (2007,
Theorem 3.5). Beyond 0/1 loss, our lower bound also establishes that the rate remains identical for
other classification loss functions as well.

3.3 THE UPPER BOUND

Next, we show that if algorithm the An corresponds to CARROT, the performance of ĝµ matches the
lower bound in Theorem 3.6 (cf. equation 3.7). En-route to attaining ĝµ, we need an estimate Φ̂(X)
of Φ(X) = EP [Y | X]. Our strategy will consist of two steps:

• First, we establish an upper bound on the rate of convergence for excess risk equation 3.6 for the
plug-in router in terms of the rate of convergence for Φ̂(X).

• Then we discuss the desired rate of convergence in Φ̂(X) so that the upper bound has the identical
rate of convergence to the lower bound equation 3.7. Later in Appendix C.1 we provide an estimate
Φ̂(X) that has the required convergence rate.

These two steps, together with the lower bound in equation 3.7 establish that our plug-in router
achieves the best possible rate of convergence in excess risk.

We begin with an assumption that specifies a rate of convergence for [Φ̂(X)]m,k.

Assumption 3.8. For some constants ρ1, ρ2 > 0 and any n ≥ 1 and t > 0 and almost all X with
respect to the distribution PX we have the following concentration bound:

max
P∈P

P
{
max
m,k

a−1
k,n

∣∣[Φ̂(X)]m,k − [Φ(X)]m,k

∣∣ ≥ t
}
≤ ρ1exp

(
− ρ2t

2
)
, (3.8)

where for each k the {ak,n;n ≥ 1} ⊂ (0,∞) is a sequence that decreases to zero.

Using this high-level assumption, in the next theorem, we establish an upper bound on the minimax
excess risk for CARROT that depends on both ak,n and µ.

6
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Theorem 3.9 (Upper bound). Assume 3.8. If all the P ∈ P satisfy the margin condition 3.4 with the
parameters (α,Kα) then there exists a K > 0 such that for any n ≥ 1 and µ ∈ ∆K−1 the excess
risk for the router ĝµ in Algorithm 1 is upper bounded as

max
P∈P

EDn

[
EP (ĝλ, λ)

]
≤ K

{∑K1

k=1 µkak,n
}1+α

. (3.9)

Remark 3.10 (Rate efficient routers). When ak,n = n−γk/(2γk+d) the upper bound in Theorem 3.9
has the O({

∑K1

k=1 µkn
−γk/(2γk+d)}1+α)-rate, which is identical to the rate in the lower bound (cf.

Theorem 3.6), suggesting that the minimax optimal rate of convergence for the routing problem is

min
An∈An

max
P∈P

EP (An, λ) ≍ O
({∑K1

k=1 µkn
− γk

2γk+d
}1+α)

. (3.10)

Following this, we conclude: When ak,n = n−γk/(2γk+d) the plug-in approach in Algorithm 1, in
addition to being computationally efficient, is also minimax rate optimal.

An example of an estimator Φ̂ that meets the needed conditions for ak,n = n−γk/(2γk+d) to hold is
described in Appendix C.1.

4 ROUTING IN BENCHMARK CASE-STUDIES

We use CARROT (Algorithm 1) to perform routing on several benchmark datasets.

4.1 DATASETS

RouterBench: RouterBench (Hu et al., 2024) is a benchmark dataset for routing tasks consisting of
approximately 30k prompts and responses from eleven (M = 11) different LLMs. The data includes
prompts from 8 benchmarks covering commonsense reasoning, knowledge-based understanding,
conversation, math, and coding.

Open LLM leaderboard: The Open LLM leaderboard v23 (Fourrier et al., 2024) is an open-source
benchmarking platform that comprises responses and evaluations of a collection of LLMs on six
benchmarks comprising a diverse collection of tasks.

SPROUT: We introduce (and evaluate CARROT on) SPROUT, a large and diverse dataset designed
for training and evaluating routers. SPROUT integrates 13 state-of-the-art language models and
prompts from 6 benchmarks, including GPQA (Rein et al., 2023), MuSR (Sprague et al., 2024),
MMLU-Pro (Wang et al., 2024), MATH (Hendrycks et al., 2021b), OpenHermes (Teknium, 2023),
and RAGBench (Friel et al., 2025). Compared to existing routing benchmarks such as RouterBench,
SPROUT offers several key advantages:

1. SPROUT encompasses a highly diverse set of questions, including instruction queries.
2. Unlike previous benchmarks, it does not rely on few-shot prompting and utilizes chat templates

appropriate for each model, making it more representative of real-world use cases.
3. It leverages LLaMa-3.1-70b-Instruct (Grattafiori et al., 2024) to evaluate LLM responses against

the ground truth, similarly to Ni et al. (2024). This is crucial for evaluating on open-ended
instruction queries as well as mitigating errors associated with traditional automatic evaluation
methods like exact match.

4. We provide input and output token counts for each LLM-prompt pair, enabling flexibility when
conducting cost-aware analysis.

We will open-source SPROUT and a platform that allows practitioners to extend SPROUT by adding
new queries and seamlessly evaluating state-of-the-art models on them. For further details, please
refer to Appendix A.

3https://huggingface.co/spaces/open-llm-leaderboard/open_llm_
leaderboard
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4.2 ESTIMATING THE ORACLE ROUTER

CARROT requires an estimate for the function Φ⋆
m(X) = EP [Ym | X]. In our benchmark tasks, Ym

is 2-dimensional, consisting of model performance measured as accuracy and model cost measured in
dollars. In the RouterBench and SPROUT datasets the cost is treated as unknown, while in the Open
LLM leaderboard v2, most evaluations are likelihood-based, thus cost is essentially the length of the
input, i.e., a known function. In all cases, the accuracy Yacc,m is binary, and thus we can view its
estimation as a binary classification problem, where our objective is to predict the probability that m-
th model will answer the question X correctly, i.e. Pm(X) = P (Yacc,m = 1 | X)) Yacc,m. Using this
intuition, we train several multi-label classification models P̂ : X → [0, 1]M on a training data split
consisting of 80% of the full dataset, where the m-th coordinate of P̂ (X) is the predicted probability
that m-th model accurately answers the question X . To train P̂ we consider two procedures:

1. CARROT (KNN): We embed the model inputs using the text-embedding-3-small model from
OpenAI (OpenAI, 2023). On these text embeddings, we train a multi-label K-nearest-neighbors
(KNN) classifier.

2. CARROT (Roberta): We fine-tune the pre-trained weights of the roberta-base4 architecture. In
order to enhance efficiency, across m we allow P̂ to share the same network parameters, except
for the final classification layer.

As mentioned above, in the RouterBench and SPROUT task the cost remains to be estimated. We train
multi-label regression models Ĉ : X → RM , where Ĉm(X) = E[Ycost,m|X] is the estimated cost
of calling model m for query X . In the case of SPROUT we actually estimate the input and output
token count, and convert this to a cost using collected pricing numbers (see Table 2). Depending on
the technique used for performance estimation, we use either the roberta-base or text-embedder plus
KNN strategy outlined above for fitting Ĉ (note that the models may be altered for a multi-output
regression task, but otherwise remain identical). In the case of Open LLM leaderboard v2, we
compute the cost of input X by calculating its length measured as the number of input tokens and
retrieving the price per token from TogetherAI (see Table 3 for prices per 1M of input tokens).

Having estimated the Φ̂m’s, we use them in Algorithm 1 to estimate the oracle routers and predict their
performances vs costs on the remaining 20% test split of the dataset. These cost-accuracy tradeoff
curves are provided in Figure 2 (left for RouterBench), Figure 2 (right Open LLM leaderboard v2),
and Figure 3 (left for SPROUT) along with the accuracies and costs of the individual LLMs within
the dataset.

4.3 BASELINE METHODS

Ong et al. (2024) (RouteLLM) proposes a collection of methods for learning binary routers from
preference data (data consisting of queries q and labels li,j indicating a winner between model i and
j). While the usage of preference data is slightly different from ours, we implement their methods on
our data by creating pseudo-preference data between two models. In particular, we select a costly
and high-performing model and a cheaper model and say the costly model wins if and only if it is
correct while the cheaper model is incorrect. On this pseudo preference data, we fit two methods
from Ong et al. (2024) for learning win probabilities between expensive and cheap models: the
first is a matrix factorization method, called RouteLLM (MF), while the second uses fine-tuned
roberta-base, called RouteLLM (Roberta). A follow-up method to these is Routing on Random
Forests (RoRF) from Not-Diamond (Jain et al., 2023), referred to as Not-Diamond RoRF. This
method uses a text-embedder and random forest model to predict the win probability; we provide
a comparison to this method with the text-embedding-3-small embedder from OpenAI. As in Jain
et al. (2023), we use a slightly different procedure to construct the preference data; a label can take
one of four possible values (one for each combination of correct/incorrect from each model), and the
costly model is favored if either both models are wrong or the cheaper model is incorrect while the
expensive model is correct. For RouterBench, we consider GPT-4 and mixtral 8x7b to be the costly
and cheaper models while for the Open LLM Leaderboard, we use Qwen2.5 72b and Qwen2.5 7b.
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Figure 2: Left: Routerbench Right: Open LLM leaderboard v2

4.4 RESULTS

Performance against baselines: In RouterBench we were unable to achieve significantly better
accuracy than GPT-4; however, we were able to greatly reduce the prediction cost. A direct compari-
son between routers and GPT-4 with respect to average accuracy versus cost is provided in Figure
2 (left), where we see that routers can achieve an accuracy similar to GPT-4 at half the cost, while
achieving 95% of the accuracy at only 20% of the cost. On the other hand, we showed that CARROT
can outperform the best model (Qwen2-72B) by a large margin in Open LLM leaderboard v2 (see the
right side of Figure 2). In both datasets, we see that our routers significantly outperform the binary
routers of Ong et al. (2024) and Jain et al. (2023). This is due to the fact that we route to all possible
models, which increases the accuracy coverage and decreases the cost of the cheapest accurate model
for a given query.

To verify our theory, we also compare to the ERM router, which directly minimizes ERM risk of
equation 2.1 for a particular combination of accuracy and cost metrics. CARROT matches the ERM
router performance, as demonstrated in Appendix Figures 5 and 6, verifying Lemma 2.1.

Performance on SPROUT: The performance of CARROT on SPROUT is illustrated in Figure 3
(left); a trend similar to our findings for RouterBench and the Open-LLM Leaderboard-v2 emerges.
Moreover, Figure 1 shows that CARROT can achieve similar or better performance of GPT-4o with a
fraction of the cost.
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Figure 3: Left: Test Performance on SPROUT Right: Model selection proportions on SPROUT

4https://huggingface.co/FacebookAI/roberta-base
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How CARROT chooses models: Figure 3 (right) presents the distribution of selected models in
SPROUT across some (average cost, average accuracy) pairs in the test split. As we move from left
to right in Figure 3 (right), the selection strategy gradually shifts from prioritizing cost efficiency with
smaller models such as llama-3-2-1b-instruct and llama-3-2-3b-instruct to favoring more capable and
expensive models like llama-3-3-70b-instruct, gpt-4o, and gpt-4o-mini.

5 DISCUSSION

We introduced CARROT, a plug-in based router that is both computationally and statistically efficient.
The computational efficiency stems from the requirement of merely calculating the plug-in estimators
(see Algorithm 1) to perform routing Since collecting adequate data for router training might be
challenging, we investigate CARROT’s statistical efficiency in routing through a minimax rate study.
To establish the statistical efficiency of CARROT, we have provided an information-theoretic lower
bound on the excess risk of any router in Theorem 3.6 and corresponding upper bound for CARROT
in Theorem 3.9. To ensure a broad scope for CARROT to a diverse set of queries and the latest
state-of-the-art LLMs, we also introduced the SPROUT dataset.

Our routing and data approach is designed to be forward-looking. CARROT can incorporate many
metrics besides performance and cost; an important next step is to explore which other metrics can
improve LLM-based decision-making in practice. A related future goal is to benchmark our SPROUT-
trained router on enterprise use cases like the Domain Intelligence Benchmark Suite (DIBS)5 to
locate areas of improvement needed in our data.
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A SPROUT CONSTRUCTION DETAILS AND PLOTS

In this section, we discuss data details for SPROUT. SPROUT will be released on HuggingFace hub
as a HuggingFace datasets object. For convenience, the data is pre-divided into train, validation, and
test splits. Consider the training set as an example; the features of this split are

1

2 features = ['key', 'dataset', 'dataset level', 'dataset idx', 'prompt',
3 'golden answer', 'aws-claude-3-5-sonnet-v1',
4 'titan-text-premier-v1', 'openai-gpt-4o',
5 'openai-gpt-4o-mini', 'granite-3-2b-instruct',
6 'granite-3-8b', 'llama-3-1-70b-instruct',
7 'llama-3-1-8b-instruct', 'llama-3-2-1b-instruct',
8 'llama-3-2-3b-instruct', 'llama-3-3-70b-instruct',
9 'llama-3-405b-instruct', 'mixtral-8x7b-instruct-v01']

Each key corresponds to another list. "prompt" contains the model queries, the "dataset"
list indicates which sub-task a given query falls in (cf. Table 1 for info), and golden answer
contains a desirable response for each query. Finally, the model keys each correspond to a list
of dictionaries that contains further information on the responses of that model. The important
keys in each dictionary of the list are ["num input tokens", "num output tokens",
"response", "score"]. They contain the number of input tokens for a query, the number of
output tokens a model gives in response to a query, the actual response of the model, and finally the
score that the judge provides for the response (using the corresponding golden answer entry).
The conversion of token count to cost is given in Table 2 and additional details on the judging process
are described in Section A.2.

A.1 SPROUT INGREDIENTS

Table 1 gives the benchmark ingredients for SPROUT. Namely, we use the MATH Lvl 1-5 (Hendrycks
et al., 2021b), MMLU-PRO (Wang et al., 2024), GPQA (Rein et al., 2023), MUSR (Sprague
et al., 2023), RAGBench (Friel et al., 2025), and openhermes (Teknium, 2023) datasets. These six
benchmarks are varied and designed to simulate real-world scenarios where LLMs encounter a wide
range of prompts. MATH focuses solely on mathematical word problems, whereas MMLU-PRO and
GPQA include both mathematical and advanced science questions. MuSR serves as a benchmark for
assessing multistep soft reasoning tasks framed within natural language narratives. RAGBench is
a retrieval augmented generation (RAG) benchmark dataset collected from Question-Answer (QA)
datasets (CovidQA (Möller et al., 2020), PubmedQA (Jin et al., 2019), HotpotQA (Yang et al., 2018),
MS Marco (Nguyen et al., 2017), CUAD (Hendrycks et al., 2021a), EManual (Nandy et al., 2021),
TechQA (Castelli et al., 2020), FinQA (Chen et al., 2021), TAT-QA (Zhu et al., 2021), ExpertQA
(Malaviya et al., 2024), HAGRID (Kamalloo et al., 2023)), as well as one that was specifically adapted
for RAG (DelucionQA (Sadat et al., 2023)). This measures the ability of a LLM to incorporate
retrieved documents along with user queries to generate accurate answers for problems that require
in-depth domain knowledge. As such, RAGbench is grouped by the needed domain knowledge:
bio-medical research (PubmedQA, CovidQA), general knowledge (HotpotQA, MS Marco, HAGRID,
ExperQA), legal contracts (CuAD), customer support (DelucionQA, EManual, TechQA), and finance
(FinBench, TAT-QA). Finally, openhermes is a collection of GPT4 generated questions designed to
emulate real user queries to an LLM.

A.2 SPROUT MODELS AND RESPONSE COLLECTION

Table 2 provides the models and their associated costs that a router trained on SPROUT can select
between. The input and output token counts are collected by simply gathering the count of the
tokenized queries and outputs of a model from its tokenizer. In order to emulate real-world use cases,
responses from each LLM are collected using a corresponding chat template with a generic prompt
and zero shot prompting.

Given the use of chat templates and zero-shot prompting, evaluation is challenging because model
responses will not necessarily follow a specific format. To alleviate this, we adopt the evaluation

13
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Table 1: Dataset Splits for SPROUT.

Benchmark Train Validation Test
ragbench/expertqa 98 17 16
MATH (test) 1725 363 384
ragbench (emanual) 82 27 23
ragbench (cuad) 151 35 29
MuSR 178 35 35
MATH 5217 1061 1134
MuSR (team allocation) 157 52 41
ragbench (hagrid) 92 23 17
gpqa (extended) 368 89 84
MuSR (object placements) 169 47 34
ragbench (pubmedqa) 92 14 26
ragbench (hotpotqa) 89 22 21
ragbench (msmarco) 85 24 23
ragbench (techqa) 85 24 23
MMLU-Pro 8204 1784 1798
openhermes 13703 2917 2835
ragbench (tatqa) 90 17 25
ragbench (finqa) 97 15 20
ragbench (covidqa) 162 38 41
ragbench (delucionqa) 124 32 28
TOTAL 30968 6636 6637

Table 2: Models in SPROUT dataset and their API prices according to token counts.

Model Input Token Cost Output Token Cost
(in $ per 1M tokens) (in $ per 1M tokens)

claude-3-5-sonnet-v1 3 15
titan-text-premier-v1 0.5 1.5

openai-gpt-4o 2.5 10
openai-gpt-4o-mini 0.15 0.6
granite-3-2b-instruct 0.1 0.1
granite-3-8b-instruct 0.2 0.2

llama-3-1-70b-instruct 0.9 0.9
llama-3-1-8b-instruct 0.2 0.2
llama-3-2-1b-instruct 0.06 0.06
llama-3-2-3b-instruct 0.06 0.06
llama-3-3-70b-instruct 0.9 0.9
mixtral-8x7b-instruct 0.6 0.6
llama-3-405b-instruct 3.5 3.5

protocol from MixEval (Ni et al., 2024) and use LLama-3.1-70B as a grader to score model queries
against a given gold standard answer. The prompt format that we use is provided in D. Note that this
prompt format needs to be converted to openai-api compatible messages while prompting the LLMs,
which can be inferred from the special delimiters contained within the prompt format.

B ADDITIONAL PLOTS AND EXPERIMENTAL DETAILS

B.1 ROUTEBENCH

Figure 4 lays out the models and benchmarks present in the Routerbench dataset. To implement the
transformer-based plug-in estimate of cost and accuracy, we utilize the roberta-base architecture
with a learning rate of 3e-5 and a weight decay of 0.01. A training, validation, test split of 0.72, 0.8,

14
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0.2 is used. Learning proceeds for 5 epochs, and the model with the best validation performance is
saved at the end. To fit the KNN-based router, the OpenAI text-embedding-small-3 model is used,
while the KNN regressor utilizes the 40-nearest neighbors measured by the ’cosine’ similarity metric.

The same roberta-base parameters are used to fit the Roberta technique from RouteLLM (Ong
et al., 2024). The matrix factorization method assumes that

P(GPT-4 Win|q) = σ(wT
2 (vGPT-4 ⊙ (WT

1 vq + b)− vmixtral ⊙ (WT
1 vq + b)))

where vGPT-4,vmixtral are learnable embeddings of the model of interest. We use the
text-embeddder-small-3 from OpenAI to embed the queries, and a projection dimension
of d = 128. The model is fit using Adam, with a learning rate of 3e − 4 and a weight decay of
1e − 5. To fit RoRF from not-diamond, we again use text-embeddder-small-3 while the
default parameters from Not-Diamond are used (max-depth = 20, 100 estimators).

Figure 4: Routerbench models and benchmarks (Hu et al. (2024) Table 1).
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Figure 5: Router Bench Supplementary.

B.2 OPEN LLM LEADERBOARD V2

LLMs and costs: Table 3 gives all models used for the Open LLM Leaderboard experiment and
their respective costs.

Table 3: Models used and their respective costs for the Open LLM Leaderboard experiment.

Model Name Price (USD per 1M tokens)
NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO 0.6
01-ai/Yi-34B-Chat 0.8

15
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Qwen/QwQ-32B-Preview 1.2
Qwen/Qwen2-72B-Instruct 0.9
Qwen/Qwen2.5-7B-Instruct 0.3
Qwen/Qwen2.5-72B-Instruct 1.2
alpindale/WizardLM-2-8x22B 1.2
deepseek-ai/deepseek-llm-67b-chat 0.9
google/gemma-2-27b-it 0.8
google/gemma-2-9b-it 0.3
google/gemma-2b-it 0.1
meta-llama/Llama-2-13b-chat-hf 0.3
meta-llama/Meta-Llama-3.1-70B-Instruct 0.9
mistralai/Mistral-7B-Instruct-v0.1 0.2
mistralai/Mistral-7B-Instruct-v0.2 0.2
mistralai/Mistral-7B-Instruct-v0.3 0.2
mistralai/Mixtral-8x7B-Instruct-v0.1 0.6
nvidia/Llama-3.1-Nemotron-70B-Instruct-HF 0.9

Model fitting: The model fitting details for baseline methods are all the same as in the RouterBench
experiment (following the original implementations). To fit our methods, we employ some hyperpa-
rameter tuning for both KNN and roberta-base. For KNN, we employ 5-fold cross-validation
using ROC-AUC and the possible number of neighbors as 2, 4, 8, 16, 32, 64, 128, 256, or 512. For
roberta-base hyperparameter tuning, we train for 3k steps, using 20% of the training data for
validation, a batch size of 8, and search for the best combination of learning rate, weight decay, and
gradient accumulation steps in {5e-5, 1e-5}, {1e-2, 1e-4}, and {1, 2, 4, 8}. The final model is trained
for 10k steps.
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Figure 6: Open LLM leaderboard v2.

C SUPPLEMENTARY DEFINITIONS, RESULTS AND PROOFS

C.1 MINIMAX APPROACHES TO LEARNING THE RISK FUNCTIONS

In remark 3.10 we discussed the required condition for Φ̂ so that the plug-in router has minimax rate
optimal excess risk. In this section we show that estimating Φ̂ using local polynomial regression
(LPR) meets the requirement. To describe the LPR estimates consider a kernel ψ : Rd → [0,∞)
that satisfies the regularity conditions described in the Definition C.2 in Appendix C with parameter
maxk γk and define Θ(p) as the class of all p-degree polynomials from Rd to R. For bandwidths

16



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

hk > 0; k ∈ [K1] we define the LPR estimate as

[Φ̂(x0)]m,k = θ̂(m,k)
x0

(0);

θ̂(m,k)
x ∈ argmin

θ∈Θ(p)

∑
i ψ(

Xi−x0

h )
{
[Yi]m,k − θ(Xi − x0)

}2
. (C.1)

In Theorem 3.2 of Audibert and Tsybakov (2007), a similar rate of convergence for LPR estimates
is established. In their case, the losses were binary. For our instance, we assume that the Yi are
sub-Gaussian, but the conclusions are identical. We restate their result below.

Lemma C.1. Assume that Yi are sub-Gaussian random variables, i.e. there exist constants c1 and c2
such that

P
(
∥Yi∥∞ > t | X

)
≤ c1e

−c2t
2

.

If ψ is regular (cf. Definition C.2) with parameter maxk γk and p ≥ ⌊maxk γk⌋ then for hk =
n−1/(2γk+d) the Assumption 3.8 is satisfied with ak,n = n−γk/(2γk+d), i.e. for some constants ρ1, ρ2 >
0 and any n ≥ 1 and t > 0 and almost all X with respect to PX we have the following concentration
bound for Φ̂:

max
P∈P

P
{
max
m,k

a−1
k,n

∣∣[Φ̂(X)]m,k − [Φ(X)]m,k

∣∣ ≥ t
}

≤ ρ1exp
(
− ρ2t

2
)
. (C.2)

This result is related to our Remark 3.10 about the rate-efficient estimation of routers. Estimating
Φ(X) with an LPR and a suitable bandwidth and polynomial degree leads to our desired rate of
convergence ak,n = n−γk/(2γk+d) in Assumption 3.8.

C.2 EXAMPLES, ADDITIONAL ASSUMPTIONS AND LEMMAS

Next, we describe the regularity conditions needed for local polynomial regression in eq. equation C.1
and equation C.1. These conditions are taken directly from Audibert and Tsybakov (2007, Section 3).

Definition C.2 (Kernel regularity). For some β > 0 we say that a kernel K : Rd → [0,∞) satisfies
the regularity condition with parameter β, or simply β-regular if the following are true:

for some c > 0,K(x) ≥ c, for ∥x∥2 ≤ c ,∫
K(x)dx = 1∫
(1 + ∥x∥4β2 )K2(x)dx <∞,

sup
x
(1 + ∥x∥2β2 )K(x) <∞ .

An example of a kernel that satisfies these conditions is the Gaussian kernel: K(x) =
∏d

j=1 ϕ(xj),
where ϕ is the density of a standard normal distribution.

Next, we establish sufficient conditions for a class of distributions {pθ, θ ∈ R} to satisfy the condition
that KL(pθ, pθ′) ≤ K(θ − θ′)2 for some K > 0 and any θ, θ′ ∈ R.

Lemma C.3. Assume that a parametric family of distributions {pθ, θ ∈ R} satisfies the following
conditions:

1. The distributions have a density pθ with respect to a base measure µ such that pθ is twice
continuously differentiable with respect to θ.

2.
∫
∂θpθ(x)dµ(x) = ∂θ

∫
pθ(x)dµ(x) = 0

3. For some K > 0 and all θ ∈ R the −∂2θ
∫
log pθ(x)pθ(x)dµ(x) ≤ K.

Then KL(pθ, pθ′) ≤ K(θ−θ′)2

2 .

Some prominent examples of such family are location families of normal, binomial, Poisson distribu-
tions, etc.
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Proof of the Lemma C.3. Notice that

KL(µθ, µθ′)

=
∫
pθ(x) log

{ pθ(x)
pθ′ (x)

}
dµ(x)

=
∫
pθ(x)

{
log pθ(x)− log pθ′(x)

}
dµ(x)

=
∫
pθ(x)

{
log pθ(x)− log pθ(x)− (θ′ − θ)∂θ log pθ(x)− (θ′−θ)2

2 ∂2θ log pθ̃(x)
}
dµ(x)

Here,
∫
pθ(x)∂θ log pθ(x)dµ(x) =

∫
∂θpθ(x)dµ(x)dx = 0 and −

∫
pθ(x)∂

2
θ log pθ̃(x)dµ(x) ≤ K.

Thus, we have the upper bound KL(µθ, µθ′) ≤ K
2 (θ − θ′)2.

C.3 PROOF OF LEMMA 2.1

Proof of Lemma 2.1. The µ-th risk

RP (g, µ) = E
[
E
[
Y µ]m | X

]
I{g(X) = m}

]
= E

[{∑K
k=1 µk[Φ(X)]m,k

}
I{g(X) = m}

]
is minimized at g(X) = argminm

{∑K
k=1 µk[Φ(X)]m,k

}
.

C.4 THE UPPER BOUND

Lemma C.4. Suppose that we have a function f : X → RM for which we define the coordinate
minimizer g : X → [M ] as g(x) = argminmfm(x) and the margin function

∆(x) =

{
minm̸=g(x) fm(x)− fg(x)(x) if g(x) ̸= [M ]

0 otherwise .

Assume that the margin condition is satisfied, i.e. there exist α,Kα such that

PX

{
0 < ∆(X) ≤ t

}
≤ Kαt

α . (C.3)

Additionally, assume that there exists an estimator f̂ of the function f such that it satisfies a concen-
tration bound: for some ρ1, ρ2 > 0 and any n ≥ 1 and t > 0 and almost all x with respect to PX we
have the following concentration bound for Φ̂:

PDn

{
∥f̂(x)− f(x)∥∞ ≥ t

}
≤ ρ1exp

(
− ρ2a

−2
n t2

)
, (C.4)

where {an;n ≥ 1} ⊂ R is a sequence that decreases to zero. Then for ĝ(x) = argminmf̂m(x)
there exists a K > 0 such that for any n ≥ 1 we have the upper bound

EDn

[
EP

[
fĝ(X)(X)− fg(X)(X)

]]
≤ Ka1+α

n . (C.5)

Proof. For an x ∈ X define δm(x) = fm(x) − fg(x)(x). Since g(x) = argminmfm(x) we have
δm(x) ≥ 0 for all m, minm δm(x) = 0. Furthermore, define h(x) = argmin{m ̸= g(x) : fm(x)},
i.e. the coordinate of f(x) where the second minimum is achieved. Clearly, δh(x)(x) = ∆(x). With
these definitions, lets break down the excess risk as:

EDn

[
EP

[
fĝ(X)(X)− fg(X)(X)

]]
= EDn

[
EP

[∑M
m=1{fm(X)− fg(X)(X)}I{ĝ(X) = m}

]]
= EDn

[
EP

[∑M
m=1{fm(X)− fg(X)(X)}I{ĝ(X) = m}I{∆(X) ≤ τ}

]]
+
∑

i≥1 EDn

[
EP

[∑M
m=1{fm(X)− fg(X)(X)}I{ĝ(X) = m}I{τ2i−1 < ∆(X) ≤ τ2i}

]]
(C.6)

where τ = 2ρ
−1/2
2 an. We deal with the summands one by one. First, if ∆(X) = 0 then all the

coordinates of f(X) are identical, which further implies that fm(X) − fg(X)(X) = 0 for any m.
Thus,

EDn

[
EP

[∑M
m=1{fm(X)− fg(X)(X)}I{ĝ(X) = m}I{∆(X) ≤ τ}

]]
= EDn

[
EP

[∑M
m=1{fm(X)− fg(X)(X)}I{ĝ(X) = m}I{0 < ∆(X) ≤ τ}

]]
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If m = g(X) then the summand is zero. For the other cases, ĝ(X) = m if f̂(X) has the minimum
value at the m-th coordinate. This further implies f̂m(X) ≤ f̂g(X)(X). The only way this could
happen if |f̂m(X)− fm(X)| ≥ δm(X)/2 or |f̂g(X)(X)− fg(X)(X)| ≥ δm(X)/2. Otherwise, if both
are |f̂m(X)− fm(X)| < δm(X)/2 and |f̂g(X)(X)− fg(X)(X)| < δm(X)/2 this necessarily implies

f̂g(X)(X) < fg(X)(X) + δm(X)
2

= fm(X)− δm(X) + δm(X)
2

= fm(X)− δm(X)
2 < f̂m(X) ,

which means for f̂(X) the minimum is not achieved at the m-th coordinate. Now, |f̂m(X) −
fm(X)| ≥ δm(X)/2 or |f̂g(X)(X) − fg(X)(X)| ≥ δm(X)/2 implies ∥f̂(X) − f(X)∥∞ ≥ δm(X)/2.
With these observations we split the expectation as

EDn

[
EP

[
{fm(X)− fg(X)(X)}I{ĝ(X) = m}I{0 < ∆(X) ≤ τ}

]]
= EDn

[
EP

[
{fm(X)− fg(X)(X)}I{ĝ(X) = m = g(X)}I{0 < ∆(X) ≤ τ}

]]
+EDn

[
EP

[
{fm(X)− fg(X)(X)}I{ĝ(X) = m ̸= g(X)}I{0 < ∆(X) ≤ τ}

]]
The first part is zero, whereas the second part further simplifies as:
EDn

[
EP

[
{fm(X)− fg(X)(X)}I{ĝ(X) = m ̸= g(X)}I{0 < ∆(X) ≤ τ}

]]
≤ EDn

[
EP

[
{fm(X)− fg(X)(X)}I

{
∥f̂(X)− f(X)∥∞ ≥ δm(X)

2

}
I{0 < ∆(X) ≤ τ}

]]
= EP

[
{fm(X)− fg(X)(X)}EDn

[
I
{
∥f̂(X)− f(X)∥∞ ≥ δm(X)

2

}]
I{0 < ∆(X) ≤ τ}

]
= EP

[
δm(X)PDn

{
∥f̂(X)− f(X)∥∞ ≥ δm(X)

2

}
I{0 < ∆(X) ≤ τ}

]
≤ EP

[
δm(X)ρ1e

− ρ2a−2
n δ2m(X)

4 I{0 < ∆(X) ≤ τ}
]
= EP

[
δm(X)ρ1e

− δ2m(X)

τ2 I{0 < ∆(X) ≤ τ}
]

Notice that δm(X) ≥ ∆(X) whenever ∆(X) > 0. Thus, we perform a maximization on

δm(X)e−
δ2m(X)

τ2 on the feasible set δm(X) ≥ ∆(X). Here, we use the result:

max
x≥y

xe−
x2

τ2 ≤

{
τ√
2e

if τ√
2
≥ y

ye−
y2

τ2 otherwise ,
(C.7)

where x = δm(X) and y = ∆(X). Since ∆(X) ≤ τ we have δm(X)e−
δ2m(X)

τ2 ≤ τ and thus

EP

[
δm(X)ρ1e

− δ2m(X)

τ2 I{0 < ∆(X) ≤ τ}
]
≤ ρ1τP{0 < ∆(X) ≤ τ} = ρ1τ

1+α .

This finally results in

EDn

[
EP

[∑M
m=1{fm(X)− fg(X)(X)}I{ĝ(X) = m}I{∆(X) ≤ τ}

]]
≤Mρ1τ

1+α ,

which takes care of the first summand in eq. equation C.6. Now, for an i ≥ 1, let us consider the
summand

EDn

[
EP

[∑M
m=1{fm(X)− fg(X)(X)}I{ĝ(X) = m}I{τ2i−1 < ∆(X) ≤ τ2i}

]]
Again, on the event m = g(X) the the summand is zero and on the other cases we have ∥f̂(X)−
f(X)∥∞ ≥ δm(X)/2. Thus, we write

EDn

[
EP

[∑M
m=1{fm(X)− fg(X)(X)}I{ĝ(X) = m}I{τ2i−1 < ∆(X) ≤ τ2i}

]]
≤

∑M
m=1 EDn

[
EP

[
δm(X)I

{
∥f̂(X)− f(X)∥∞ ≥ δm(X)

2

}
I{τ2i−1 < ∆(X) ≤ τ2i}

]]
≤

∑M
m=1 EP

[
δm(X)ρ1e

− δ2m(X)

τ2 I{τ2i−1 < ∆(X) ≤ τ2i}
]

Because ∆(X) ≥ τ2i−1 > τ/
√
2 we again use the inequality in eq. equation C.7 to obtain∑M

m=1 EP

[
δm(X)ρ1e

− δ2m(X)

τ2 I{τ2i−1 < ∆(X) ≤ τ2i}
]

≤
∑M

m=1 EP

[
∆(X)ρ1e

−∆2(X)

τ2 I{τ2i−1 < ∆(X) ≤ τ2i}
]

≤
∑M

m=1 τ2
iρ1e

− τ222i−2

τ2 P{τ2i−1 < ∆(X) ≤ τ2i}

≤Mτ2iρ1e
− τ222i−2

τ2 P{0 < ∆(X) ≤ τ2i} =Mρ1τ
1+α2i(1+α)e−22i−2
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Combining all the upper bounds in equation C.6 we finally obtain

EDn

[
EP

[
fĝ(X)(X)− fg(X)(X)

]]
≤Mρ1τ

1+α
{
1 +

∑
i≥1 2

i(1+α)e−22i−2}
(C.8)

As
∑

i≥1 2
i(1+α)e−22i−2

is finite we have the result.

Proof of Theorem 3.9. The proof of the upper bound follows directly from the lemma C.4 once we
establish that for an =

∑K1

k=1 µkak,n the following concentration holds: for constants ρ1, ρ2 > 0
and any n ≥ 1 and t > 0 and almost all X with respect to PX we have

max
P∈P

P
{
max
m

∣∣η̂µ,m(X)− η⋆µ,m(X)
∣∣ ≥ t

}
≤ ρ1exp

(
− ρ2a

−2
n t2

)
. (C.9)

To this end, notice that

maxm
∣∣η̂µ,m(X)− ηµ,m(X)

∣∣
≤

∑K
k=1 µk maxm

∣∣[Φ̂(X)]m,k − [Φ(X)]m,k

∣∣
=

∑K1

k=1 µk maxm
∣∣[Φ̂(X)]m,k − [Φ(X)]m,k

∣∣
where the last equality holds because [Φ̂(X)]m,k = [Φ(X)]m,k for k ≥ K1 + 1. Following this
inequality, we have that for any P ∈ P

P
{
maxm

∣∣η̂µ,m(X)− ηµ,m(X)
∣∣ ≥ K1t

}
≤

∑K1

k=1 P
{
maxm

∣∣[Φ̂(X)]m,k − [Φ(X)]m,k

∣∣ ≥ t
µk

}
≤

∑K1

k=1 ρk,1exp
(
− ρk,2µ

−2
k a−2

k,nt
2
)

≤ ρ1exp
(
− ρ2K

2
1{∧

K1

k=1µ
−1
k a−1

k,n}2t2
)

where ρ1 =
maxk≤K1

ρk,1

K1
and ρ2 = K−2

1 × {∧k≤K1
ρk,2}. Note that

K1{∧K1

k=1µ
−1
k a−1

k,n}−1 = K1 maxK1

k=1 µkal,n ≥
∑

k≤K1
µkak,n = an .

Thus,
P
{
maxm

∣∣η̂µ,m(X)− ηµ,m(X)
∣∣ ≥ K1t

}
≤ ρ1exp

(
− ρ2K

2
1{∧

K1

k=1µ
−1
k a−1

k,n}2t2
)
≤ ρ1exp

(
− ρ2a

2
nt

2
)
.

C.5 THE LOWER BOUND

To begin, we discuss the high-level proof strategy that will achieve our lower bound. Ultimately, for
every k ≤ K1 we shall establish that for any ϵk ∈ [0, 1] and n ≥ 1

min
An∈An

max
P∈P

EP (µ,An) ≥ ck
{
µkn

− γk
2γk+d

}1+α
, (C.10)

for some constant ck > 0. Then, defining c = min{ck : k ≤ K1} we have the lower bound

min
An∈An

max
P∈P

EP (µ,An) ≥ max
k≤K1

ck
{
µkn

− γk
2γk+d

}1+α

≥ max
k≤K1

c
{
µkn

− γk
2γk+d

}1+α

≥ c
{∑

k≤K1

µkn
− γk

2γk+d

K

}1+α

≥ cK−1−α
{∑

k≤K1
µkn

− γk
2γk+d

}1+α
,

which would complete the proof.

It remains to establish equation C.10 for each k ∈ [K1]. To obtain this, we construct a finite family
of probability measures Mr ⊂ P (indexed by [r]) and study max

P∈Mr

. The technical tool which allows

this to be fruitful is a generalized version of Fano’s lemma.
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Lemma C.5 (Generalized Fano’s lemma). Let r ≥ 2 be an integer and let Mr ⊂ P contains r
probability measures indexed by {1, . . . , r} such that for a pseudo-metric d (i.e. d(θ, θ′) = 0 if and
only if θ = θ′) any j ̸= j′

d
(
θ(Pj), θ(Pj′)

)
≥ αr, and KL(Pj , Pj′) ≤ βr .

Then
max

j
EPj

[
d(θ(Pj), θ̂)

]
≥ αr

2

(
1− βr+log 2

log r

)
.

In our construction θ(Pσ) = g⋆µ,σ and d
(
θ(Pσ0), θ(Pσ1)

)
= EPσ0 (g⋆µ,σ1

, µ).

Next, we lay out the template for constructing the family Mr. Fix a k0 ∈ [K1] and define the
following.

Definition C.6. 1. For an h = L× µ
1

γk0

k0
n
− 1

2γk0
+d (L > 0 is a constant to be decided later) define

m = ⌊h−1⌋.
2. Define G =

[
{ih+ h

2 : i = 0, . . . ,m− 1}d
]

as a uniform grid in [0, 1]d of size md and Gϵ as an
ϵ-net in ℓ∞ metric, i.e. Gϵ = ∪x∈GB(x, ϵ, ℓ∞), where B(x, ϵ, ℓ∞) = {y ∈ X : ∥x− y∥∞ ≤ ϵ}.

3. Define PX = Unif(Gϵ). For such a distribution, note that vol(Gϵ) = (mϵ)d ≤ (h−1ϵ)d, which
implies that for all x ∈ Gϵ we have pX(x) = (hϵ−1)d. Setting ϵ = p

−1/d
0 h ∧ h

3 we have
pX(x) ≥ p0 that satisfies the strong density assumption for PX .

4. Fix an m0 ≤ md and consider G0 ⊂ G such that |G0| = m0 and define G1 = G\G0.
5. For a function σ : G0 → [M ] define

Φσ
m,k(x) =

{
1−Kγ,k0

µ−1
k0

ϵ
γk0 I{σ(y)=m}
2 when k = k0, x ∈ B(x, ϵ, ℓ∞) for some y ∈ G0,

1
2 elsewhere.

(C.11)
6. Consider a class of probability distributions {µθ : θ ∈ R} defined on the same support range(ℓ)

that have mean θ and satisfy KL(µθ, µθ′) ≤ c(θ − θ′)2 for some c > 0. A sufficient condition for
constricting such a family of distributions can be found in Lemma C.3. Some prominent examples
of such family are location families of normal, binomial, Poisson distributions, etc. Define the
probability Pσ([Y ]m,k | X = x) ∼ µ

Φ
(σ)
m,k(x)

.

The following two lemmas (along with the observation on the strong density condition) will establish
that for a given σ, the distribution over X ,Y given by Pσ([Y ]m,k | X = x)× Unif[Gϵ] is indeed a
member of the class P .
Lemma C.7. Fix a choice for σ and let ησµ,m =

∑
k µkΦ

σ
k,m(x), then ησµ,m satisfies α-margin

condition.

Proof. To see that ησµ,m satisfies α-margin condition, notice that

ησµ,m(x) =

{
1−Kγ,k0

ϵ
γk0 I{σ(y)=m}
2 when x ∈ B(x, ϵ, ℓ∞) for some y ∈ G0,

1
2 elsewhere.

Thus, for every x ∈ B(y, ϵ, ℓ∞), y ∈ G0 the Φσ
µ,m(x) = 1

2 for all but one m and at m = σ(x)

the Φσ
µ,m(x) =

1−Kγ,k0
ϵ
γk0

2 , leading to ∆σ
µ(x) =

Kγ,k0
ϵ
γk0

2 at those x, and at all other x we have

∆σ
µ(x) = 0. This further implies PX(0 < ∆σ

µ(X) ≤ t) = 0 whenever t < Kγ,k0
ϵ
γk0

2 and for

t ≥ Kγ,k0
ϵ
γk0

2 we have

PX(0 < ∆σ(X) ≤ t) = PX

(
Φσ

m(X) ̸= 1
2 for some m ∈ [M ]

)
≤ m0ϵ

d ≤ Kα

(Kγ,k0
ϵ
γk0

2

)α
whenever

m0 ≤ Kα2
−αKα

γ,k0
ϵαγk0

−d

We set m0 = ⌊Kα2
−αKα

γ,k0
ϵαγk0

−d⌋ to meet the requirement. Since d > mink αγk, for sufficiently
small ϵ we have m0 ≥ 8.
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Lemma C.8. On the support of PX the Φσ
m,k are (γk,Kγ,k) Hölder smooth.

Proof. Note that the only way Φσ
m,k(x) and Φσ

m,k(x
′) can be different if ∥x − x′∥∞ ≥ h

3 . Since
ϵ ≤ h

3 for such a choice, we have

|Φσ
m,k(x)− Φσ

m,k(x
′)| ≤ 1

2Kγ,kϵ
β

≤ Kγ,k(
h
3 )

β

≤ Kγ,k∥x− x′∥β∞ ≤ Kγ,k∥x− x′∥β2 .

In order transfer the inequality in Fano’s lemma to a statement on rate of convergence, we need an
upper bound on KL(Pσ1 , Pσ2) and a lower bound on the semi-metric EPσ0 (µ, g⋆µ,σ1

). These are
established in the next two lemmas.
Lemma C.9. Consider the probability distribution Pσ for the random pair (X,Y ) where X ∼ PX

and given X the {[Y ]m,k;m ∈ [M ], k ≤ K1} are all independent and distributed as [Y ]m,k |
X = x ∼ µΦσ

m,k(x)
. Let C be a positive constant and δ(σ1, σ2) =

∑
y∈G0

I{σ1(y) ̸= σ2(y)} the
Hamming distance between σ1 and σ2. Then following upper bound holds on KL(Pσ1 , Pσ2).

KL(Pσ1 , Pσ2) ≤ Cµ−2
k0
h2γk0

+dδ(σ1, σ2)

Proof.
KL(Pσ1 , Pσ2)

=
∫
dPX(x)

∑M
m=1

∑K
k=1 KL

(
µ
Φ

(σ1)

m,k (x)
, µ

Φ
(σ2)

m,k (x)

)
≤

∫
dPX(x)

∑M
m=1

∑K
k=1 c

(
Φ

(σ1)
m,k (x)− Φ

(σ2)
m,k (x)

)2
(KL(µθ, µθ′) ≤ c(θ − θ′)2)

=
∑

y∈G0
ϵd

∑M
m=1

cK2
γ,k0

ϵ
2γk0 µ−2

k0

4

(
I{σ1(y) = m} − I{σ2(y) = m}

)2
≤ cK2

γ,k0

4

∑
y∈G0

µ−2
k0
ϵ2γk0

+d × I{σ1(y) ̸= σ2(y)}

≤ Cµ−2
k0
h2γk0

+dδ(σ1, σ2) (because ϵ ≤ h
3 )

for some C > 0, where δ(σ1, σ2) =
∑

y∈G0
I{σ1(y) ̸= σ2(y)} is the Hamming distances between

σ1 and σ2.

Now, we establish a closed form for the excess risk
EPσ0 (µ, g⋆µ,σ1

) = EPσ0 (µ, g⋆µ,σ1
)−EPσ0 (µ, g⋆µ,σ0

)

where g⋆µ,σ0
is the Bayes classifier for Pσ0 defined as g⋆µ,σ0

(x) = argminmΦσ0
µ,m(x).

Lemma C.10. Let δ(σ0, σ1) denote the Hamming distance between σ0 and σ1 as before. Then

EPσ0 (µ, g⋆µ,σ1
) =

Kγ,k0
ϵ
γk0

+d
δ(σ0,σ1)

2

Proof. For the purpose, notice that
g⋆µ,σ(x) = σ(y) whenever x ∈ B(x, ϵ, ℓ∞) for some y ∈ G0 .

This further implies
EPσ0 (µ, g⋆µ,σ1

)

=
∫
dPX(x)

∑M
m=1 I{g⋆µ,σ1

(x) = m}Φσ0
µ,m(x)

=
∑

y∈G0
ϵd

∑M
m=1 I{σ1(y) = m}µk0

1
2

{
1−Kγ,k0

µ−1
k0
ϵγk0 I{σ0(y) = m}

}
+
∑

y∈G0
ϵd

∑M
m=1 I{σ1(y) = m}

∑
k ̸=k0

µk

2 +
∑

y∈G1
ϵd

∑M
m=1 I{σ1(y) = m} 1

2

= −
∑

y∈G0

∑M
m=1

Kγ,k0
ϵ
γk0

+d

2 I{σ0(y) = σ1(y) = m}

+
∑

y∈G0∪G1
ϵd

∑M
m=1 I{σ1(y) = m} 1

2

= −
∑

y∈G0

∑M
m=1

Kγ,k0
ϵ
γk0

+d

2 I{σ0(y) = σ1(y) = m}+
∑

y∈G0∪G1

ϵd

2
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By replacing σ1 with σ0 in the above calculations we obtain

EPσ0 (µ, g⋆µ,σ0
) = −

∑
y∈G0

∑M
m=1

Kγ,k0
ϵ
γk0

+d

2 I{σ0(y) = m}+
∑

y∈G0∪G1

ϵd

2

and hence
EPσ0 (g⋆µ,σ1

, µ)

= EPσ0 (g⋆µ,σ1
, µ)−EPσ0 (g⋆µ,σ0

, µ)

=
∑

y∈G0

∑M
m=1

Kγ,k0
ϵ
γk0

+d

2

{
I{σ0(y) = m} − I{σ0(y) = σ1(y) = m}

}
=

Kγ,k0
ϵ
γk0

+d

2

∑
y∈G0

∑M
m=1 I{σ0(y) = m} × I{σ1(y) ̸= m}

=
Kγ,k0

ϵ
γk0

+d

2

∑
y∈G0

I{σ0(y) ̸= σ1(y)}

=
Kγ,k0

ϵ
γk0

+d
δ(σ0,σ1)

2 .

The final technical ingredient we require is the Gilbert–Varshamov bound for linear codes.
Lemma C.11 (Gilbert–Varshamov bound). Consider the maximal AM (m0, d) ⊂ [M ]m0 such that
each element in C is at least d Hamming distance from each other, i.e. for any σ1, σ2 ∈ C we have
δ(σ1, σ2) ≥ d. Then

|AM (m0, d)| ≥ Mm0∑d−1
i=0 (

m0
i )(M−1)i

Furthermore, when M ≥ 2 and 0 ≤ p ≤ 1− 1
M we have |AM (m0, pm0)| ≥Mm0(1−hM (p)) where

hM (p) = p log(M−1)−p log p−(1−p) log(1−p)
logM .

Proof of the Theorem 3.6. For the choice p = 1
4 we have −p log p− (1−p) log(1−p) ≤ 1

4 and thus

hM (p) ≤ log(M−1)
4 logM + 1

4 logM ≤ 1
4 + 1

4 log 2 ≤ 3
4 .

Consequently, the lemma implies that we can find an AM (m0,
m0

4 ) ⊂ [M ]m0 such that
|AM (m0,

m0

4 )| ≥ M
m0
4 whose each element is at least m0

4 Hamming distance apart. For such
a choice, define the collection of probabilities as Mr = {Pσ : σ ∈ AM (m0,

m0

4 )} leading to
r ≥ M

m0
4 . In the generalized Fano’s lemma C.5 we require r ≥ 2. To achieve that we simply set

m0 ≥ 8, as it implies r ≥M2 ≥ 4.

Now we find lower bound αr for the semi-metric and upper bound βr for the Kulback-Leibler
divergence. Let’s start with the upper bound. Since KL(Pσ1 , Pσ2) ≤ Cµ−2

k0
h2γk0

+dδ(σ1, σ2) for the
joint distributions of the dataset Dn the Kulback-Leibler divergence between {Pσ1}⊗n and {Pσ2}⊗n

is upper bounded as:

KL
(
{Pσ1}⊗n, {Pσ2}⊗n

)
= nKL(Pσ1 , Pσ2)

≤ nCµ−2
k0
h2γk0

+dδ(σ1, σ2)

= nCµ−2
k0
L2γk0

+dµ

2γk0
+d

γk0

k0
n
−

2γk0
+d

2γk0
+d (because h is defined as L× µ

1
γk0

k0
n
− 1

2γk0
+d )

≤ CL2γk0
+dµ

d
γk0

k0

log r
logM (because r ≥M

m0
4 )

≤ CL2γk0
+d log r

logM = βr

In the Lemma C.5 we would like βr+log 2
log r ≤ 3

4 so that we have 1− βr+log 2
log r ≥ 1

4 . Note that,

βr+log 2
log r − 3

4 = βr

log r + log 2
log r − 3

4

= CL
2γk0

+d

logM + log 2
log 4 − 3

4 (because r ≥ 4, βr = CL2γk0
+d log r

logM )

= CL
2γk0

+d

logM − 1
4 ≤ 0
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for small L > 0. We set the L accordingly. Returning to the semi-metric, it is lower bounded as

d
(
θ(Pσ0), θ(Pσ1)

)
= EPσ0 (g⋆µ,σ1

, µ)

≥ Kγ,k0

2 ϵγk0
+dδ(σ0, σ1)

≥ Kγ,k0

2 ϵγk0
+d m0

4

≥ Kγ,k0

8 ϵγk0
+dKα2

−αKα
γ,k0

ϵαγk0
−d

(because m0 = ⌊Kα2
−αKα

γ,k0
ϵαγk0

−d⌋)
= c1ϵ

(1+α)γk0

≥ c2
{
µk0

n
−

γk0
2γk0

+d
}1+α

= αr

for some constants c1, c2 > 0. We plug in the lower and upper bound in Fano’s lemma C.5 to obtain
the lower bound:

αr

2

(
1− βr+log 2

log r

)
≥ c2

{
µk0

n
−

γk0
2γk0

+d
}1+α

2 × 1
4 ≥ c3

{
µk0

n
−

γk0
2γk0

+d
}1+α

for some c3 > 0 that is independent of both n and µ.

D JUDGE PROMPT

Prompt format for the Llama 3.1 70b evaluator instruct LLM
1 <dmf>user
2 I want you to act as a judge for how well a model did answering a user-

defined task. You will be provided with a user-defined task that was
given to the model, its golden answer(s), and the model's answer. The
context of the task may not be given here. Your task is to judge how
correct is the model's answer. Your task is to judge how correct the
model's answer is based on the golden answer(s), without seeing the

context of the task, and then give a correctness score. The
correctness score should be one of the below numbers: 0.0 (totally
wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally
right). You should also add a brief justification regarding how the
model's answer conforms to or contradicts the golden answer(s).

3

4 Your response must follow the format
5 {{
6 "correctness_score": your_score,
7 "justification": your_justification
8 }}
9

10 Note that each one of the golden answers is considered correct. Thus if
the Model's Answer matches anyone of the golden answers, it should be
considered correct.

11 <dmf>assistant
12 Certainly! I will act as a judge and adhere to the format you requested.

Under oath, I will judge without consulting my internal knowledge of
facts under any circumstances.

13 <dmf>user
14 User-defined task --- Sandy bought 1 million Safe Moon tokens. She has 4

siblings. She wants to keep half of them to herself and divide the
remaining tokens among her siblings. After splitting it up, how many
more tokens will she have than any of her siblings?

15

16 Golden Answer(s) --- \<answer 1\> 375000
17

18 Model's Answer --- Sandy will have more tokens than any sibling by 3/8
million.
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19 <dmf>assistant
20 {{
21 "correctness_score": 1.0,
22 "justification": "The golden answer states that Sandy will have

375,000 more tokens than any of her siblings, which is a precise
numerical value. The model's answer translates this scenario into a
fraction of the total, saying Sandy will have more tokens than any
sibling by 3/8 million. 1 million tokens * 3/8 =375,000 tokens. So
the model provided an answer in fractional form that, when converted
to a numerical value, exactly matches the golden answer's quantity."

23 }}
24 <dmf>user
25 User-defined task --- Extract the names and emails mentioned in the

following text. Richard Matthew Stallman, also known by his initials,
rms,[1] is an American free software movement activist and

programmer. He can be reached at rms@gnu.org based on the information
on his webpage.

26

27 Golden Answer(s) --- {{"names": ["Richard Matthew Stallman"], "emails":
["rms@gnu.org"]}}

28

29 Model's Answer --- names: Richard Matthew Stallman
30 <dmf>assistant
31 {{
32 "correctness_score": 0.5,
33 "justification": "The model correctly identified the names but failed

to extract the emails."
34 }}
35 <dmf>user
36 User defined task --- Question: In 2015 Edgar Lungu became prime minister

of?
37

38 Golden Answer:
39 <answer 1> Zambia; <answer 2> Zamibia; <answer 3> People of Zambia; <

answer4> Zambian cuisine; <answer 5> Zambians; <answer 6> Culture of
Zambia; <answer 7> Etymology of Zambia; <answer 8> Zambia; <answer 9>
Health care in Zambia; <answer 10> ISO 3166-1:ZM; <answer11>

Republic Of Zambia; <answer 12> Cuisine of Zambia; <answer 13> Sport
in Zambia; <answer 14> Republic of Zambia; <answer 15> Zambian people
; <answer 16> Name of Zambia

40

41 Model's Answer: Prime Minister
42 <dmf>assistant
43 {{
44 "correctness_score": 0.0,
45 "justification": "The golden answers provide a detailed list of

entities all relating to Zambia, indicating that Edgar Lungu became
the leader (specifically, they mentioned \"prime minister\") of
Zambia in 2015. The model's answer, \"Prime Minister,\" merely
repeats part of the question without answering it."

46 }}
47 <dmf>user
48 User defined task --- Give a one-line concise summary of the following

news
49 PARIS (Reuters) - French President Emmanuel Macron will set out plans for

reforming the European Union on Tuesday, including proposals for a
separate eurozone budget, despite a German election result that is
likely to complicate his far-reaching ambitions. German Chancellor
Angela Merkel s conservatives saw their support slide in Sunday s
election, though they remain the biggest parliamentary bloc. She is
expected to seek a coalition with the liberal Free Democrats (FDP) -
who have criticized Macron s ideas for Europe - and the Greens.
Elysee officials said Macron, who has promised sweeping reforms to
Europe s monetary union in coordination with Merkel, hoped the issues
to be raised in his speech would be taken into account in Germany s
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coalition negotiations. One Elysee official said a eurozone budget,
one of Macron s most contentious ideas, would be necessary in due
course and that the president would therefore raise the issue in his
speech, to be delivered at the Sorbonne University in Paris. Since
his election in May, Macron has made the overhaul of the EU and its
institutions one of his major themes. As well as his eurozone budget
idea, he wants to see the appointment of a eurozone finance minister
and the creation of a rescue fund that would preemptively help
countries facing economic trouble. Ahead of Sunday s election, Merkel
had indicated her willingness to work with Macron on a reform agenda

, even if her own ideas may not reach as far as his. But the election
results have left Merkel facing a difficult coalition-building task

which is in turn likely to limit her flexibility on Europe. A
coalition of Merkel s CDU/CSU bloc, the FDP and the Greens is
unprecedented at the national level - and any attempt by the
chancellor and Macron to press for greater EU integration will face
opposition from the new German lower house Bundestag. The FDP has
called for a phasing out of Europe s ESM bailout fund and changes to
EU treaties that would allow countries to leave the euro zone. And
the far-right, eurosceptic Alternative for Germany is now the third
biggest party in the Bundestag, further curbing Merkel s room for
maneuver. But Elysee officials noted that the FDP had reaffirmed its
attachment to the EU and to strong Franco-German relations, a point
Macron was likely to emphasize in his speech while at the same time
not seeking to impose anything on his partners. Macron, the sources
said, would propose that the whole EU move forward together, and that
those who did not want to should not stand in the way of those that

did. Coming just two days after the German election, Macron s speech
is likely to be interpreted in Germany as an attempt to shape the
debate before the coalition talks begin in earnest. German coalition
agreements are strict, with the contours set out in them limiting the
government s room for maneuver.

50 In that respect, Merkel s ability to work with Macron on EU reform will
be pre-determined by whatever coalition deal is struck. FDP leader
Christian Lindner said on Monday he would not agree to any coalition
that did not promise a change in the German government s direction.
While that appeared to set the stage for tough talks, he also offered
hope for Macron, saying when asked about the French president s

eurozone budget ideas that the FDP had a strong interest in the
strength of France.

51

52 Golden Answer(s) --- After German election, Macron to set out his vision
for Europe

53

54 Model's Answer --- French President Emmanuel Macron to introduce plans
for reforming the European Union amid the uncertain aftermath of
German elections

55 <dmf>assistant
56 {{
57 "correctness_score": 0.6,
58 "justification": "While the golden answer is more concise, the model'

s answer is largely similar to the golden answer in its meaning."
59 }}
60 <dmf>user
61 User defined task --- {MODELTASK}
62 Golden Answer(s) --- {GOLDENRESPONSE}
63 Model's Answer --- {MODELRESPONSE}
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