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ABSTRACT
Microscopy data collections are becoming larger and
more frequent. Accurate and precise quantitative anal-
ysis tools like cell instance segmentation are necessary
to benefit from them. This is challenging due to the
variability in the data, which requires retraining the
segmentation model to maintain high accuracy on new
collections. This is needed especially for segmenting cells
with elongated and non-convex morphology like bacte-
ria. We propose to reduce the amount of annotation
and computing power needed for retraining the model
by introducing a few-shot domain adaptation approach
that requires annotating only one to five cells of the new
data to process and that quickly adapts the model to
maintain high accuracy. Our results show a significant
boost in accuracy after adaptation to very challenging
bacteria datasets.

Index Terms— Domain adaptation, cell instance
segmentation, few-shot learning, microscopy.

1. INTRODUCTION

The increased frequency and size of microscopy data
collections enable rapid scientific discovery but require
improved automated tools for quantitative analysis [1].
Image collections present a remarkable variability, de-
picting cells, membranes, and organelles at various sizes
and shapes, collected with different microscope con-
figurations, and from tissues treated differently. In
particular, images of bacteria cells present additional
challenges due to their smaller size and elongated and
non-convex morphologies, including shapes with multi-
ple branches [2].

The typical approach to tasks such as automated cell
instance segmentation on these collections is to rely on a
method trained on a large source dataset [3, 4]. However,
because of their variability, new target image collections
will very likely have different statistical properties than
those used for training the segmentation method. Be-
cause of this distribution shift [5], the segmentation ac-

⋆Denotes equal contribution.

curacy will deteriorate on new collections. The obvious
solution is to retrain the segmentation model on the tar-
get data. This is effective for methods like [6, 7, 3] for
handling more regular, nearly-convex cell morphologies,
whereas for more difficult morphologies (e.g., for bacte-
ria), methods like [8, 4] will be more appropriate. The
problem is that this approach requires a labor-intensive
data annotation process and a computationally expen-
sive training procedure.

A different solution is to use a domain adaptation
approach [9], where a portion of the new target data is
used for “adapting” the model to perform well in spite
of the distribution shift. Current approaches are either
modality-dependent and not tailored to cell segmenta-
tion [10, 11, 12, 13, 14] or computationally demand-
ing because they are unsupervised and need to process
large amounts of data [15, 16, 17, 18]. Recently, Cell-
Transpose, a few-shot domain adaptation approach for
cell instance segmentation, was proposed [19]. It has
the advantage of requiring only a few cells (e.g., one to
five) to be annotated by the user. Then, the model is
quickly adapted to the target data domain with min-
imal computational cost. Despite offering an appeal-
ing solution, CellTranspose’s ability to handle elongated
and non-convex morphologies is limited by the adopted
segmentation strategy. This is based on predicting seg-
mentation masks along with gradient flows converging
towards the cell centers [3]. This approach has been
shown to have limitations with morphologies that are not
nearly-convex and for which a global cell center cannot
be correctly defined [4].

In this work, we propose a few-shot domain adap-
tation approach for cell instance segmentation that
addresses the limitations expressed above. We do so
by starting from a segmentation strategy that handles
elongated and non-convex morphologies by predicting
segmentation boundaries and a boundary distance field
along with its gradient. This requires designing new
training losses to support the fast adaptation of a pre-
trained model to the target domain with just a few (one
to five) annotated cells. The results show that our frame-
work effectively supports adaptation to multiple datasets
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Fig. 1: Architecture approach. Illustration of our
contrastive learning-based few-shot cellular instance seg-
mentation approach.

in the case of challenging non-convex morphologies.

2. METHOD

We are interested in segmenting instances of cells, like
bacteria, which can have small dimensions (e.g., a hun-
dred of pixels in area), and can exhibit a wide range
of morphologies [20]. Also, new image collections are
deeply affected by the different optical features deter-
mined by the tissue treatment or microscopy techniques.
This means that given new data to segment, a state-
of-the-art tool like Omnipose [4] will be affected by the
distribution shift [5], if not retrained on such new data,
and it will significantly underperform.

To avoid the costly process of annotating large
amounts of new data and intense network training
for every new segmentation task, we propose a two-
step approach. First, we rely on a robust and precise
segmentation method that can handle a diversity of
morphologies, and that has been pre-trained on a source
dataset Ds. Second, we take a few-shot learning ap-
proach, whereby given a target dataset Dt, distributed
differently than Ds, we require the user to label only
a minimal amount of target data, let us say K image
patches for a K-shot learning, essentially depicting one
cell each. The pre-training step needs to be done only
once. The few-shot adaptation step is fast and low-cost
both in manual labor and compute power, and is easily
repeatable for new datasets to process.

Note that mere model fine-tuning on the K image
patches is not a viable option since this would lead to
overfitting [21]. Hence, we introduce a proper few-shot
supervised domain adaptation method for cell instance
segmentation. This work overcomes the limitations of
previous work [19], which could not handle the adapta-
tion to datasets with a large diversity of morphologies.
Thus, to the best of our knowledge, this is the first few-
shot adaptation for cell instance segmentation that is
morphology-independent, meaning it can handle cases
where a cell center cannot be correctly defined, which
typically occur with shapes with elongated and/or mul-
tiple branches.

2.1. Pretrained Model

We rely on Omnipose [4] as the pretrained method be-
cause it is the state-of-the-art for handling morphology-
independent cell instance segmentation. We summarize
it here to introduce notation. Given an image I, a net-
work f produces a dense, pixel-wise feature Z = f(I),
where Z = [Z1, Z2, Z3, Z4] ∈ Rh×w×4. For a pixel i, the
feature z = [z1, z2, z3, z4] ∈ Z, has the following mean-
ing. z1

.= ϕ, where ϕ is the distance field, which is the
distance between pixel i inside a cell region to the closest
point on the cell boundary. ϕ = 0 if pixel i is outside
of a cell. Then, u

.= (z2, z3) is the gradient flow field,
which is the normalized gradient of the distance field,
pointing towards the medial axis (skeleton) of the cell
that is defined by the stationary points of the distance
field. Finally, z .= z4 represents the unnormalized score
indicating the probability of pixel i belonging to a cell
boundary. With this notation, we rewrite the feature as
z = [ϕ,u, z]. The network f is trained in a supervised
manner with pixel-wise instance segmentation loss

LIS
i = (ϕ − d)2 + ν∥u − (gx, gy)∥2 + µH(b, σ(z)) , (1)

where, for pixel i, d is the ground-truth distance field,
(gx, gy) is the ground-truth gradient flow field with unit
ℓ2-norm, b ∈ {0, 1} is the binary mask label indicat-
ing absence/presence of a cell border, σ(z) .= 1/(1 +
exp(−z)), H is the binary cross-entropy. ν and µ are
hyperparameters set to 0.5 and 1.0. For image I, the
contributions {LIS

i } are aggregated into the loss LIS =∑
LIS

i + LIV P , where LIV P is a loss term that takes
into account the initial value problem satisfied by the
distance field [4].

From Z, a segmentation head g produces the mask
Y = g(Z) based on an Euler integration [4]. For pixel i,
the predicted label is y ∈ {0, 1, · · · , N}. N is the total
number of cell instances segmented. y = 0 indicates
absence of a cell. See also Figure 1.

2.2. Adaptation of the Pretrained Model

A cell target pixel i of I ∈ Dt, with label (dt, gx
t, gy

t, bt),
should have its feature zt close to the pixel features from
source images in Ds with the same label. However, this is
generally not the case because of the shift between source
and target domains. Therefore, we design new training
losses to reverse the effects of domain shift, which are
tailored specifically to the network f introduced in §2.1,
and that can adapt f to the target to prevent perfor-
mance deterioration of the segmentation process.

Contrastive Distance Loss. We jointly align
ϕt and ut with the distance and its gradient fea-
tures of source pixels by setting up a contrastive pre-
diction task [22]. This differs from [19] where the
alignment was needed only for the gradient features.
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To that end, we identify a positive source pixel in-
side the boundaries defined by bs

+, with distance ϕs
+

and gradient features us
+ that best match the label

(dt, gx
t, gy

t), according to a similarity measure. We use
s((ϕ,u), (ψ,v)) .= exp [ −1

2σ (ϕ− ψ)2]u⊤v/∥u∥∥v∥, which
combines a radial basis kernel with parameter σ to
compare the distance features, and a cosine similarity
kernel to compare the gradients, where ∥ · ∥ denotes
ℓ2-norm. We also compose the set of negative features
Ni, taken from inside the boundaries bs

−, and such that
Ni = {(ϕs

−,u
s
−) | s((ϕs

+,u
s
+), (us

−, ϕ
s
−)) < δ}, where δ

is a threshold that we choose. This allows to define the
following contrastive distance loss

LCD
i = − log e

s((ϕt,ut),(ϕs
+,us

+))
τ

e
s((ϕt,ut),(ϕs

+,us
+))

τ +
∑

(ϕs
−,us

−)∈Ni

e
s((ϕt,ut),(ϕs

−,us
−))

τ

(2)
where τ is a temperature parameter. LCD

i pulls the pos-
itive pair ((ϕt,ut), (ϕs

+,u
s
+)) closer, while pushing apart

every negative pair ((ϕt,ut), (ϕs
−,u

s
−)). We also extend

the strategy of [19] for mining hard negatives for Ni.
For a target image and a source image pair we aggre-

gate the loss contributions from the target pixels inside
the boundaries bt. If B indicates this set of pixels, then
the aggregate loss is LCD = 1

|B|
∑

B LCD
i .

Contrastive Boundary Loss. We align the un-
normalized binary classification score zt with the scores
of the source pixels with same label. We derive a con-
trastive loss for boundary detection by treating this as a
binary classification adaptation problem [9]. This differs
from [19] because there they need to focus on cell masks
rather than boundaries.

We want to pull together zt and the unnormalized
score zs

+, of pixels in source images with label bs = bt.
We also need to minimize the similarity between zt and
the unnormalized score zs

−, of pixels in source images
with label bs ̸= bt. This is achieved by minimizing this
contrastive boundary loss

LCB = 1
|P|

∑
P
d(zt, zs

+) + λ
1

|N |
∑
N
k(zt, zs

−) . (3)

In (3), for a target image and a source image pairs, P is
the set of positive pairs {(zt, zs

+)}, and N is the set of
negative pairs {(zt, zs

−)}. In addition, d(zt, zs
+) = 1

2 (zt −
zs

+)2, k(zt, zs
−) = 1

2 max(0,m−|zt −zs
−|)2, m is a margin,

and λ is a hyperparameter.
Few-shot Adaptation. Let Dt

K indicate the K
labeled samples of the target dataset Dt. The K-shot
adaptation training minimizes

LISA =
∑
Dt

K

(
LIS + γ1

|Ds|
∑
Ds

LCB + γ2

|Ds|
∑
Ds

LCD

)
.

(4)
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Fig. 2: Qualitative results. Samples from the Worm
(left two columns) and Bacteria Fluorescence (right two
columns) datasets highlighting the variability of cell mor-
phologies, and the corresponding segmentations by dif-
ferent approaches. GT indicates ground-truth.

The training assumes that the model has already been
pretrained. We used Omnipose pretrained for 3800
epochs, and we adapt the model for 5 epochs according
to (4). Source images are continuously randomly paired
with one of the K target samples without replacement to
ensure that even a 1-shot adaptation performs a signif-
icant pull of the model towards the target distribution.
After adaptation the model is fine-tuned on Dt

K with
LIS for 5 more epochs with a very low learning rate of
1e− 7. For the definition of one “shot” we followed [19],
where the nominal cell size is computed according to [4].

3. EXPERIMENTS

Implementation. We evaluate our approach, named
Adaptive Omnipose, with different number of shots, K =
1, 2, 3, 5, 10. We calculate the average precision (AP)
at an intersection over union (IoU) of 0.5. As source
datasets Ds we use separately Bacteria Phase and Bac-
teria Fluorescence, which are the largest and with the
most diverse morphologies among those released by [4].

We pretrain our model for 3800 epochs with constant
learning rate of 0.03, and the RAdam optimizer with
weight decay 10−5 and batch size 4. Adaptation is done
by following the data splitting guidelines from [19]. We
randomly sample K shot samples from the respective
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Table 1: AP results at IoU 0.5: Adapting from Bacteria Phase (BP) to Bacteria Fluorescence (BF) and Worm and
from Bacteria Fluorescence (BF) to Bacteria Phase (BP) and Worm.

Ds → Dt BP → BF BP → Worm BF → BP BF → Worm
1-shot 2-shot 3-shot 5-shot 10-shot 1-shot 2-shot 3-shot 5-shot 10-shot 1-shot 2-shot 3-shot 5-shot 10-shot 1-shot 2-shot 3-shot 5-shot 10-shot

Cellpose-Gen 0.137 0.137 0.137 0.137 0.137 0.173 0.173 0.173 0.173 0.173 0.335 0.335 0.335 0.335 0.335 0.173 0.173 0.173 0.173 0.173
Omnipose-LB 0.009 0.009 0.009 0.009 0.009 0.470 0.470 0.470 0.470 0.470 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002
Omnipose-FT 0.431 0.511 0.504 0.512 0.578 0.515 0.501 0.511 0.517 0.554 0.238 0.364 0.384 0.375 0.446 0.483 0.501 0.500 0.511 0.547
Omnipose-UB 0.920 0.920 0.920 0.920 0.920 0.847 0.847 0.847 0.847 0.847 0.889 0.889 0.889 0.889 0.889 0.847 0.847 0.847 0.847 0.847
Cellpose-UB 0.927 0.927 0.927 0.927 0.927 0.792 0.792 0.792 0.792 0.792 0.717 0.717 0.717 0.717 0.717 0.792 0.792 0.792 0.792 0.792
Stardist-UB 0.376 0.376 0.376 0.376 0.376 0.326 0.326 0.326 0.326 0.326 0.341 0.341 0.341 0.341 0.341 0.326 0.326 0.326 0.326 0.326
CellTranspose 0.375 0.493 0.516 0.529 0.613 0.531 0.595 0.622 0.645 0.650 0.142 0.181 0.263 0.359 0.403 0.486 0.539 0.520 0.548 0.564
Adaptive Omnipose 0.594 0.601 0.603 0.623 0.642 0.592 0.638 0.642 0.645 0.656 0.409 0.428 0.447 0.461 0.471 0.557 0.567 0.581 0.596 0.585

Table 2: Ablation on 1-shot adaptation. AP at 0.5 IoU.

BP → BF BP → Worm
Omnipose-UB 0.920 0.847
Adaptive Omnipose 0.594 0.592
No LCB 0.525 0.561
No LCD 0.569 0.553
No LCB & No LCD 0.431 0.515

training set of the target dataset Dt. Hyperparameters
for the adaptation losses include |Ni| = 20, τ = 0.1, m
= 10, γ1 = 0.05, and γ2 = 0.05. We used an image patch
size of h = w = 112 without rescaling since most cellular
metrics such as mean diameter and area were consistent
among all dataset groups during training. However, we
rescale target images using the ratio of mean diameter
across the source dataset and mean diameter across the
target. Also, we note that the original Omnipose [4] uses
a patch size of 224 × 224, whereas our implementation
of all the algorithms uses 112 × 112. The adaptation
procedure takes approximately 3 minutes to complete
using an NVIDIA RTX 3090 GPU.

Bacteria Phase (BP). BP [4] is a large bacte-
rial phase-contrast dataset consisting of bacterial mu-
tations and treatments causing extreme morphological
variations. Also, it includes various wild-type and mu-
tant bacterial growth under cephalexin and aztreonam.
It has a total of 27,500 cells in the training set, and 19,500
in the test set. We use the same split as in the original
paper to pretrain the base model.

Bacteria Fluorescence (BF). The BF [4] dataset
involves images with cytosol and membrane fluorescence,
which has a different modality compared to BP. It con-
sists of 33,200 cells split in train (18,613 cells) and test
(14,587 cells) sets.

Worm. Worm [4] is a non-bacterial dataset con-
sisting of 1,279 worms in the train set and 1,264 worms
in the test set. It was acquired from the Open Worm
Movement database [23], and the dead C. elegans from
the BBBC010 dataset [24].

Compared methods. Cellpose-Gen is Cellpose
trained on the generalist dataset of [3]. Omnipose-LB is
Omnipose trained on Ds (BP or BF) and represents a

lower bound. Omnipose-FT is Omnipose trained on Ds

and fine-tuned on Dt
K , i.e., with K-shot samples, data

augmentation and slow learning rate. Stardist-UB [6],
Cellpose-UB and Omnipose-UB are trained and tested
on the respective training and testing splits of the target
datasets and represent upper bounds. CellTranspose [19]
and Adaptive Omnipose are pretrained on Ds and then
adapted with Dt

K . See Figure 2 for qualitative results.
BP → BF and BF → BP. The modality differ-

ence between BP and BF adds to the inherent distribu-
tion shift: BF images look almost as negative images of
BP [4]. This is reflected in Table 1, where Omnipose-LB
shows catastrophic performance degradation. Adaptive
Omnipose steadily improves, and is very effective even
with 1-shot. Also, as expected Adaptive Omnipose con-
sistently surpasses CellTranspose, since CellTranspose
builds on Cellpose, which was not designed to handle
morphologies where a cell center is not clearly defined.

BP → Worm and BF → Worm. The target
dataset is Worm. The trend is similar to the BP →
BF and BF → BP cases, where Adaptive Omnipose is
effective even with 1-shot and consistently improves, and
is performing above Omnipose-FT and CellTranspose.

Ablation Study. Since Adaptive Omnipose adds
two new losses to the Omnipose framework, we test it
by removing one loss at a time on a 1-shot adaptation
scheme. Table 2 shows that including even one loss
leads to significant improvement over just fine-tuning the
model, while adding both leads to the best improvement.

4. CONCLUSIONS

We introduced a few-shot domain adaptation procedure
for cell instance segmentation. It improves upon prior
work because the model it adapts can handle elongated
and non-convex morphologies by design. The procedure
requires very limited manual annotation efforts to be ef-
fective (even one to five cells is enough), and it requires
about 3 minutes with an off-the-shelf GPU. Our experi-
ments based on pretraining on two different sources, and
adapting on three different challenging targets fully sup-
port our modeling framework, including a favorable com-
parison with previous work.
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