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ABSTRACT

Class imbalance is a pervasive issue in many real-world datasets, particularly in
graph-structured data, where certain classes are significantly underrepresented.
This imbalance can severely impact the performance of Graph Neural Networks
(GNNs), leading to biased learning or over-fitting. The existing oversampling
techniques often overlook the intrinsic properties of graphs, such as Label Infor-
mativeness (LI), which measures the amount of information a neighbor’s label
provides about a node’s label. To address this, we propose Label Informativeness-
based Minority Oversampling (LIMO), a novel algorithm that strategically over-
samples minority class nodes by augmenting edges to maximize LI. This tech-
nique generates a balanced, synthetic graph that enhances GNN performance with-
out significantly increasing data volume. Our theoretical analysis shows that the
effectiveness of GNNGs is directly proportional to label informativeness, with mu-
tual information as a mediator. Additionally, we provide insights into how varia-
tions in the number of inter-class edges influence the LI by analyzing its deriva-
tive. Experimental results on various homophilous and heterophilous benchmark
datasets demonstrate the effectiveness of LIMO in improving the performance of
node classification for different imbalance ratios, with particularly significant im-
provements observed in heterophilous graph datasets. Our code is available at
https://anonymous.4open.science/r/1limo—12CC/

1 INTRODUCTION

The emergence of Graph Neural Networks (GNNs) has pushed the boundaries of graph structure
analysis (Joshi & Mishral 2021)). These networks harness node attributes and graph topology to
enhance learning outcomes. Approaches like Graph Convolutional Networks (GCNs) and Graph
Attention Networks (GATs) have shown marked improvements in tasks such as node classification
and link prediction (Kipf & Welling, |2017; |Velickovic et al., [2018). By utilizing both node features
and edge information, these methodologies capture intricate relationships within graphs, thereby
boosting performance on graph tasks (Hamilton et al., 2017).

Class imbalance is a prevalent issue in many real-world datasets |Kim et al|(2020), where certain
classes are significantly underrepresented compared to others in a dataset. That is, the number of
samples belonging to one class (the majority class) far exceeds that of another (the minority class).
Consider an example of classifying medical images for a certain disease. The classifier tends to
fail to precisely classify if the dataset is skewed towards any one of the positive or negative classes
for the patient having the disease [Tasci et al.| (2022). The classifier is likely to be biased towards
predicting the class labels of the majority of the images in the dataset. Such imbalance skews the
performance of machine learning models, and the model tends to favor the majority class because
it dominates the training process |He & Garcia (2009). This is particularly problematic when the
minority class represents rare but critical cases, such as fraud or disease detection Batista et al.
(2004). It becomes difficult to use traditional machine learning algorithms while working with a
class-imbalanced dataset because they often assume an equal distribution of classes. In the presence
of class imbalance, the algorithms are likely to give biased predictions [Shwartz-Ziv et al.[ (2024).
Specifically, models may achieve high overall accuracy by simply predicting the majority class more
frequently, but their performance on the minority class remains poor.
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Figure 1: LIMO: The procedure initiates with an input graph, represented by its adjacency and
feature matrices. Synthetic Minority Oversampling Technique (SMOTE) |Chawla et al.| (2002) and
Edge Generator are employed to interpolate new features for minority class nodes and strategically
add edges, maximizing Label Informativeness (LI) respectively. This process involves both inter-
class and intra-class edge additions based on LI optimization criteria. The resulting balanced graph
enhances minority class representation, leading to improved Graph Neural Network (GNN) perfor-
mance in classification tasks.

Imbalanced node classification presents significant challenges for existing Graph Neural Networks
(GNNp5s). In scenarios where the majority class dominates, the loss function becomes skewed, caus-
ing the GNN to overfit to the majority class while neglecting the minority class. This leads to poor
predictive performance on minority class samples, limiting the effectiveness of GNNs in real-world
applications characterized by imbalanced class distributions, such as malicious account detection.
Addressing this issue is crucial for improving the adoption of GNNs in such tasks. Many previ-

ous works have tried addressing these challenges [Chen et al, 2021}, [Zhao et al.| 2021} [Ashmore
& Chenl, 2023} [Wang et al.} [2022b}; [Hsu et al} 2024, These approaches either add synthetic nodes

based on the features of the existing nodes in the graph or train the node classifier to learn with the
class-imbalanced dataset.

In our work, we take a different approach to overcome the class imbalance. Our algorithm LIMO
uses the concept of label informativeness of the given graph to mitigate the issue of class imbalance
by strategically adding the edges to the graph. Empirically, it has been established that a positive
correlation exists between LI and model performance |Platonov et al.| (2024). In our work, we fur-
ther extend it and formally establish the positive correlation. In general, increasing the LI of the
graph increases model performance. Hence, we add the synthetically generated nodes and edges to
improve the graph’s label informativeness. Additionally, LIMO acts on the class imbalanced dataset
before it is given as an input to the GNN, thereby reducing the overhead cost of training the classifier
to learn on the imbalanced dataset.

Our main contributions are: First, we propose Label Informativeness-based Minority Oversam-
pling (LIMO). We theoretically establish the relationship between the label informativeness and the
accuracy of the model predictions in GNN. Additionally, we analyze the influence of change in
the number of inter-class and intra-class edges on LI. Finally, we empirically validate our proposed
method on the node classification task and observe that it outperforms state-of-the-art approaches
by a significant margin. Figure[T|gives us an illustration of how different components of LIMO help
in generating the synthetic node features and edges the graph to include the synthetic nodes.
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2 BACKGROUND

2.1 CLASS-IMBALANCE IN GRAPHS

We represent a graph as G = {V, E, F, Y}, where V = {vy,...,v,} comprises a set of n nodes.
E is the set of edges in the graph. The adjacency matrix corresponding to the graph G is denoted
by A € R™™", while F' € R"*¢ signifies the node feature matrix. f, € R'*¢ represents the d
dimensional features of node v. The class information for nodes in G is represented by ¥ € R".
The class label of a node v is represented as y,,. During the training phase, only a portion of Y,
labeled as Y7, is accessible, containing labels for a subset of nodes, V7. The total number of classes
is C, denoted as {0, 1,...,C — 1}. The Imbalance Ratio (IR) in the graph context can be expressed
as:

IR — ity ny 0
maxy 7,y
where min, n, and max, n, represent the number of nodes in the minority and majority classes,
respectively, where y € {1,2,...C}. Alow IR indicates a significant imbalance, resulting in biased
models that favor the majority class and underperform on the minority class.

2.2 LABEL INFORMATIVENESS

Label informativeness (LI) in a graph [Platonov et al.| (2024) measures how much information the
label of a node provides about the label of its neighbor.According to [Platonov et al.| (2024), Label
Informativeness (LI) serves as a complementary measure to homophily, emphasizing the predictive
power of neighboring labels. This shows a strong correlation with Graph Neural Network (GNN)
performance, even in heterophilous graph structures. It can be defined using mutual information
1(Y,;Y,) between the labels y,, and y,, of connected nodes u and v:

> ey, Ple1,c2) log p(er, e2)

LIG) =2 = = 010800 @
h
e Z(u v)EE 1{yu =C1,Yv :C2}
p(c1,c2) = ’ 2F] 3)
and b
) = 55 @)

where c¢; and ¢y denote the labels of the nodes in the graph. Specifically ¢; represents the label of
node u and ¢y represents the label of node v. Both v and v € E where E is the edges set of the
graph. Additionally, D, refers to the total degree of all the nodes present in class c. The LI of a
graph, denoted as LI((), increases when edges within the same class are added, as this enhances
the predictive capability of neighboring nodes for label determination. Conversely, the addition of
edges between different classes reduces LI by diminishing the predictive strength of neighboring
labels.

3 PROBLEM STATEMENT

Consider a graph G, that exhibits a significant class imbalance, i.e. the IR as per equation [I] is
significantly low. This imbalance can lead to biased learning or overfitting in GNNs, resulting in
poor performance, especially for underrepresented classes. Our goal is to synthetically add the
nodes, edges, features, and labels to the imbalanced graph such that the label informativeness of
the newly formed graph increases. More formally, we first generate the synthetic features using
Synthetic minority oversampling technique (SMOTE)Chawla et al.| (2002) for the minority class,
and then we aim to find the following:

arg max LI(G)
E/

where E’ is the set of newly generated edges. In this way, we reduce the class imbalance by ex-
ploring and leveraging the relationship between the performance of the GNNs and the label infor-
mativeness. Thereby improving GNN performance for the task of node classification. We verify the
enhanced performance on homophilous and heterophillous graph datasets.
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4 LABEL INFORMATIVENESS BASED MINORITY OVERSAMPLING (LIMO)

The LIMO algorithm addresses class imbalance in graph data by generating synthetic nodes for mi-
nority classes, improving the representation of underrepresented classes to enhance machine learn-
ing model performance. A graph G is given as input to the algorithm, and it outputs a modified,
balanced graph G’ = {V,/ A/ F/Y'}. To achieve this, the minority classes ¢;s are first identified
within the dataset. A matrix P is then defined to quantify the distribution of edges over the classes,
where P = [p(cy, 02)]27_612:0 and p(cq, co) is computed using equation [3| For each node v that
belongs to a minority class, and for its nearest neighbor u in the same class, i.e. y,, and a synthetic
node s with feature vector f is created using SMOTE, with f; = f, + A(fu — fu), where X is
a random value between 0 and 1. We call this set of newly generated node features S. This set
contains the nodes that belong to the class y,,.

These nodes are added to the vertex set, and it is updated as V' = V U S. Subsequently, the feature
set and the set of class labels are updated as F/ = F U {f},and Y’ =Y U {y,} respectively, for
s € S, and where f; is the feature vector generated by SMOTE. We update the adjacency matrix to
include the synthetic nodes .S based on the condition that increases the LI of the graph, which in turn
improves the performance of the GNN model. We add the inter-class edges between all synthetic
nodes of the minority class and the rest of the classes, as well as intra-class edges among the nodes
of the minority class, based on the criteria provided in theorem

Homophily is not truly necessary for good GNN performance. Certain types of “good” heterophily
exist, under which GCNs can achieve strong performance |[Ma et al.| (2023)). According to |Platonov
et al.| (2024) the Spearman correlation coefficient between accuracy and LI is more than the Spear-
man correlation coefficient between accuracy and homophily. This was the motivation behind using
LI to mitigate the class imbalance problem.

Theorem 1. Let ey be the number of inter-class edges for class c1 and co and e, be the number
of intra-class edges for class ci in a graph, where c1 and co are classes in the graph. If classes cq
and cy satisfy the condition ey, - 1.31167627 > ey, then adding all inter-class edges between c;
and cq to the graph i.e. increasing ey, and adding intra-class edges in cy i.e., increasing €. <
1.31167627 - ep. will increase the Label Informativeness (LI).

The proof is described in Appendix [A.T]

Specifically, at the node level, an edge (s, w) is added between the new node s and the node w €

V if the two conditions as mentioned in theorem [I] are satisfied i.e. ys # ¥, (inter-class) and

P(ys, Yu) > % X P(ys,ys) or ys = yy,(intra-class) and P(ys,ys) > t X Zicz_ol P(ys,y;), where

w is an existing node in V. Here, ¢ takes the value 1.31167627 according to theorem[I} The above
condition is obtained by dividing the condition mentioned in theorem|[I|by a constant (e + €,,.) and
substituting ebe—s-igm = P(ys,ys) and eb;ii;uc = P(ys, Yw) Where ep. and e,,. are the number of
inter-class edges and intra-class edges respectively in the graph. If either condition is satisfied, the
edge (s, w) is added, updating the adjacency matrix as A’ = A U {(s,w)}. This method, described
in algorithm T] balances class distributions in graph data while maintaining the graph’s structure and
increasing its LI, leading to better performance for node classification using GNN.

Impact of £ on model performance:

* For any other threshold ' < t, adding intra-class edges such that their count falls within
[t/,t] times the total intra-class edges for a specific class will decrease the LI

* Similarly, if ¢ > ¢, adding inter-class edges between the minority class and another class,
with their count falling within [¢, '] times the total intra-class edges of the minority class,
will also decrease the LI.

As LIMO aims at increasing the LI to improve model performance, we add the edges as per theorem

m
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Algorithm 1

Input: G = {V, A, F.Y}
Output: return G’ = {V’, A’, F', Y’} (Balanced)
Identify the minority classes and the nodes in those classes
P« [p(c1, 02)]51;12:0, where ¢; and ¢ are classes and p(cy, ¢2) is calculated using eq
for All minority nodes v do
Find the nearest neighbor u ¢ € y,, using eq(6)
Interpolate between u and v using eq(7) to create a synthetic node s
Add s to the vertex set to get 1V’
9: Add feature of s to the features set to get F”
10: Assign the y4 < v, and implement it in Y’
11: for All nodes, w € V-{v} do
12: if (ys # yw and P(ys, yuw) > (1/t)xX P(ys,ys)) or
((Ys = Y and P(ys, yo) > tx 5" P(ys.y,)) then
13: Add edge (s,w) to adjacency matrix to get A’
14: end if
15: end for
16: end for
17: return G' = {V', A", F',Y'}

PRI R RN

4.1 INTERPRETATION OF LABEL INFORMATIVENESS (LI) DIFFERENTIATION

In our study, we consider the LI of a subgraph by taking the nodes belonging to two classes of
interest (say ¢1 and ¢2). In equation [2] we substitute p(c1,c2) = pye, p(c1,¢1) = Puwe, p(€1) = ;1
and p(Cz) = po, the formula for LI becomes:

LIG) = 2 — P 10g(pec) + Pwe 10g(Pwe) 5)
p1log(p1) + p2 log(p2)
where:
€be Ewe 2€pc + ewe Ewe
P et ewe’ T et ewe U1 2eve+ewe) T2 2(ebe + Cue)

In this equation, ey, represents the number of inter-class edges (between classes), and e, represents
the number of intra-class edges (within class). To understand how changes in the number of inter-
class edges (denoted by ey.) affect LI, we perform a differentiation of LI with respect to ep.. Upon
differentiating LI and evaluating it at ( ep. = 1.31167627 and e,,. = 1 ), we find that the derivative is
greater than 0. This positive derivative indicates that an increase in the number of inter-class edges
increases LI. This result has significant implications for our understanding of graph structures and
their label distributions. Specifically, it suggests that enhancing the connectivity between classes
(increasing inter-class edges) can improve the informativeness of the labels. This improvement in
LI can lead to better performance in tasks such as node classification, where the quality of label
information is crucial.

4.2 RELATIONSHIP BETWEEN LABEL INFORMATIVENESS AND ACCURACY WITH MUTUAL
INFORMATION AS A MEDIATOR

In the field of Graph Neural Networks (GNNs), grasping the connection between label informa-
tiveness and accuracy is essential for enhancing model efficacy. When node labels contain highly
informative data, GNN models are expected to generate more precise graph representations. This
theorem has been developed to formalize this relationship, offering a mathematical framework to
examine how label informativeness influences accuracy.

Theorem 2. Let I(Y, Z) be the Mutual Information between the node labels Y and Z. H(Y') be
the entropy of the node labels, and H(Y |Z) be the conditional entropy of the node labels. Then, the
accuracy of the GNN model is directly proportional to the label informativeness.

The proof is described in Appendix



Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 DATASET

We have used standard datasets namely, Cora [Sen et al.| (2008), Twitter Mohammadrezaei et al.
(2018)), BlogCatalog [Perozzi et al.[| (2014), Citeseer, PubMed, and Amazon McAuley & Leskovec
(2013). Table[I]contains the statistics of the datasets used in this paper.

Cora, Citeseer, and PubMed are citation networks that are homophilous graph datasets. We have
borrowed the long-tailed version of Cora and CiteSeer datasets used in|Li et al.[2023| BlogCatalog
and Twitter are social network datasets crawled from BlogCatalog and Twitter. Embedding vectors
for each node for both of the graphs are obtained using Deepwalk. The Amazon graphs were con-
structed by connecting users based on shared product reviews (U-P-U), similar star ratings within
a week (U-S-V), high mutual review text similarity (U-V-U), and using all three connections (All).
All of these graphs along with the social network datasets are heterophilous.

Table 1: Data Statistics

Dataset Name Description
Number of Number of edges Average Degree Number of LI
nodes classes
Cora 2708 5278 39 7 0.59
Citeseer 3327 4552 2.74 6 0.45
PubMed 19717 44324 4.5 3 0.41
Twittter 16587 393391 4743 2 1.24E-05
BlogCatalog 10312 333983 64.78 38 0.01
Amazon (U-P-U) 11944 175608 29.41 2 0.004
Amazon (U-S-U) 11944 3566479 597.2 2 0.003
Amazon (U-V-U) 11944 1036737 173.6 2 0.005
Amazon (All) 11944 4398392 736.5 2 0.006

5.2 BASELINES

To evaluate LIMO’s performance, we compared it against several state-of-the-art oversampling tech-
niques, including Oversampling (OS), Re-weight (RW), SMOTE (SM), Embed-up (ES), and Graph
SMOTE (GS). These methods represent various approaches to addressing class imbalance in graph
data. Oversampling duplicates minority class samples, while Re-weight assigns higher weights to
minority samples. SMOTE generates synthetic minority samples by interpolating between existing
minority class samples in the feature space using

nn(v) = argrrbin lfu = foll, st Yu = Yo (6)

where where nn(v) is the nearest neighbor of v in the feature space, f, and f, are the features of
u and v nodes, respectively, and y,, and ¥, are the labels of u and v vertices. The features of the
synthetic node, v’ are given by

fv/:(l_é)va+6xfnn(1)) (7N

where, fy,,(v) is the feature vector of the nearest neighbor of v and ¢ is a random variable taking
value from O to 1. Embed-SMOTE is a variant of SMOTE adapted for deep learning, operating on
the intermediate embedding layer of a GNN. Graph SMOTE is similar to SMOTE but generates
synthetic nodes by interpolating in the embedding space and uses a neural network to predict edge
existence.

5.3 RESULTS

LIMO consistently outperformed baseline methods across various imbalance ratios on most datasets.
For homophilous (Cora LT) and heterophilous (Twitter) graphs, GNNs demonstrated significant
performance improvements, especially for heterophilous datasets (figure 2). For instance, with an
imbalance ratio of 0.4, GNNs achieved an 8.28% performance boost compared to the best baseline
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Table 2: Performance of baselines and LIMO with GraphSAGE for prediction on the Cora Long

Tail dataset

Im?::ﬁ)“ce Setting LI ACC (%) AUC-ROC Fl-score
0s 0.6035 +£0.0000 86.20%0.36 0.9762%0.0006 0.8507 £ 0.0010
RW 0.5904 +£0.0000 8593021 0.9763%0.0006 0.8487 +0.0012
06 SM 0.6035+0.0000 85.73+0.15 0.9761 +£0.0004 0.8444 + 0.0020
: ES 0.5904 £ 0.0000 86.07+0.23 0.9764 +0.0006 0.8486 % 0.0033
GS 0.5904 £0.0000 8537£0.78 0.9750£0.0022 0.8398 + 0.0040
GraphSHA  0.6465+0.0001 87.50%0.01 0.9843 +0.0000 0.8688 + 0.0000
LIMO  0.9693 £0.0000 92.67 £0.40 0.9898 £ 0.0000 0.9274  0.0045
0s 0.6035 +£0.0000 86.23+0.42 0.9762+0.0006 0.8512 % 0.0008
RW 0.5904 +£0.0000 8593021 0.9763%0.0006 0.8487 £ 0.0012
05 SM 0.6035+0.0000 85.70+0.10 0.9761 +0.0004 0.8441 = 0.0017
: ES 0.5904 +0.0000 86.07+0.23 0.9764 +0.0006 0.8486 % 0.0033
GS 0.5904 £ 0.0000 85.37+0.78 0.9750+0.0022 0.8398 £ 0.0040
GraphSHA  0.6443 +0.0000 87.73+0.00 0.9846 +0.0000 0.8686 + 0.0000
LIMO  0.9693 £0.0000 92.67 +0.40 0.9897 £ 0.0000 0.9274 + 0.0045
0s 0.6035 +0.0000 86.10+0.44 0.9757 +0.0009 0.8508 % 0.0048
RW 0.5904 +£0.0000 8593021 0.9763%0.0006 0.8487 £ 0.0012
04 SM 0.6035£0.0000 85.70£0.10 0.9761 £0.0004 0.8439 £ 0.0016
: ES 0.5904 +0.0000 86.07+0.23 0.9764 +0.0006 0.8486 % 0.0033
GS 0.5904 +£0.0000 85.37+0.78 0.9750+0.0022 0.8398 £ 0.0040
GraphSHA  0.6464 £0.0000 87.27 £0.03 0.9842 +0.0000  0.8685 + 0.0000
LIMO  0.9693 £0.0000 92.67 £0.40 0.9898 £ 0.0000 0.9274 + 0.0045
0S 0.6029 £0.0000 8550+0.20 0.9751 £0.0004 0.8407 £ 0.0019
RW 0.5904 +0.0000 8543 +0.57 0.9754%0.0004 0.8395 £ 0.0059
02 SM 0.6029 +£0.0000 85.20%0.52 0.9750+0.0005 0.8354 £ 0.0060
: ES 0.5904 +0.0000 8537 +0.15 0.9754 +0.0007 0.8391 +0.0013
GS 0.5904 +0.0000 85.70+0.70 0.9753+0.0007 0.8418 £ 0.0100
GraphSHA  0.6454 +0.0000 86.900.00 0.9835%0.0000 0.8658 + 0.0000
LIMO  0.9650 +0.0000 92.67 +0.23 0.9892 +0.0001 0.9269 + 0.0028
0s 0.6004 £ 0.0000 8423025 0.9696%0.0008 0.8201 % 0.0034
RW 0.5904 +0.0000 84.27+0.51 0.9693 +0.0005 0.8193 + 0.0046
ol SM 0.6004 £ 0.0000 84.13+0.23 0.9689 +0.0001 0.8173 £ 0.0042
: ES 0.5904 £0.0000 83.93+0.59 0.9694+0.0011 0.8148 + 0.0066
GS 0.5904 +0.0000 83.67+0.32 0.9685+0.0027 0.8158 +0.0034
GraphSHA  0.6284+0.0002 85.67%0.02 0.9783%0.0000 0.8389 + 0.0000
LIMO  0.9485+0.0000 92.03+0.15 0.9871+0.0004 0.9198  0.0013




Under review as a conference paper at ICLR 2025

on Twitter. However, the impact of increasing LI was less pronounced on homophilous graphs, with
a maximum improvement of 6.36% on Cora LT compared to the best baseline.

We observe a diminishing effect of LI on GNN performance as the imbalance ratio decreases. This
can be attributed to the limited number of potential edges that can be added to the graph with fewer
minority class nodes. While LIMO can effectively increase LI, its impact is less significant in graphs
with higher average degrees, as there are fewer opportunities for additional edge connections, as can
be seen in the case of Amazon datasets (see table[T|and figure[7).

N SMOTE BN Reweight WM Embed_up B Over-Sampling B GraphSMOTE B LIMO GraphSHA

100% Accuracy 10 AUC-ROC 10 F1 Score
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(o]
© 40% 0.4 0.4
20% 0.2 0.2
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Figure 2: Performance of LIMO as compared to the baselines on Cora (Homophilous) and Twitter
(Heterophilous) datasets

Due to the space limitation, we defer more experimental results on the other datasets (BlogCatalog,
Citeseer, PubMed, Amazon (U-P-U), Amazon (U-S-U), Amazon (U-V-U), and Amazon (All)) in

Appendix [C]
5.4 PARAMETER SENSITIVITY

LIMO features two critical hyperparameters: node upscale and edge upscale. The node upscale
parameter determines the multiplication factor for the existing nodes of the minority class to achieve
a balanced dataset. Similarly, the edge upscale parameter specifies the multiplication factor for the
total degrees of the minority nodes to generate edges in the balanced dataset. Our observations
indicate a positive correlation between the performance and the number of edges added, as shown
in figure[d Especially for a graph with a low imbalance ratio, there is a positive correlation between
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the multiple of synthetic minority nodes added and its LI and the performance of GNN trained on
the graph (figure[3). This is confirmed by a weighted average of the Spearman rank-order correlation
coefficient for LI and performance, which is 0.994-2 x 10~ 2, This value is approximately equal to 1,
which indicates that the LI and performance are directly proportional. We estimate these coefficients
by calculating the Spearman coefficient between LI and Accuracy for each imbalance ratio for the
data shown in figure [3] Then, we took the weighted average of all the Spearman coefficients for
Cora using the inverse of the p-value as the weights. Same experiment on CiteSeer dataset also give
similar stated in the appendix [C.3]

1.0 100% 1.0 100% 1.0 100%
0.8 80% o) 0.8 74 80% [s) 0.8 7/_4 80% o)
2 < 2
0.6 60% = 0.6 60% = 0.6 60% =
S 3 i oy = 3
0.4 40% £ 0.4 40% £ 0.4 40% £
g g g
0.2 20% < 0.2 20% < 0.2 20% <
5 9 5
0.0 2 3 2 5 0% 007 2 3 4 5 0% 0.0 2 3 2 5 0%
Node upsacale factor Node upsacale factor Node upsacale factor
(a) For imbalance ratio = 0.6 (b) For imbalance ratio = 0.5 (c) For imbalance ratio = 0.4
1.0 100% 1.0 100%
-
08— [80% 5 08 %:: 80%
< 2
0.6 60% = 06 60% =
o ol 9
0.4 40% £ 04 40% £
S S
0.2 20% < 02 20% <
007 2 3 2 5 0% 0.0 2 3 2 5 0%
Node upsacale factor Node upsacale factor
(d) For imbalance ratio = 0.2 (e) For imbalance ratio = 0.1

Figure 3: The plots for LI of graph and performance of GNN on Cora dataset with different node
upscale factors

5.5 ABLATION STUDY

We have claimed in this paper that the LI has a direct relationship with the performance of the GNN
on the graph. To verify that, we designed a pair of experiments, one where we added different
fractions of maximum edges that increase the LI of the resulting synthetic graph according to the
algorithm [T]in increasing order, and we have noted the performance of the GNN trained on each of
the synthetic datasets, the results of this experiment are shown in figured In the other, we similarly
added different fractions of maximum edges that decrease the LI of the resulting synthetic graph,
whose results are as shown in the figure 5} These results are for the Cora dataset with different
imbalance ratios for training. The results of both experiments agree with our claim of the existence
of a positive correlation between LI and the performance of GNNs as the weighted average of the
Spearman rank-order correlation coefficient for LI and performance is 0.8493 &+ 0.1283, which is
close to one. For GNN trained on Citeseer, the value is 0.75762 4= 0.08054. We estimate these coef-
ficients by calculating the Spearman coefficient between LI and Accuracy for each imbalance ratio
for the data shown in figure d] 5} 0]and [T0] Then, we took the weighted average of all the Spearman
coefficients for Cora and Citeseer separately using the inverse of the p-value as the weights. Graphs
for CiteSeer dataset can be found in the appendix [C.4] The deviation from the trend in figure ] for
high fraction of edges added to increase LI, might be caused by over-fitting of the model on training
dataset which thus even reduces the performance. In figure 5] we see that the Performance after
some fraction of edges added (that reduce LI) the value of accuraacy does not show any significant
correlation hence a high value of p-value for spearman coefficient like 0.13, 0.95, etc. which are all
higher than 0.05. This might be because after a certain extent the accuracy of the model saturates
and any further decrease in the LI due to addition of edges does not change the underlying graph
structure.
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Figure 4: The plots for performance of GNN on Cora dataset with increase in LI
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Figure 5: The plots for performance of GNN on Cora dataset with decrease in LI

6 RELATED WORKS

Data-level techniques on imbalanced graph data, such as oversampling and undersampling, aim
to balance the dataset by increasing the number of instances in the minority class or reducing the
number of instances in the majority class, respectively. However, undersampling may lead to the
loss of potentially useful data (Khan & Chandral 2024)). Oversampling methods like SMOTE (Syn-
thetic Minority Over-sampling Technique) (Chawla et al.l 2002 generate synthetic examples of the
minority class by interpolating the feature space of the nodes to achieve a more balanced distribu-
tion. However, interpolation in the feature space can generate out-of-context synthetic nodes, which
might lead to the biased learning of GNNs. Also, synthetic nodes borrow edges from their parent
node, which might mislead the GNN. GraphSMOTE [Zhao et al.| 2021| mitigates this issue by using
a GNN to predict the edges of synthetic nodes by learning from the graph itself. GraphSMOTE can
be computationally intensive and complicated, which might lead to longer GNN training times.

ReNode [Chen et al.| (2021)) addresses the problem of class imbalance from the perspective of topol-
ogy imbalance and proposed a model-agnostic method designed to tackle the issue of topology
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imbalance. It achieves this by adaptively re-weighting the influence of labeled nodes according to
their relative positions to the class boundaries. G2GNN Wang et al| (2022b) alleviates the graph
imbalance issue by deriving extra supervision globally from neighboring graphs and locally from
stochastic augmentations of graphs. The recent work HOVER |Ashmore & Chen|(2023) involves a
simple yet effective edge removal method to mitigate heterophily and learn distinguishable node em-
beddings. These are then used to oversample minority bots to generate a balanced class distribution.
FincGAN |Hsu et al.|(2024) employs a Generative Adversarial Network (GAN) to generate synthetic
samples for minority classes, avoiding over-fitting issues common with traditional oversampling
methods.

ImGAGN|Qu et al.|[2021]is an adversarial network-based architecture that adds a set of synthetic mi-
nority nodes to overcome the class imbalance. TAM [Song et al., [2022|1oss, which is topology-aware
margin loss for class imbalanced node classification, performs well by comparing the connectivity
pattern of each node with the class-averaged counterpart and adaptively adjusting the margin accord-
ingly. mGNN |Wang et al.} [2022a mitigates the class imbalance by oversampling after performing
the feature aggregation.

Recent studies such as [Hsu et al.| (2024) and Jing et al.| (2024)) tackle graph imbalance through
oversampling methods. |Hsu et al.[ (2024) utilizes GANs to create synthetic nodes and edges, but
this approach is computationally expensive. [Jing et al.| (2024)) employs dual-feature aggregation to
address heterophily and conducts oversampling in the embedding space, avoiding edge synthesis. In
contrast, the proposed LIMO directly increases a graph property LI through strategic node and edge
augmentation. This increases model performance and improves minority class representation.

In the field of graph-based learning, several innovative approaches have emerged to address class
imbalance. These include Park et al.[(2022), which generates ego networks for minority class nodes
while maintaining structural consistency and employing saliency-based node mixing to avoid intro-
ducing class-specific features. Another method, |Song et al.| (2022), implements a topology-aware
margin loss to enhance the separation of minority class nodes while preserving graph structure. Ad-
ditionally, |Li et al.| (2023)) creates more challenging samples for underrepresented classes, thereby
enhancing training effectiveness in imbalanced scenarios. While these techniques offer innovative
solutions, LIMO sets itself apart by directly utilizing Label Informativeness (LI) to guide both node
and edge augmentation. This approach results in balanced graph representations that are specifically
optimized for downstream GNN tasks.

7 CONCLUSION

In this work, we introduced Label Informativeness-based Minority Oversampling (LIMO), a novel

approach to addressrng class 1mbalance in graph- structured data. Mlgmenungedgesaﬂaanaﬂﬂer

Our theoretlcal analy51s revealed that the performance
of Graph Neural Networks (GNNs) is strongly correlated with label informativeness, with mutual
information acting as a key intermediary. The analysis of the derivative of LI further provided a
deeper understanding of the impact of inter-class edges on informativeness. Experimental results
on various benchmark datasets, both homophilous and heterophilous, demonstrated that LIMO sub-
stantially improves node classification accuracy, particularly in heterophilous settings where class
imbalance is more pronounced.

Despite its strengths, LIMO has certain limitations. First, while the algorithm balances the dataset
without inflating it excessively, there is still an inherent computational cost associated with gener-
ating and evaluating new edges. Second, LIMO’s effectiveness depends on the accuracy of label
informativeness estimation, which may be less reliable in graphs where the node labels exhibit low
correlation with their neighbors. Overcoming these limitations remains an open area for future in-
vestigation.
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A LABEL INFORMATIVENESS AND ACCURACY

A.1 CONDITIONS FOR IMPROVING LABEL INFORMATIVENESS THROUGH EDGE ADDITION

Proof of theorem[I]

Proof. To prove this theorem, we need to show that the derivative of LI with respect to e, is positive
when the condition ey - 1.31167627 > e, is satisfied.

First, let’s rewrite the equation for LI in terms of ep. and e,.:

€he Ebe Cwc Cwc
€beteuwc log (ebc+8711c> + ebetewe log (ebc-i-ewc)

LI =2—
2epctewc lo 2epctewe + Cwc lo Cwe
2(epetewe) g 2(epetewe) 2(epetewe) &) 2(epetewe)

Now, let’s compute the derivative of LI with respect to ep:

dLI -1 Cwe €he
deb - 2ep.+e 2ep.te e e (eb + e )2 log e
be wce be wce “we “we

¢ 2epe+2ewc log (25bc+2ewc> + 2epet2ewe 10g <2ebc+2ewc> ¢ we e

2epetewe 2epbetewe we
(Q:bbc+2eem g (Q:bbc+2eewc> + erce+2ew(: log (26b0+261uc
While fixing e, to be 1 and changing e, from 0 to 100 in the steps of 0.00000001 and noting the

corresponding value of % at each step, we found that for e, > % where t=1.31167628 , we get:

ebce-ib-(;wc log (ebce"lb'cewc) + ebjiéwc log (ebfﬁ;wc> 2ewe log 7261)0 T Cwe
e ))2 (2€pe + 2€4¢)? ewe

dLI
debc

Similarly differentiating LI with respect to e,,. and fixing e, to be 1 and changing e, from 0 to 100
in the steps of 0.00000001 and noting the corresponding value of jeﬂ at we found that for e, < ¢
we get:

dLI
>0
deyc
Since de; and de_- 1s positive, increasing epc beyond 7 and ey, upto ¢t will increase the Label

Informativeness (LI).

The value of ¢ obtained here is calculated keeping in mind the number of edges between classes and
within classes. But this value can be separately calculated for edges within each class and edges
between multiple classes. However, this would be computationally expensive and unnecessary as
the experiment shows that this value is the same for all graphs and the class of interest. Thus this
approach was not explained in this paper.

For more information on the calculation of ¢ refer to the file named experiment.ipynb in the reposi-
tory https://anonymous.4open.science/r/limo-12CC/

O
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A.2 RELATIONSHIP BETWEEN LABEL INFORMATIVENESS AND ACCURACY WITH MUTUAL
INFORMATION AS A MEDIATOR

The proof of theorem 2]

Proof. The Mutual Information between the node labels Y and Z is defined as|Platonov et al.|(2024):
Y, Z)=H(Y)-H(Y|Z)
The accuracy of the GNN model is related to the error rate as|Google| (2024):

Accuracy = 1 — Error Rate

The error rate is defined as:
H(Y|Z)

Error Rate = HY)

Substituting the error rate into the Mutual Information equation, we get:

I(Y,Z) = H(Y) — H(Y) x Error Rate

Simplifying the equation, we get:
1(Y,Z) = H(Y) x (1 — Error Rate)

Substituting the accuracy equation, we get:

I(Y,Z) = H(Y) x Accuracy

‘We also know from |Platonov et al.| (2024) that:

Therefore, the label informativeness LI(G) is directly proportional to the accuracy of the GNN
model.

O

A.3 COMPLEXITY ANALYSIS

In this section, we note the computational cost of the LIMO algorithm, accounting for both node
and edge additions.

SPACE COMPLEXITY

e LIMO (Node Addition): The number of nodes added by LIMO is equal to the number of
minority class nodes, denoted as Tminority- Thus, the space required for additional nodes is
(0] (nminority ) .

* LIMO (Edge Addition): The number of edges added depends on the original L/ value and
the adjacency matrix of the graph. This number, denoted as negges, can vary across datasets.
Hence, the space complexity for edges is O(7edges)-

TIME COMPLEXITY

e LIMO (Node Addition) For each new node added by SMOTE, we need to find the nearest
nodes in the feature space across all the nodes in the graph. Finding the nearest nodes
requires O(n), where n is the total number of nodes in the graph. Since we add nminority
nodes, the total time complexity for SMOTE is: O(nuinority - 1)
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» LIMO Edge Addition For every edge added, calculating pc; and pcs (graph-specific prop-
erties) requires O(n?). This is calculated for all the classes: O(C' - n?), where C' is the
number of classes.

For each newly generated node, which is Tminority in number, we have to compare edge
probability pc; and pe; across all classes. time complexity for this is O(C' - Numinority ). Since
O(C' - Niminority) is smaller than O(C - n?), it can be ignored.

Overall time complexity by combining the above: Total Time Complexity = O(nminority - 12) + O(C'-
n?)
B EVALUATION METRICS

B.1 EVALUATION METRICS

We have used Accuracy, AUC-ROC, and F1 scores to judge the performance of the GNN on imbal-
anced datasets. The details of these metrics are as follows:

Accuracy

Accuracy measures the proportion of correct predictions made by the model out of all predictions
made. It is calculated using the formula:

Number of Correct Predictions

A =
ceuracy Total Number of Predictions

While this is a good metric to infer the overall performance of a model, it fails to tell the whole
story when there is a stark imbalance in the class distribution of the nodes. Even if all the minority
is classified as majority class the accuracy score will be high. It also fails when the detection of one
class correctly is more important than the other classes.

Area under the receiver operating characteristic curve (AUC-ROC)

It is a performance measurement for a classification problem defined as the area under the true
positive rate versus the false positive rate plot, ranging from 0 to 1. The true positive rate, also
known as sensitivity or recall, is the ratio of the correctly predicted positives to the sum of the
correctly predicted positives and incorrectly predicted negatives. The false positive rate is the ratio
of incorrectly predicted positives to the sum of incorrectly predicted positives and correctly predicted
negatives.

F1-Score

The metric is defined as the harmonic mean of precision and recall, ranging from 0 to 1. Precision
is the ratio of correctly predicted positives to all positives. Recall is the same as was defined for
AUC-ROC.

Precision x Recall

F1-Score = 2 x —
Precision + Recall

B.2 BASELINES

To evaluate LIMO’s performance, we compared it against several state-of-the-art oversampling tech-
niques, including Oversampling (OS), Re-weight (RW), SMOTE (SM), Embed-up (ES), and Graph
SMOTE (GS). A brief description of the baselines is given below:

1. Over-sampling (OS) is a classical approach for imbalanced learning problems by repeating
samples from minority classes. We implement it in the raw input space by duplicatingn
minority nodes along their edges. In each training iteration, V is over-sampled to contain
n + ng nodes, and A € R("t7)x(n4ns) [7hag et al.| (2021)
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2. Re-weightYuan & Mal (2012) (RW) is a cost-sensitive approach that gives class-specific
loss weight. In particular, it assigns higher loss weights to minority samples to alleviate the
issue of majority classes dominating the loss function.

3. SMOTE (Synthetic minority over-sampling technique)Chawla et al.| (2002) (SM) in the
feature space is the interpolation of the synthetic data point between the target node and the
node that is nearest to it in the feature space, nn(v) as given by

nn(v) = argmin ||f, — foll, st. Y, =Y,

where f, and f, are the features of u and v nodes, respectively, and Y,, are the labels of u
and v vertices. The features of the synthetic node are given by

for=(1=06) X fy +0 X fan(v)

4. Embed-SMOTE (ES) /Ando & Huang| (2017) A variant of SMOTE adapted for deep learn-
ing, designed to oversample data within the intermediate embedding layer of a GNN. This
approach eliminates the need for edge generation by operating directly on the learned rep-
resentations.

5. GraphSMOTE (GS)|Zhao et al.|(2021)) generates synthetic nodes similar to smote, but here,
it interpolates in the embedding space to create the embedding of the synthetic node. There
is an edge generator that learns using a neural network whether there exists an edge between
given nodes. A GNN then does the classification; some versions also use the loss in the
classification to train the embedding and the edge generator.

B.3 HARDWARE AND SOFTWARE SPECIFICATIONS

We experiment on each dataset using a standard split of 20 nodes for training, 25 for validation,
and 55 for testing in the majority class. For minority classes with an imbalance ratio ¢ € [0, 1], we
sampled 20 x ¢ nodes. When the minority class had fewer than three nodes, we allocated one node
each for training, validation, and testing. To evaluate LIMO, we compared it with several baselines:
Over-sampling (OS), Reweight (RW), SMOTE (SM), Embed-SMOTE (ES), and Graph SMOTE
(GS). All experiments were performed on NVIDIA GeForce RTX 3090, A100-SXM4-80GB, and
RTX 6000 Ada Generation GPUs in Python using PyTorch and PyG. We employed GraphSAGE as
the GNN architecture for training on the balanced datasets created by LIMO and the baselines. We
conducted experiments with three random seeds (10, 20, 30) to mitigate randomness and averaged
the results. The GraphSAGE model used two layers with a linear layer output dimension of 64
for both layers. ReLU activation was employed, and we used Adam optimizer for training with
a learning rate of 0.001. We either terminate the training after 5000 epochs or when validation
performance plateaued.

C ADDITIONAL RESULTS

C.1 HOMPHILOUS DATA

This section contains the results for the performance of GNNs (GraphSAGE and GCN) on some
more homophilous datasets (CiteSeer, CiteSeer Long Tail, and PubMed).
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Table 3: Performance of baselines and LIMO on the Cora dataset

Imbalance

ratio Setting LI ACC (%) AUC-ROC F1-score
oS 0.5920 £0.0031 73.07 £3.65 0.9331 £0.0144 0.7281 £ 0.0384
RW 0.5904 £0.0000 72.47£3.61 0.9358+0.0123 0.7198 £ 0.0386
06 SM 0.5920 £0.0031 73.77+£3.49 0.9355+0.0136 0.7353 £ 0.0362
: ES 0.5904 £0.0000 74.29+3.51 0.9363+£0.0121 0.7395 £ 0.0362
GS 0.5904 £0.0000 77.83£221 0.9550+0.0076 0.7760 + 0.0228
LIMO  0.8200 £ 0.0000 86.92 +1.20 0.9820 = 0.0071 0.8657 = 0.0127
0S 0.5919£0.0027 7273 +£3.06 0.9321 +£0.0142 0.7232 +0.0307
RW 0.5904 £ 0.0000 73.16 +£3.38 0.9337 £0.0136  0.7283 +0.0351
05 SM 0.5919+£0.0027 72.03+3.64 0.9328+0.0153 0.7157 +£0.0383
; ES 0.5904 £ 0.0000 72.73+£3.57 0.9327 £0.0143 0.7226 + 0.0371
GS 0.5904 £ 0.0000 77.40+1.58 0.9531+0.0038 0.7717 +£0.0159
LIMO  0.8039 £ 0.0000 86.06 +2.45 0.9801 +0.0084 0.8573 + 0.0263
0S 0.5917 £0.0026 7022 £3.65 0.9293 £0.0142 0.6947 £ 0.0427
RW 0.5904 £ 0.0000 70.65 £4.18 0.9300 £0.0145 0.6994 + 0.0486
0.4 SM 0.5917 £0.0026  69.35+3.00 0.9278 £0.0121 0.6861 +0.0374
’ ES 0.5904 £ 0.0000 70.74 £3.77 0.9296 +£0.0144 0.7013 £ 0.0425
GS 0.5904 £ 0.0000 77.23+£1.69 0.9549 +0.0065 0.7699 + 0.0180
LIMO  0.7841 £ 0.0000 86.66 +1.92 0.9803 + 0.0084 0.8647 + 0.0192
oS 0.5906 £ 0.0014 58.09+£3.79 0.9003 £0.0187 0.5458 + 0.0464
RW 0.5904 £0.0000 59.22+3.41 0.9004 +£0.0184 0.5570 +0.0433
02 SM 0.5906 £ 0.0014 58.61 £3.79 0.9007 +£0.0201  0.5498 + 0.0457
: ES 0.5904 £0.0000 58.18+3.60 0.8979 +0.0203 0.5410+0.0510
GS 0.5904 £0.0000 71.34+5.46 0.9361 £0.0161 0.7019 + 0.0654
LIMO  0.7246 £ 0.0000 82.25+1.33 0.9678 +0.0104 0.8238 + 0.0135
0OS 0.5917 £0.0002 48.92+3.43 0.8742+0.0290 0.4043 + 0.0404
RW 0.5904 £ 0.0000 49.26 +2.34 0.8766 +0.0271 0.4055 +0.0251
01 SM 0.5917 £0.0002 49.35+3.78 0.8758 £0.0287 0.4101 +0.0433
: ES 0.5904 +£0.0000 49.70+1.73 0.8762+0.0270 0.4107 £ 0.0158
GS 0.5904 +0.0000 66.76 £6.56 0.9123 +£0.0395 0.6503 + 0.0787
LIMO  0.6748 £ 0.0000 62.08 +4.43 0.9402 + 0.0167 0.6003 + 0.0498
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Table 4: Performance of baselines and LIMO with GCN for prediction on the Cora Long Tail dataset

Imi’:tlﬁ)““ Setting LI ACC (%) AUC-ROC Fl-score
0s 0.6035 £0.0000 80.10% +0.20% 0.9519 +0.0013  0.7893 = 0.0036
RW 0.5904 +0.0000 82.57% +0.21%  0.9602 +0.0007  0.8156 + 0.0030
06 SM 0.6035+0.0000  80.30% +0.10%  0.9510+0.0004 0.7915  0.0030
- ES 0.5904 +0.0000  82.43% +0.29%  0.9607 +0.0006 0.8130  0.0029
GS 05943 +0.0022  81.97% + 1.00%  0.9587 +0.0015  0.8083 + 0.0124
GraphSHA  0.6815+£0.0000  87.10£0.01  0.9820+0.0000 0.8570 = 0.0000
LIMO  0.96930.0000 90.57% +0.42% 0.9871 + 0.0001 0.9095  0.0036
0s 0.6035+0.0000  80.07% +0.06%  0.9520 +0.0012 0.7892 + 0.0017
RW 0.5904 +0.0000 82.57% +0.21%  0.9602 + 0.0007  0.8156 + 0.0030
05 SM 0.6035 £0.0000 80.30% % 0.10%  0.9508 + 0.0004 0.7912 = 0.0027
- ES 0.5904 £0.0000  82.60% % 0.00%  0.9611 0.0000 0.8150  0.0000
GS 0.5943 £0.0022 81.97% % 1.00% 09587 +0.0015 0.8083 + 0.0124
GraphSHA  0.6820 £0.0001  87.20£0.01  0.9820+0.0000 0.8577 = 0.0000
LIMO  0.9693%0.0000 90.90% +0.82% 0.9874 + 0.0001 0.9138  0.0064
0S 0.6035+0.0000  80.07% +0.15%  0.9522 +0.0010  0.7904  0.0045
RW 0.5904 +0.0000  82.57% +0.21%  0.9602 +0.0007  0.8156  0.0030
04 SM 0.6035+0.0000  80.27% +0.15%  0.9510 +0.0005 0.7911  0.0035
- ES 0.5904 +0.0000  82.60% +0.00%  0.9611 +0.0000 0.8150  0.0000
GS 0.5943+0.0022  81.97% + 1.00%  0.9587 +0.0015  0.8083 + 0.0124
GraphSHA  0.6821 £0.0000  87.07+0.01  0.9820+0.0000 0.8575 % 0.0001
LIMO  0.9693%0.0000 90.23% +0.55% 0.9871+0.0002 0.9077 + 0.0043
0s 0.6029 £0.0000 79.10% % 0.35%  0.9532 +0.0005 0.7752 % 0.0047
RW 0.5904 +0.0000 81.47% +0.58%  0.9599 + 0.0013  0.8023  0.0053
02 SM 0.6029 +£0.0000 79.47% +0.12%  0.9532+0.0017  0.7795 + 0.0022
: ES 0.5904 +0.0000  81.80% +0.56%  0.9613 + 0.0006 0.8053  0.0073
GS 05928 £0.0010  81.43% +0.32%  0.9580 + 0.0004  0.7988  0.0054
GraphSHA  0.6796 £0.0000  87.37£0.00  0.9814 +0.0000 0.8596 % 0.0001
LIMO  0.9650 £ 0.0000 90.60% % 0.26% 0.98710.0002 0.9096 + 0.0015
0S 0.6004 +0.0000  75.60% +0.70%  0.9439 +0.0012  0.7307 + 0.0095
RW 0.5904 +0.0000  77.03% +0.15%  0.9561 +0.0014 0.7477 + 0.0034
ol SM 0.6004 £0.0000  75.53% 0.38%  0.9450 +0.0025 0.7311 £ 0.0053
: ES 0.5904 £0.0000 77.50% % 0.36%  0.9569 +0.0009  0.7504 = 0.0069
GS 05929 +0.0019  76.57% +0.67%  0.9530 + 0.0026 0.7422 + 0.0083
GraphSHA  0.6631 £0.0000  85.80£0.02  0.9733£0.0000 0.8438 = 0.0001
LIMO  0.9485+0.0000 89.37% +0.45% 0.9858 + 0.0004 0.8952 + 0.0047
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Table 5: Table for the performance of baselines and LIMO on the CiteSeer dataset with node classi-
fication using GraphSAGE

Imbalance - getting LI ACC (%)  AUC-ROC Fl-score
0S 0452778 £0.002726 5747624 08558%00225 05750 £0.0591
RW 0452147 £0.002403 60.10 +4.04 0.8662=0.0093 0.5983 +0.0390
oe SM 0452778 %0002726 57.88+471 0.8565+0.0247 0.5780 % 0.0457
: ES 0450760 %0.000000 5636+578 08497 +0.0239 0.5636 +0.0551
GS 0450760 +0.000000 61.52+5.16 0.8776=00221 0.6141 +0.0555
LIMO  0.849402 % 0.000000 77.98%2.61 0.9596+0.0101 0.7663 % 0.0307
0S 0452367 +0.002494 5434+6.28 0.8467%00223 05390 + 0.0643
RW 0452017 £0.002178 S5747+4.70 0.8576+00153 05720 £ 0.0535
0s SM 0452367 +0002494 54344738 08457 %0.0279 0.5412 + 0.0747
: ES 0450760+ 0000000 5343+6.12 08420400241 0.5300 % 0.0643
GS 0450760+ 0.000000 S58.79+3.72 0.8661+0.0162 0.5859 +0.0356
LIMO  0.831329%0.000000 78.39%3.34 0.9562+0.0137 0.7708 % 0.0381
0S 0452246 +0.000876 49.90 +6.97 0.8360%0.0306 04899 + 0.0779
RW 0451579 £0.001419 54244427 0.8518+0.0041 05398 +0.0552
04 SM 0452814 +0000698 53.03+892 08350%00356 0.5317 +0.0977
: ES 0450760+ 0000000 4858+7.43 08292+0.0384 04767 +0.0811
GS 0450760 +0.000000 57.17+648 0.8623+00219 05715+ 0.0651
LIMO  0.807730 % 0.000000 79.80 + 1.95 0.9618 = 0.0084 0.7886 + 0.0204
0S 0451628 +0.000179 3545+4.01 07673+ 00401 02884 + 0.0461
RW 0451069 +0.000536 38.79+132 0.7796%00235 03329 +0.0124
02 SM  0451628=0000179 3626+443 07781 £0.0364 0.2960 + 0.0523
: ES 0450760+ 0000000 36.36+248 07628 +0.0322 0.3057 +0.0270
GS 0450760 +0.000000 41.01+6.13 0.7959+0.0601 03676+ 0.0666
LIMO 0727124 £ 0.000000 76.87 = 4.66 0.9423 % 0.0121 0.7689 + 0.0473
0S 0451415+ 0000058 3253 +324 07417200402 02259 +0.0313
RW 0451000 +0.000417 32.93+281 0.7428+00382 02401 +0.0102
o SM 0451415+ 0000058 32334411 07447 %00394 0.2268 + 0.0367
: ES 0450760+ 0000000 3131+2.82 07196+00391 02256+ 0.0207
LIMO  0.644973 % 0.000000 50.60 +8.20 0.8858 + 0.0168 0.5040 + 0.0863
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Table 6: Performance of baselines and LIMO on the CiteSeer Long Tail dataset with node classifi-

cation using GraphSAGE
Im'r’:tlﬁ)“ce Setting LI ACC (%) AUC-ROC Fl-score
0s 0.478898 + 0.000000 78.53 £0.51  0.9343+0.0004  0.7497 + 0.0083
RW 0.450760 + 0.000000 78.70 £0.61  0.9331+0.0004  0.7496 + 0.0095
06 SM 0.478898  0.000000 78.40+0.35  0.9340%0.0005  0.7462 + 0.0044
: ES 0.450760 + 0.000000 76.13+0.83  0.9297+0.0010  0.7138 + 0.0067
GS 0.450760 % 0.000000  76.97 + 2.50 0.9283 + 0.00 0.7267 + 0.0418
GraphSHA  0.698450 +0.000139  77.53£0.00  0.9365%0.0000  0.7398  0.0000
LIMO  0.990356 + 0.000000 89.40+0.66  0.9751+£0.0035  0.8559  0.0106
0s 0.477518 = 0.000000 7830030  0.933240.0005  0.7502 £ 0.0068
RW 0.450760 + 0.000000  78.1 £0.15  0.9322+0.0000  0.7482 + 0.0045
05 SM 0.477518 £ 0.000000 78.03+0.45  0.9328+0.0002  0.7451 + 0.0042
: ES 0.450760  0.000000 7820 £0.35  0.9325+0.0000  0.7480  0.0058
GS 0.450760 + 0.000000 77.93+0.38  0.9303%0.0010  0.7500 + 0.0036
GraphSHA  0.706850 + 0.000257 77.17£0.01  0.9364%0.0000  0.7327 + 0.0000
LIMO  0.989453 + 0.000000 89.37+0.60  0.9749 £0.0005  0.8556 + 0.0097
oS 0.477243 +0.000000 77.93+1.00  0.9311+0.0013  0.7453 +0.0145
RW 0.450760 + 0.000000 77.17£0.68  0.9304%0.0012  0.7374 +0.0119
04 SM 0.477243 +0.000000 77.70+1.01  0.9309+0.0012  0.7409 + 0.0137
: ES 0.450760 + 0.000000 76.70 £0.78  0.9287+0.0027  0.7322 +0.0105
GS 0.450760 + 0.000000 7547 £2.75  0.9273+0.0031  0.7176 + 0.0379
GraphSHA  0.716131 +0.000131  77.33+£0.00  0.9366+0.0000  0.7302 + 0.0001
LIMO  0.988246 + 0.000000 89.27+0.55  0.9752+0.0038  0.8530 % 0.0113
0S 0.474473 +0.000000 73.83+0.57  0.9227+0.0007  0.6956 + 0.0030
RW 0.450760 + 0.000000 73.80 £0.40  0.9214+0.0020  0.6942 + 0.0043
0o SM 0.468297 + 0.000000 71.67 £0.40  0.9158+0.0002  0.6536 + 0.0037
: ES 0.450760 + 0.000000 73.73+£0.55  0.9203+0.0044  0.6936 + 0.0028
GS 0.450760 + 0.000000 71.67 021  0.9139+0.0006 0.6552+0.0031
GraphSHA  0.442478 + 0.294456  73.00£0.03  0.9320%0.0000  0.7193  0.0000
LIMO  0.983798 + 0.000000 87.60+0.30 0.972044 + 0.001620 0.8273  0.0050
0s 0.468297 + 0.000000 7133031  0.9153+0.0003  0.6536 + 0.0043
RW 0.450760 + 0.000000 71.63 +0.46  0.9152+0.0001  0.6535 + 0.0051
o1 SM 0.468297 + 0.000000 71.66 £0.40 09158 +0.0002  0.6536 + 0.0037
: ES 0.450760 £ 0.000000 71.60 £0.40  0.9155+0.0002  0.6544 + 0.0049
GS 0.450760 + 0.000000 71.66 021  0.9139+0.0006  0.6552 + 0.0031
GraphSHA ~ 0.490000  0.360531  72.93+0.36  0.9268 +0.0000  0.7098  0.0020
LIMO 0978192 +0.000000 85.90+0.36  0.9701 £0.0010  0.7963 % 0.0057
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Table 7: Table for the performance of baselines and LIMO on the CiteSeer Long Tail dataset with
node classification using GCN

Imbalance

ratio Setting LI ACC (%) AUC-ROC F1-score

(N 0.446417 £ 0.000000 68.90 +0.44 0.890171 +0.002815 0.660476 + 0.008331
RW 0.450760 + 0.000000 69.30 +0.30 0.897712 +0.000724  0.669292 + 0.003145
0.6 SM 0.478898 +0.000000 68.55+0.49 0.889618 +0.006080 0.601887 +0.012084
’ ES 0.450760 + 0.000000 70.17 £0.29 0.899685 + 0.000626  0.657237 + 0.005983
GS 0.450760 + 0.000000 67.83 £0.42 0.890758 +0.006680 0.654973 + 0.003506
GraphSHA  0.746710 + 0.000009 77.93 £0.00 0.936423 +0.000024  0.748549 + 0.000062
LIMO 0.990356 + 0.000000 89.43 +0.12 0.976467 + 0.000760 0.856456 + 0.004074
oS 0.444640 + 0.000000 68.30 +£0.17 0.888627 +0.005262 0.653147 + 0.006389
RW 0.450760 + 0.000000 67.97 £0.25 0.894607 +0.002693  0.655509 + 0.000167
05 SM 0.477518 £0.000000 66.70 £0.85 0.889663 + 0.006083 0.588322 + 0.015761
’ ES 0.450760 + 0.000000 67.43 £0.15 0.895487 +0.001289  0.651248 + 0.002490
GS 0.450526 £ 0.000330 65.35+0.78 0.896441 +0.003702 0.631953 + 0.001048

GraphSHA  0.753124 £0.000203 77.87 £0.00 0.938071 £ 0.000003  0.750878 + 0.00002
LIMO 0.989453 + 0.000000 87.87 £ 0.15 0.975472 + 0.001425  0.841992 + 0.001982
(O 0.443899 + 0.000000 66.40+0.26 0.886844 +0.002257 0.639946 + 0.003119
RW 0.450760 + 0.000000 66.33 +0.76 0.889157 +£0.001822  0.639803 + 0.006857
04 SM 0.477243 £ 0.000000 64.45+0.07 0.888734 +0.005278 0.575310 + 0.017942
: ES 0.450760 + 0.000000 66.23 £0.97 0.890453 £ 0.001315 0.639612 + 0.008641
GS 0.449954 + 0.000763  64.83 +1.50 0.893443 +0.007547 0.628159 + 0.014430
GraphSHA  0.760120 + 0.000235 77.23+0.01  0.936290 + 0.000003  0.743741 £ 0.000090
LIMO 0.988246 = 0.000000 87.10 £ 0.52 0.976667 = 0.000077 0.835901 + 0.003445
(O 0.467733 £0.000000 59.97 +1.30 0.881278 +£0.001615 0.527800 + 0.011220
RW 0.450760 + 0.000000 62.13 +£1.64 0.888319 +£0.007002 0.535145 + 0.005992
02 SM 0.474473 +0.000000 59.00 +£1.27 0.879820 +0.004675 0.531785 +0.013449
: ES 0.450760 + 0.000000 62.17 +1.82 0.887737 £0.007446  0.535795 + 0.009713
GS 0.461211 £0.007053 60.13 £0.81 0.886106 +0.006330 0.554783 + 0.020292
GraphSHA  0.744597 £ 0.000045 75.63 £0.00 0.929215 +0.000002 0.722743 + 0.000029
LIMO 0.983798 + 0.000000 83.37 +0.61 0.972302 = 0.001058 0.785360 + 0.010478
(N 0.463491 £ 0.000000 55.13+£0.15 0.865911 +0.009843 0.444481 + 0.003753
RW 0.450760 + 0.000000 57.20+0.61 0.870522 +0.002306 0.462029 + 0.003684
0.1 SM 0.468297 £ 0.000000 53.95+0.21 0.857088 +0.004582 0.441853 +0.022925
’ ES 0.450760 + 0.000000 57.57 £0.49 0.870388 +£0.002294  0.464363 + 0.003757
GS 0.460644 +0.011577 54.70+£0.42 0.872434 +£0.000079 0.503474 +£0.010128
GraphSHA  0.755621 £ 0.000022 73.57 £0.01 0.914589 +0.000014  0.700218 £ 0.000116
LIMO 0.978192 + 0.000000 80.17 = 0.75  0.965655 + 0.002045  0.728264 + 0.020225
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Table 8: Table for the performance of baselines and LIMO on the PubMed dataset with node classi-
fication using GraphSAGE

Imbalance

ratio Setting LI ACC (%) AUC-ROC F1-score
0S 0.409324 £0.00011 72.73 £3.74 0.9088 +£0.0289 0.7127 £ 0.0452
RW 0.409284 £ 0.00000 76.16 £4.94 0.9123 £0.0236 0.7534 + 0.0548
06 SM 0.409284 £ 0.00000 69.09 +3.43 0.8841 £0.0226 0.6659 + 0.0374
) ES 0.409415 £0.00001 69.70 £4.29 0.8867 £0.0191 0.6721 +0.0537
GS 0.409284 £ 0.00000 70.00 £3.86 0.8898 £0.0165 0.6735 +£0.0494
LIMO  0.583905 + 0.00000 92.73+3.43 0.9804 +0.0115 0.9277 £+ 0.0329
OS 0.409259 £ 0.00005 7091 £4.45 09037 £0.0282 0.6851 £0.0610
RW 0.409284 £ 0.00000 73.33+£5.55 0.8963 £0.0303 0.7140+0.0712
05 SM 0.409284 £ 0.00000 66.97 £2.14 0.8768 £0.0042 0.6347 +£0.0328
) ES 0.409298 £ 0.00003 67.88+1.71 0.8820+0.0085 0.6441 +0.0204
GS 0.409284 £ 0.00000 67.68 +2.45 0.8707 £0.0070 0.6421 +0.0345
LIMO  0.57292 + 0.00000 91.52+343 0.9812 +0.0053 0.9155 £ 0.0345
oS 0.409301 £0.00003 71.52+3.53 0.9046 £0.0222 0.6853 + 0.0484
RW 0.409284 £ 0.00000 72.12+£3.78 0.8992 +£0.0336 0.6889 +0.0597
0.4 SM 0.409284 £ 0.00000 68.18 £1.29 0.8763 £0.0242 0.6392 +£0.0178
’ ES 0.4093 £ 0.00003 67.27 £1.60 0.8628 £0.0215 0.6359 £0.0402
GS 0.409284 £ 0.00000 67.07 £1.40 0.8798 £0.0060 0.6197 £0.0193
LIMO 0.559164 = 0.00000 91.52+1.71 0.9814 +0.0032 0.9155 +0.0172
OS 0.409341 £0.00003 65.25+2.13 0.8794 £0.0226 0.5750 + 0.0439
RW 0.409284 £ 0.00000 65.05+4.13 0.8730+£0.0342 0.5724 +0.0738
0.2 SM 0.409284 £ 0.00000 63.33+0.43 0.8758 £0.0298 0.5433 +0.0188
) ES 0.409349 £ 0.00004 63.64 +£0.86 0.8788 £0.0201 0.5418 + 0.0286
GS 0.409284 £ 0.00000 63.03 £0.00 0.8681 £0.0245 0.5344 £ 0.0091
LIMO  0.516267 = 0.00000 85.45+0.86 0.9683 +0.0030 0.8528 + 0.0087
OS 0.409322 £ 0.00002 63.03+1.05 0.8684 +£0.0301 0.5211 £0.0150
RW 0.409284 £ 0.00000 64.85+1.82 0.8801 £0.0118 0.5535 +£0.0316
0.1 SM 0.409284 +£0.00000 62.42+1.71 0.8603 £0.0085 0.5161 +0.0231
) ES 0.40933 £ 0.00003 62.73£1.29 0.8508 £0.0125 0.5138 £0.0124
GS 0.409284 £ 0.00000 62.83 +1.40 0.8587+0.0032 0.5155+0.0136
LIMO 0.478199 + 0.00000 68.18 £4.71 0.9279 + 0.0068 0.6187 £ 0.0635

C.2 HETEROPHILOUS DATA

Here we have listed the results for the performance on some more heterophilous dataset, BlogCat-
alog, Twitter, Amazon (U-P-U), Amazon (U-S-U), Amazon (U-V-U), and Amazon (All). Here we
observed in Amazon (ALL) and (U-S-U) that when the average of graph is already high LIMO could
not perform as good as when the density is less, as in the other cases, for low imbalance ratios.
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Figure 6: Performance of GNN on CiteSeer and PubMed datasets

Table 9: Table for the performance of baselines and LIMO on the BlogCatalog dataset with node
classification using GraphSAGE

Imbalance

ratio Setting LI ACC (%) AUC-ROC F1-score
(0N 0.010281 £0.000148 7.08 £0.58 0.5570 £0.0165 0.0646 + 0.0046
RW 0.010383 £ 0.000000 7.02+£0.74 0.5533 £0.0124 0.0629 + 0.0069
0.6 SM 0.010281 +0.000148 7.57+0.12 0.5572£0.0139 0.0692 + 0.0024
) ES 0.010383 +0.000000 7.19+0.24 0.5544 £0.0144 0.0656 + 0.0023
GS 0.010378 £ 0.000009  9.09 £0.56  0.5817 £0.0004 0.0821 + 0.0069
LIMO  0.098992 + 0.000000 24.34 +1.01 0.8004 +0.0111 0.2473 + 0.0088
(0N 0.010306 £ 0.000115  7.25+0.79 0.5541 £0.0098 0.0653 + 0.0066
RW 0.010383 +0.000000 7.30+0.58 0.5506 £0.0111 0.0658 + 0.0046
05 SM 0.010306 £ 0.000115  7.64+£0.30 0.5558 £0.0108 0.0689 + 0.0025
) ES 0.010383 +0.000000 7.81 £0.39 0.5529£0.0122 0.0697 + 0.0035
GS 0.010370 £ 0.000009 894 +0.70 0.5707 £0.0110 0.0793 + 0.0046
LIMO  0.090304 + 0.000000 21.49+4.74 0.7571 £0.0679 0.2145 + 0.0487
(O 0.010311 £0.000140 7.86+0.61 0.5501 +£0.0240 0.0700 + 0.0071
RW 0.010383 +0.000000 7.15+0.38 0.5442 +£0.0127 0.0641 + 0.0049
0.4 SM 0.010311 £0.000140 7.64+0.30 0.5532+0.0129 0.0730 +0.0018
) ES 0.010383 £ 0.000000  7.65+0.20 0.5479 £0.0136 0.0674 + 0.0023
GS 0.010377 £0.000014 8.88+1.02 0.5711+£0.0146 0.0806 + 0.0095
LIMO  0.079760 = 0.000000 17.79 +6.65 0.7078 +£0.0958 0.1709 = 0.0684
(O 0.010340 £ 0.000033 7.78 £0.79  0.5437 £0.0084 0.0646 + 0.0078
RW 0.010383 £ 0.000000 7.84£0.21  0.5450 £0.0064 0.0649 + 0.0025
02 SM 0.010340 £ 0.000033  7.63+0.30 0.5454 £0.0083 0.0646 + 0.0043
) ES 0.010383 +0.000000 8.02+0.20 0.5438 £0.0058 0.0661 + 0.0027
GS 0.010381 +0.000003 9.01 £0.82  0.5721 £0.0088 0.0761 + 0.0101
LIMO  0.050332 = 0.000000 13.17 +2.11 0.6563 +0.0522 0.1114 = 0.0225
(0N 0.010370 £ 0.000034 7.49+1.08 0.5398 £0.0093 0.0605 + 0.0106
RW 0.010383 +0.000000 7.51 £0.51 0.5415+£0.0055 0.0602 + 0.0059
01 SM 0.010370 £ 0.000034 7.51£0.33 0.5431 £0.0068 0.0605 +0.0018
) ES 0.010383 +0.000000 7.62+0.36 0.5404 £0.0028 0.0608 + 0.0038
GS 0.010380 +0.000005 9.04 £0.61 0.5703 £0.0009 0.0721 + 0.0046
LIMO  0.029974 + 0.000000 12.48 +1.44 0.6281 +£0.0302 0.0977 + 0.0137
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Table 10: Table for the performance of baselines and LIMO on the Twitter dataset with node classi-
fication using GraphSAGE

Imbalance - getting LI ACC (%)  AUC-ROC Fl-score
0S  0.000015+0.000000 4879 +4.10 0.5259%0.0311 04864 +0.0399
RW 0000012 +0.000000 5121+139 0.5158=00358 0.5088 +0.0144
e SM  0.000015+ 0000000 49.39+1.89 0.5086+0.0221 0.4923 +0.0213
: ES  0.000012+0000000 5121105 05061 £0.0237 0.5118+0.0102
GS 0000012 +0.000002 5333+548 0.5466+0.0889 05273 +0.0617
LIMO  0.083961  0.000000 68.79%5.01 0.7236 + 0.0827 0.6849 + 0.0529
0S  0.000015+0.000003 49.70£2.10 0.5052%0.0367 04955 +0.0211
RW  0.000012+0.000000 5121+ 1.39 0.5262+0.0578 0.5089 + 00142
0s SM  0.000014% 0000002 50.91+091 0.5046+0.0018 0.5043 % 0.0110
: ES  0.000012+0.000000 49.09+0.91 04988 +00182 04729 +0.0268
GS 0000013 +0.000001 51.51+3.67 0.5098+0.0293 04740 + 0.0747
LIMO  0.069097 = 0.000000 67.27=5.06 0.7031 £ 0.0692 0.6668 % 0.0510
0S  0.000016+0.000003 4970+ 139 0.4969%0.0244 04931 =0.0101
RW 0000012 +0.000000 S5121+278 0.5089%00179 0.5042 +0.0208
0a SM 0000016 +0000003 52124139 05141%00077 0.5120%0.0141
: ES  0.000012+0000000 53.03+105 05288 +0.0499 0.5122 +0.0094
GS 0000013 +0.000001 57.57+229 0.5779+00416 0.5697 +0.0161
LIMO  0.053989 £ 0.000000 64.24+2.77 0.6258 % 0.0413 0.6368 + 0.0299
0S  0.000014 £0.000000 4849533 0.4847%00196 04415 +0.0434
RW 0000012 +0.000000 5273 +5.06 0.4895%00593 04729 +0.0495
02 SM  0.000014% 0000000 5334+2.10 04977 +0.0609 0.4550 % 0.0560
: ES  0.000012%0000000 53.16+3.54 05036=00832 0.4389  0.0699
GS 0000012 +0.000000 5242+4.29 0.5342+0.0630 04488 +0.0359
LIMO  0.023656 % 0.000000 57.88+5.33 0.5993 £ 0.0646 0.5329 % 0.0617
0S 0000013 +0.000001 4879 %293 0.4583%0.0305 04114 +0.0279
RW  0.000012 +0.000000 50004386 0.4772+0.0278 04367 +0.0136
o SM  0.000013%0.000001 49.39% 1.89 04575 +0.0343 0.4010 % 0.0421
: ES  0.000012+ 0000000 50.00+2.41 0464200283 0.4042 % 0.0380
GS  0.000012+0.000000 49.70%0.53 0.4713+0.0171 03790 + 0.0404
LIMO  0.009405 % 0.000000 54.24 % 1.39 0.4901+0.0179 0.4729 + 0.0317

25



Under review as a conference paper at ICLR 2025

Table 11: Table for the performance of baselines and LIMO on the Amazon (U-P-U) dataset with
node classification using GraphSAGE

Imbalance - getting LI ACC (%) AUC-ROC Fl-score
0S  0.004346 £0.00005 8030 £420 0.8882%00244 0.8025 + 0.0424
RW 0004334 +£0.00000 77.73+5.79 0.8868%0.0456 0.7764 +0.0591
e SM  0.004322%000001 6655447 08120 +0.0430 0.6539 % 0.0488
: ES  0.004334+000000 77.73+579 0.8883%0.0538 0.7763 + 0.0589
GS 0004363 +0.00005 80.91+455 0.9006=00290 0.8082 +0.0454
LIMO  0.121393%0.00000 9212+ 1.05 0.9835+0.0006 0.9210 % 0.0107
0S  0.004345+0.00005 83.64+328 0.9068%0.0233 0.836] +0.0329
RW 0004334 £0.00000 84554000 0.9124+00000 0.8454 +0.0000
0s SM  0.004317%000001 83.18+1.93 0.9136+0.0068 0.8307 % 0.0208
: ES  0.004334+000000 80.00+386 09013+00222 07992 +0.0396
GS  0.004366+0.00006 80.30+278 0.8988+0.0285 0.8027 +0.0279
LIMO  0.097429%0.00000 9212+ 1.05  0.9727 £0.0122 0.9210 % 0.0104
0S 0004354 +0.00005 8273 +4.17 0.9060= 00114 0.8265 +0.0420
RW 0004334 £0.00000 83.18+0.64 0.9073%00157 08315 +0.0065
04 SM 0004327 +000000 83.18=579 09136=0.0091 0.8309 + 0.0586
: ES  0.004334+000000 8182+386 09116+00110 0.8178+0.0386
GS 0004334 +0.00000 8424+3.67 0.9142+00209 08417 +0.0362
LIMO  0.072666 + 0.00000 91.82+2.57 0.9765+0.0112 0.9181 % 0.0257
0S  0.00434£000002 7848 +548 0.8454%00219 0.7804 £ 0.0560
RW 0004334 £0.00000 7455+000 0.8519%0.0000 0.7400 +0.0000
02 SM  0.004330% 000002 7545+5.14 08339 +0.0157 0.7491 % 0.0535
: ES  0.004334%000000 80.00+3.86 08493 %0.0262 0.7972 + 0.0379
GS 0004334 +0.00000 8030+420 0.8716+0.0344 07995 + 0.0442
LIMO  0.023651 0.00000 85.15+2.62 0.9408 0.0103 0.8496 + 0.0264
0S  0.004337+0.00002 70.61% 1842 0.7750=0.1862 0.6598 + 0.2506
RW 0004334 £0.00000 50.00 £ 0.00 0.5666 % 0.0000 03762 + 0.0000
o SM  0.004342% 000002 6545+21.86 07013 +0.1947 0.5908 + 0.3035
: ES  0.004334+0.00000 6591+22.50 07018+0.1907 0.5952 +0.3097
GS  0.004334+0.00000 6939+ 16.89 0.6993+ 03016 0.6325+0.2599
LIMO  0.004509 = 0.00000 6545+ 1669 0.8188 +0.0757 0.6016 = 0.2099
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Table 12: Table for the performance of baselines and LIMO on the Amazon (U-S-U) dataset with
node classification using GraphSAGE

Imbalance - getting LI ACC (%) AUC-ROC Fl-score
0S  0.00379£000016 8333+105 09116%0.0329 0.8331 +0.0106
RW  0.00387+0.00000 8485+2.10 0.9163+0.0364 08481 +0.0212
e SM  000379+0.00016 83.94+278 09148 +0.0357 0.8390 % 0.0275
: ES  0.00387+0.00000 85.15+189 09172+0.0381 08511 +0.0191
GS 0003954 +0.00007 8121+501 0.9230=00307 0.8098 +0.0533
LIMO  0.0385490.00000 8879+ 1.89  0.9468 + 0.0476 0.8874 + 0.0191
0S 0003794 +0.00014 8485+3.67 09148%0.0319 0.8480 +0.0372
RW  0.00387 £0.00000 85.15+278 09129 +0.0343 0.8509 + 0.0283
0s SM  0.003794%0.00014 86.06+1.89 09161 +0.0363 0.8602 % 0.0192
: ES  0.00387£0.00000 8545+241 09126400337 0.8540 % 0.0245
GS  0.0039500.00007 8424+ 105 09188+0.0279 0841900108
LIMO  0.031885%0.00000 90.00+ 1.82  0.9431 £ 0.0490 0.8996 * 0.0186
0S 0003845000013 8576+229 0.9113%0.0406 0.8571 +0.0230
RW  0.00387£0.00000 8636+241 0.9146=00417 0.8632 +0.0244
0a SM  0.003845+000013 8697+ 1.89  0.9229%0.0347 0.8694 + 0.0188
: ES  0.00387£0.00000 8545+1.82 09107 +0.0407 0.8541 0.0184
GS 0003912000007 85454091 0.9211=00301 0.8542 +0.0094
LIMO  0.025419 0.00000 88.79=1.05 09215+00159 0.8873 % 0.0106
0S 0003836 +0.00008 81524533 08552200202 0.8098 + 0.0602
RW  0.00387£0.00000 81.82+48]1 0.8565+00185 0.8133+0.0541
02 SM  0.003836%0.00008 8121584 08519400127 0.8064+ 0.0665
: ES  0.00387%0.00000 82.12+517 08558%0.0159 0.8165 +0.0577
GS  0.003895+0.00004 81524706 0.8517=00496 0.8120 +0.0734
LIMO  0.013454 0.00000 8273 +4.55 0.8720 +0.0269 0.8241 % 0.0475
0S 0003826 +0.00008 74.85+2482 0.7251%03064 0.7034 +0.3238
RW  0.00387£0.00000 74.85+24.82 0.7535+02575 0.7034 +0.3238
o SM  0.003826%0.00008 74.85+24.82 0741803231 0.7034 + 0.3238
: ES  0.00387£0.00000 7485+2482 07280+03015 0.7034 % 0.3238
GS  0.0038710.00000 73.03+20.03 0.8130+0.1763 0.6721 + 0.2940
LIMO  0.008241 % 0.00000 75.45+22.34 0.8055+0.1675 0.7030 % 0.3090
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Table 13: Table for the performance of baselines and LIMO on the Amazon (U-V-U) dataset with
node classification using GraphSAGE

Imbalance - getting LI ACC (%) AUC-ROC Fl-score
0S  0.00514+000004 8636+506 0.9404%00166 0.8620 +0.0524
RW 0005175 +0.00000 8424+525 0.9415+0.0259 08401 +0.0557
e SM  0.00514%0.00004 86.67+430 09468 +0.0160 0.8652 % 0.0451
: ES  0.005175+0.00000 8485+639 09209+ 0.0455 0.8460 + 0.0669
GS  0.005269+0.00005 8576+694 0.9382=00172 0.8548 +0.0734
LIMO  0.188869 = 0.00000 91.82+3.28 0.9835+0.0056 0.9181 + 0.0328
0S 0005176 £0.00007 8485+4.67 0.9269+0.0442 0.8474 + 0.0479
RW 0005175 +0.00000 8636+506 0.9355+00166 08621 +0.0524
0s SM  0.005176% 000007 8576467 0.9288 +0.0457 0.8566 % 0.0476
: ES  0.005175+000000 85.76+4.67 09194+0.0442 0.8560 % 0.0480
GS 000524 +0.00006 86.06+6.19 0.9326+00101 08585+ 00645
LIMO  0.161145%0.00000 91.21+2.92  0.9780 £ 0.0076 0.9120 % 0.0292
0S 0005199 +0.00009 8697+ 139 0.9203%0.0243 0.8689 + 0.0139
RW 0005175 +0.00000 8636+3.15 0.9319%00047 08626+ 0.0321
0a SM 0005199000009 8606+3.67 09307 %00047 0.8602 % 0.0364
: ES  0.005175+000000 8545+364 09214+00350 0.8536+0.0371
GS 0005248 +0.00006 8545+553 0.9254+00104 08534 +0.0561
LIMO  0.131436 £ 0.00000 90.91+2.73  0.9601 % 0.0205 0.9089 + 0.0273
0S 0005153000008 83.64+241 0.8744%00570 0.8329 +0.0265
RW 0005175 +0.00000 8636+3.15 0.8832%00594 08618 +0.0328
02 SM  0.005175+ 000008 85.68+1.36 08698 +0.0471 0.8551 +0.0141
: ES  0.005175%000000 86.06+3.78 08960+ 0.0669 0.8586 +0.0394
GS 0005178 +0.00009 84.55+328 0.8908=00583 0.8436 +0.0341
LIMO  0.066697 = 0.00000 87.27 +4.17 0.9194+0.0715 0.8713 + 0.0432
0S  0.00516+0.00008 73.03%19.16 0.8337%0.1311 0.6788 02715
RW 0005175 +0.00000 73.64+ 1994 0.8360+0.1315 06851 +0.2788
o SM  0.00516+0.00008 7333+19.55 0.8365+0.1359 0.6820 % 0.2751
: ES  0.005175%0.00000 7333+19.84 08331+0.1293 0.6817 +0.2773
GS 0005193 +0.00003 73.03+2027 0.8182+0.1871 0.6722 + 02960
LIMO  0.033485%0.00000 7455 +20.31 0.8451 01245 0.6948 + 0.2840
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Table 14: Table for the performance of baselines and LIMO on the Amazon (All) dataset with node
classification using GraphSAGE

fmbalance - getting LI ACC (%) AUC-ROC Fl-score
0S  0.006686 £0.00024 82424410 0.9402%0.0347 0.8229 + 0.0407
RW  0.006798 +0.00000 88.64+450 0941200112 0.8861 +0.0449
oe SM  0.006548 = 000007 85.00+0.64 0.9602+0.0147 0.8493 % 0.0069
: ES 0006798 %000000 8727+3.15 09256%0.0425 0.8721 +0.0316
GS 0006949 +0.00016 87.58+2.10 0.9369+0.0349 0.8754+0.0211
LIMO  0.03222%0.00000 9273+3.86 0.9736+0.0061 0.9271 + 0.0389
0S  0.0067%000021  8455+273 0.9388%00326 0.8447 +0.0275
RW  0.006798 +0.00000 8591+ 193 0.9552+0.0068 0.8583 + 0.0204
0 SM  0.006582+ 000008 87.73+4.50 09383 +0.0395 0.8765 + 0.0454
: ES  0.006798+0.00000 86.06+139 09252+0.0436 0.859 +0.0146
GS 0006887 +0.00010 85.15+052 0.9437%00379 0.8503 +0.0061
LIMO  0.027479 £ 0.00000 94.09+0.64  0.9774 £ 0.0026 0.9409 * 0.0064
0S 0006771 £0.00021 8545+3.15 0.9193%0.0224 0.8539 +0.0317
RW 0006798 +0.00000 88.64+ 193 0.9202+0.0475 0.8857 +0.0199
o4 SM 0006685+ 000020 8500%450 09312%0.0005 0.8495 + 0.0436
: ES  0.006798+0.00000 85.76+1.89 09158 +0.0259 0.8569 % 0.0190
GS  0.006865+0.00007 8576+139 0.9320%00181 08572+ 0.0142
LIMO  0.022876 % 0.00000 90.45+321 0.9544 +0.0103 0.9043 % 0.0325
0S 0006742000011 84.55+506 0.8793 00558 0.8432 00521
RW 0006798 +0.00000 82.73+3.86 0.8661=00673 0.8250 +0.0415
02 SM  0.006704+ 000012 84.09+450 08579 +0.0276 0.8390 % 0.0462
: ES  0.006798+0.00000 83.94+555 0.8680+0.0438 08372+ 0.0569
GS  0.006822+0.00002 84.55+0.91 0.8830%0.0619 0.8439 + 0.0107
LIMO  0.014247 £0.00000 7591+7.07 08529%0.0795 0.7489 + 0.0768
0S 0006735000011 7273%19.73 0.6962% 02811 0.6698 +0.2918
RW  0.006798 +0.00000 85.45+2.57 0.8762+0.0563 0.8515 + 0.0278
o SM  0.006702% 000013 67.73+2507 05990 +0.3170 0.5927 % 0.3669
: ES 0006798 000000 74242099 07386%02774 0.6854 +0.3049
GS  0.006802+0.00001 72.12%19.16 0.7520%02205 0.6639 +0.2863
LIMO  0.010334 0.00000 6682 +23.78 07478 +0.1099 0.5831 % 0.3532
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Figure 8: The plots for the performance of GNN on CitesSeer dataset versus the node upscale factor

C.4 ABLATION

This section contains the results for abalation study on CiteSeer dataset to support the fact that the

LI is directly prorportional to performance of GNNs.

1.0 100% 1.0 100% 1.0 100%
08 80% o 08 80% o 08 80% 5
2 2 2
0.6 60% = 06 60% = 0.6 60% =
=] o =] 9 =] o
0.4 40% £ 0.4 40% £ 0.4 40% £
S S S
0.2 20% < 02 20% < 0.2 20% <
0 9 o
00535 050 o075 1.00°” 00535 050 o075 10007 00935 050 o075 1.00°”

Fraction of max edges added

(a) For imbalance ratio = 0.6

Fracton of edges added

(b) For imbalance ratio = 0.5

Fracton of edges added

(c) For imbalance ratio = 0.4

1.0 100% 1.0 100%
0.8 80% 5 0.8 80% 5
2 g
06 60% < 06 / 60% <
— > = >
- O - 1%
0.4 40% £ 04 f/_\/V\/ 40% £
3 3
02 20% < 02 20% <
9 9
00535 050 o075 1.00°% 0053 050 o075 1.00°7

Fracton of edges added

(d) For imbalance ratio = 0.2

Fracton of edges added

(e) For imbalance ratio = 0.1

Figure 9: The plots for the performance of GNN on CitesSeer dataset with an increase in LI
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Figure 10: The plots for the performance of GNN on CiteSeer dataset with a decrease in LI
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