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ABSTRACT

Diffusion models have demonstrated impressive generative capabilities, but their
exposure bias problem, described as the input mismatch between training and
sampling, lacks in-depth exploration. In this paper, we investigate the exposure
bias problem in diffusion models by first analytically modelling the sampling dis-
tribution, based on which we then attribute the prediction error at each sampling
step as the root cause of the exposure bias issue. Furthermore, we discuss potential
solutions to this issue and propose an intuitive metric for it. Along with the eluci-
dation of exposure bias, we propose a simple, yet effective, training-free method
called Epsilon Scaling to alleviate the exposure bias. We show that Epsilon Scal-
ing explicitly moves the sampling trajectory closer to the vector field learned in
the training phase by scaling down the network output, mitigating the input mis-
match between training and sampling. Experiments on various diffusion frame-
works (ADM, DDIM, EDM, LDM, DiT, PFGM++) verify the effectiveness of our
method. Remarkably, our ADM-ES, as a state-of-the-art stochastic sampler, ob-
tains 2.17 FID on CIFAR-10 under 100-step unconditional generation. The code
is at https://github.com/forever208/ADM-ES

1 INTRODUCTION

Due to the outstanding generation quality and diversity, diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song & Ermon, 2019) have achieved unprecedented success in image gen-
eration (Dhariwal & Nichol, 2021; Nichol et al., 2022; Rombach et al., 2022; Saharia et al., 2022),
audio synthesis (Kong et al., 2021; Chen et al., 2021) and video generation (Ho et al., 2022). Unlike
generative adversarial networks (GANs) (Goodfellow et al., 2014), variational autoencoders (VAEs)
(Kingma & Welling, 2014) and flow-based models (Dinh et al., 2014; 2017), diffusion models sta-
bly learn the data distribution through a noise/score prediction objective and progressively removes
noise from random initial vectors in the iterative sampling stage.

A key feature of diffusion models is that good sample quality requires a long iterative sampling
chain since the Gaussian assumption of reverse diffusion only holds for small step sizes (Xiao et al.,
2022). However, Ning et al. (2023) claim that the iterative sampling chain also leads to the exposure
bias problem (Ranzato et al., 2016; Schmidt, 2019). Concretely, given the noise prediction network
ϵθϵθϵθ(·), exposure bias refers to the input mismatch between training and inference, where the former
is always exposed to the ground truth training sample xxxt while the latter depends on the previously
generated sample x̂xxt. The difference between xxxt and x̂xxt causes the discrepancy between ϵθϵθϵθ(xxxt) and
ϵθϵθϵθ(x̂xxt), which leads to the error accumulation and the sampling drift (Li et al., 2023a).

We point out that the exposure bias problem in diffusion models lacks in-depth exploration. For ex-
ample, there is no proper metric to quantify the exposure bias and no explicit error analysis for it. To
shed light on exposure bias, we conduct a systematical investigation by first modelling the sampling
distribution with prediction error. Based on our analysis, we find that the practical sampling distri-
bution has a larger variance than the ground truth distribution at every single step, demonstrating the
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analytic difference between xxxt in training and x̂xxt in sampling. Along with the sampling distribution
analysis, we propose a metric δt to evaluate exposure bias by comparing the variance difference be-
tween training and sampling. Finally, we discuss potential solutions to exposure bias, and propose a
simple yet effective training-free and plug-in method called Epsilon Scaling to alleviate this issue.

We test our approach on extensive diffusion frameworks using deterministic and stochastic sampling,
and on conditional and unconditional generation tasks. Without affecting the recall and precision
(Kynkäänniemi et al., 2019), our method yields dramatic Fréchet Inception Distance (FID) (Heusel
et al., 2017) improvements. Also, we illustrate that Epsilon Scaling effectively reduces the exposure
bias by moving the sampling trajectory towards the training trajectory. Overall, our contributions to
diffusion models are:

• We investigate the exposure bias problem in depth and propose a metric for it.
• We suggest potential solutions to the exposure bias issue and propose a training-free, plug-

in method (Epsilon Scaling) which significantly improves the sample quality.
• Our extensive experiments demonstrate the generality of Epsilon Scaling and its wide ap-

plicability to different diffusion architectures.

2 RELATED WORK

Diffusion models were introduced by Sohl-Dickstein et al. (2015) and later improved by Song &
Ermon (2019), Ho et al. (2020) and Nichol & Dhariwal (2021). Song et al. (2021b) unify score-
based models and Denoising Diffusion Probabilistic Models (DDPMs) via stochastic differential
equations. Furthermore, Karras et al. (2022) disentangle the design space of diffusion models and
introduce the EDM model to further boost the performance in image generation. With the advances
in diffusion theory, conditional generation (Ho & Salimans, 2022; Choi et al., 2021) also flourishes
in various scenarios, including text-to-image generation (Nichol et al., 2022; Ramesh et al., 2022;
Rombach et al., 2022; Saharia et al., 2022), controllable image synthesis (Zhang & Agrawala, 2023;
Li et al., 2023b; Zheng et al., 2023), as well as generating other modalities, for instance, audio (Chen
et al., 2021; Kong et al., 2021), object shape (Zhou et al., 2021) and time series (Rasul et al., 2021).
In the meantime, accelerating the time-consuming reverse diffusion sampling has been extensively
investigated in many works (Song et al., 2021a; Lu et al., 2022; Liu et al., 2022). For example,
distillation (Salimans & Ho, 2022), Restart sampler (Xu et al., 2023a) and fast ODE samplers (Zhao
et al., 2023) have been proposed to speed up the sampling.

The exposure bias in diffusion models was first identified by Ning et al. (2023). They introduced a
training regularisation term to simulate the sampling prediction errors from the Lipschitz continuity
perspective. Additionally, Li et al. (2023a) alleviated exposure bias without retraining and their
method involved the manipulation of the time step during the backward generation process. More
recently, Li & van der Schaar (2023) estimated the upper bound of cumulative error and optimized
it during training. However, the exposure bias in diffusion models still lacks illuminating research
in terms of the explicit sampling distribution, metric and root cause, which is the objective of this
paper. Besides, our solution to exposure bias is training-free and outperforms previous methods.

3 EXPOSURE BIAS IN DIFFUSION MODELS

3.1 SAMPLING DISTRIBUTION WITH PREDICTION ERROR

Given a sample xxx0 from the data distribution q(xxx0) and a noise schedule βt, DDPM (Ho et al., 2020)
defines the forward perturbation as q(xxxt|xxxt−1) = N (xxxt;

√
1− βtxxxt−1, βtIII). The Gaussian forward

process allows us to directly sample xxxt conditioned on the input xxx0:

q(xxxt|xxx0) = N (xxxt;
√
ᾱtxxx0, (1− ᾱt)III), xxxt =

√
ᾱtxxx0 +

√
1− ᾱtϵϵϵ, (1)

The reverse diffusion is approximated by a neural network pθθθ(xxxt−1|xxxt) = N (xxxt−1;µθθθ(xxxt, t), σtIII)
and the optimisation objective is DKL(q(xxxt−1|xxxt,xxx0) || pθθθ(xxxt−1|xxxt))) in which the posterior
q(xxxt−1|xxxt,xxx0) is tractable when conditioned on xxx0 using Bayes theorem:

q(xxxt−1|xxxt,xxx0) = N (xxxt−1; µ̃̃µ̃µ(xxxt,xxx0), β̃tIII) (2)
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µ̃̃µ̃µ(xxxt,xxx0) =

√
ᾱt−1βt

1− ᾱt
xxx0 +

√
αt(1− ᾱt−1)

1− ᾱt
xxxt (3) β̃t =

1− ᾱt−1

1− ᾱt
βt (4)

Regarding the parametrization of µθθθ(xxxt, t), Ho et al. (2020) found that using a neural network to
predict ϵϵϵ (Eq. 6) worked better than predicting xxx0 (Eq. 5) in practice:

µθθθ(xxxt, t) =

√
ᾱt−1βt

1− ᾱt
xθxθxθ(xxxt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
xxxt (5)

=
1

√
αt

(xxxt −
βt√
1− ᾱt

ϵθϵθϵθ(xxxt, t)), (6)

where xθxθxθ(xxxt, t) denotes the denoising model which predicts xxx0 given xxxt. For simplicity, we use
xxxt
θθθ as the short notation of xθxθxθ(xxxt, t) in the rest of this paper. Comparing Eq. 3 with Eq. 5,

Song et al. (2021a) emphasise that the sampling distribution pθθθ(xxxt−1|xxxt) is in fact parameterised
as q(xxxt−1|xxxt,xxx

t
θθθ) where xxxt

θθθ means the predicted xxx0 given xxxt. Therefore, the practical sampling
paradigm is that we first predict ϵϵϵ using ϵϵϵθθθ(xxxt, t). Then we derive the estimation xxxt

θθθ for xxx0 using
Eq. 1. Finally, based on the posterior q(xxxt−1|xxxt,xxx0), xxxt−1 is generated using q(xxxt−1|xxxt,xxx

t
θθθ) by

replacing xxx0 with xxxt
θθθ.

However, q(xxxt−1|xxxt,xxx
t
θθθ) = q(xxxt−1|xxxt,xxx0) holds only if xxxt

θθθ = xxx0, this requires the network to make
no prediction error about xxx0 to ensure q(xxxt−1|xxxt,xxx

t
θθθ) share the same variance with q(xxxt−1|xxxt,xxx0).

However, xxxt
θθθ − xxx0 is practically non-zero and we claim that the prediction error of xxx0 needs to be

considered to derive the real sampling distribution. Following Analytic-DPM (Bao et al., 2022), we
model xxxt

θθθ as pθθθ(xxx0|xxxt) and approximate it by a Gaussian distribution:

pθθθ(xxx0|xxxt) = N (xxxt
θθθ;xxx0, e

2
tIII), xxxt

θθθ = xxx0 + etϵϵϵ0 (ϵϵϵ0 ∼ N (000, III)) (7)

Taking the prediction error into account, we now compute q(x̂xxt|xxxt+1,xxx
t+1
θθθ ), which shares the same

function format as q(xxxt−1|xxxt,xxx
t
θθθ), by substituting with the index t+1 and using x̂xxt to highlight that it

is generated in the sampling stage. Based on Eq. 2, we know q(x̂xxt|xxxt+1,xxx
t+1
θθθ ) = N (x̂xxt;µθθθ(xxxt+1, t+

1), β̃t+1III). Its mean and variance can be further derived according to Eq. 5 and Eq. 4, respectively.

Thus, a sample from the distribution is x̂xxt = µθθθ(xxxt+1, t+ 1) +

√
β̃t+1ϵϵϵ1, namely:

x̂xxt =

√
ᾱtβt+1

1− ᾱt+1
xxxt+1
θθθ +

√
αt+1(1− ᾱt)

1− ᾱt+1
xxxt+1 +

√
β̃t+1ϵϵϵ1 (8)

Plugging Eq. 7 and Eq. 1 (using index t + 1 ) into Eq. 8, we derive the final analytical form of x̂xxt

(see Appendix A.1 for the full derivation):

x̂xxt =
√
ᾱtxxx0 +

√
1− ᾱt + (

√
ᾱtβt+1

1− ᾱt+1
et+1)2ϵϵϵ3 (9)

where, ϵϵϵ1, ϵϵϵ3 ∼ N (000, III). From Eq. 9, we can obtain the mean and variance of q(x̂xxt|xxxt+1,xxx
t+1
θθθ ). For

simplicity, we denote q(x̂xxt|xxxt+1,xxx
t+1
θθθ ) as qθθθ(x̂xxt|xxxt+1) from now on. In Table 1, q(xxxt|xxx0) shows the

xxxt seen by the network during training while qθθθ(x̂xxt|xxxt+1) indicates the x̂xxt exposed to the network
during sampling. The method of solving qθθθ(x̂xxt|xxxt+1) can be generalised to multi-step sampling
(detailed in Appendix A.2). In the same spirit of modelling xxxt

θθθ as a Gaussian, we also derived the
sampling distribution qθθθ(x̂xxt|xxxt+1) for DDIM (Song et al., 2021a) in Appendix A.3. Note that, one
can also modelxxxt

θθθ as a Gaussian distribution whose mean is notxxx0, but it does not affect the variance
gap presented in Table 1 and the explosion of variance error (Section 3.2).

Table 1: The distribution q(xxxt|xxx0) during training and qθθθ(x̂xxt|xxxt+1) during DDPM sampling.

Mean Variance

q(xxxt|xxx0)
√
ᾱtxxx0 (1− ᾱt)III

qθθθ(x̂xxt|xxxt+1)
√
ᾱtxxx0 (1− ᾱt + (

√
ᾱtβt+1

1−ᾱt+1
et+1)

2)III
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3.2 EXPOSURE BIAS DUE TO PREDICTION ERROR

It is clear from Table 1 that the variance of the sampling distribution qθθθ(x̂xxt|xxxt+1) is always larger
than the variance of the training distribution q(xxxt|xxx0) by the magnitude (

√
ᾱtβt+1

1−ᾱt+1
et+1)

2. Note that,
this variance gap between training and sampling is produced just in a single reverse diffusion step,
given that the network ϵθϵθϵθ(·) can get access to the ground truth input xxxt+1. What makes the situation
worse is that the error of single-step sampling accumulates in the multi-step sampling, resulting in
an explosion of sampling variance error. On CIFAR-10 (Krizhevsky et al., 2009), we designed an
experiment to statistically measure both the single-step variance error of qθθθ(x̂xxt|xxxt+1) and multi-step
variance error of qθθθ(x̂xxt|xxxT ) using 20-step sampling (see Appendix A.4). The experimental results in
Fig. 1 indicate that the closer to t = 1 (the end of sampling), the larger the variance error of multi-
step sampling. The explosion of sampling variance error results in the sampling drift (exposure
bias) problem and we attribute the prediction error xxxt

θθθ −xxx0 as the root cause of the exposure bias in
diffusion models.
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Figure 1: Variance error in single-step
and multi-step samplings.

Intuitively, a possible solution to exposure bias is us-
ing a sampling noise variance which is smaller than β̃t,
to counteract the extra variance term (

√
ᾱtβt+1

1−ᾱt+1
et+1)

2

caused by the prediction error xxxt
θθθ − xxx0. Unfortunately,

β̃t is the lower bound of the sampling noise schedule
β̇t ∈ [β̃t, βt], where the lower bound and upper bound are
the sampling variances given by q(xxx0) being a delta func-
tion and isotropic Gaussian function, respectively (Nichol
& Dhariwal, 2021). Therefore, we can conclude that the
exposure bias problem can not be alleviated by manipu-
lating the sampling noise schedule β̇t.

Interestingly, Bao et al. (2022) analytically provide the
optimal sampling noise schedule β⋆

t which is larger than
the lower bound β̃t. Based on what we discussed earlier, β⋆

t would cause a more severe exposure
bias issue than β̃t. A strange phenomenon, but not explained by Bao et al. (2022) is that β⋆

t leads
to a worse FID than using β̃t under 1000 sampling steps. We believe the exposure bias is in the
position to account for this phenomenon: under the long sampling, the negative impact of exposure
bias exceeds the positive gain of the optimal variance β⋆

t .

3.3 METRIC FOR EXPOSURE BIAS

Although some literature has already discussed the exposure bias problem in diffusion models (Ning
et al., 2023; Li et al., 2023a), we still lack a well-defined and straightforward metric for this concept.
We propose to use the variance error of qθθθ(x̂xxt|xxxT ) to quantify the exposure bias at timestep t under
multi-step sampling. Specifically, our metric δt for exposure bias is defined as δt = (

√
β

′
t −

√
β̄t)

2,
where β̄t = 1− ᾱt denotes the variance of q(xxxt|xxx0) during training and β

′

t presents the variance of
qθθθ(x̂xxt|xxxT ) in the regular sampling process. The metric δt is inspired by the Fréchet distance (Dowson
& Landau, 1982) between q(xxxt|xxx0) and qθθθ(x̂xxt|xxxT ), which is d2 = N(

√
β

′
t −

√
β̄t)

2 where N is the
dimensions of xxxt. In Appendix A.6, we empirically find that δt exhibits a strong correlation with
FID given a trained model. Our method of measuring δt is described in Algorithm 3 (see Appendix
A.5). The key step of Algorithm 3 is that we subtract the mean

√
ᾱt−1xxx0 and the remaining term

x̂xxt−1 −
√
ᾱt−1xxx0 corresponds to the stochastic term of qθθθ(x̂xxt−1|xxxT ).

3.4 SOLUTION DISCUSSION

We now discuss possible solutions to the exposure bias issue of diffusion models based on the
analysis throughout Section 3. Recall that the prediction error ofxxxt

θθθ−xxx0 is the root cause of exposure
bias. Thus, the most straightforward way of reducing exposure bias is learning an accurate ϵϵϵ or
score function (Song & Ermon, 2019) prediction network. For example, by delicately designing the
network and hyper-parameters, EDM (Karras et al., 2022) significantly improves the FID from 3.01
to 2.51 on CIFAR-10. Secondly, we believe that data augmentation can reduce the risk of learning
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inaccurate ϵϵϵ or score function for x̂xxt by learning a denser vector field than vanilla diffusion models.
For instance, Karras et al. (2022) has shown that the geometric augmentation (Karras et al., 2020)
benefits the network training and sample quality. In the same spirit, Ning et al. (2023) augments each
training sample xxxt by a Gaussian term and achieves substantial improvements in FID. Additionally,
Xu et al. (2022) claim that the Poisson Flow framework is more resistant to prediction errors because
high mass is allocated across a wide spectrum of the training sample. Our experiments verify the
robustness of PGFM++ (Xu et al., 2023b) and show that our solution to exposure bias could further
improve the generation quality of PGFM++ (more details in Appendix A.7).

It is worth pointing out that the above-mentioned methods require retraining the network and ex-
pensive parameter searching during the training. This naturally drives us to the question: Can we
alleviate the exposure bias in the sampling stage, without any retraining?

4 METHOD

4.1 EPSILON SCALING

In Section 3.2, we have concluded that the exposure bias issue can not be solved by reducing the
sampling noise variance, thus another direction to be explored in the sampling phase is the prediction
of the network ϵθϵθϵθ(·). Since we already know from Table 1 that xxxt inputted to the network ϵθϵθϵθ(·) in
training differs from x̂xxt fed into the network ϵθϵθϵθ(·) in sampling, we are interested in understanding
the difference in the output of ϵθϵθϵθ(·) between training and inference.

2 4 6 8 10 12 14 16 18 20
timestep

36

39

42

45

48

51

54
2

sampling direction

16 18 20

55.25

55.50

training
sampling

Figure 2: Expectation of ∥ϵθϵθϵθ(·)∥2 dur-
ing training and 20-step sampling on
CIFAR-10. We report the L2-norm us-
ing 50k samples at each timestep.

For simplicity, we denote the output of ϵθϵθϵθ(·) as ϵϵϵtθθθ in train-
ing and as ϵϵϵsθθθ in sampling. Although the ground truth of
ϵϵϵsθθθ is not accessible during inference, we are still able to
speculate the behaviour of ϵϵϵsθθθ from the L2-norm perspec-
tive. In Fig. 2, we plot the L2-norm of ϵϵϵtθθθ and ϵϵϵsθθθ at
each timestep. In detail, given a trained, frozen model
and ground truth xxxt, ϵϵϵtθθθ is collected by ϵϵϵtθθθ = ϵθϵθϵθ(xxxt, t). In
this way, we simulate the training stage and analyse its ϵϵϵ
prediction. In contrast, ϵϵϵsθθθ is gathered in the real sampling
process, namely ϵϵϵsθθθ = ϵθϵθϵθ(x̂xxt, t). It is clear from Fig. 2 that
the L2-norm of ϵϵϵsθθθ is always larger than that of ϵϵϵtθθθ. Since
x̂xxt lies around xxxt with a larger variance (Section 3.1), we
can know the network learns an inaccurate vector field
ϵθϵθϵθ(x̂xxt, t) for each x̂xxt in the vicinity of xxxt with the vector
length longer than that of ϵθϵθϵθ(xxxt, t).

One can infer that the prediction ϵϵϵsθθθ could be improved if we can move the input (x̂xxt, t) from the
inaccurate vector field (green curve in Fig. 2) towards the reliable vector field (red curve in Fig. 2).
To this end, we propose to scale down ϵϵϵsθθθ by a factor λ(t) at sampling timestep t. Our solution is
based on the observation: ϵϵϵtθθθ and ϵϵϵsθθθ share the same input xxxT ∼ N (000, III) at timestep t = T , but from
timestep T − 1, x̂xxt (input of ϵϵϵsθθθ) starts to diverge from xxxt (input of ϵϵϵtθθθ) due to the ϵθϵθϵθ(·) error made at
previous timestep. This iterative process continues along the sampling chain and results in exposure
bias. Therefore, we can push x̂xxt closer to xxxt by scaling down the over-predicted magnitude of ϵϵϵsθθθ.
Compared with the regular sampling (Eq. 6), our sampling method only differs in the λt term and
is expressed as µθθθ(xxxt, t) =

1√
αt
(xxxt − βt√

1−ᾱt

ϵθϵθϵθ(xxxt,t)
λt

). Note that, our Epsilon Scaling serving as a
plug-in method adds no computational load to the original sampling of diffusion models.

4.2 THE DESIGN OF SCALING SCHEDULE

Similar to the cumulative error analysed in Li & van der Schaar (2023), we emphasise that the L2-
norm quotient

∥∥ϵϵϵsθθθ∥∥2 / ∥∥ϵϵϵtθθθ∥∥2, denoted as ∆N(t), reflects the accumulated effect of the prediction
errors made at ancestral steps T, T −1, ..., t+1. Suppose the L2-norm of ϵϵϵtθθθ to be scaled at timestep
t is λt, we have:

∆N(t)− 1 ≈
∫ T

t

(λT − 1)dt+

∫ T−1

t

(λT−1 − 1)dt+ ...+

∫ t+1

t

(λt+1 − 1)dt (10)
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given that the error propagates linearly over the sampling chain. The first term on the right side of
Eq. 10 corresponds to the error made at timestep T (the start of sampling) and propagated from T
to t. Thus, after measuring ∆N(t), one can derive the scaling schedule λ(t) by solving Eq. 10.

5 10 15 20 25 30 35 40 45 50
timestep

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20

s 2
t 2

20 steps
50 steps

Figure 3: ∆N(t) at each timestep.

As shown by Nichol & Dhariwal (2021) and Benny &
Wolf (2022), the ϵθϵθϵθ(·) predictions near t = 0 are very
bad, with the loss larger than other timesteps by several
orders of magnitude. Thereby, we can ignore the area
close to t = 0 to fit ∆N(t), because scaling a problematic
ϵθϵθϵθ(·) does not lead to a better prediction. We plot the
∆N(t) curve in the cases of 20-step and 50-step sampling
on CIFAR-10 in Fig. 3 where ∆N(t) can be fitted by a
quadratic function in the interval t ∼ (5, T ). Thus, the
solution to Eq. 10 is a linear function λ(t) = kt + b
where k, b are constants. Ideally, one should always first
do simulations to measure

∥∥ϵϵϵsθθθ∥∥2 and
∥∥ϵϵϵtθθθ∥∥2, then solve

out λ(t) based on ∆N(t). However, we propose to search
for k, b because we find that the parameters do not change significantly in different networks. An
added benefit of this proposal is that our approach becomes simulation-free. Moreover, in Section
5.1, we will see that k would decay to 0 around 50-step sampling. Given this fact, we decide a
uniform λ(t) = b for most experiments because of its effortless parameter searching and near-
optimal performance.

5 RESULTS

In this section, we evaluate the performance of Epsilon Scaling using FID (Heusel et al., 2017).
To demonstrate that Epsilon Scaling is a generic solution to exposure bias, we test the approach
on various diffusion frameworks, samplers and conditional settings. Following the fast sampling
paradigm (Karras et al., 2022) in the diffusion community, we focus on T ′ ⩽ 100 sampling steps
in this section and leave the FID results of T ′ > 100 in Appendix A.8. Our FID computation is
consistent with (Dhariwal & Nichol, 2021) for equal comparison. All FIDs are reported using 50k
generated samples and the full training set as the reference batch. Lastly, Epsilon Scaling does not
affect the precision and recall, and we report these results in Appendix A.9.

5.1 MAIN RESULTS ON ADM

Since Epsilon Scaling is a training-free method, we utilise the pre-trained ADM model as the
baseline and compare it against our ADM-ES (ADM with Epsilon Scaling) on datasets CIFAR-
10 (Krizhevsky et al., 2009), LSUN tower (Yu et al., 2015) and FFHQ (Karras et al., 2019) for
unconditional generation and on datasets ImageNet 64×64 and ImageNet 128×128 (Chrabaszcz
et al., 2017) for class-conditional generation. We employ the respacing sampling technique (Nichol
& Dhariwal, 2021) to enable fast stochastic sampling.

Table 2: FID on ADM baseline. We compare ADM
with our ADM-ES (uniform λ(t)) and ADM-ES∗ (lin-
ear λ(t)). ImageNet 64×64 results are reported without
classifier guidance and ImageNet 128×128 is under clas-
sifier guidance with scale=0.5

T ′ Model Unconditional Conditional

CIFAR-10
32×32

LSUN
64×64

FFHQ
128×128

ImageNet
64×64

ImageNet
128×128

100 ADM 3.37 3.59 14.52 2.71 3.55
ADM-ES 2.17 2.91 6.77 2.39 3.37

50 ADM 4.43 7.28 26.15 3.75 5.15
ADM-ES 2.49 3.68 9.50 3.07 4.33

20
ADM 10.36 23.92 59.35 10.96 12.48
ADM-ES 5.15 8.22 26.14 7.52 9.95
ADM-ES∗ 4.31 7.60 24.83 7.37 9.86

Table 3: We compare ADM-ES with
recent stochastic diffusion (SDE) sam-
plers regarding FID. We report their best
FID achieved under T ′ sampling steps.

Model T ′ Unconditional

CIFAR-10
32×32

EDM (VP) (Karras et al., 2022) 511 2.27
EDM (VE) (Karras et al., 2022) 2047 2.23
Improved SDE (Karras et al., 2022) 1023 2.35
Restart (VP) (Xu et al., 2023a) 115 2.21
SA-Solver (Xue et al., 2023) 95 2.63
ADM-IP (Ning et al., 2023) 100 2.38
ADM-ES (ours) 50 2.49
ADM-ES (ours) 100 2.17
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Table 2 shows that independent of datasets and the number of sampling steps T ′, our ADM-ES
outperforms ADM by a large margin in terms of FID. For instance, on FFHQ 128×128, ADM-ES
exhibits less than half the FID of ADM, with 7.75, 16.65 and 34.52 FID improvement under 100,
50 and 20 sampling steps, respectively. Moreover, when compared with the previous best stochastic
samplers, ADM-ES outperforms EDM (Karras et al., 2022), Improved SDE (Karras et al., 2022),
Restart Sampler (Xu et al., 2023a) and SA-Solver (Xue et al., 2023), exhibiting state-of-the-art
stochastic sampler (SDE solver). For example, ADM-ES not only achieves a better FID (2.17) than
EDM and Improved SDE, but also accelerates the sampling speed by 5-fold to 20-fold (see Table
3). Even under 50-step sampling, Epsilon Scaling surpasses SA-Solver and obtains competitive FID
against other samplers.

Note that, ADM-ES uses uniform schedule λ(t) = b and ADM-ES∗ applies the linear schedule
λ(t) = kt+b in Table 2. We find that the slope k is approaching 0 as the sampling step T ′ increases.
Therefore, we suggest a uniform schedule λ(t) for practical consideration. We present the complete
parameters k, b used in all experiments and the details on the search of k, b in Appendix A.10.
Overall, searching for the optimal uniform λ(t) is effortless and takes 6 to 10 trials. In Appendix
A.11, we also demonstrate that the FID gain can be achieved within a wide range of λ(t), which
indicates the insensitivity of λ(t).

5.2 EPSILON SCALING ALLEVIATES EXPOSURE BIAS

Apart from the FID improvements, we now show the exposure bias alleviated by our method using
the proposed metric δt and we also demonstrate the sampling trajectory corrected by Epsilon Scal-
ing. Using Algorithm 3, we measure δt on the dataset CIFAR-10 under 20-step sampling for ADM
and ADM-ES models. Fig. 4 shows that ADM-ES obtains a lower δt at the end of sampling t = 1
than the baseline ADM, exhibiting a smaller variance error and sampling drift (see Appendix A.12
for results on other datasets).

Based on Fig. 2, we apply the same method to measure the L2-norm of ϵθϵθϵθ(·) in the sampling phase
with Epsilon Scaling. Fig. 5 indicates that our method explicitly moves the original sampling trajec-
tory closer to the vector field learned in the training phase given the condition that the ∥ϵθϵθϵθ(xxxt)∥2 is
locally monotonic around xxxt. This condition is satisfied in denoising networks (Goodfellow et al.,
2016; Song & Ermon, 2019) because of the monotonic score vectors around the local maximal prob-
ability density. We emphasise that Epsilon Scaling corrects the magnitude error of ϵθϵθϵθ(·), but not the
direction error. Thus we can not completely eliminate the exposure bias to achieve δt = 0 or push
the sampling trajectory to the exact training vector field.

2 4 6 8 10 12 14 16 18
timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t
sampling direction

ADM
ADM-ES

Figure 4: Exposure bias measured by δt on
LSUN 64×64. Epsilon Scaling achieves a
smaller δt at the end of sampling (t = 1)

0 3 6 9 12 15 18 21
timestep

84
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92

96
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104

108

112

2

training
sampling
sampling after Epsilon Scaling

Figure 5: ∥ϵθϵθϵθ(·)∥2 on LSUN 64×64. After apply-
ing Epsilon Scaling, the sampling ∥ϵϵϵθθθ∥2 (blue) gets
closer to the training ∥ϵϵϵθθθ∥2 (red).

5.3 RESULTS ON DDIM/DDPM

To show the generality of our proposed method, we conduct experiments on DDIM/DDPM frame-
work across CIFAR-10 and CelebA 64×64 datasets (Liu et al., 2015). The results are detailed in
Table 4, wherein the designations η = 0 and η = 1 correspond to DDIM and DDPM samplers,
respectively. The findings in Table 3 illustrate that our method can further boost the performance
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of both DDIM and DDPM samplers on the CIFAR-10 and CelebA datasets. Specifically, our pro-
posed Epsilon Scaling technique improves the performance of DDPM sampler on CelebA dataset
by 47.7%, 63.1%, 60.7% with 20, 50, and 100 sampling steps, respectively. Similar performance
improvement can also be observed on CIFAR-10 dataset. We also notice that our method brings less
performance improvement for DDIM sampler. This could arise from the FID advantage of deter-
ministic sampling under a short sampling chain and the noise term in DDPM sampler can actively
correct for errors made in earlier sampling steps Karras et al. (2022).

Table 4: FID on DDIM baseline for unconditional
generations.

T ′ Model
CIFAR-10
32×32

CelebA
64×64

η = 0 η = 1 η = 0 η = 1

100 DDIM 4.06 6.73 5.67 11.33
DDIM-ES (ours) 3.38 4.01 5.05 4.45

50 DDIM 4.82 10.29 6.88 15.09
DDIM-ES 4.17 4.57 6.20 5.57

20 DDIM 8.21 20.15 10.43 22.61
DDIM-ES 6.54 7.78 10.38 11.83

Table 5: FID on EDM baseline and CIFAR-10
dateset (FID of EDM is reproduced).

T ′ Model Unconditional Conditional

Heun Euler Heun Euler

35 EDM 1.97 3.81 1.82 3.74
EDM-ES (ours) 1.95 2.80 1.80 2.59

21 EDM 2.33 6.29 2.17 5.91
EDM-ES 2.24 4.32 2.08 3.74

13 EDM 7.16 12.28 6.69 10.66
EDM-ES 6.54 8.39 6.16 6.59

5.4 RESULTS ON EDM

We test the effectiveness of Epsilon Scaling on EDM (Karras et al., 2022) because it achieves state-
of-the-art image generation under a few sampling steps and provides a unified framework for diffu-
sion models. Since the main advantage of EDM is its Ordinary Differential Equation (ODE) solver,
we evaluate our Epsilon Scaling using their Heun 2nd order ODE solver (Ascher & Petzold, 1998)
and Euler 1st order ODE solver, respectively. Although the network output of EDM is not ϵϵϵ, we still
can extract the signal ϵϵϵ at each sampling step and then apply Epsilon Scaling on ϵϵϵ.

The experiments are implemented on CIFAR-10 dataset and we report the FID results in Table 5
using VP framework. The sampling step T ′ in Table 5 is equivalent to the Neural Function Evalua-
tions (NFE) used in EDM paper. Similar to the results on ADM and DDIM, Epsilon Scaling gains
consistent FID improvement on EDM baseline regardless of the conditional settings and the ODE
solver types. For instance, EDM-ES improves the FID from 3.81 to 2.80 and from 3.74 to 2.59 in
the unconditional and conditional groups using the 35-step Euler sampler.

An interesting phenomenon in Table 5 is that the FID gain of Epsilon Scaling in the Euler sampler
group is larger than that in the Heun sampler group. We believe there are two factors accounting for
this phenomenon. On the one hand, higher-order ODE solvers (for example, Heun solvers) introduce
less truncation error than Euler 1st order solvers. On the other hand, the correction steps in the Heun
solver reduce the exposure bias by pulling the drifted sampling trajectory back to the accurate vector
field. We illustrate these two factors through Fig. 6 which is plotted using the same method of Fig. 2.
It is apparent from Fig. 6 that the Heun sampler exhibits a smaller gap between the training trajectory
and sampling trajectory when compared with the Euler sampler. This corresponds to the truncation
error factor in these two ODE solvers. Furthermore, in the Heun 2nd ODE sampler, the prediction
error (cause of exposure bias) made in each Euler step is corrected in the subsequent Correction
step (Fig. 6(b)), resulting in a reduced exposure bias. This exposure bias perspective explains the
superiority of the Heun solver in diffusion models beyond the truncation error viewpoint.

5.5 RESULTS ON LDM

To further verify the generality of Epsilon Scaling, we adopt Latent Diffusion Model (LDM) as
the base model which introduces an Autoeoconder and performs the diffusion process in the latent
space (Rombach et al., 2022). We test the performance of Epsilon Scaling (LDM-ES) on FFHQ
256×256 and CelebA-HQ 256×256 datasets using T ′ steps DDPM sampler. It is clear from Ta-
ble 6 that Epsilon Scaling gains substantial FID improvements on the two high-resolution datasets,
where LDM-ES achieves 15.68 FID under T ′ = 20 on CelebA-HQ, almost half that of LDM.
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(a) EDM: Euler 1st order sampler
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Figure 6: ∥ϵθϵθϵθ(·)∥2 during training and sampling on CIFAR-10. We use 21-step sampling and report
the L2-norm using 50k samples at each timestep. The sampling is from right to left in the figures.

Table 6: FID on LDM baseline using
DDPM unconditional sampling.

T ′ Model FFHQ
256×256

CelebA-HQ
256×256

100 LDM 10.90 9.31
LDM-ES (ours) 9.83 7.36

50 LDM 14.34 13.95
LDM-ES 11.57 9.16

20 LDM 33.13 29.62
LDM-ES 20.91 15.68

Epsilon Scaling also yields better FID under 50 and 100
sampling steps on CelebA-HQ with 7.36 FID at T ′ =
100. Similar FID improvements are obtained on FFHQ
dataset over different T ′.

Finally, Epsilon Scaling is also effective on DiT (Peebles
& Xie, 2023) which applies the ViT (Dosovitskiy et al.,
2020) diffusion backbone in LDM. Please refer to Ap-
pendix A.13 for the FID results on DiT baseline.

5.6 QUALITATIVE COMPARISON

Figure 7: Qualitative comparison between
ADM (first row) and ADM-ES (second row).

In order to visually show the effect of Epsilon Scal-
ing on image synthesis, we set the same random seed
for the base model and our Epsilon Scaling model
in the sampling phase to ensure a similar trajectory
for both models. Fig. 7 displays the generated sam-
ples using 100 steps on FFHQ 128×128 dataset. It
is clear that ADM-ES effectively refines the sample
issues of ADM, including overexposure, underexpo-
sure, coarse background and detail defects from left
to right in Fig. 7 (see Appendix A.14 for more qual-
itative comparisons). Besides, the qualitative com-
parison also empirically confirms that Epsilon Scaling guides the sampling trajectory of the base
model to an adjacent but better probability path because both models reach the same or similar
modes given the common starting point xxxT and the same random seed at each sampling step.

6 CONCLUSIONS

In this paper, we elucidate the exposure bias issue in diffusion models by analytically showing the
difference between the training distribution and sampling distribution. Moreover, we propose a
training-free method to refine the deficient sampling trajectory by explicitly scaling the prediction
vector. Through extensive experiments, we demonstrate that Epsilon Scaling is a generic solution to
exposure bias and its simplicity enables a wide range of diffusion applications.
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A APPENDIX

A.1 DERIVATION OF qθθθ(x̂xxt|xxxt+1) FOR DDPM

We show the full derivation of Eq. 3 below. From Eq. 11 to Eq. 12, we plug in xxxt+1
θθθ = xxx0 + et+1ϵϵϵ0

(Eq. 7) and xxxt+1 =
√
ᾱt+1xxx0 +

√
1− ᾱt+1ϵϵϵ (Eq. 1), thus a sample from qθθθ(x̂xxt|xxxt+1) is:

x̂xxt = µθθθ(xxxt+1, t+ 1) +

√
β̃t+1ϵϵϵ1

=

√
ᾱtβt+1

1− ᾱt+1
xxxt+1
θθθ +

√
αt+1(1− ᾱt)

1− ᾱt+1
xxxt+1 +

√
β̃t+1ϵϵϵ1 (11)

=

√
ᾱtβt+1

1− ᾱt+1
(xxx0 + et+1ϵϵϵ0) +

√
αt+1(1− ᾱt)

1− ᾱt+1
(
√
ᾱt+1xxx0 +

√
1− ᾱt+1ϵϵϵ) +

√
β̃t+1ϵϵϵ1 (12)

=

√
ᾱtβt+1

1− ᾱt+1
xxx0 +

√
αt+1(1− ᾱt)

1− ᾱt+1

√
ᾱt+1xxx0 +

√
ᾱtβt+1

1− ᾱt+1
et+1ϵϵϵ0 +

√
αt+1(1− ᾱt)

1− ᾱt+1

√
1− ᾱt+1ϵϵϵ+

√
β̃t+1ϵϵϵ1

=

√
ᾱtβt+1 +

√
αt+1(1− ᾱt)

√
ᾱt+1

1− ᾱt+1
xxx0 +

√
ᾱtβt+1

1− ᾱt+1
et+1ϵϵϵ0 +

√
αt+1(1− ᾱt)

1− ᾱt+1

√
1− ᾱt+1ϵϵϵ+

√
β̃t+1ϵϵϵ1

=

√
ᾱt(1− αt+1) +

√
αt+1(1− ᾱt)

√
ᾱt+1

1− ᾱt+1
xxx0 +

√
ᾱtβt+1

1− ᾱt+1
et+1ϵϵϵ0 +

√
αt+1(1− ᾱt)

1− ᾱt+1

√
1− ᾱt+1ϵϵϵ+

√
β̃t+1ϵϵϵ1

=

√
ᾱt(1− αt+1) + αt+1(1− ᾱt)

√
ᾱt

1− ᾱt+1
xxx0 +

√
ᾱtβt+1

1− ᾱt+1
et+1ϵϵϵ0 +

√
αt+1(1− ᾱt)

1− ᾱt+1

√
1− ᾱt+1ϵϵϵ+

√
β̃t+1ϵϵϵ1

=

√
ᾱt(1− αt+1 + αt+1 − ᾱt+1)

1− ᾱt+1
xxx0 +

√
ᾱtβt+1

1− ᾱt+1
et+1ϵϵϵ0 +

√
αt+1(1− ᾱt)

1− ᾱt+1

√
1− ᾱt+1ϵϵϵ+

√
β̃t+1ϵϵϵ1

=
√
ᾱtxxx0 +

√
ᾱtβt+1

1− ᾱt+1
et+1ϵϵϵ0 +

√
αt+1(1− ᾱt)

1− ᾱt+1

√
1− ᾱt+1ϵϵϵ+

√
β̃t+1ϵϵϵ1 (13)

where, ϵϵϵ0, ϵϵϵ, ϵϵϵ1 ∼ N (000, III). From Eq. 13, we know that the mean of qθθθ(x̂xxt|xxxt+1) is
√
ᾱtxxx0. We now

focus on the variance by looking at
√
ᾱtβt+1

1−ᾱt+1
et+1ϵϵϵ0 +

√
αt+1(1−ᾱt)

1−ᾱt+1

√
1− ᾱt+1ϵϵϵ+

√
β̃t+1ϵϵϵ1:

V ar(x̂xxt) = (

√
ᾱtβt+1

1− ᾱt+1
et+1)

2 + (

√
αt+1(1− ᾱt)

1− ᾱt+1

√
1− ᾱt+1)

2 + β̃t+1 (14)

= (

√
ᾱtβt+1

1− ᾱt+1
et+1)

2 + (

√
αt+1(1− ᾱt)

1− ᾱt+1

√
1− ᾱt+1)

2 +
(1− ᾱt)(1− αt+1)

1− ᾱt+1

= (

√
ᾱtβt+1

1− ᾱt+1
et+1)

2 +
αt+1(1− ᾱt)

2

1− ᾱt+1
+

(1− ᾱt)(1− αt+1)

1− ᾱt+1

= (

√
ᾱtβt+1

1− ᾱt+1
et+1)

2 +
αt+1(1− ᾱt)

2 + (1− ᾱt)(1− αt+1)

1− ᾱt+1

= (

√
ᾱtβt+1

1− ᾱt+1
et+1)

2 +
(1− ᾱt)[αt+1(1− ᾱt) + (1− αt+1)]

1− ᾱt+1

= (

√
ᾱtβt+1

1− ᾱt+1
et+1)

2 +
(1− ᾱt)[αt+1 − ᾱt+1 + 1− αt+1]

1− ᾱt+1

= (

√
ᾱtβt+1

1− ᾱt+1
et+1)

2 +
(1− ᾱt)[1− ᾱt+1]

1− ᾱt+1

= (

√
ᾱtβt+1

1− ᾱt+1
et+1)

2 + 1− ᾱt (15)
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A.2 DERIVATION OF qθθθ(x̂xxt−1|xxxt+1) AND MORE FOR DDPM

Since qθθθ(x̂xxt−1|xxxt+1) contains two consecutive sampling steps: qθθθ(x̂xxt|xxxt+1) and qθθθ(x̂xxt−1|x̂xxt), we can
solve out qθθθ(x̂xxt−1|xxxt+1) by iterative plugging-in. According to qθθθ(x̂xxt|xxxt+1) = N (x̂xxt;µθθθ(xxxt+1, t +

1), β̃t+1III) and Eq. 11, we know that qθθθ(x̂xxt−1|x̂xxt) = N (x̂xxt−1;µθθθ(x̂xxt, t), β̃tIII) and a sample from
qθθθ(x̂xxt−1|x̂xxt) is:

x̂xxt−1 =

√
ᾱt−1βt

1− ᾱt
xxxt
θθθ +

√
αt(1− ᾱt−1)

1− ᾱt
x̂xxt +

√
β̃tϵϵϵ1. (16)

From Table 1, we know that qθθθ(x̂xxt|xxxt+1) = N (x̂xxt;
√
ᾱtxxx0, (1− ᾱt+(

√
ᾱtβt+1

1−ᾱt+1
et+1)

2)III), so plug in

x̂xxt =
√
ᾱtxxx0 +

√
1− ᾱt + (

√
ᾱtβt+1

1−ᾱt+1
et+1)2ϵϵϵ3 into Eq. 16, we know a sample from qθθθ(x̂xxt−1|xxxt+1)

is:

x̂xxt−1 =

√
ᾱt−1βt

1− ᾱt
xxxt
θθθ+

√
αt(1− ᾱt−1)

1− ᾱt
(
√
ᾱtxxx0+

√
1− ᾱt + (

√
ᾱtβt+1

1− ᾱt+1
et+1)2ϵϵϵ3)+

√
β̃tϵϵϵ1. (17)

By denoting (
√
ᾱtβt+1

1−ᾱt+1
et+1)

2 as f(t) and plugging in xxxt
θθθ = xxx0 + etϵϵϵ0 (Eq. 7), we have:

x̂xxt−1 =

√
ᾱt−1βt

1− ᾱt
(xxx0 + etϵϵϵ0) +

√
αt(1− ᾱt−1)

1− ᾱt
(
√
ᾱtxxx0 +

√
1− ᾱt + f(t)ϵϵϵ3) +

√
β̃tϵϵϵ1 (18)

≈
√
ᾱt−1βt

1− ᾱt
(xxx0 + etϵϵϵ0) +

√
αt(1− ᾱt−1)

1− ᾱt
(
√
ᾱtxxx0 +

√
1− ᾱtϵϵϵ3 +

1

2
√
1− ᾱt

f(t)ϵϵϵ3) +

√
β̃tϵϵϵ1

(19)

≈
√
ᾱt−1βt

1− ᾱt
xxx0 +

√
ᾱt−1βt

1− ᾱt
etϵϵϵ0 +

√
αt(1− ᾱt−1)

1− ᾱt

√
ᾱtxxx0

+

√
αt(1− ᾱt−1)

1− ᾱt
(
√
1− ᾱtϵϵϵ3 +

1

2
√
1− ᾱt

f(t)ϵϵϵ3) +

√
β̃tϵϵϵ1 (20)

≈
√
ᾱt−1xxx0 +

√
ᾱt−1βt

1− ᾱt
etϵϵϵ0 +

√
αt(1− ᾱt−1)

1− ᾱt
(
√
1− ᾱt +

1

2
√
1− ᾱt

f(t))ϵϵϵ3 +

√
β̃tϵϵϵ1

(21)

Taylor’s theorem is used from Eq. 18 to Eq. 19. The process from Eq. 20 to Eq. 21 is similar to
the simplification from Eq. 12 to Eq. 13. From Eq. 21, we know that the mean of qθθθ(x̂xxt−1|xxxt+1) is√
ᾱt−1xxx0. We now focus on the variance:

V ar(x̂xxt−1) = (

√
ᾱt−1βt

1− ᾱt
et)

2 + (

√
αt(1− ᾱt−1)

1− ᾱt

√
1− ᾱt)

2 + β̃t

+ (

√
αt(1− ᾱt−1)

1− ᾱt

1

2
√
1− ᾱt

f(t))2 (22)

= 1− ᾱt−1 + (

√
ᾱt−1βt

1− ᾱt
et)

2 +
αt(1− ᾱt−1)

2

4(1− ᾱt)3
f(t)2 (23)

The above derivation is similar to the progress from Eq. 14 to Eq. 15. Now we write the mean and
variance of qθθθ(x̂xxt−1|xxxt+1) in Table 7. In the same spirit of iterative plugging-in, we could derive
(x̂xxt|xxxT ) which has the mean

√
ᾱtxxx0 and variance larger than (1− ᾱt)III .

A.3 DERIVATION OF qθθθ(x̂xxt|xxxt+1) FOR DDIM

We first review the derivation of the reverse diffusion pθθθ(xxxt−1|xxxt) for DDIM. To keep the symbols
consistent in this paper, we continue to use the notations of DDPM in the derivation of DDIM.
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Table 7: The distribution q(xxxt−1|xxx0) during training and qθθθ(x̂xxt−1|xxxt+1) during DDPM sampling.

Mean Variance

q(xxxt−1|xxx0)
√
ᾱt−1xxx0 (1− ᾱt−1)III

qθθθ(x̂xxt−1|xxxt+1)
√
ᾱt−1xxx0 (1− ᾱt−1 + (

√
ᾱt−1βt

1−ᾱt
et)

2 + αt(1−ᾱt−1)
2

4(1−ᾱt)3
f(t)2)III

Recall that DDIM and DDPM have the same loss function because they share the same marginal
distribution q(xxxt|xxx0) = N (xxxt;

√
ᾱtxxx0, (1 − ᾱt)III). But the posterior q(xxxt−1|xxxt,xxx0) of DDIM is

obtained under Non-Markovian diffusion process and is given by Song et al. (2021a):

q(xxxt−1|xxxt,xxx0) = N (
√
ᾱt−1xxx0 +

√
1− ᾱt−1 − σ2

t ·
xxxt −

√
ᾱtxxx0√

1− ᾱt
, σ2

t III). (24)

Similar to DDPM, the reverse distribution of DDIM is parameterized as pθθθ(xxxt−1|xxxt) =
q(xxxt−1|xxxt,xxx

t
θθθ), where xxxt

θθθ means the predicted xxx0 given xxxt. Based on Eq. 24, the reverse diffu-
sion q(xxxt−1|xxxt,xxx

t
θθθ) is:

q(xxxt−1|xxxt,xxx
t
θθθ) = N (

√
ᾱt−1xxx

t
θθθ +

√
1− ᾱt−1 − σ2

t ·
xxxt −

√
ᾱtxxx

t
θθθ√

1− ᾱt
, σ2

t III). (25)

Again, we point out that q(xxxt−1|xxxt,xxx
t
θθθ) = q(xxxt−1|xxxt,xxx0) holds only if xxxt

θθθ = xxx0, this requires the
network to make no prediction error about xxx0. Theoretically, we need to consider the uncertainty
of the prediction xxxt

θθθ and model it as a probabilistic distribution pθθθ(xxx0|xxxt). Following Analytical-
DPM (Bao et al., 2022), we approximate it by a Gaussian distribution pθθθ(xxx0|xxxt) = N (xxxt

θθθ;xxx0, e
2
tIII),

namely xxxt
θθθ = xxx0 + etϵϵϵ0. Thus, the practical reverse diffusion q(xxxt−1|xxxt,xxx

t
θθθ) is

q(xxxt−1|xxxt,xxx
t
θθθ) = N (

√
ᾱt−1(xxx0 + etϵϵϵ0) +

√
1− ᾱt−1 − σ2

t ·
xxxt −

√
ᾱt(xxx0 + etϵϵϵ0)√
1− ᾱt

, σ2
t III). (26)

Note that σt = 0 for DDIM sampler, so a sample xxxt−1 from q(xxxt−1|xxxt,xxx
t
θθθ) is:

xxxt−1 =
√
ᾱt−1(xxx0 + etϵϵϵ0) +

√
1− ᾱt−1 − σ2

t ·
xxxt −

√
ᾱt(xxx0 + etϵϵϵ0)√
1− ᾱt

+ σtϵϵϵ4

=
√
ᾱt−1xxx0 +

√
ᾱt−1etϵϵϵ0 +

√
1− ᾱt−1 ·

xxxt −
√
ᾱtxxx0√

1− ᾱt
−
√
1− ᾱt−1 ·

√
ᾱtetϵϵϵ0√
1− ᾱt

(27)

=
√
ᾱt−1xxx0 +

√
ᾱt−1etϵϵϵ0 +

√
1− ᾱt−1ϵϵϵ5 −

√
1− ᾱt−1 ·

√
ᾱtetϵϵϵ0√
1− ᾱt

(28)

=
√
ᾱt−1xxx0 +

√
1− ᾱt−1ϵϵϵ5 + (

√
ᾱt−1et −

√
1− ᾱt−1 ·

√
ᾱtet√
1− ᾱt

)ϵϵϵ0 (29)

From Eq. 27 to Eq. 28, we plug in xxxt =
√
ᾱtxxx0 +

√
1− ᾱtϵϵϵ5 where ϵϵϵ5 ∼ N (000, III). We now

compute the sampling distribution q(x̂xxt|xxxt+1,xxx
t+1
θθθ ) which is the same distribution as q(xxxt−1|xxxt,xxx

t
θθθ)

by replacing the index t with t+ 1 and using x̂xxt to highlight it is a generated sample. According to
Eq. 29, a sample x̂xxt from q(x̂xxt|xxxt+1,xxx

t+1
θθθ ) is:

x̂xxt =
√
ᾱtxxx0 +

√
1− ᾱtϵϵϵ5 + (

√
ᾱtet+1 −

√
1− ᾱt ·

√
ᾱt+1et+1√
1− ᾱt+1

)ϵϵϵ0 (30)
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From Eq. 30, we know the mean of q(x̂xxt|xxxt+1,xxx
t+1
θθθ ) is

√
ᾱtxxx0. We now calculate the variance by

looking at
√
1− ᾱtϵϵϵ5 + (

√
ᾱtet+1 −

√
1− ᾱt ·

√
ᾱt+1et+1√
1−ᾱt+1

)ϵϵϵ0:

V ar(x̂xxt) = (
√
1− ᾱt)

2 + (
√
ᾱtet+1 −

√
1− ᾱt ·

√
ᾱt+1et+1√
1− ᾱt+1

)2

= 1− ᾱt + (
√
ᾱt −

√
1− ᾱt ·

√
ᾱt+1√

1− ᾱt+1
)2e2t+1

= 1− ᾱt + (
√
ᾱt −

√
1− ᾱt

√
ᾱt
√
αt+1√

1− ᾱt+1
)2e2t+1

= 1− ᾱt + (
√
ᾱt(1−

√
1− ᾱt

√
αt+1√

1− ᾱt+1
))2e2t+1

= 1− ᾱt + ᾱt(1−
√
αt+1 − ᾱt+1√
1− ᾱt+1

)2e2t+1

= 1− ᾱt + (1−
√

αt+1 − ᾱt+1

1− ᾱt+1
)2ᾱte

2
t+1 (31)

As a result, we can write the mean and variance of the sampling distribution q(x̂xxt|xxxt+1,xxx
t+1
θθθ ), i.e.

qθθθ(x̂xxt|xxxt+1), and compare it with the training distribution q(xxxt|xxx0) in Table 8.

Table 8: The mean and variance of q(xxxt|xxx0) during training and qθθθ(x̂xxt|xxxt+1) during DDIM sampling.

Mean Variance

q(xxxt|xxx0)
√
ᾱtxxx0 (1− ᾱt)III

qθθθ(x̂xxt|xxxt+1)
√
ᾱtxxx0 (1− ᾱt + (1−

√
αt+1−ᾱt+1

1−ᾱt+1
)2ᾱte

2
t+1)III

Since αt+1 < 1,
√

αt+1−ᾱt+1

1−ᾱt+1
< 1 and (1 −

√
αt+1−ᾱt+1

1−ᾱt+1
) > 0 hold for any t in Eq. 31. Similar

to DDPM sampler, the variance of q(x̂xxt|xxxt+1,xxx
t+1
θθθ ) is always larger than that of q(xxxt|xxx0) by the

magnitude (1−
√

αt+1−ᾱt+1

1−ᾱt+1
)2ᾱte

2
t+1, indicating the exposure bias issue in DDIM sampler.

A.4 PRACTICAL VARIANCE ERROR OF qθθθ(x̂xxt|xxxt+1) AND qθθθ(x̂xxt|xxxT )

We measure the single-step variance error of qθθθ(x̂xxt|xxxt+1) and multi-step variance error of qθθθ(x̂xxt|xxxT )
using Algorithm 1 and Algorithm 2, respectively. Note that, the multi-step variance error measure-
ment is similar to the exposure bias δt evaluation and we denote the single-step variance error as ∆t

and represent the multi-step variance error as ∆′
t. The experiments are implemented on CIFAR-10

(Krizhevsky et al., 2009) dataset and ADM model (Dhariwal & Nichol, 2021). The key difference
between ∆t and ∆′

t measurement is that the former can get access to the ground truth input xxxt at
each sampling step t, while the latter is only exposed to the predicted x̂xxt in the iterative sampling
process.
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Algorithm 1 Variance error under single-step
sampling

1: Initialize ∆t = 0, nt = list() (∀t ∈
{1, ..., T − 1})

2: for t := T, ..., 1 do
3: repeat
4: xxx0 ∼ q(xxx0), ϵϵϵ ∼ N (000, III)
5: xxxt =

√
ᾱtxxx0 +

√
1− ᾱtϵϵϵ

6: x̂xxt−1 = 1√
αt
(xxxt − βt√

1−ᾱt
ϵϵϵθθθ(xxxt, t)) +√

β̃tzzz (zzz ∼ N (000, III))
7: nt−1.append(x̂xxt−1 −

√
ᾱt−1xxx0)

8: until 50k iterations
9: end for

10: for t := T, ..., 1 do
11: β̂t = numpy.var(nt)

12: ∆t = β̂t − β̄t

13: end for

Algorithm 2 Variance error under multi-step
sampling

1: Initialize δt = 0, nt = list() (∀t ∈
{1, ..., T − 1})

2: repeat
3: xxx0 ∼ q(xxx0), ϵϵϵ ∼ N (000, III)
4: xxxT =

√
ᾱTxxx0 +

√
1− ᾱTϵϵϵ

5: for t := T, ..., 1 do
6: if t == T then x̂xxt = xxxT

7: x̂xxt−1 = 1√
αt
(x̂xxt − βt√

1−ᾱt
ϵϵϵθθθ(x̂xxt, t)) +√

β̃tzzz (zzz ∼ N (000, III))
8: nt−1.append(x̂xxt−1 −

√
ᾱt−1xxx0)

9: end for
10: until 50k iterations
11: for t := T, ..., 1 do
12: β̂t = numpy.var(nt)

13: ∆′
t = β̂t − β̄t

14: end for

A.5 METRIC FOR EXPOSURE BIAS

The key step of Algorithm 3 is that we subtract the mean
√
ᾱt−1xxx0 and the remaining term x̂xxt−1 −√

ᾱt−1xxx0 corresponds to the stochastic term of q(x̂xxt−1|xxxt,xxx
t
θθθ). In our experiments, we use N =

50, 000 samples to compute the variance β̂t.

Algorithm 3 Measurement of Exposure Bias δt
1: Initialize δt = 0, nt = list() (∀t ∈ {1, ..., T − 1})
2: repeat
3: xxx0 ∼ q(xxx0), ϵϵϵ ∼ N (000, III)
4: compute xxxT using Eq. 1
5: for t := T, ..., 1 do
6: if t == T then x̂xxt = xxxT

7: x̂xxt−1 = 1√
αt
(x̂xxt − βt√

1−ᾱt
ϵϵϵθθθ(x̂xxt, t)) +

√
β̃tzzz (zzz ∼ N (000, III))

8: nt−1.append(x̂xxt−1 −
√
ᾱt−1xxx0)

9: end for
10: until N iterations
11: for t := T, ..., 1 do
12: β̂t = numpy.var(nt)

13: δt = (

√
β̂t −

√
β̄t)

2

14: end for

A.6 CORRELATION BETWEEN EXPOSURE BIAS METRIC AND FID

5 6 7 8 9 10
FID

0.36

0.38

0.40

0.42
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1

ADM-ES

Figure 8: Correlation between FID - δ1.

We define the exposure bias at timestep t as δt = (
√
β

′
t−√

β̄t)
2, where β̄t = 1 − ᾱt denotes the variance of

q(xxxt|xxx0) during training and β
′

t presents the variance of
qθθθ(x̂xxt|xxxT ) in the regular sampling process. Although δt
measures the discrepancy between network inputs and
FID to evaluate the difference between training data and
network outputs, we empirically find a strong correlation
between δt and FID, which could arise from the benefit of
defining δt from the Fréchet distance Dowson & Landau
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(1982) perspective. In Fig. 8, we present the FID-δ1 relationships on CIFAR-10 and use 20-step
sampling, wherein δ1 represents the exposure bias in the last sampling step t = 1. Additionally, δt
has the advantage of indicating the network input quality at any intermediate timestep t. Taking Fig.
4 as an example, we can see that the input quality decreases dramatically near the end of sampling
(t = 1) as δt increases significantly.

A.7 FID RESULTS ON PFGM++ BASELINE

In PFGM, Xu et al. (2022) claim that the strong norm-t correlation causes the sensitivity of prediction
errors in diffusion frameworks, and PFGM is more resistant to prediction errors due to the greater
range of training sample norms. Our experiments verify the robustness of Poisson Flow frameworks
by observing that Epsilon Scaling enjoys a wider range of λ(t) on PFGM++ baseline (Xu et al.,
2023b) than on EDM baseline. The rationale is simple: an inappropriate λ((t)) introduces errors
that require the network to be robust to counteract. However, we observe that the exposure bias issue
still exists in Poisson Flow frameworks even though they are less sensitive to prediction errors than
diffusion frameworks. Therefore, Epsilon Scaling is applicable in Poisson Flow models. Table 9
and Table 10 show the significant improvements made by Epsilon Scaling (λ(t) = b) on PFGM++.

Table 9: FID on CIFAR-10 using PFGM++ baseline (D=128, uncond).

Model T ′

9 13 21 35

PFGM++ 37.82 7.55 2.34 1.92

PFGM++ with ES 17.91
(b=1.008)

4.51
(b=1.016)

2.31
(b=0.970)

1.91
(b=1.00045)

Table 10: FID on CIFAR-10 using PFGM++ baseline (D=2048, uncond).

Model T ′

9 13 21 35

PFGM++ 37.16 7.34 2.31 1.91

PFGM++ with ES 17.27
(b=1.007)

4.88
(b=1.015)

2.20
(b=0.996)

1.90
(b=1.0007)

A.8 FID RESULTS UNDER T ′ > 100

Although using sampling step T ′ = 100 often achieves the near-optimal FID in diffusion models,
we still report the performance of our Epsilon Scaling in the large T ′ regions. We show the FID
results on Analytic-DDPM (Bao et al., 2022) baseline (Table 11) and ADM baseline (Table 12),
where we apply λ(t) = b for Epsilon Scaling.

Table 11: FID on CIFAR-10 using Analytic-DDPM baseline
(linear noise schedule).

T ′

20 50 100 200 400 1000

Analytic-DDPM 14.61 7.25 5.40 4.01 3.62 4.03
Analytic-DDPM with ES 11.02 5.03 4.09 3.39 3.14 3.42

Table 12: FID on CIFAR-10
using ADM baseline.

T ′

200 300 1000

ADM 3.04 2.95 3.01
ADM-ES 2.15 2.14 2.21
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A.9 RECALL AND PRECISION RESULTS

Our method Epsilon Scaling does not affect the recall and precision of the base model. We present
the complete recall and precision (Kynkäänniemi et al., 2019) results in Table 13 using the code
provided by ADM (Dhariwal & Nichol, 2021). ADM-ES achieve higher recalls and slightly lower
previsions across the five datasets. But the overall differences are minor.

Table 13: Recall and precision of ADM and ADM-ES using 100-step sampling.

Model
CIFAR-10
32×32

LSUN tower
64×64

FFHQ
128×128

ImageNet
64×64

ImageNet
128×128

recall precision recall precision recall precision recall precision recall precision

ADM 0.591 0.691 0.605 0.645 0.497 0.696 0.621 0.738 0.586 0.771
ADM-ES 0.613 0.684 0.606 0.641 0.545 0.683 0.632 0.726 0.592 0.771

A.10 EPSILON SCALING PARAMETERS: k, b

We present the parameters k, b of Epsilon Scaling we used in all of our experiments in Table 14,
Table 15 and Table 16 for reproducibility. Apart from that, we provide suggestions on finding the
optimal parameters even though they are dependent on the dataset and how well the base model is
trained. Our suggestions are:

• Search for the optimal uniform schedule λ(t) = b in a coarse-to-fine manner: use stride
0.001, 0.0005, 0.0001 progressively.

• In general, the optimal b will decrease as the sampling step T ′ increases.
• After getting the optimal uniform schedule λ(t)∗ = b∗, we search for k of the linear sched-

ule λ(t) = kt+b by keeping Σλ(t) = Σλ(t)∗, thereby, b in the linear schedule is calculated
rather than being searched.

• Instead of generating 50k samples, using 10k samples to compute FID for searching λ(t).

Table 14: Epsilon Scaling schedule λ(t) = kt + b we used on ADM baseline. We keep the FID
results in the table for comparisons and remark k, b underneath FIDs

T ′ Model Unconditional Conditional

CIFAR-10 32×32 LSUN tower 64×64 FFHQ 128×128 ImageNet 64×64 ImageNet 128×128

100 ADM 3.37 3.59 14.52 2.71 3.55

ADM-ES 2.17
(b=1.017)

2.91
(b=1.006)

6.77
(b=1.005)

2.39
(b=1.006)

3.37
(b=1.004)

50 ADM 4.43 7.28 26.15 3,75 5.15

ADM-ES 2.49
(b=1.017)

3.68
(b=1.007)

9.50
(b=1.007)

3.07
(b=1.006)

4.33
(b=1.004)

20
ADM 10.36 23.92 59.35 10.96 12.48

ADM-ES 5.15
(b=1.017)

8.22
(b=1.011)

26.14
(b=1.008)

7.52
(b=1.006)

9.95
(b=1.005)

ADM-ES∗ 4.31
(k=0.0025, b=1.0)

7.60
(k=0.0008, b=1.0034)

24.83
(k=0.0004, b=1.0042)

7.37
(k=0.0002, b=1.0041)

9.86
(k=0.00022, b=1.00291)

A.11 INSENSITIVITY OF λ(t)

We empirically show that the FID gain can be achieved within a wide range of λ(t). Table 17 and
Table 18 demonstrate the insensitivity of our hyperparameters, which ease the search of λ(t).
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Table 15: Epsilon Scaling schedule λ(t) = kt + b, (k = 0) we used on DDIM/DDPM and LDM
baseline. We keep the FID results in the table for comparisons and remark b underneath FIDs

T ′ Model CIFAR-10 32×32 CelebA 64×64
T ′ Model FFHQ 256×256 CelebA-HQ 256×256

η = 0 η = 1 η = 0 η = 1

100 DDIM 4.06 6.73 5.67 11.33 100 LDM 10.90 9.31

DDIM-ES 3.38
(b=1.0014)

4.01
(b=1.03)

5.05
(b=1.003)

4.45
(b=1.04) LDM-ES 9.83

(b=1.00015)
7.36
(b=1.0009)

50 DDIM 4.82 10.29 6.88 15.09 50 LDM 14.34 13.95

DDIM-ES 4.17
(b=1.0030)

4.57
(b=1.04)

6.20
(b=1.004)

5.57
(b=1.05) LDM-ES 11.57

(b=1.0016)
9.16
(b=1.003)

20 DDIM 8.21 20.15 10.43 22.61 20 LDM 33.13 29.62

DDIM-ES 6.54
(b=1.0052)

7.78
(b=1.05)

10.38
(b=1.001)

11.83
(b=1.06) LDM-ES 20.91

(b=1.007)
15.68
(b=1.010)

Table 16: Epsilon Scaling schedule λ(t) = kt+ b, (k = 0) we used on EDM baseline. We keep the
FID results in the table for comparisons and remark b underneath FIDs

T ′ Model Unconditional Conditional

Heun Euler Heun Euler

35 EDM 1.97 3.81 1.82 3.74

EDM-ES 1.95
b=1.0005

2.80
b=1.0034

1.80
b=1.0006

2.59
b=1.0035

21 EDM 2.33 6.29 2.17 5.91

EDM-ES 2.24
b=0.9985

4.32
b=1.0043

2.08
b=0.9983

3.74
b=1.0045

13 EDM 7.16 12.28 6.69 10.66

EDM-ES 6.54
b=1.0060

8.39
b=1.0048

6.16
b=1.0070

6.59
b=1.0051

Table 17: FID of ADM-ES achieved on CIFAR-10 under different λ(t) (λ(t) = b) and unconditional
sampling, b=1 represents ADM.

b 1 (baseline) 1.015 1.016 1.017 1.018 1.019

T ′ = 100 3.37 2.20 2.18 2.17 2.21 2.31

b 1 (baseline) 1.015 1.016 1.017 1.018 1.019

T ′ = 50 4.43 2.53 2.51 2.49 2.53 2.55

Table 18: FID of EDM-ES achieved on CIFAR-10 under different λ(t) (λ(t) = b) and unconditional
Heun sampler, b=1 represents EDM.

b 1 (baseline) 1.0005 1.0006 1.0007 1.0008

T ′ = 35 1.97 1.948 1.947 1.949 1.953

b 1 (baseline) 1.004 1.005 1.006 1.007

T ′ = 13 7.16 6.60 6.55 6.54 6.55
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A.12 EPSILON SCALING ALLEVIATES EXPOSURE BIAS

In Section 5.2, we have explicitly shown that Epsilon Scaling reduces the exposure bias of diffusion
models via refining the sampling trajectory and achieves a lower δt on CIFAR-10 dataset.

We now replicate these experiments on other datasets using the same base model ADM and 20-step
sampling. Fig. 9 and Fig. 10 display the corresponding results on CIFAR-10 and FFHQ 128×128
datasets. Similar to the phenomenon on LSUN tower 64×64 (Fig. 5 and Fig. 4), Epsilon Scaling
consistently obtains a smaller exposure bias δt and pushes the sampling trajectory to the vector field
learned in the training stage.
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(a) Exposure bias measured by δt on CIFAR-10
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(b) L2-norm of ϵθϵθϵθ(·) on CIFAR-10

Figure 9: Left: Epsilon Scaling achieves a smaller δt at the end of sampling (t = 1). Right: after
applying Epsilon Scaling, the sampling ∥ϵϵϵθθθ∥2 (blue) gets closer to the training ∥ϵϵϵθθθ∥2 (red)
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(a) Exposure bias measured by δt on FFHQ 128×128
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(b) L2-norm of ϵθϵθϵθ(·) on FFHQ 128×128

Figure 10: Left: Epsilon Scaling achieves a smaller δt at the end of sampling (t = 1). Right: after
applying Epsilon Scaling, the sampling ∥ϵϵϵθθθ∥2 (blue) gets closer to the training ∥ϵϵϵθθθ∥2 (red).

A.13 FID RESULTS ON DIT BASELINE

In addition to UNet (Ronneberger et al., 2015) backbone, we also test Epsilon Scaling on diffusion
models using Vision Transformers (Dosovitskiy et al., 2020). Table 19 presents the FID of DiT (Pee-
bles & Xie, 2023) and our DiT-ES on ImageNet 256×256 under uniform λ(t) = b. Again, Epsilon
Scaling achieves consistent sample quality improvement over different sampling steps, indicating
that the exposure bias exists in both UNet and Transformer backbones.
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Table 19: FID on ImageNet 256×256 using DiT baseline

Model T ′

20 50 100

DiT 12.95 3.71 2.57

DiT-ES 10.00
(b=0.965)

3.30
(b=0.989)

2.52
(b=0.995)

A.14 QUALITATIVE COMPARISON

In Section 5.6, we have presented the sample quality comparison between the base model sampling
and Epsilon Scaling sampling on FFHQ 128×128 dataset. Applying the same experimental settings,
we show more qualitative contrasts between ADM and ADM-ES on the dataset CIFAR-10 32×32
(Fig. 11), LSUN tower 64×64 (Fig. 12), ImageNet 64×64 (Fig. 13) and ImageNet 128×128
(Fig. 14). Also, we provide the qualitative comparison between LDM and LDM-ES on the dataset
CelebA-HQ 256×256 (Fig. 15). These sample comparisons clearly state that Epsilon Scaling effec-
tively improves the sample quality from various perspectives, including illumination, colour, object
coherence, background details and so on.

Figure 11: Qualitative comparison between ADM (first row) and ADM-ES (second row) on CIFAR-
10 32×32 using 100-step sampling.

Figure 12: Qualitative comparison between ADM (first row) and ADM-ES (second row) on LSUN
tower 64×64 using 100-step sampling.
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Figure 13: Qualitative comparison between ADM (first row) and ADM-ES (second row) on Ima-
geNet 64×64 using 100-step sampling.

Figure 14: Qualitative comparison between ADM (first row) and ADM-ES (second row) on Ima-
geNet 128×128 using 100-step sampling.

Figure 15: Qualitative comparison between LDM (first row) and LDM-ES (second row) on CelebA-
HQ 256×256 using 100-step sampling.
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