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ABSTRACT

This paper introduces MedTrinity-25M, a comprehensive, large-scale multimodal dataset
for medicine, covering over 25 million images across 10 modalities, with multigranu-
lar annotations for more than 65 diseases. These multigranular annotations encompass
both global information, such as modality and organ detection, and local information like
ROI analysis, lesion texture, and region-wise correlations. Unlike the existing multimodal
datasets, which are limited by the availability of image-text pairs, we have developed the
first automated pipeline that scales up multimodal data by generating multigranular visual
and textual annotations in the form of image-ROI-description triplets without the need
for any paired text descriptions. Specifically, data from over 30 different sources have
been collected, preprocessed, and grounded using domain-specific expert models to iden-
tify ROIs related to abnormal regions. We then build a comprehensive knowledge base and
prompt multimodal large language models to perform retrieval-augmented generation with
the identified ROIs as guidance, resulting in multigranular textual descriptions. Compared
to existing datasets, MedTrinity-25M provides the most enriched annotations, support-
ing a comprehensive range of multimodal tasks such as captioning and report generation,
as well as vision-centric tasks like classification and segmentation. We propose LLaVA-
Tri by pretraining LLaVA on MedTrinity-25M, achieving state-of-the-art performance on
VQA-RAD, SLAKE and PathVQA, surpassing representative SOTA multimodal large
language models. Furthermore, MedTrinity-25M can also be utilized to support large-
scale pre-training of multimodal medical AI models, contributing to the development of
future foundation models in the medical domain. We will make our dataset available.

1 INTRODUCTION

Large-scale multimodal foundation models (Liu et al., 2024; Achiam et al., 2023; Tu et al., 2024b; Team
et al., 2023b; Zhou et al., 2024) have demonstrated remarkable success across various domains due to their
ability to understand complex visual patterns in conjunction with natural language. This success has sparked
significant interest in applying such models to medical vision-language tasks. Much progress has been made
to improve the medical capacity of general domain multimodal foundation models by constructing medical
datasets with image-text pairs and fine-tuning general domain models on these datasets (Bustos et al., 2020;
Irvin et al., 2019; Johnson et al., 2019a; Li et al., 2024a; Ikezogwo et al., 2024).

However, current medical datasets have several limitations. Firstly, these datasets lack multigranular anno-
tations that reveal the correlation between region-wise information within medical images. Medical images
often contain detailed cues, such as regional abnormal textures or structures, which may indicate specific
types of lesions. Therefore, multimodal models need the ability to infer global information, such as disease
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or lesion type, from local details. The absence of such data limits the models’ capacity to comprehensively
understand medical images. Moreover, current dataset construction methods heavily rely on medical images
paired with reports or captions from human experts (Ikezogwo et al., 2024; Liu et al., 2021; Lau et al., 2018b;
He et al., 2020a), which restricts their scalability.

In this paper, we address the above challenges by proposing an automated data construction pipeline us-
ing multimodal large language models (MLLMs) without relying on paired text descriptions. To address
the scarcity of medical knowledge within general-purpose MLLMs, we incorporate retrieval-augmented
generation (RAG) to source relevant medical knowledge from a medical database for MLLMs’s reference.
To enhance the model’s regional focus, we employ an ensemble of domain-specific segmentation mod-
els and grounding models to generate regions of interest (ROIs). MLLMs are then prompted to produce
multigranular visual and textual annotations, enriched by the retrieved medical knowledge and ROIs. Our
proposed pipeline enables the transformation of large-scale images without paired ROIs or text into image-
ROI-description triplets. These triplets provide multigranular annotations that encompass both global tex-
tual information, such as disease/lesion type, modality, and inter-regional relationships, as well as detailed
local annotations for ROIs, including bounding boxes, segmentation masks, and region-specific textual de-
scriptions. Using the proposed pipeline, we create a large-scale multimodal multigranular medical dataset
containing over 25 million triplets, namely MedTrinity-25M. To best of our knowledge, this is the largest
multimodal dataset in medicine to date.

To demonstrate the effectiveness of our dataset, we proposed LLaVA-Tri by pretraining LLaVA
on MedTrinity-25M. We conduct extensive evaluations across three external medical visual QA datasets
representing different sub-pathologies. LLaVA-Tri achieved state-of-the-art results in all of the three VQA
benchmarks, with 81.6% accuracy on VQA-RAD (Lau et al., 2018b), 87.8% on SLAKE (Liu et al., 2021),
and 82.8% on PathVQA (He et al., 2020a). Moreover, consistent performance improvements are observed
when pretraining other multimodal models on MedTrinity-25M. These findings emphasize the potential of
MedTrinity-25M as a foundational dataset that can improve the medical performance of diverse multimodal
models.

2 RELATED WORK

Medical Multimodal Foundation Models. Due to the success of multimodal foundation models in com-
prehending visual features, their adaptation for medical vision-language tasks has garnered increasing atten-
tion (Moor et al., 2023; Tu et al., 2024a; Li et al., 2024a; Zhou et al., 2024). Several works adapt general
multimodal models to the medical domain via end-to-end training on medical datasets. For instance, Med-
Flamingo (Moor et al., 2023) fine-tunes OpenFlamingo-9B (Awadalla et al., 2023) using 0.8M interleaved
and 1.6M paired medical image-text data. LLaVA-Med (Li et al., 2024a) uses a two-stage end-to-end visual
instruction tuning (Liu et al., 2024), excelling in medical visual question answering (VQA) tasks. Med-
Gemini (Saab et al., 2024) adapts Gemini (Team et al., 2023a) using a long-form question answering dataset
to enhance multimodal and long-context capabilities. Despite these achievements, the limited scale of train-
ing data remains a challenge. Prior research (Kaplan et al., 2020) shows that increasing training data size
improves large multimodal model performance. This paper aims to build a large-scale medical dataset to
drive the development of stronger medical multimodal foundation models.

Multimodal Datasets for Medicine. The importance of constructing medical multimodal datasets has
drawn significant attention (Li et al., 2024a; Pelka et al., 2018; Zhang et al., 2024; Irvin et al., 2019). Sev-
eral works focus on collecting images paired with clinical reports from specialists (Zhang et al., 2024; Irvin
et al., 2019; Johnson et al., 2019a), providing detailed descriptions, including disease types and reasoning.
For instance, MIMIC-CXR (Johnson et al., 2019a) contains 227,835 images for 65,379 patients, with cor-
responding reports. However, constructing such reports manually is time-consuming and costly, limiting
dataset size. PMC-OA (Lin et al., 2023) includes up to 1.65 million image-caption pairs from medical pa-
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pers but lacks detailed clinical reports. RadGenome-Chest CT (Zhang et al., 2024) offers richer annotations
but remains dependent on paired image-text data, limiting its scale. In comparison, we introduce the first au-
tomated pipeline to generate multigranular annotations for independent images, generating a comprehensive
dataset containing 25 million samples.

3 MEDTRINITY-25M DATASET

3.1 DATA TRIPLET

In this section, we provide details about data format within MedTrinity-25M. Our dataset comprises triplets
of {image,ROI,description}. For each image, we provide multigranular annotations containing
both textual description and visual ROI.

Images. We gather 25,016,845 samples across 10 medical image modalities and over 65 diseases. Specif-
ically, we utilize original medical images from various datasets, extensively collecting from online sources
such as TCIA, Kaggle, Zenodo, Synapse, Hugging Face, Grand Challenge, GitHub, and medical datasets in-
cluding CheXpert (Irvin et al., 2019) and DeepLesion (Yan et al., 2017a). 3D volumetric images in DICOM
or NIfTI formats are converted to 2D slices with PNG format. The detailed data sources are illustrated in
Appendix A.

ROIs. We use ROIs to provide visual annotations for each image, primarily focusing on pathological
findings such as lesions, inflammation, neoplasms, infections, and other abnormalities. In cases without
such abnormalities, the ROIs generally mark the primary object or organ in the image, as illustrated in
Figure 10. When multiple organs are relevant for disease diagnosis, the ROIs aim to cover several regions
associated with the disease, providing detailed analysis of each affected area, as shown in Figure 11.

Textual Descriptions. The textual descriptions for each image are composed of detailed information
across various attributes. In contrast to the unstructured medical reports or short captions in previous med-
ical datasets (Irvin et al., 2019; Johnson et al., 2019a; Bustos et al., 2020; Zhang et al., 2023b; Liu et al.,
2021; Pelka et al., 2018; Lin, 2023), our textual descriptions are structured and contain multigranular in-
formation for five attributes. As illustrated in Figure 1, the general attributes of the image are described
initially, covering aspects such as modality, the detection of specific organs, and their depiction. Following
this, the attributes related to ROI are detailed, including the ROI analysis, locations and texture of the lesions,
which encompass the disease type and relevant pathological features. Furthermore, region-wise correlations
are highlighted to showcase relationships between the ROIs and surrounding regions, providing insight into
differences in features and the extent of disease progression.

3.2 DATA CONSTRUCTION PIPELINE

Given a medical image, we aim to generate corresponding multigranular visual and texual annotations.
Specifically, as shown in Figure 2, our pipeline can be decomposed into two stages: 1) Data Processing, and
2) Multigranular Textual Description Generation. Firstly, our data processing stage includes three key steps:
a) Metadata Integration to produce coarse captions encapsulating fundamental image information such as
modality and disease types; b) ROI Locating to identify regions of abnormalities; and c) Medical Knowledge
Retrieval to extract relevant fine-grained medical details. All processing steps are further detailed in Sec-
tion 3.2.1. Subsequently, we prompt MLLMs to integrate information within processed data and generate
multigranular textual descriptions. Corresponding details are provided in Section 3.2.2. The original image,
generated visual ROIs and textual descriptions are combined into a data triplet in MedTrinity-25M.
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(a) Qualitative Comparison with sample in radiology report of chest x-rays dataset MIMIC-CXR (Johnson et al., 2019b).

(b) Qualitative Comparison with sample in visual QA dataset SLAKE (Liu et al., 2021).

Figure 1: Qualitative comparison with different types of dataset.
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of the image, based on
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region, medical knowledge... 

Prompt
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Modality
       Organ 

Detection
ROI Analysis 

Lesion Texture
Region-wise 
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Multigranular 
Textual Description

Data Triplet

A chest X-ray.
Showing lungs centrally 
located within the 
thoracic cavity.
ROI is positioned 
horizontally at the left-
center and vertically at …,
Region exhibits increased 
opacity and irregular 
texture, indicating …
Showing a pattern of 
right lung involvement 
typically seen in COVID-
19 cases.

ROI

Image

Multigranular Description

Figure 2: Data construction pipeline. 1) Data processing, including metadata integration to generate coarse
caption, ROI locating, and medical knowledge collection. 2) Multigranular Textual Description Generation
based on processed data.

3.2.1 DATA PROCESSING

Coarse Caption Generation via Metadata Integration. We aim to generate coarse captions that provide
fundamental information for a given image, including modality, organ labels, disease types, and optionally,
camera views and equipment information. Instead of extracting features directly from the images, we gen-
erate these captions by integrating dataset metadata. We first extract metadata from the datasets and then
apply a fixed rule to integrate this information into coarse captions. For example, for an image in the QaTa-
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Coarse
Caption

Without coarse caption:
The image is a chest X-ray showing detailed 
views of the lungs and heart. The lungs occupy 
the majority of the thoracic cavity, which is the 
region encased by the rib cage, extending from 
the collarbone to the diaphragm. The heart is 
located centrally just beneath the ribs, slightly 
tilted to the left. No medical devices are visible in 
the image.

With coarse caption:
The image is a chest X-ray showing both lungs, 
centrally positioned in the thoracic cavity, flanked 
by the ribs and the diaphragm visible at the bottom. 
The heart is visible in the center between the 
lungs. There are no......The lungs show patchy 
opacit ies suggesting an infectious process, 
consistent with pulmonary involvement in 
COVID-19.

“A chest X-Ray 
image with COVID-

19 in the lungs”

Specify
Disease

Figure 3: A qualitative comparison example of generated textual description with and without coarse
caption. Without a coarse caption, MLLMs fails to detect diseases. On the contrary, providing a caption
mentioning “COVID-19” allows MLLMs to identify and categorize the disease, facilitating further analysis.

Without ROIs:
The image is a chest X-ray showing 
both lungs, centrally positioned in 
the thoracic cavity, flanked by the 
ribs and the diaphragm visible at the 
bottom. The heart is visible in the 
center between the lungs. There are 
no. . . . . .  The lungs show patchy 
opacities suggesting an infectious 
process, consistent with pulmonary 
involvement in COVID-19.

With ROIs:
The image is a chest X-ray showing both lungs and the heart 
centrally positioned between them. In two specific regions of 
interest located at the left-center and right-center of the middle 
of the lungs, there are unusual findings suggestive of COVID-19. 
These areas, occupying 8.3% and 5.0% of the image respectively, 
display changes in lung texture that may indicate infection, such 
as increased opacity. The left-center region is slightly larger and 
potentially indicates a more extensive involvement of the lung tissue 
compared to the right-center region. These areas of alteration in the 
lung tissue are critical in understanding the spread and impact of 
COVID-19, affecting surrounding lung areas.

ROIs

ROI 
analysis

Region-wise
Correlation

Figure 4: A qualitative comparison example of generated textual description with and without locating
ROIs. Without ROIs, the caption offers only a brief global analysis; with ROIs, MLLMs conducts detailed
local analysis and assesses the impact of lesion ROIs on adjacent normal regions.

COV19 dataset1, we derive metadata from the dataset’s accompanying paper or documentation, indicating
that it consists of COVID-19 chest X-ray images. Next, we construct coarse captions like “A chest X-ray
image with COVID-19 in the lungs” highlighting the modality, organ types, and disease labels. We also
integrate additional paired textual information (if any), such as radiological findings into coarse captions.

The effectiveness of applying coarse captions when generating multigranular textual descriptions is illus-
trated in Figure 3. In contrast to the scenario without a coarse caption, where MLLMs fails to recognize the
disease, providing MLLMs with a coarse caption that includes the disease type “COVID-19” enables it to
identify and categorize the disease, thereby laying the foundation for further analysis.

ROI Locating. We employ appropriate strategies to locate ROIs for images paired with different annota-
tions. For datasets that already include localization annotations, such as segmentation masks or bounding
boxes, we derive the ROIs from these paired annotations. Specifically, bounding boxes are directly used as
the ROIs, while segmentation masks are converted to ROIs by creating the smallest bounding box that covers
the mask. When such localization annotations are not available, we apply corresponding pretrained expert
models to generate ROIs. More details about the selection of expert models are provided in Appendix D.
Examples of generated ROIs from various modalities using corresponding models are demonstrated in Fig-

1https://www.kaggle.com/aysendegerli/qatacov19-dataset.
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Without medical knowledge：
The image is a chest X-ray showing both lungs and 
the heart centrally positioned between them. In two 
specific regions of interest located at ...... of the 
image respectively, display changes in lung texture 
that may indicate infection, such as increased 
opacity. The left-center region is slightly larger and 
potentially indicates a more extensive involvement of 
the lung tissue compared to the right-center region. 
These areas of alteration in the lung tissue are critical 
in understanding the spread and impact of COVID-19, 
affecting surrounding lung areas.

external medical 
knowledge

“glass opacities”, 
“consolidation” With medical knowledge：

The image is a chest X-ray showing the thoracic 
cavity, primarily focusing on the lungs. Visible organs 
include the lungs and the heart, centrally positioned 
beneath the sternum and between the lungs. The 
regions of interest, located...... These regions 
exhibit ground-glass opacities and consolidation, 
typical indicators of COVID-19 pneumonia, which 
suggest the presence of inflammatory processes. 
These affected areas are significant as they indicate 
the primary sites of infection and inflammation in 
COVID-19, often leading to bilateral and multifocal 
lung involvement as the disease progresses.

Standardize  
Terminology

Revise 
Diagnosis

Figure 5: A qualitative comparison example of generated textual description with and without external
medical knowledge. MLLMs can standardize medical terminology in its expressions and refine its diagnosis
based on disease progressions detailed in medical literature.

   
  

  
 

Textual description of ROI 

horizontally: left-center
vertically: lower-middle
area ratio:1.2%

ROI

(a) Example of locating ROI via
SAT (Zhao et al., 2023).

Textual description of ROI
horizontally: center 
vertically: middle
area ratio:21.2%

ROI

(b) Example of locating ROI via
BA-Transformer (Wang et al.,
2021).

   
 

 
 

Textual description of ROI 

horizontally: left
vertically: lower-middle
area ratio:8.5%

ROI

(c) Example of locating ROI via
Chexmask (Gaggion et al., 2022).

Figure 6: Example of ROIs and their corresponding textual descriptions.

ure 6. For modalities such as X-ray and MRI scans viewed from the z-axis, our ROI localization employs a
coordinate system relative to the human body, resulting in a left-right reversal in the image representation.

Incorporating ROIs as the guidance facilitates MLLMs to conduct a detailed analysis and generate multi-
granular textual descriptions. As demonstrated in Figure 4, description generated without guidance of ROIs
is limited to a brief global overview of the image. In comparison, with ROIs, generated description contains
local analysis regarding the abnormal region and its correlations to other regions.

Medical Knowledge Retrieval. General-purpose MLLMs often lacks medical terminology and expertise.
To address this issue, we build a medical knowledge database following MedRAG (Xiong et al., 2024). We
collect three main corpora: PubMed2 for biomedical knowledge, StatPearls3 for clinical decision support,
and medical textbooks (Jin et al., 2021) for domain-specific knowledge. We segment these corpora into short
snippets and encode them into high-dimensional vectors using the text encoder from Med-CPT (Jin et al.,
2023). These vectors are then indexed into a specialized vector knowledge base using Faiss(Johnson et al.,
2019c), optimized for efficient retrieval. For a given image, we retrieve relevant medical knowledge by us-
ing its coarse caption, which is generated through metadata integration. Specifically, we encode the coarse
captions, including disease and organ classifications, into vectors using the Med-CPT text encoder. We then
perform a vector similarity search in the medical vector database, retrieving the top eight medical knowledge
snippets that semantically match the query. These snippets provide the external medical knowledge paired
with the image for generating textual descriptions. A qualitative example demonstrating the effectiveness
of incorporating external medical knowledge is shown in Figure 7. With access to COVID-19-related med-

2https://pubmed.ncbi.nlm.nih.gov/
3https://www.statpearls.com/
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Knowledge 1: 
Title: Mobile chest X-ray manifestations of 54 deceased patients with coronavirus disease 2019: Retrospective study.
Content: ...... We found that 50 (93%) patients with lesions occurred in the bilateral lung, 4 (7%) patients occurred in the right lung, 54 (100%) 
patients were multifocal involvement. The number of lung fields involved was 42 (78%) patients in 6 fields, 3 (6%) patients in 5 lung fields, 4 
(7%) patients in 4 lung fields, and 5 (9%) patients in 3 lung fields. Fifty-three (98%) patients had patchy opacities, 3 (6%) patients had round or 
oval solid nodules, 9 (17%) patients had fibrous stripes, 13 (24%) patients had pleural effusion, 8 (15%) patients had pleural thickening, 6 
(11%) patients had pneumothorax, 3 (6%) patients had subcutaneous emphysema. Among the 24 patients who had serial mobile chest X-rays, 
16 (67%) patients had the progression of the lesions, 8 (33%) patients had no significant change of the lesions, and there was no case of 
reduction of the lesions.The mobile chest X-ray manifestations of deceased patients with COVID-19 were mostly bilateral lung, multifocal 
involvement, and extensive lung field, and pleural effusion, pleural thickening, and pneumothorax probably could be observed. The 
serial mobile chest X-ray showed that the chest lesions were progressive with a high probability.
.......

Figure 7: An example of the Top-8 retrieval results. By leveraging COVID-19-related medical knowledge,
MLLMs can standardize medical terminology and enhance diagnoses according to the disease progressions
described in medical literature.

ical knowledge, MLLMs can standardize medical terminology and refine diagnoses based on the disease
progressions outlined in medical literature.

A qualitative comparison of generated text descriptions, both with and without external medical knowl-
edge, is presented in Figure 5. MLLMs are capable of standardizing medical terminology and enhancing
diagnostic accuracy by incorporating insights from disease progressions documented in medical literature.

3.2.2 GENERATION OF MULTIGRANULAR TEXT DESCRIPTION

Generation Prompt. After data processing, a comprehensive prompt is utilized to guide MLLMs to in-
tegrate all information and generate multi-granular descriptions. We incorporate the processed data (coarse
captions, ROIs, and retrieved medical knowledge) into the prompts. Specifically, textual information such
as coarse captions and retrieved medical knowledge are directly integrated into the prompt. While ROIs on
images are converted into textual information based on their coordinates and area ratio within the images,
using terms such as “left-center” and “area ratio: 1.2%”. Examples of textual information converted from
ROIs are shown in Figure 6. Instead of merely inserting retrieved knowledge, we instruct MLLM to identify
and align the relevant knowledge with ROIs to provide diagnostic insights. The prompt template consists of
a three-level hierarchical framework with questions to instruct MLLMs to generate: (1) a global descrip-
tion that captures all details of the image, (2) a local-focused analysis of specific ROIs that potentially are
diseased; and (3) an inference of the correlations between region-wise attributes to understand the impact of
local abnormalities on the surrounding regions and extent of disease progression. Detailed prompt template
is presented in Appendix F.

Choice of MLLM. All textual description in MedTrinity-25M are generated using LLaVA-Medcap, which
is a specifically fine-tuned LLaVA to generate high-quality textual descriptions. To obtain the fine-tuning
data, we first generate 200,000 multigranular textual descriptions using our generation pipeline and GPT-
4V (Achiam et al., 2023). Subsequently, we pretrain our LLaVA-Medcap following the two-stage fine-tuning
strategy in LLaVA-Med (Li et al., 2024a), then these generated data are used to to finetune the LLaVA-
Medcap. LLaVA-Medcap is then used in our pipeline to generate text descriptions for whole 25 million
images in MedTrinity-25M. As shown in Appendix B, LLaVA-Medcap is capable of generating high-quality
descriptions with more details compared to GPT-4V.

3.3 DATASET ANALYSIS

Scale. Figure 8c compares the amount of data samples in MedTrinity-25M and other medical multimodal
datasets. To the best of our knowledge, MedTrinity-25M is the largest open-source, multi-modal multigran-
ular medical dataset to date.
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(c) Data size comparison. (d) Average word count of descriptions comparison.

(e) Wordcloud of disease statistic.

Figure 8: Statistical overview of MedTrinity-25M.

Diversity. Our dataset encompasses 10 imaging modalties, with more than 65 diseases across various
anatomical structures in human. The number of the samples within each modality in MedTrinity-25M are
shown in Figure 8a, and the distribution of each anatomical and biological structures is provided in Figure 8b.
Meanwhile, Figure 8e illustrates the frequently used words related to diseases in our dataset.

Richness. We provide both qualitative examples and quantitative analysis to demonstrate the richness of
annotations in MedTrinity-25M. As shown in Table 1, we compare the types of annotations in our dataset
with those of other multimodal datasets. Our dataset provides multigranular and richer annotation informa-
tion, surpassing other multimodal datasets. Qualitative examples are shown in Figure 1. Our textual descrip-
tions provide more comprehensive information compared to the chest X-rays dataset MIMIC-CXR (Johnson
et al., 2019b) and the visual QA dataset SLAKE (Liu et al., 2021). Figure 8d compares the average word
count of text descriptions in multiple medical multimodal datasets. The word count in our dataset is signifi-
cantly larger, indicating greater richness.

Quality. We conduct expert and LLM evaluations to verify the quality of the generated multigranular
descriptions. Each description in MedTrinity-25M contains five key attributes of medical images: modality,
organ detection, ROI analysis, lesion texture, and region-wise correlations. A random subset of 200 samples
is selected for evaluation. In expert-based evaluation, medical professionals assess the accuracy of each
attribute by comparing the generated descriptions with ground-truth annotations. Scores are averaged across

8
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Table 1: Comparison of types of annotations in MedTrinity-25M with other multimodal datasets.

Dataset Modality Lesion
Type

Lesion
BBox/Mask

Lesion
Description

Region-wise
Correlations

MedMNIST (Yang et al., 2023) ✗ ✓ ✗ ✗ ✗
DeepLesion (Yan et al., 2017b) ✓ ✗ ✓ ✗ ✗

BraTS 2024 (de Verdier et al., 2024a) ✓ ✗ ✓ ✗ ✗
MIMIC-CXR (Johnson et al., 2019b) ✓ ✓ ✓ ✓ ✗

Quilt-1M (Ikezogwo et al., 2024) ✓ ✓ ✗ ✓ ✓
VQA-RAD (Lau et al., 2018a) ✓ ✓ ✗ ✓ ✗
CRC100K (Kather et al., 2018) ✓ ✓ ✗ ✗ ✗

SA-Med2D-20M (Ye et al., 2023) ✓ ✓ ✓ ✗ ✗
MedTrinity-25M(Ours) ✓ ✓ ✓ ✓ ✓

Table 2: Comparison of alignment scores between LLM and Expert.

Evaluator Attributes

Modality Organ
Detection

ROI
Analysis

Lesion
Texture

Region-wise
Correlations Avg.

LLM 1.00/1.00 0.90/1.00 0.90/1.00 0.80/1.00 0.70/1.00 0.86/1.00
Expert 1.00/1.00 0.90/1.00 0.90/1.00 0.70/1.00 0.80/1.00 0.85/1.00

all samples to obtain an overall score. For LLM-based evaluation, we use GPT-4V to assess the accuracy of
medical facts and diagnoses based on the same five attributes. GPT-4V scores each attribute on a scale of 0
to 2 points. All scores are normalized to a 0–1 scale for comparison.

Table 2 shows that MedTrinity-25M achieves 0.85 and 0.86 in expert and LLM evaluations, with modality,
organ detection, and ROI analysis nearing perfect scores. To illustrate, Figure 12 shows a sample that
achieved a perfect score from GPT-4V.

4 EXPERIMENT

4.1 LLAVA-TRI: ALIGNING MULTISCALE MLLM WITH MEDTRINITY-25M

To fully exploit the multigranular annotations, we propose LLaVA-Tri, which is based on LLaVA (Liu
et al., 2024) and incorporate MedTrinity-25M to align it into medical domain. LLaVA-Tri integrates
LLaMA3 (Team, 2024) to enhance linguistic capabilities and incorporates multiscale feature extraction (Shi
et al., 2024) to boost visual performance. Specifically, we firstly pretrain LLaVA-Tri on 600K image-text
pairs from PMC-15M (Zhang et al., 2023a), following the training settings from Li et al. (2024a). The
model is then trained on MedTrinity-25Mfor multigranular alignment. We benchmark LLaVA-Tri on three
biomedical Visual Question Answering (VQA) datasets, VQA-RAD (Lau et al., 2018a), SLAKE (Liu et al.,
2021), and PathVQA (He et al., 2020a), to assess the efficacy of aligning model using MedTrinity-25M. The
model is fine-tuned for three epochs on each of the three VQA datasets and evaluate accordingly.

As shown in Table 3, LLaVA-Tri achieved state-of-the-art results in all of the three VQA benchmarks, with
81.6% accuracy on VQA-RAD, 87.8% on SLAKE, and 82.8% on PathVQA. These results highlight the
significant advantages of incorporating multiscale LLaVA-Tri with multigranular alignment.

4.2 ENHANCING MODEL PERFORMANCE THROUGH MULTIGRANULAR ALIGNMENT

To further demonstrate the effectiveness of multigranular alignment, we conducted ablation studies by train-
ing and evaluating model with or without aligning using MedTrinity-25M respectively. We conduct ex-
periment on various multimodal models, including both multimodal language models and CLIP models:
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Table 3: Comparison of LLaVA-Tri with Existing SOTA Methods. LLaVA-Tri achieves SOTA perfor-
mance on all three VQA benchmarks by employing multigranular alignment pretraining on MedTrinity-
25M. The asterisk (∗) indicates that, for open-ended questions, prior methods formulate the problem as
classification among distinct answers in the training set, potentially overestimating generalizability. Open:
Open-ended questions where the model generates free-form text responses without predefined answer op-
tions. Closed: Closed-ended questions where the model selects from a predefined set of possible answers.

VQA-RAD SLAKE PathVQA
Method Open Closed Avg Open Closed Avg Open Closed Avg
Method Not Finetuned on the Training Set of the VQA Benchmark
GPT-4V 39.5 78.9 59.2 33.6 43.6 38.6 - - -
LLaVA-Med 28.2 61.4 44.8 39.2 52.2 45.7 12.3 54.1 33.2
LLaVA-Tri 36.9 62.6 49.7 24.1 43.4 33.7 11.2 59.0 35.1
Method Finetuned on the Training Set of the VQA Benchmark

Clip-based
PubMedCLIP 60.1 80.0 70.1 78.4 82.5 80.5 - - -
BiomedCLIP 67.6 79.8 73.7 82.1 89.7 85.9 - - -

Non Clip-based
VL Encoder–Decoder 71.5 82.5 77.0 - - - 71.5 85.6 78.6
Q2ATransformer 79.2 81.2 80.2 - - - 54.9 88.9 71.9
Prefix T. Medical LM - - - 84.3 82.0 83.2 40.0 87.0 63.5
M2I2 66.5 83.5 75.0 74.7 91.1 82.9 36.3 88.0 62.2
LLaVA 50.0 65.1 57.6 78.2 63.2 70.7 7.7 63.2 35.5
LLaVA-Med (finetuned for 3 epochs) 55.5 66.5 61.0 80.5 64.2 72.4 35.9 89.2 62.5
LLaVA-Tri (finetuned for 3 epochs) 77.1 86.0 81.6 86.2 89.3 87.8 66.5 99.0 82.8

Table 4: Comparison of different models with or without alignment pretraining with MedTrinity-25M.
The notation w/ and w/o indicate models with and without pretraining on MedTrinity-25M, respectively.

Model Dataset Use VQA-RAD SLAKE PathVQA
open close average open close average open close average

LLaVA-Tri w/o 64.6 77.0 70.8 79.3 84.0 81.7 55.0 94.0 74.5
w/ 77.1 + (12.5) 86.0 + (9.0) 81.6 + (10.8) 86.2 + (6.9) 89.3 + (5.3) 87.8 + (6.1) 66.5 + (11.5) 99.0 + (5.0) 82.8 + (8.3)

MiniCPM-V-2.6-8B (Yao et al., 2024) w/o 48.5 86.4 67.5 57.2 80.0 68.6 31.2 90.5 60.9
w/ 50.5 + (2.0) 87.6 + (1.2) 69.1 + (1.6) 65.3 + (8.1) 80.6 + (0.6) 73.0 + (4.4) 34.2 + (3.0) 94.8 + (4.3) 64.5 + (3.6)

InternVL2-8B (Chen et al., 2024) w/o 38.2 76.2 57.2 61.7 77.8 69.8 16.8 86.4 51.6
w/ 40.7 + (2.5) 80.0 + (3.8) 60.4 + (3.2) 66.4 + (4.7) 78.8 + (1.0) 72.6 + (2.8) 23.6 + (6.8) 87.4 + (1.0) 55.5 + (3.9)

PubMedCLIP (Eslami et al., 2023) w/o 55.6 79.3 67.5 - - - - - -
w/ 60.6 + (5.0) 79.7 + (0.4) 70.2 + (2.7) - - - - - -

LLaVA-Tri , InternVL2-8B (Chen et al., 2024), MiniCPM-V-2.6-8B (Yao et al., 2024), and PubMedCLIP
(Eslami et al., 2023). As shown in Table 4, incorporating multigranular alignment significantly enhances
performance across all tested multimodal models. Notably, LLaVA-Tri exhibited improvements of 10.8%,
6.1%, and 8.3% on VQA-RAD, SLAKE, and PathVQA, respectively, compared to its counterpart with-
out alignment. These findings underscore the potential of LLaVA-Tri as a foundational dataset capable of
enhancing the medical performance of various multimodal models.

5 CONCLUSION

This paper introduces MedTrinity-25M, a large-scale multimodal medical dataset comprising over 25 mil-
lion image-ROI-description triplets sourced from more than 30 online resources, spanning 10 modalities
and covering over 65 diseases. We have develop the first automated pipeline to scale up multimodal data by
generating multigranular visual and textual annotations from unpaired images. We believe that MedTrinity-
25M’s enriched annotations have the potential to support a wide range of multimodal tasks, such as caption-
ing, report generation, classification, and segmentation, as well as facilitate the large-scale pre-training of
multimodal medical AI models.
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE Transactions
on Big Data, 7(3):535–547, 2019c.

12



564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Alexandros Karargyris, Renato Umeton, Micah J Sheller, Alejandro Aristizabal, Johnu George, Anna Wuest,
Sarthak Pati, Hasan Kassem, Maximilian Zenk, Ujjwal Baid, et al. Federated benchmarking of medical
artificial intelligence with medperf. Nature Machine Intelligence, 5(7):799–810, 2023.

Jakob Nikolas Kather, Niels Halama, and Alexander Marx. 100,000 histological images of human colorectal
cancer and healthy tissue. https://doi.org/10.5281/zenodo.1214456, 2018.

Masakata Kawai, Noriaki Ota, and Shinsuke Yamaoka. Large-scale pretraining on pathological images for
fine-tuning of small pathological benchmarks. In Workshop on Medical Image Learning with Limited and
Noisy Data, pp. 257–267. Springer, 2023.

Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically gener-
ated visual questions and answers about radiology images. Scientific data, 5(1):1–10, 2018a.

Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically gener-
ated visual questions and answers about radiology images. Scientific data, 5(1):1–10, 2018b.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
mann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision assistant for
biomedicine in one day. Advances in Neural Information Processing Systems, 36, 2024a.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
mann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision assistant for
biomedicine in one day. Advances in Neural Information Processing Systems, 36, 2024b.

Weixiong Lin. axiong/pmc oa datasets at hugging face. https://huggingface.co/datasets/
axiong/pmc_oa, 2023.

Weixiong Lin, Ziheng Zhao, Xiaoman Zhang, Chaoyi Wu, Ya Zhang, Yanfeng Wang, and Weidi Xie. Pmc-
clip: Contrastive language-image pre-training using biomedical documents. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, pp. 525–536. Springer, 2023.

Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-labeled
knowledge-enhanced dataset for medical visual question answering. In 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI), pp. 1650–1654. IEEE, 2021.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural
information processing systems, 36, 2024.

Meng Lou, Hanning Ying, Xiaoqing Liu, Hong-Yu Zhou, Yuqing Zhang, and Yizhou Yu. Sdr-former: A
siamese dual-resolution transformer for liver lesion classification using 3d multi-phase imaging. arXiv
preprint arXiv:2402.17246, 2024.

Jun Ma and Bo Wang. Miccai flare23: Fast, low-resource, and accurate organ and pan-cancer segmenta-
tion in abdomen ct, Apr 2023. URL https://codalab.lisn.upsaclay.fr/competitions/
12239.

Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril Zakka,
Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical few-shot learner. In
Machine Learning for Health (ML4H), pp. 353–367. PMLR, 2023.

13

https://huggingface.co/datasets/axiong/pmc_oa
https://huggingface.co/datasets/axiong/pmc_oa
https://codalab.lisn.upsaclay.fr/competitions/12239
https://codalab.lisn.upsaclay.fr/competitions/12239


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Obioma Pelka, Sven Koitka, Johannes Rückert, Felix Nensa, and Christoph M Friedrich. Radiology objects
in context (roco): a multimodal image dataset. In Intravascular Imaging and Computer Assisted Stenting
and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis: 7th Joint International
Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction
with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 3, pp. 180–189. Springer, 2018.

Eduardo Pontes Reis, Felipe Nascimento, Mateus Aranha, Fernando Mainetti Secol, Birajara Machado,
Marcelo Felix, Anouk Stein, and Edson Amaro. Brain hemorrhage extended (bhx): Bounding box extrap-
olation from thick to thin slice ct images. PhysioNet, 101(23):e215–20, 2020.

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang, Tim
Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine. arXiv preprint
arXiv:2404.18416, 2024.

Pengfei Shao, Chao Qin, Changjun Yin, Xiaoxin Meng, Xiaobing Ju, Jie Li, Qiang Lv, Wei Zhang, and
Zhengquan Xu. Laparoscopic partial nephrectomy with segmental renal artery clamping: technique and
clinical outcomes. Eur. Urol., 59(5):849–855, May 2011.

Pengfei Shao, Lijun Tang, Pu Li, Yi Xu, Chao Qin, Qiang Cao, Xiaobing Ju, Xiaoxin Meng, Qiang Lv,
Jie Li, Wei Zhang, and Changjun Yin. Precise segmental renal artery clamping under the guidance of
dual-source computed tomography angiography during laparoscopic partial nephrectomy. Eur. Urol., 62
(6):1001–1008, December 2012.

Baifeng Shi, Ziyang Wu, Maolin Mao, Xin Wang, and Trevor Darrell. When do we not need larger vision
models? arXiv preprint arXiv:2403.13043, 2024.

Carsen Stringer and Marius Pachitariu. Cellpose3: one-click image restoration for improved cellular seg-
mentation. bioRxiv, pp. 2024–02, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Sori-
cut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023a.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Sori-
cut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023b.

Meta LLaMA Team. Introducing meta llama 3: The most capable openly available llm to date. https:
//ai.meta.com/blog/meta-llama-3/, 2024.

Yuri Tolkach, Lisa Marie Wolgast, Alexander Damanakis, Alexey Pryalukhin, Simon Schallenberg, Wolf-
gang Hulla, Marie-Lisa Eich, Wolfgang Schroeder, Anirban Mukhopadhyay, Moritz Fuchs, et al. Artificial
intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarci-
nomas: a retrospective algorithm development and validation study. The Lancet Digital Health, 5(5):
e265–e275, 2023.

Masayuki Tsuneki and Fahdi Kanavati. Inference of captions from histopathological patches. In Interna-
tional Conference on Medical Imaging with Deep Learning, pp. 1235–1250. PMLR, 2022.

Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan Chang, Andrew
Carroll, Charles Lau, Ryutaro Tanno, Ira Ktena, et al. Towards generalist biomedical ai. NEJM AI, 1(3):
AIoa2300138, 2024a.

14

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/


658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan Chang, Andrew
Carroll, Charles Lau, Ryutaro Tanno, Ira Ktena, et al. Towards generalist biomedical ai. NEJM AI, 1(3):
AIoa2300138, 2024b.

Patrick Wagner, Maximilian Springenberg, Marius Kröger, Rose KC Moritz, Johannes Schleusener, Mar-
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APPENDIX

We present the following items in the Appendix:

1. Data source about MedTrinity-25M. (Section A)
2. Quantitative comparison between GPT-4V and LLaVA-Medcap (Section B).
3. Examples of ROI for normal regions and multiple regions.(Section C).
4. The list of expert ROI models (Section D).
5. Details of LLM Evaluation of Alignment (Section E).
6. Prompt for generating MedTrinity-25M. (Section F).

A DATA SOURCE

Table 5: Data sources for MedTrinity-25M from various medical image datasets, detailing their modalities,
biological structures, quantities, and annotations.

Dataset Name Modality Biological
Structures Quantity Text Disease

Type BBox Mask

BHX(Reis et al., 2020) MRI brain 973908 ✗ ✗ ✗ ✓
BRATS24-MICCAI(de Verdier et al., 2024b) MRI brain 2535132 ✗ ✗ ✓ ✗
BRATS-ISBI(Karargyris et al., 2023) MRI brain 987340 ✗ ✗ ✓ ✗
breast histopathology(Janowczyk & Madab-
hushi, 2016; Cruz-Roa et al., 2014)

Histopathology breast 547403 ✗ ✓ ✗ ✗

BreastCancer(Ding et al., 2023) Histopathology breast 1824 ✗ ✗ ✓ ✗
CheXpert(Irvin et al., 2019) X-Ray lung 183242 ✗ ✓ ✗ ✗

CISC(Gamper et al., 2020) Histopathology

Adrenal,
Bile duct,
Bladder,
Breast,
Colon,
Cervix,
Esophagus
Kidney,
Liver,etc

16285 ✗ ✓ ✓ ✗

CPD(Wagner et al., 2023) Histopathology skin 204 ✗ ✗ ✓ ✗

CT-RATE(Hamamci et al., 2024) CT

lung,
liver,
mediastinum,
kidney,
heart, etc.

3869640 ✓ ✗ ✗ ✗

DeepLesion(Yan et al., 2017b) CT

bone,
abdomen,
mediastinum,
liver,
lung,
kidney,
soft tissue,
pelvis

2889672 ✗ ✗ ✗ ✓
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Table 5 : Continued from previous page

Dataset Name Modality Biological
Structures Quantity Text Disease

Type BBox Mask

FLARE23(Ma & Wang, 2023) CT

Liver,
kidney,
spleen,
pancreas,
Aorta,
adrenal gland,
Gallbladder,
esophagus,
stomach,
duodenum,etc.

13770 ✗ ✓ ✓ ✗

ihc4bc(Akbarnejad et al., 2023) Microscopy cell 102535 ✗ ✓ ✗ ✗

KIPA22(Shao et al., 2012; 2011; He et al.,
2020b; 2021)

CT kidney,
cervix 26878 ✗ ✗ ✓ ✗

LLaVA-Med(Li et al., 2024b)

CT,
MR,
Endoscopy,
X-Ray,
Ultrasound,
Histopathology,
Dermoscopy,
Microscopy,
Fundus,
PET

cell, rib,
tissue,
face,
brain,
vascular,
liver,
bone,
lymph, etc.

22550 ✓ ✗ ✗ ✗

LLD-MMRI(Lou et al., 2024) MRI liver 21523 ✗ ✗ ✓ ✗
MAMA-MIA(Garrucho et al., 2024) MRI breast 316113 ✗ ✗ ✓ ✗
MIMIC-CXR-JPG(Johnson et al., 2019a) X-Ray lung 240506 ✓ ✓ ✗ ✓
NCT-CRC-HE-100K(Kather et al., 2018) Histopathology colon 100361 ✗ ✓ ✗ ✗
NIH-CXR(Wang et al., 2017a;b; 2019) X-Ray lung 986 ✗ ✗ ✗ ✓
PadChest(Bustos et al., 2020) CT lung 96284 ✓ ✗ ✗ ✗
PatchGastricADC22(Tsuneki & Kanavati,
2022)

MRI brain 98399 ✗ ✓ ✗ ✗

Path-VQA training(He et al., 2020a) Pathology

gastrointestinal,
colon,
appendix,
pinworm,etc.

13375 ✓ ✓ ✗ ✗

PMC-OA(Lin, 2023)

CT,
MR,
Endoscopy,
X-Ray,
Ultrasound,
Histopathology,
Dermoscopy,
Microscopy,
Fundus,
PET

cell,
tissue,
vascular,
brain,
bone,
liver,
lymph,
eye,
epithelium, etc.

856999 ✓ ✗ ✗ ✗
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Table 5 : Continued from previous page

Dataset Name Modality Biological
Structures Quantity Text Disease

Type BBox Mask

PMC-VQA(Zhang et al., 2023b)

CT,
MR,
Endoscopy,
X-Ray,
Ultrasound,
Histopathology,
Dermoscopy,
Microscopy,
Fundus,
PET

cell,
brain,
tissue,
artery,
bone,
face,
rib,
vascular,
liver,
eye, etc.

144999 ✓ ✗ ✗ ✗

PTCGA(Kawai et al., 2023) Histopathology

brain,
breast,
uterine corpus,
kidney,
lung,
thyroid

3293965 ✗ ✓ ✓ ✗

Quilt-1M(Ikezogwo et al., 2024) Histopathology

skin,
lung,
soft tissue,
blood,
kidney,
bone, etc.

643819 ✓ ✗ ✗ ✗

SAMMed-20M(Ye et al., 2023)

X-Ray,
PET,
CT,
MR,
Endoscopy,
dermoscopy

brain,
kidney,
liver,
lung,
pancreas,
pulmonary,
hepatic,
skin, etc.

5491274 ✗ ✓ ✓ ✗

SLAKE training(Liu et al., 2021)
CT,
MRI,
X-Ray

brain,
liver,
kidney,
pelvic,
lung

646 ✓ ✓ ✓ ✗

TCGA(Kawai et al., 2023) Histopathology tissue 1142221 ✗ ✗ ✓ ✗

ULS23 CT

lung,
lymph nodes,
bladder,
brain,
colon,
kidney,
lung.

105669 ✗ ✗ ✓ ✗

VALSET(Tolkach et al., 2023) Histopathology oesophagus,
stomach 277565 ✗ ✓ ✗ ✗

VQA-RAD training(Lau et al., 2018b) X-Ray,
MRI

brain,
lung,
abdomen,etc.

1758 ✓ ✓ ✗ ✗

Total 25016845

19



893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

The MRI image presents a transverse slice of the brain, where 
the cerebral hemispheres are visible, with the region of 
interest located centrally and towards the upper-middle 
portion of the image, occupying a small area ratio. This region 
exhibits an abnormality characterized by altered signal 
intensity, which contrasts with the surrounding brain tissue, 
suggesting the presence of a brain tumor. The abnormal 
area's position, relative to the rest of the brain, could imply an 
effect on or from adjacent structures, potentially influencing 
nearby tissue due to mass effect or being part of a larger 
pathological process within the brain.

The image is a transverse slice of a magnetic resonance imaging (MRI) scan of the 
brain, showing the cerebral hemispheres with the cerebrum visible. A region of interest 
is located at center part of the image horizontally and upper-middle part of image 
vertically, occupying approximately 3.9% of the total area. The region of interest is 
located in the white matter of the right cerebral hemisphere and appears to have an 
abnormal texture and size, which is indicative of a brain tumor. This abnormal area is 
likely to be affecting the surrounding brain tissue due to its mass effect or infiltration, 
which can cause a shift in the position of adjacent structures or potentially disrupt the 
normal brain function in its vicinity. The MRI scan provides a detailed view of the brain's 
anatomy, allowing for the visualization of soft tissue differences that may not be possible 
with other imaging modalities. 

GPT-4V

More detailed
ROI analysi

LLaVA-Medcap(Ours)

s

More detailed
area ratio

Contain image
analysis

More detailed
lesion impact

analysis

Figure 9: Qualitative Comparison with sample generated by GPT-4V. Compared to GPT-4V, our model
generate more detailed caption.

(a) A no infection sample from MIMIC-CXR.
The ROIs highlight the left and right lungs.

(b) A healthy sample from SLAKE. The ROI
points out the liver.

Figure 10: Examples of ROIs for normal regions.

B QUANTITATIVE COMPARISON OF LLAVA-MEDCAP WITH GPT-4V

As detailed in Section 3.2.2 of the main paper, we developed an enhanced version of LLaVA (Li et al., 2024a), called
LLaVA-Medcap. This enhancement leverages the latest LLaMA3 (Team, 2024) to boost linguistic capabilities and
incorporates multi-scale feature extraction (Shi et al., 2024) to improve vision capabilities.

To justify the selection of our specialized medical model, LLaVA-Tri, over GPT-4V for generating textual descriptions,
we conducted a quantitative comparison of the outputs generated by both models. We assessed the level of detail by com-
paring the average word count of text descriptions generated for the same sample. LLaVA-Tri, after task-specific fine-
tuning, outperformed GPT-4V by 3.6% in word count, indicating that the descriptions generated by LLaVA-Medcap are
more detailed. We also provide a qualitative comparison with sample generated by LLaVA-Tri and GPT-4V in Fig-
ure 9. Based on these findings, we selected LLaVA-Medcap to generate multigranular textual descriptions for our entire
MedTrinity-25M.

C EXAMPLES OF ROIS

As described in Section 3.1 of the main paper, the ROIs identified by expert grounding models predominantly capture
pathological features such as lesions, inflammation, neoplasms, infections, or other potential abnormalities. In rare cases
where no abnormalities are found, the ROIs typically focus on the primary object or organ in the image. Examples of
such normal ROIs are presented in Figure 10.
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Med-Trinity-25M

(Ours)

The image is a chest radiograph showing the thoracic cavity with the heart, lungs, and diaphragm 

visible. The endotracheal tube is positioned 3.7 cm from the carina, and an enteric tube is seen 

passing below the diaphragm into the stomach. A left-sided PICC line terminates in the low SVC. 

The left hemithorax exhibits opacification, likely due to a combination of effusion, consolidation, 

and collapse, while the right lung shows mild pulmonary edema and a slightly increased small to 

moderate pleural effusion with associated compressive atelectasis. The region of interest located 

horizontally right-center and vertically in the middle, occupying 11.2% of the area, corresponds to 

the right lung and shows signs of mild pulmonary edema. Another region of interest, horizontally 

left-center and vertically in the middle, taking up 24.4% of the area, corresponds to the left lung 

and indicates opacification consistent with effusion, consolidation, and collapse. The abnormalities 

within these regions suggest a possible relationship with the pleural effusions and atelectasis, as 

fluid accumulation and lung collapse can lead to changes in lung opacity and may be interrelated, 

with one potentially exacerbating the other.

Global 

Description

Local-global

Relation

Local 

Description

Figure 11: A chest radiography example where global information matters. The diagnosis in this case
requires a comprehensive analysis of the entire image, encompassing both the left and right lungs. Here,
ROIs encompass the large lesion areas of left and right lungs. Detailed local texture analysis of each region
contributes to the overall global diagnosis

In some instances where global context is also critical for disease identification, the ROIs encompass multiple lesion
areas, integrating both global and local information. For example, in chest radiography, analyzing both lungs and their
overall structure is often essential for accurate diagnosis, as shown in Figure 11. By providing multigranular annotations
that incorporate both local and global perspectives, our dataset helps multigranular alignment for medidcal foundation
models.

D LIST OF EXPERT MODELS TO LOCATE ROIS

As detailed in Section 3.2.1 of the main paper, for datasets lacking localization information such as segmentation masks
and bounding boxes, we employ various pretrained expert models to identify the ROIs. The specific expert models used
for each dataset are listed in Table 6.

E DETAILS OF LLM EVALUATION OF ALIGNMENT

An example of perfect alignment score results evaluated by GPT-4V is shown in Figure 12. In these examples, GPT-4V
fully aligned with human annotations across all five criteria, resulting in perfect alignment scores. The prompt used to
query GPT-4V for evaluating the alignment score is shown in Figure 13 of supplementary.

The prompt used to query GPT-4V for evaluating the alignment score is shown in Figure 13.

F PROMPT TEMPLATE FOR GENERATION OF MULTIGRANULAR TEXT
DESCRIPTION

To generate multigranular textual descriptions, we design a multi-task prompting approach, breaking down this task into
several smaller descriptive tasks. The model’s responses to these different tasks collectively form the final fine-grained
text description.

Figure 14 illustrates our prompt template consisting of a three-level hierarchical framework with questions to instruct
MLLMs:
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Table 6: List of expert models used to generate ROIs for different datasets.

ID Dataset Name Model

1 breast histopathology

HoverNet (Stringer & Pachitariu, 2024)

2 BreastCancer
3 CISC
4 CPD
5 NCT-CRC-HE-100K
6 PTCGA
7 TCGA
8 VALSET
9 ihc4bc
10 Quilt-1M

11 CT-RATE SAT (Zhao et al., 2023)

12 PMC-OA

DINO (Caron et al., 2021)13 PMC-VQA
14 LLaVA-Med
15 Path-VQA training

16 PadChest
CheXmask (Gaggion et al., 2023) (Gaggion et al., 2022)17 MIMIC-CXR-JPG

18 CheXpert

Step 1 - Global Understanding: Instruct MLLMs to provide a comprehensive description of the image, detailing all
modalities, identified anatomical structures, and their approximate locations. This step ensures that MLLMs gains an
overarching understanding and basic information about the image.

Step 2 - Local Analysis: Instruct MLLMs to conduct a detailed analysis of the regions of interest (ROI), including their
locations, abnormalities, and textures. This step guides MLLMs to focus on specific lesions for a thorough assessment.

Step 3 - Region-wise Correlations: Instruct MLLMs to examine the relationship between different regions and predict
how the surrounding areas will be affected by the lesions in the ROI. This step aims to understand the interaction between
local and global attributes, assessing the impact of local abnormalities on the entire organ for accurate disease diagnosis.
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`FINDINGS`:The endotracheal tube is unchanged, 
ending 3.7 cm from the carina.  The enteric tube 
passes below the diaphragm outside of the field of 
view within a decompressed stomach.  The left-
sided PICC line ends in the low SVC. Opacification 
of the left hemithorax is unchanged, likely a 
combination of effusion, consolidation, and 
collapse. Right-sided pulmonary edema is mild. 
The small to moderate right pleural effusion and 
associated compressive atelectasis has 
increased slightly. There is no pneumothorax.

The image is a chest radiograph showing the thoracic cavity with the heart, 
lungs, and diaphragm visible. The endotracheal tube is positioned 3.7 cm 
from the carina, and an enteric tube is seen passing below the diaphragm 
into the stomach. A left-sided PICC line terminates in the low SVC. The left 
hemithorax exhibits opacification, likely due to a combination of effusion, 
consolidation, and collapse, while the right lung shows mild pulmonary 
edema and a slightly increased small to moderate pleural effusion with 
associated compressive atelectasis. The region of interest located 
horizontally right-center and vertically in the middle, occupying 11.2% 
of the area, corresponds to the right lung and shows signs of mild 
pulmonary edema. Another region of interest, horizontally left-center and 
vertically in the middle, taking up 24.4% of the area, corresponds to 
the left lung and indicates opacification consistent with effusion, 
consolidation, and collapse. The abnormalities within these regions 
suggest a possible relationship with the pleural effusions and 
atelectasis, as fluid accumulation and lung collapse can lead to changes in 
lung opacity and may be interrelated, with one potentially exacerbating the 
other."

Organ
Detection

Modality

ROI 
Analysis

Lesion
Texture

Region-wise
Correlations

GPT-4V
Rating

GPT-4V Rating Response:
Based on the provided information and the image, here is the scoring for the multigranular radiology report annotations A compared to the original correct 
report B:
1. Modality Used for Imaging:   - Report A mentions a "chest radiograph," which is consistent with the image provided and aligns with the 
expected modality for such findings. - Score: 2 points
2. Specify the Organ and Anatomical Structures:   - Report A correctly identifies the heart, lungs, major blood vessels, endotracheal tube, and right 
internal jugular vein catheter. These structures are also mentioned in report B and are visible in the image. - Score: 2 points
3. Locations of ROI (Regions of Interest):  - Report A specifies the ROIs with horizontal and vertical positions and area ratios that match those in 
report B. The image analysis confirms the locations of these ROIs. - Score: 2 points
4. Analysis of Abnormal Characteristics:   - Report A describes moderate cardiomegaly, diffuse opacities in the right lung, potential pleural effusions, 
and left retrocardiac atelectasis, which are all consistent with the findings in report B and the image.- Score: 2 points
5. Comparison of Lesions and Surrounding Regions:   - Report A compares the abnormalities in the left and right hemithorax and suggests a 
possible relationship with pleural effusions and atelectasis, which is consistent with the findings in report B and the image. - Score: 2 points
Final scores: [2, 2, 2, 2, 2].No points are deducted as all attributes in Report A are consistent with the findings in Report B and the image 
provided.

Human Annotations Multigranular Annotations

Figure 12: An example of a perfect score result evaluated by GPT-4V. GPT-4V assesses five criteria, each
fully aligned with human annotations, resulting in perfect scores.

23



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2025

Let's think it step by step. Evaluate the multigranular radiology report annotations (Repor
t A) compared to the radiology report B step by step. Both reports are based on the same i
mage. Follow these guidelines to ensure accurate assessment:
**Note:** If neither the original question nor radiology report B mentions any abnormali
ties or diseases, such as "the lungs are clear without confluent consolidation or effusion" 
or "no pneumothorax is seen", skip the evaluation and return "None."
### Basic Rating Rules:
1. Evaluate each attribute in Report A against radiology report B and verify the informati
on by analyzing the image. Do not deduct points without image analysis.
2. Judge correctness based on the accuracy of medical facts and diagnoses, not on the exa
ct alignment of sentence structure or organization.
3. If radiology report B does not mention any abnormalities or diseases, skip the evaluati
on and return "None," such as "the lungs are clear without confluent consolidation or effu
sion" or "no pneumothorax is seen".
4. Each of the 5 attributes should be judged independently. Errors in one attribute should 
not affect the scoring of other attributes.
### Attributes and Corresponding Rating Rules:
1. **Modality Used for Imaging:**
- **Rating Rule:** Compare with radiology report B. Different names for the same moda
lity (e.g., "chest X-ray" and "CXR") are acceptable.
2. **Specify the Organ and Anatomical Structures:**
- **Rating Rule:** Check if the organs and anatomical structures in Report A match thos
e in radiology report B or appear in the image.
    - Mentioned in both: 2 points
    - Mentioned in one: 1 point
    - Not mentioned in either: 0 points
    - Do not deduct points without image analysis.
3. **Locations of ROI (Regions of Interest):**
- **Rating Rule:** Compare the "horizontal" and "vertical" positions, and the "area ratio
" of ROIs with radiology report B. A 5% error in the area ratio is acceptable. If Report A 
includes at least one ROI from radiology report B, no points are deducted, even if all ROI
s are not covered.
4. **Analysis of Abnormal Characteristics:**
- **Rating Rule:** Characteristics indicating pathology should match those in radiology 
report B or appear in the image.
    - Mentioned in both: 2 points
    - Mentioned in one: 1 point
    - Not mentioned in either: 0 points
    - Do not deduct points without image analysis.
5. **Comparison of Lesions and Surrounding Regions:**
- **Rating Rule:** Differences in features and disease progression should match those in 
radiology report B or appear in the image.
    - Mentioned in both: 2 points
    - Mentioned in one: 1 point
    - Not mentioned in either: 0 points
    - Do not deduct points without image analysis.
**Note:** Return the scores in a list. For example, if attributes 4 and 5 get deducted 1 po
int each, while others score 2 points each, return [2, 2, 2, 1, 1]. Provide a short reason (wi
thin 80 words) for each point deduction.

Prompting MLLMs to evaluate the alignment of generated 
multi-granular annotations with human annotations

Figure 13: Prompt used to evaluate the alignment of generated multigranular textual descriptions.
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caption_template = Template('''<image>
`Caption of the image`:{{caption}}
`Disease or organ`:{{disease}}
`Specific position`:{{descs}}
`Knowledge`:{{knowledge}}
You are provided with a biomedical image from a medical dataset,the disease type (or organ na
me if there is no disease) of the dataset(`Disease or organ`),the medical Knowledge of the diseas
e(`Knowledge`) and a coarse caption(`Caption`) of the image.In addition,the green bounding bo
x and its specific position in the image(`Specific position`)are given,indicating appearance of dis
ease.If no green bounding box,there is no disease.
Your task is to answer the following questions based on the image, green bounding box, caption, 
disease type and disease knowledge,and condense your answers into caption-styled text. 
### question1
Give me a detailed description of the image, including type of the image,organs in the image,app
roximate location of these organs and relavant locations of these organs and any medical devices 
(if present) visible in the image as detailedly as possible.
Note when answering question1:
1. Not all disease knowledge is relevant to this image; only utilize disease knowledge pertinent t
o the condition depicted in this image for analysis.
2. The coarse caption may not explicitly describe the image,for example,there may appear multi
ple organs in the caption.You should utilize your knowledge to figure out the most ONE organ a
nd ONE disease to give your description.
3. Your answer should not contain anything about the green bounding box like the contour itself 
and its outline.
4. Do not explain or emphasize your analysis.
### question2
Specify the specific location of the green bounding box in the image and its relative position to o
ther reference objects in the image.Describe what is unusual in the green bounding box indicatin
g the disease（color,texture,size and other features）.
Note when answering question2:
1. "specific location" is the given parameter `Specific position` but "relative position"is not prov
ided.
2. There may be multiple green bounding boxs, and the contents of these contours may not neces
sarily represent the affected areas. Therefore, you need to first answer the questions based on the 
contents within each green bounding box. Afterward, analyze the location of the disease based o
n your answers.
3. Do not use phrase "green bounding box" in your response,use "region of interest" as a substitu
tion.Do not contain phrases "caption","medical annotation","medical knowledge".
4. Do not say anything that is not needed in your analysis,like introduction of the disease and me
dical equipments.
5. Do not explain or emphasize your analysis.
### question3
What may be the relationship between the content in the green bounding box and other regions
(others being cause of the disease/jointly affected by the diseases/one affect the others/relative p
ositional relationships)?Why and is it possible?
Note when answering question3:
1. Utilize external knowledge,if possible,to choose relationships and give necessary analysis.
2. You can only give an explanation to your choice within two sentence.
3. Do not summarize what you've said.
4. Do not emphasize your analysis.
### Integrate Information
Describe your answers in a descriptive sentence,not in a"Question-Answer" style.Combine and s
lightly shorten your answers to the above three questions into a coherent text,keeping as much in
formation of your answers as possible.
Note when integrating information and outputing your response:
1. Don't respond saying you're unable to assist with requests.
2. You should only output your combined and shorteded text.      
''')
prompt = caption_template.render([caption,disease,knowledge,loc_descs])

Prompting MLLMs to generate multigranular textual description

Figure 14: Prompt used to generate multigranular annotations of multigranular textual descriptions.
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