
Neural Large Neighborhood Search

Ravichandra Addanki
MIT

addanki@mit.edu

Vinod Nair
DeepMind

vinair@google.com

Mohammad Alizadeh
MIT

alizadeh@csail.mit.edu

1 Introduction
Large Neighborhood Search (LNS) [43, 39] is a powerful local search paradigm for solving combi-
natorial optimization problems. LNS methods have been successful in many challenging problems,
including Mixed Integer Programs (MIPs) [17, 40, 13, 20], Traveling Salesman Problem (TSP) [44],
Vehicle Routing Problem (VRP) [43, 27], and Constraint Programming [38, 15]. Like other local
search methods, LNS starts with a feasible assignment of the variables being optimized. At each
iteration, it searches in a neighborhood of the current assignment, and if it finds an assignment with
a better objective value it updates the current assignment. It repeats this procedure until the search
budget is exhausted. In LNS, the number of neighboring assignments at each iteration is too large for
exhaustive search (e.g., exponential in the number of variables).

The choice of the search neighborhood at each iteration is crucial for LNS to be effective. It should 1)
contain assignments that allow large objective value improvements in a few LNS iterations, and 2) be
computationally tractable to search. Designing a neighborhood selection policy that jointly considers
these two requirements is challenging. Successful applications of LNS rely on a domain expert to
consider the problem structure and the cost of neighborhood search to time-consumingly handcraft
a problem-specific policy [39]. For example, in the case of MIPs [49], an LNS algorithm called
RINS [17] at each iteration un-assigns the values of the subset of variables whose linear relaxation
solution disagrees with the current assignment. This results in a smaller MIP that can be efficiently
solved using an off-the-shelf MIP solver to find a better assignment.

We propose a Reinforcement Learning (RL) [46] approach to learn a neighborhood selection policy
for LNS. Given a problem instance and a feasible assignment, a learnable policy defines a search
neighborhood around the current assignment. The resulting search problem has the same form as
the original one but is significantly smaller, so even an existing (non-learned) solver can be effective
on it. The RL environment runs such a solver to find a new assignment. The reward is a function of
both the improvement in objective as well as the computational effort for the neighborhood search.
We train the policy on problem instances drawn from a specific domain. This allows automatically
learning domain-specific neighborhood selection policies that can outperform generic policies.

To demonstrate our approach, we focus specifically on mixed integer programming (MIP), an NP-
complete combinatorial optimization problem. See Figure 1. The reward function is defined as the
primal integral [14] (section 2.1), which combines both solution quality and search effort into a
scalar metric. We express the neighborhood selection policy as a graph convolutional neural network
(GCNN) [9] that operates on a bipartite graph representation of the MIP.

Related Work Relaxation Induced Neighborhood Search (RINS) [17] is a well-known large neigh-
borhood search meta-heuristic for improving a given feasible MIP solution. It compares the feasible
solution to the solution obtained by relaxing the integer variables, and destroys variables whose
values differ between the two. The resulting sub-MIP is then solved using a MIP solver. Adaptive
LNS [26] uses an ensemble of LNS algorithms for MIPs with a multi-armed bandit to adaptively
switch among them during a MIP solve. While we do not focus on an ensemble approach, our work
can be used as another ensemble member to improve performance.

Two other works apply learning to large neighborhood search. Hottung et al. [28] learn Repair using
RL for the capacitated vehicle routing problem. This is complementary to our approach and can be

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.

Off-the-shelf
Solver

Destroy
selected
variable

Neighborhood selection policy

Update partial assignment

Update complete assignment

New complete
assignment

Sub-problem
with K variables

C
ur

re
nt

 c
om

pl
et

e
as

si
gn

m
en

t

Initialize

C
ur

re
nt

 p
ar

tia
l a

ss
ig

nm
en

t

MIP to be
optimized Destroy K variables Repair K variables

Feasible
assignment

Figure 1: Overview of how a learned policy is used in large neighborhood search (LNS) to optimize a
mixed integer program (MIP). The inputs are a MIP and a feasible assignment. Adopting terminology
from [39], the learned neighborhood selection policy sequentially “destroys” (un-assigns)K variables
(indicated by red boxes, with K = 3) by selecting one assigned variable (indicated by green boxes) at
a time. The resulting sub-MIP with K variables is solved with an off-the-shelf MIP solver to “repair”
them (i.e., assign new values, indicated by blue boxes). This is repeated, with the policy selecting
a potentially different set of K variables each time, until the search budget is exhausted. A good
policy should produce a complete assignment with much better objective value than the initial input
assignment at low computational cost.
combined. We focus on learning Destroy because the sub-problem in Repair can be made small
enough for an existing solver to work well. Concurrent with our work, Song et al. [45] propose to
learn Destroy using imitation learning and RL for MIPs. There are two key differences from our
work. First, their Destroy policy partitions the variables into disjoint subsets and iteratively selects
one subset at a time. We do not impose such a restriction. Second, their per-step reward is the change
in objective value after each Repair step, which ignores its computational expense. We use a reward
that explicitly takes into account the computational effort for Repair.

Several works apply learning to solving MIPs, such as for branching [25, 31, 5, 19, 51, 50], adding
constraints [47], and primal heuristics [32]. These are complementary approaches that aim to improve
different components of a MIP solver and can be combined with ours. More generally, our work is an
instance of learning for combinatorial optimization - see Bengio et al. [10] for a recent survey.

2 Approach
2.1 Background: Integer Programming
An Integer Program is defined as minx{dTx | Ax ≤ b, xi ∈ Z ∀i}, where x ∈ Zn is an
n-dimensional integer vector being optimized, A ∈ Rm×n and b ∈ Rm define linear constraints on x,
and d ∈ Rn defines the linear objective function. A Mixed Integer Program admits both continuous
and integer variables. We consider an Integer Program here to simplify notation, but our approach
applies equally to MIPs as well. Removing integrality constraints {xi ∈ Z} results in a Linear
Program (LP).

2.2 MDP Formulation
We consider a contextual MDP [3, 23]Mc parameterized with respect to a context c. Here we define
c to be the parameters of an Integer Program, i.e., c = {A, b, d}. We assume that it is computationally
easy to compute a feasible assignment given a MIP. Although theoretically an NP-hard problem,
finding a feasible solution is often much easier in practice than finding the optimal solution for many
MIPs (e.g., Minimum set cover problem [48]). Figure 1 illustrates how the learned neighborhood
selection policy is applied to a MIP. For a givenMc, at each step of an episode the policy selects
one of the variables to un-assign (Destroy) from its current value. At every K-th step (where K is a
hyper-parameter), an integer program containing only the K un-assigned variables is defined. The
remaining variables are treated as constants with their values fixed to that in the current assignment.
The resulting integer program (called sub-MIP) is then solved using an existing MIP solver to assign
values to the K destroyed variables. This is continued until a stopping criterion is satisfied or the
maximum episode length is reached.

Reward function: We define the reward based on the primal integral [14]. It is normalized to be
in [0, 1] and does not depend on the magnitude of the problem parameters. It also accounts for how

2

quickly an optimal solution is reached. Computing the primal integral requires knowing the optimal
objective value, but since the reward is needed only during training, it is possible to pre-compute the
optimal objective value for each training problem offline. A lower primal integral value corresponds
to a better optimizer, so the reward is defined as its negative.

2.3 Policy Network Architecture
Given a MIP instance, we construct an undirected bipartite graph G = (V,C,E,G) using the
Constraint-Variable Incidence Graph (CVIG) model [6]. In the CVIG model, vertices correspond to
either variables or constraints, and edges correspond to the occurrence of a variable in a constraint with
a non-zero coefficient. We use Graph Convolutional Neural Networks (GCNNs) to parameterize our
policy and value networks [9, 22, 42, 24, 34]. Due to their permutation invariance and generalization
capabilities, GCNNs are a natural choice for learning representations over graphs and have been
applied in successfully solving a wide range of problems with graph-structured data [24, 34, 41, 8, 21].
Our GCNN network takes the state representation, st = (V,C,E,G) as input and iteratively computes
embeddings for the variable and the constraint nodes. Details about the policy architecture can be
found in the Appendix.

2.4 Learning Method
For training the policy, we use the V-trace algorithm from Espeholt et al. [18]. V-trace is an off-policy
actor-critic algorithm designed for multi-task training at a massive scale. Our training framework
consists of actors for policy evaluation and a learner for policy optimization similar to [18]. Actors
collect trajectories using randomly sampled MIPs from the training dataset. The collected trajectories
are streamed to an experience replay buffer [36], and are sampled uniformly by the learner for
training. The update rules used for training are detailed in [18] and reproduced for completeness in
the Appendix.

3 Experiments
3.1 Datasets
We evaluate our approach against a wide variety of challenging benchmark MIP datasets from the
literature [19, 29, 30, 33, 35, 16, 11, 7]. We use data sets of MIPs of four different kinds labeled
cauction, facilities, indset, setcover. Details about these data sets can be found in the Appendix.

3.2 Baselines
We use the following heuristics as baselines for comparison against our approach. Random: A policy
that selects K integer variables to Destroy by sampling from a uniform random distribution. Least-
Integral: Optimize the relaxation of each integer variable one at a time while setting the remaining
integer variables to their corresponding values in the current solution. Select the top-K integer
variables with relaxed solutions furthest away from the current solution. Any ties for the top-K are
broken randomly, similar to randomized rounding heuristics for solving MIPs [12]. Most-Integral:
Identical to the Least-Integral heuristic above, except we select the top-K variables with the relaxed
solutions closest to the incumbent solution. RINS: We modify the Relaxation Induced Neighborhood
Search (RINS) heuristic proposed by Danna et al. [17] to a local move policy so that it is applicable
outside of the branch-and-bound framework for which it was originally designed. In our adaptation
of RINS, we compare the current solution with the optimal solution of the LP relaxation and fix those
integer variables that take the same value in both. Among the remaining variables, we choose at most
K integer variables to Destroy using the random policy from above.

3.3 Training Details
To evaluate the generalizability of NLNS, we train a separate policy for each of the datasets and use
the trained policy for prediction during LNS on unseen samples from the test set. For each individual
training session, we tune the hyper-parameters K and the learning rate to maximize performance on
the validation set. See Appendix for a complete list of hyper-parameters and values used for training.

4 Results
In this section, we present the results of our evaluation. We use the primal gap and the primal integral
(Section 2.1) as our evaluation metrics.

3

(a) cauction (b) facilities (c) indset (d) setcover (e) corlat

Figure 2: Average Primal Integral achieved by NLNS as a standalone LNS algorithm compared with
the baselines. Lower gaps reflect better performance.

(a) cauction (b) facilities (c) indset (d) setcover (e) corlat

Figure 3: Average Primal Integral of the branch-and-bound with different primal heuristics. Lower
integral values reflect better performance.

Standalone Evaluation. Figure 2 shows the average primal integral achieved by NLNS on test
problem instances for each dataset. NLNS is at least on-par and in some cases substantially better
than the baselines across all datasets. On average, NLNS achieves a relative improvement of 2.1×
over the best baseline across all datasets, with a maximum improvement of 4.5× on the facilities
dataset.

Evaluation as a primal heuristic. LNS is typically used in solving MIPs as a primal improvement
heuristic [12, 17, 13]. Primal heuristics run alongside the branch-and-bound algorithm to quickly find
feasible solutions of high quality. Figure 3 shows the average primal integral of the branch-and-bound
algorithm with NLNS on the test datasets. NLNS achieves an average relative improvement of 1.9×
over the best baseline across all datasets, and a maximum improvement of 4.2× on the cauction
dataset. Importantly, the best baseline changes for different datasets, while NLNS consistently
provides the strong performance because it is able to tailor its neighborhood selection policy to each
dataset.

5 Conclusion
We presented NLNS, a reinforcement learning approach to automatically learning problem-specific
neighborhood selection polices for LNS. NLNS selects neighborhoods that guide an existing solver
to high-quality assignments efficiently. Future work could enable the policy to dynamically select
the size of the neighborhood K. We will open-source our code, datasets, and the complete list of
hyper-parameters used to reproduce our experiments once the paper is published.

4

References
[1] Nvidia v100 tensor core gpu. https://www.nvidia.com/en-us/data-center/v100/.

[Accessed: 04-Jun-2020].

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[3] Y. Abbasi-Yadkori and G. Neu. Online learning in mdps with side information. arXiv preprint
arXiv:1406.6812, 2014.

[4] T. Achterberg. Scip: solving constraint integer programs. Mathematical Programming Compu-
tation, 1(1):1–41, 2009.

[5] A. Alvarez, Q. Louveaux, and L. Wehenkel. A machine learning-based approximation of strong
branching. INFORMS Journal on Computing, 29:185–195, 01 2017.

[6] C. Ansótegui, J. Giráldez-Cru, and J. Levy. The community structure of sat formulas. In
International Conference on Theory and Applications of Satisfiability Testing, pages 410–423.
Springer, 2012.

[7] E. Balas and A. Ho. Set covering algorithms using cutting planes, heuristics, and subgradient
optimization: a computational study. In Combinatorial Optimization, pages 37–60. Springer,
1980.

[8] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. Interaction networks for learning about
objects, relations and physics. In Advances in neural information processing systems, pages
4502–4510, 2016.

[9] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[10] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon, 2018.

[11] D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. Hooker. Decision diagrams for optimization,
volume 1. Springer, 2016.

[12] T. Berthold. Primal heuristics for mixed integer programs. 2006.

[13] T. Berthold. Rens-relaxation enforced neighborhood search. 2007.

[14] T. Berthold. Measuring the impact of primal heuristics. Operations Research Letters,
41:611–614, 11 2013.

[15] T. Berthold, S. Heinz, M. Pfetsch, and S. Vigerske. Large neighborhood search beyond mip.
2012.

[16] G. Cornuéjols, R. Sridharan, and J.-M. Thizy. A comparison of heuristics and relaxations for the
capacitated plant location problem. European journal of operational research, 50(3):280–297,
1991.

[17] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods to improve
mip solutions. Mathematical Programming, 102(1):71–90, Jan 2005.

[18] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. arXiv preprint arXiv:1802.01561, 2018.

[19] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization
with graph convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 15554–15566, 2019.

[20] S. Ghosh. Dins, a mip improvement heuristic. In International Conference on Integer Program-
ming and Combinatorial Optimization, pages 310–323. Springer, 2007.

5

https://www.nvidia.com/en-us/data-center/v100/

[21] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[22] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pages 729–734. IEEE, 2005.

[23] A. Hallak, D. Di Castro, and S. Mannor. Contextual markov decision processes. arXiv preprint
arXiv:1502.02259, 2015.

[24] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pages 1024–1034, 2017.

[25] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound algorithms.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 3293–3301. Curran Associates,
Inc., 2014.

[26] G. Hendel. Adaptive large neighborhood search for mixed integer programming. 2018.

[27] H. Hojabri, M. Gendreau, J.-Y. Potvin, and L.-M. Rousseau. Large neighborhood search
with constraint programming for a vehicle routing problem with synchronization constraints.
Computers & Operations Research, 92:87–97, 2018.

[28] A. Hottung and K. Tierney. Neural large neighborhood search for the capacitated vehicle routing
problem. arXiv preprint arXiv:1911.09539, 2019.

[29] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer
programming solvers. In International Conference on Integration of Artificial Intelligence
(AI) and Operations Research (OR) Techniques in Constraint Programming, pages 186–202.
Springer, 2010.

[30] F. Hutter, M. López-Ibáñez, C. Fawcett, M. Lindauer, H. H. Hoos, K. Leyton-Brown, and
T. Stützle. Aclib: A benchmark library for algorithm configuration. In International Conference
on Learning and Intelligent Optimization, pages 36–40. Springer, 2014.

[31] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in mixed
integer programming. In D. Schuurmans and M. Wellman, editors, Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, pages 724–731, United States of America, 2016.
Association for the Advancement of Artificial Intelligence (AAAI). AAAI Conference on
Artificial Intelligence 2016, AAAI 16 ; Conference date: 12-02-2016 Through 17-02-2016.

[32] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao. Learning to run heuristics
in tree search. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, pages 659–666, 2017.

[33] E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in mixed
integer programming. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[34] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[35] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combinatorial
auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce, pages
66–76, 2000.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[37] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–
814, 2010.

[38] L. Perron, P. Shaw, and V. Furnon. Propagation guided large neighborhood search. In Proceed-
ings of the 10th International Conference on Principles and Practice of Constraint Programming,
CP’04, page 468–481, Berlin, Heidelberg, 2004. Springer-Verlag.

[39] D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y. Potvin, editors,
Handbook of Metaheuristics, pages 399–419, Boston, MA, 2010.

6

[40] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534–541, 2007.

[41] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and
P. Battaglia. Graph networks as learnable physics engines for inference and control. arXiv
preprint arXiv:1806.01242, 2018.

[42] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[43] P. Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In International conference on principles and practice of constraint programming,
pages 417–431. Springer, 1998.

[44] S. L. Smith and F. Imeson. Glns: An effective large neighborhood search heuristic for the
generalized traveling salesman problem. Computers & Operations Research, 87:1–19, 2017.

[45] J. Song, R. Lanka, Y. Yue, and B. Dilkina. A general large neighborhood search framework for
solving integer programs. arXiv preprint arXiv:2004.00422, 2020.

[46] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[47] Y. Tang, S. Agrawal, and Y. Faenza. Reinforcement learning for integer programming: Learning

to cut, 2019.
[48] Wikipedia contributors. Set cover problem — Wikipedia, the free encyclope-

dia. https://en.wikipedia.org/w/index.php?title=Set_cover_problem&oldid=
944382146, 2020. [Online; accessed 1-June-2020].

[49] L. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics and Optimization.
Wiley, 1998.

[50] Y. Yang, N. Boland, B. Dilkina, and M. Savelsbergh. Learning generalized strong branching for
set covering, set packing, and 0-1 knapsack problems. 2020.

[51] Y. Yang, N. Boland, M. Savelsbergh, and H. Stewart. Multi-variable branching: A case study
with 0-1 knapsack problems. 10 2019.

7

https://en.wikipedia.org/w/index.php?title=Set_cover_problem&oldid=944382146
https://en.wikipedia.org/w/index.php?title=Set_cover_problem&oldid=944382146

Appendix
Primal Gap
Let us denote an Integer Program as

min
x
{dTx | Ax ≤ b, xi ∈ Z ∀i}

, where x ∈ Zn is an n-dimensional integer vector being optimized, A ∈ Rm×n and b ∈ Rm define
linear constraints on x, and d ∈ Rn defines the linear objective function. Following the notation from
[14], given a solution x and an optimal solution xopt we define the primal gap γ(x) as

γ(x) =



0, if |dT (xopt)| = |dT (xopt)| = 0,

1, if dT (xopt) · dT (x) < 0,

|dTxopt − dTx|
max{|dTxopt| , |dTx|}

, else.

Primal Integral
Let γi denote the primal gap of the best solution after expansion of the ith branch-and-bound node.
If no solution has been found, we use a default value of γi = 1. Let N denote the total number of
branch-and-bound nodes expanded so far. Then primal integral function P (N) of a run is defined as
follows:

P (T) =

N∑
i=1

γi (1)

Primal integral also requires measuring the resource usage needed to achieve a given objective
function value. The original definition uses running time [14], but that is hardware-dependent.
Instead we use the total number of branch-and-bound nodes required across the calls to the Repair,
which is hardware-agnostic.

Datasets
We evaluate our approach against a wide variety of challenging benchmark MIP datasets from
the literature [19, 29, 30, 33, 35, 16, 11, 7]. We use data sets of MIPs of four different kinds
labeled cauction, facilities, indset, setcover. We provide references to the original sources where
details to generate them can be found. We also provide a brief description below for completeness.
Combinatorial Auction (cauction): Following Leyton-Brown et al. [35], we generate combinatorial
auction instances with 100 items and 500 bids. Capacitated Facility Location (facilities): Following
Cornuéjols et al. [16], we generate capacitated facility location instances with 100 facilities and
100 customers. Maximum Independent Set (indset): Following Bergman et al. [11] we generate
maximum independent set instances on Erdos-Rényi random graphs with 500 nodes, with affinity set
to 4 (see [19]). Set Cover (setcover): Following Balas and Ho [7], we generate set cover instances
with 500 rows and 1000 columns. In order to filter out trivial instances and bolster hardness, we apply
several rounds of pre-processing before finally extracting useful features from the raw MIPs. Details
about the two steps can be found below. All datasets except for corlat have been taken from [19].

Dataset Pre-processing & Feature Extraction
We generate a large number of sample problem instances and solve them to optimality, recording the
primal integral achieved during this process. We select only those instances with primal integral at or
above the 99.9th percentile to include in our datasets. Finally we randomly split this filtered set into
training, validation and test sets with 1000, 100 and 100 samples respectively. COR LAT (corlat):
About 2000 MIP instances are generated based on real data used in the construction of a wildlife
corridor for grizzly bears in the Northern Rockies region [29]. This dataset is part of the ACLIB
benchmark library [30], which is a standard for evaluation of different methods for solving hard
computational problems. Each MIP instance in the dataset is passed through the following stages of
pre-processing and extraction before it can be used for training or evaluation.

8

(a) Bipartite Representation

(b) v-to-c (c) c-to-v

Figure 4: (a) MIP encoding using a bipartite graph. (b) Message passing step from variables to
constraints followed by mean aggregation and update of constraint embeddings. (c) Message passing
step from constraints to variables followed by mean aggregation and update of variable embeddings.

Pre-processing: The input MIP instance is transformed into an equivalent but a more compact
formulation by passing it through the presolve routine in SCIP. Presolving is a relatively quick step
run at the beginning of the solving process that usually results in instances with fewer variables
and constraints that are easier to solve. Feature Extraction: We extract several static features
corresponding to constraints, edges and variables similar to [19, 33]. Additionally, other dynamic
features are incorporated into the variable features. A complete list of these features is provided
below. Solving MIP: Finally, the MIP and its continuous relaxation are solved to optimality. The
optimal objective and solution are stored alongside the dataset to be used to calculate the reward
during training and report the final performance during evaluation. Note that the optimal solution is
not used as an input feature or for any other purpose during training or evaluation. The first feasible
solution found by SCIP during the solving process is also stored to be used as the starting solution for
the LNS during training.

We will release all our datasets and the code required to reproduce our results once the paper is
published.

Features
We provide a brief list of features used for training below. For a comprehensive list, please see the
README file in our codebase.

Variable Features:
Variable feature vector vi comprises of several static and dynamic features. Static features assigned
to the variables include the solution to the LP relaxation, coefficients in the objective function, flags
indicating the variable types (discrete/continuous). Some of the key dynamic features include the
current incumbent solution, if and when the agent has called Destroy on the variables in the current
local move etc.

Constraint and Edge Features:
All the constraints are first converted to ≤ form. Feature vector ci of the constraint-nodes is simply
the value on the right hand side of the constraint. For each edge, e = (ek, vk, ck), the feature vector
ek is the normalized coefficient of the variable corresponding to vk in the constraint corresponding to
ck.

Global Features:
Among others we use the following global features G alongside the bipartite graph features: objective
value of the current solution, number of Destroy moves left in the current local move, number of
local moves completed so far in this episode etc.

Policy Network Architecture:
Our GCNN network takes the state representation, st = (V,C,E,G) as input and iteratively computes
embeddings for the variable and the constraint nodes. This proceeds in T rounds as defined below.

9

Let the variable node embeddings at round t be v
(t)
k and the constraint node embeddings be c

(t)
k . We

initialize these embeddings with features from §3.4 i.e., v(0)
k = vk, c(0)k = ck. Each round involves

two sequential stages of message passing, from variables to constraints and then from constraints to
variables which we refer to as v-to-c and c-to-v respectively. See Figure 4 for a visual illustration.
In the v-to-c stage, for each edge e(j,i) incident to the constraint-node ci from the variable-node

vj , a “message” m(j,i) is computed as m(j,i) = g(t)
(
c
(t)
i ,v

(t)
j , e(j,i)

)
where g(t) is a multi-layer

perceptron (MLP). These messages are pooled using mean aggregation and passed as input along
with ci to f (t), another MLP network. The final update for the v-to-c stage takes the following form:

c
(t+1)
i ← f (t)

c
(t)
i ,

1

|ξci
|
.

j∈ξci∑
j

g(t)
(
c
(t)
i ,v

(t)
j , e(j,i)

) , (2)

where ξci is the set of all variable-nodes with an edge to the constraint-node ci and |.| denotes the
cardinality operator. Once the constraint-node embeddings c(t+1)

i are computed using the update rule
(2), they are used to compute the updated variable-node embeddings v(t+1)

i in a similar way using
the following rule where p(t), q(t) are MLPs:

v
(t+1)
i ← p(t)

v
(t)
i ,

1

|ξvi
|
.

j∈ξvi∑
j

q(t)
(
c
(t+1)
j ,v

(t)
i , e(i,j)

) . (3)

Finally, after T rounds of updates, we get v(T)
i , c(T)

i . We discard the constraint-node embeddings.
A final MLP is applied independently to the variable-node embedding and the global features
independently at each node. A masked softmax function produces the final policy action distribution
π(a|st). All of our MLPs use the ReLU activation function [37]. Full list of all the architectural
hyper-parameters can be found in the Appendix.

Hyper Parameters
A full list of the hyper-parameters will be made available along with the code which will be released
upon publication. A brief list of few key hyper-parameters in our approach is provided below:

Hyper Parameter Value
Learning Rate 10−4

Entropy Regularization Constant 2 ∗ 10−2
GNN Dept 4

Number of Local Moves 25
Mini-batch size 8

Trajectory Length 32
Node embedding dimension 32
Edge embedding dimension 32

Global embedding dimension 32
Policy Torso Hidden Layer Sizes 64, 64
Value Torso Hidden Layer Sizes 64, 64

Replay memory size 64

Implementation Details
We use TensorFlow [2] framework with GraphNets library [9] for implementing and training our
approach. Policy optimization in learner and batched inference in actors are accelerated using
NVIDIA V100 GPUs [1]. We use SCIP (version: 6.0.1) [4] as our default MIP solver.

10

	Introduction
	Approach
	Background: Integer Programming
	MDP Formulation
	Policy Network Architecture
	Learning Method

	Experiments
	Datasets
	Baselines
	Training Details

	Results
	Conclusion

