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ABSTRACT

Score-based generative models (SBM), also known as diffusion models, are the
de facto state of the art for image synthesis. Despite their unparalleled perfor-
mance, SBMs have recently been in the spotlight for being tricked into creating
not-safe-for-work (NSFW) content, such as violent images and non-consensual
nudity. This article proposes a safe-for-work (SFW) sampler for SBMs imple-
menting a Conditional Trajectory Correction step that guides the samples away
from undesired regions in the ambient space using external multimodal models
as the source of conditioning. Furthermore, using Contrastive Language Image
Pre-training (CLIP), our method admits user-defined NSFW classes, which can
vary in different settings. Our experiments on the text-to-image SBM Stable Dif-
fusion validate that the proposed SFW sampler effectively reduces the generation
of explicit content, as assessed via independent NSFW detectors. Moreover, the
proposed correction comes at a minor cost in image quality and has an almost null
effect on samples that do not need correction. Our study confirms the suitability
of the SFW sampler towards aligned SBM models.

1 INTRODUCTION

Score-based models (SBMs) (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020)
avoid the computation of the (normalised) probability density required in standard likelihood-based
generative modelling by sampling directly from the score function ∇x log p(x) of the data distri-
bution p. This is achieved by training a neural network to learn the score function corresponding
to noise-corrupted copies of the data using annealed Langevin dynamics. This way, the sampler
is initialised on a pure-noise domain and then guided through a sequence of decreasing-noise la-
tent spaces to arrive at regions of the ambient space where the observations occurred (with high
probability). Song et al. (2021b) generalises this concept to a continuous-time noise scheduling by
considering a diffusion process, that is, a stochastic differential equation (SDE) governing the evo-
lution from the data space to the noise space. Then, sampling occurs by Langevin-based numerical
solution of the reverse SDE.

SBMs have become an attractive field of study in the ML community (Yang et al., 2023). This
success has been boosted by their capacity to generate realistic images, positioning them as the go-to
resource for image generation by practitioners. In particular, the ability of SBMs to generate high-
quality images given a text prompt has made them surpass the performance of GANs (Dhariwal
& Nichol, 2021). The capacity of SBMs to generate images for previously unseen prompts has
been improved by embedding the conditioning text into the model pre-training scheme (namely
classifier-free guidance, Ho & Salimans (2021)). Moreover, performing the denoising steps on a
lower dimensional latent space has helped decrease the computational cost while still generating
high-resolution samples (Rombach et al., 2022).

Like other generative AI methods developed recently, SBMs are also the subject of attacks and mis-
use. Via prompting, SBMs’ unique ability for out-of-distribution synthesis can be used to generate
deep-fakes or discriminative content. Such risks have been studied by Qu et al. (2023) in the context
of publicly-available models such as Stable Diffusion and DALL-E (Rombach et al., 2022; Ramesh
et al., 2022), confirming the possibility to generate inappropriate images containing, e.g., violence
or nudity, even in the cases where attacks were not planned. This must be carefully and urgently
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addressed since SBMs are the backbone of Generative AI engines to which the wider community,
including underage users, can access.

A straightforward approach to avoid generating sensitive content consists of blocking the related
prompts or filtering out violent samples after generation. Both approaches require training spe-
cialised classifiers and ultimately dismiss the problem of having models that can sample inappro-
priate images in the first place. The community has since tackled the issue by modifying the base
sampling process in SBMs as we observe in Sec. 5. Most of these approaches, while capable of
safer sampling, rely on the model’s own knowledge –and thus assessment– of sensitive content.

We adopt a different perspective and propose using an external signal to guide the samples away
from undesired content. This approach adds flexibility, particularly regarding the source of the ex-
ternal signal. This will ultimately define what is considered “harmful”, thus allowing for particular
applications based on independently-produced NSFW detectors that can audit a deployed model.
In this context, we assume the existence of a harmfulness probability density ph that models the
probability of a point in the ambient space belonging to such a harmful type of content. We then re-
duce the expected harmfulness of the clean point prediction in Denoising Implicit Diffusion Models
(DDIM) Song et al. (2021a) based on manifold preserving guidance (He et al., 2024) and a novel
conditional trajectory correction step. Overall, our approach reduces the rate of images contain-
ing explicit content with little compromise over the quality of benign samples. To the best of our
knowledge, the extent to which external sources can help block NSFW images in sampling has been
hitherto unexplored.

Our contributions are summarised as follows

• We formulate the problem of avoiding the generation of sensitive content in SBMs by re-
ducing the likelihood of the samples coming from an external source of NSFW probability,
namely a harmfulness distribution ph.

• We adapt manifold preserving guidance (He et al., 2024) to reduce the probability of gen-
erating undesired content (Sec. 3.1). This is complemented by a conditional diffusion tra-
jectory correction step to maintain image quality for samples that pose a low harmful risk
(Sec. 3.2).

• We propose a family of harmful content distributions ph that can be flexibly defined by the
user based on the vision language model CLIP Radford et al. (2021) (Sec. 4).

• We develop a performance indicator called prompt-image concordance to assess the se-
mantic shift that guidance signals might produce in generated images (Sec. 6.2).

• We validate the ability of the proposed method to effectively reduce the rates of explicit
content (Sec. 6.1) while maintaining the quality and prompt-image concordance of the
samples (Sec. 6.3 and 6.2).

Disclaimer This model tackles the generation of images that might cause distress and trigger trau-
mas in certain people. Although we have censored the most sensible parts, we warn the reader that
the images in this document feature violent content.

2 BACKGROUND

Preliminary concepts on diffusion models. We will consider the generation of images that lie on
a k-dimensional manifold M, a subset of the ambient space Rd with k ≪ d. Denoising Diffusion
Models can be thought of as performing denoising score matching over images with decreasing
noise levels {σi}1i=T ⊂ (0, 1] (Ho et al., 2020). Indeed, given a sequence of time/noise dependent
scale factors α(t) =

√
1− σ(t)2 and denoting ᾱ =

∏T
s=1(1 − αt), a straightforward derivation

using Tweedie’s formula (Efron, 2011) results in the noise level being related to the score function
by ∇ log p(xt) = − 1√

1−ᾱt
ϵ. Here, ϵ corresponds to the noise in sample xt, which can be written

as xt =
√
ᾱtx0 +

√
1− ᾱtϵ, with ϵ ∼ N (0, I). Such a level of noise is approximated by ϵθ(xt, t),

which takes a noisy input xt and a denoising step t ∈ {1, . . . , T}.

Non-Markovian sampling. DDIM alleviates the computational cost of SBMs by considering a
non-Markovian diffusion process (Song et al., 2021a). The resulting reverse generative Markov
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chain takes considerably fewer steps to generate meaningful images. Given a decreasing sequence
{αi}Ti=1 ⊂ (0, 1]T , the family of probability distributions {qσ}σ∈RT

≥0
given by

qσ(xt−1|xt, x0) = N
(
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

xt −
√
ᾱtx0√

1− ᾱt
, σ2I

)
, (1)

satisfies that qσ(xt|x0) = N (
√
ᾱtx0, (1 − ᾱt)I),∀t = 1, . . . , T . This property guarantees that the

decomposition xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) still holds, hence ensuring that the training

procedure from the Markovian version can still be utilised for adjusting ϵθ(xt, t) as in Ho et al.
(2020). Additionally, since equation 1 requires the clean point x0, the following approximation can
be used instead:

x̂0(xt) =
1

√
αt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
. (2)

We will denote this prediction x
(t)
0 to ease the notation. This expression is a straightforward

consequence of the decomposition of xt when ϵ is approximated by ϵθ. Noting that ϵθ(xt, t) =
xt−

√
ᾱtx̂0(xt)√
1−ᾱt

, new points can be generated by iterating the following expression:

p
(t)
θ (xt−1|xt) = qσ(xt−1|xt, x̂0(xt)) = N (

√
ᾱt−1x̂0(xt) +

√
1− ᾱt−1 − σ2ϵθ(xt, t), σ

2I) . (3)

2.1 MANIFOLD-PRESERVING SAMPLER

We build on previous work studying guidance procedures that ensure sample quality. He et al. (2024)
provide a methodology to minimise an arbitrary loss function over the set Nτ (xt) = {x ∈ Γxt

Mt :
d(x, xt) < rt}, where Γxt

Mt is the tangent space of the intermediate manifold Mt at the point
xt. Mt generalises the concept of manifold of clean samples M but for intermediate samples xt.
Naturally, perturbing the denoising direction can be detrimental to the quality of the final sample.
However, as found by (He et al., 2024, Theorem 1), when x̂0(t) is perturbed towards a given gradient
g⃗, the resulting modified density of xt−1 is concentrated in Mt−1 because the gradient g⃗ lies on the
tangent space Γx0M.

Our scope is that of latent diffusion models, that is, models where the denoising process operates
on a latent space. Furthermore, we denote D : RD → RN the mapping from the latent space to the
ambient space RN . Therefore, since the proposed harmfulness density ph is defined on the image
(ambient) space RN , our method will be concerned with the evaluation of ph(D(x̂

(t)
0 )) 1.

Manifold spaces for clean points can be approximated with autoencoders (AEs), and it is precisely
this built-in AE which ensures that the gradient belongs to the corresponding tangent latent space
Γx0M. Indeed, when the AEs are perfect (in the sense of reporting zero reconstruction error) and the
linear subspace manifold hypothesis holds, He et al. (2024) show that D

(
∇

x̂
(t)
0

log ph(D(x̂
(t)
0 ))

)
lies on the tangent space of the data manifold.

2.2 CONTRASTIVE LANGUAGE IMAGE PRE-TRAINING (CLIP)

CLIP is a method for embedding text and images on a common latent space (Radford et al., 2021),
which induces a family of (publicly-available) models that can be fine-tuned for a number of tasks
and even used for zero-shot prediction. After a standard pre-processing step, the text encoder of
CLIP assigns concepts c ∈ Γ, where Γ is a space of concepts or prompts, to vectors in a latent space
RD by

ECLIP
text : c ∈ Γ 7→ ec ∈ RD. (4)

Likewise, images x ∈ RN can be embedded by an encoder ECLIP
img : x ∈ RN 7→ ex ∈ RD.

1Throughout the rest of the paper we omit this notation for simplicity and use ph(x̂
(t)
0 ) instead of

ph(D(x̂
(t)
0 )).

3
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CLIP is pre-trained in a contrastive fashion: given a set of N image-caption pairs {(xn, cn)}Nn=1,
1

N2−N

∑N
n=1 E

CLIP
img (xn)E

CLIP
text (cn) is maximised, making the representations closer in the latent

space. Conversely, 1
N2−N

∑N
n=1

∑N
m=1 1m ̸=nE

CLIP
img (xn)E

CLIP
text (cn) is minimised, thus embedding

text/images far from one another when they are different. CLIP embeddings have proved effective
in various image-recognition datasets, either for zero-shot classification or as a part of a fine-tuned
model (Radford et al., 2021).

3 SAFE-FOR-WORK SAMPLING

We aim to minimise the generation undesired, harmful content, e.g., NSFW, samples when using
SBMs. In our setup, harmful samples are governed by a probability density ph, which can be used
as a proxy for the harmfulness of the sample s. We also consider an SBM capable of generating
harmful samples, that is, samples in regions δ ⊂ RN such that

∫
δ
ph(s)ds > η, where η > 0 is a

context-dependent threshold, and δ ∩M ≠ ∅.

3.1 HARMFULNESS MITIGATION VIA MANIFOLD-PRESERVING SAMPLING

Starting from a Gaussian sample xT , avoiding the generation of a terminal x0 lying in a region of
high probability with respect to ph(·) requires controlling the entire trajectory {xt}0t=T . To this end,
first recall that x0 can be predicted a time t using equation 2. Denoting this approximation by x̂

(t)
0 ,

the harmfulness probability of x0 at t can be predicted by

ph(x0|t, xt) ≈ ph(x̂
(t)
0 ) = ph

(
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t))

)
. (5)

We are thus set out to build the chain xt−1|xt by searching for samples xt−1 in the neighbourhood
of xt that are both i) valid samples according to the SBM, but ii) report low values of ph(x0|t, xt).
To this end, we rely on the harmful distribution ph to perturb the clean point approximation x̂

(t)
0 to

guide intermediate points away from it. This can be interpreted as performing gradient descent in
each denoising step to minimise equation 5 according to

x
(t)
0 7→ x

(t)
0 − γt∇x̂

(t)
0

log ph(x̂
(t)
0 ) . (6)

Indeed, using the harmfulness log-density log ph(x̂
(t)
0 ) as loss function and a positive sequence of

gradient descent step sizes {γt}Tt=1, the manifold-preserving sampler (He et al., 2024) is given by

xt−1 ∼ N
(
xt−1;

√
ᾱt−1(x̂

(t)
0 − γt∇x̂

(t)
0

log ph(x̂
(t)
0 ) +

√
1− ᾱt−1 − σ2

t ϵθ(xt, t)), σ
2
t I

)
, (7)

Since ph(x̂
(t)
0 ) lies on Γx̂0M, Equation 7 corresponds to a particular case of Manifold Preserving

Guided Diffusion (He et al., 2024). Consequently, the underlying marginal distribution is guaranteed
to be in Mt−1 with high probability.

3.2 CONDITIONAL TRAJECTORY CORRECTION

As we will see in the next section, the density ph is defined implicitly using trained classifiers.
Therefore, in some regions of the ambient space ph might be unreliable, particularly in those of
low probability where little or no samples have been seen and thus accurately assessing samples as
being NSFW is difficult. Therefore, to avoid instabilities of the sampling procedure due to noisy
values of ph, we propose only to perform the correction described in Sec. 3.1 when the value of ph
surpasses a given threshold. This way, predictions of x0 exhibiting low harmfulness probability are
not corrected and thus denoising relies on vanilla DDIM.

We thus propose a Conditional Trajectory Correction (CTC), whereby the NSFW probability of the
clean point prediction ph(x̂

(t)
0 ) is assessed to decide whether to apply the correction or not. This is

achieved by establishing a threshold η > 0, whereby if the probability ph(xt) (at a given time step

4
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Figure 1: Illustration of the proposed gradient-based correction conditional to the assessment of an
external harmful classifier.

t) falls below such threshold, then the diffusion trajectory will not be corrected. The reverse Markov
chain will then be given by:

p
(t)
θ (xt−1|xt) =

{
qσ(xt−1|xt, x̂

(t)
0 − γ∇

x
(t)
0

log ph(x
(t)
0 )) if ph(x

(t)
0 ) ≥ η

qσ(xt−1|xt, x̂
(t)
0 ) if ph(x

(t)
0 ) < η

, (8)

where qσ is the DDIM transition in eq. equation 3. The procedure is depicted in Fig. 1.

4 CLIP-BASED CONSTRUCTION OF THE HARMFULNESS DENSITY ph

Up to this point, we have assumed the existence of a harmfulness density ph. In this section, we
will present a set of methodologies to define such a density in a flexible way so that end users can
specify their own concepts to be considered harmful or NSFW.

Let us consider a concept c ∈ Γ that needs to be avoided when generating images. The concept c
can be a single word or a more complete sentence. To construct a distribution ph describing images
featuring the concept c, we rely on the corresponding embedding provided by CLIP in equation 4.
By computing the cosine similarity against the embedding of c, denoted ECLIP

text (c), we can build an
unnormalised density function on the embedding space RD given by:

pch(x) =
x · ECLIP

text (c)

∥x∥∥ECLIP
text (c)∥

. (9)

Recall that ph is considered a probability density function in our setting, and the above is an unnor-
malized signed function. However, our sampler uses the gradient of the log density of ph and thus
the normalising constant is irrelevant in that regard. Furthermore, negatives values can be clipped
at zero, yet we observed no negative values in our experiments. Therefore, equation 9 provides a
reasonable model for ph in the SFW setting. We can generalise the procedure above to comprise
multiple concepts C = {cj}Mj=1 ∈ ΓM by simply averaging the individual pseudo-densities of each
concept. In practice, we found that applying the gradient of the concept with the highest likeli-
hood as soon as it meets the threshold η yields better results while highlighting the flexibility of the
methodology. We provide the formalisation of this generalisation in Sec. A.

5 RELATED WORKS

Works tackling NSFW generation. Erasing specific concepts, styles or objects is a prospect
that has been pursued by the diffusion models community. For instance, Safe Latent Diffusion

5
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(Schramowski et al., 2023) takes a set of key concepts and uses them to move the denoising direc-
tion away from harmful images with an adapted classifier-free guidance procedure. On the other
hand, Kumari et al. (2023) minimise the KL-divergence between the distribution of a target concept
to erase and an anchor concept that can serve as a replacement. They fine-tune the base model and
experiment with freezing specific steps of parameters. Gandikota et al. (2023) modify the existing
network of a model pθ(x) so it does not contain a certain concept, similarly via fine-tuning. This
approach is generalised in Unified Concept Editing (Gandikota et al., 2024), where the linear cross-
attention projections are edited in order to modify the output of the model. The method requires
a set of concepts to edit and a set to preserve, and it is also able to tackle biases in the generated
images. Li et al. (2023) also make use of the knowledge stored in the model but to infer directions
in the latent space pointing towards unwanted concepts, as opposed to benign ones.

In this context, our approach considers external sources for content moderation which avoids rely-
ing on the model itself for filtering. Works such as ESD present strategies for erasing where the
censoring signal comes from the model itself. Though both external and internal censoring signals
work in practice, we believe that using external sources provides enhanced flexibility and gener-
ality, since the model is externally/independently supervised. For instance, one might want to use
an independent classifier acting as a regulator for what the model can generate. In our setting, any
such type of signals can be considered as long as their gradients can be calculated, and our work
presents a proof-of-concept in this regard. Moreover, our broad methodology complements methods
that condition the diffusion on what is to be censored.

Connection between our method and negative classifier guidance. As its name suggests, Clas-
sifier Guidance (CG) (Dhariwal & Nichol, 2021) uses a trained classifier in order to guide a sam-
ple towards a certain class/query c, meaning that CG requires access to the conditional probability
pθ(c|x). Using Bayes’ rule to express pθ(x|c) as pθ(c|x)pθ(c)

pθ(x)
, the score of the conditional probability

∇xt logθ p(xt|c) = ∇xt log pθ(c|xt) +∇xt log pθ(xt) can be used to sample from the conditional
distribution pθ(x|c). Nevertheless, the need for a noise-aware discriminator can be avoided by mak-
ing use of the approximation in equation 2. This approach has been pursued by (Bansal et al., 2023)
in the context of positive classifier guidance. For censoring, Yoon et al. (2023) propose the use of
Universal Guidance Bansal et al. (2023) based on classifiers trained with human feedback. In this
case, the guidance signal comes from an estimator of the “undesirability” of a given image, trained
using reinforcement learning from human feedback. The proposed SFW sampling holds similarities
with these methods, but the fact that we considered the gradient w.r.t. x̂(t)

0 , i.e., ∇
x̂
(t)
0
ph(x̂

(t)
0 (xt, t))

instead of ∇xt
ph(x̂

(t)
0 (xt, t)) implies that we have the manifold-preserving guarantees of (He et al.,

2024), and that we need less VRAM to compute the gradients, which are both critical advantages of
our method.

6 EXPERIMENTS

The proposed SFW sampler was quantitatively evaluated on three aspects: i) reduction of the num-
ber of generated NSFW, ii) concordance or agreement with the given prompt, and iii) distortion
introduced in the generated images in terms of aesthetic quality. In all experiments, we considered
Stable Diffusion (SD) (Rombach et al., 2022) as the baseline benchmark. We tested three variants
of the proposed SFW sampler based on different harmfulness densities ph presented in Sec. 4:

• SFW-single: SFW Sampling with single concept c =“violence and nudity”.
• SFW-SD: SFW Sampling with multiple concepts taken from the Stable Diffusion filter as

explained in Appendix B.1.
• SFW-multi: SWF Sampling with concepts C = {violence, nudity, NSFW, harmful}.

All variants considered hyperameters η = 0.23 (threshold) and γ = 75 (strength), chosen following
a qualitative analysis of parameters included in Appendix C. For each prompt (with its associated
seed) we sampled five batches of two images of dimension 512 × 512. Our experiments were
executed on an NVIDIA GeForce RTX 3090 GPU. Examples for the variants considered, with their
corresponding prompts, are shown in Fig. 2. Qualitatively, we observe how samples are moved away
from inappropriate content, although some loss in quality can be observed.

6
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Figure 2: Examples of image generations using SFW sampling. On the left most column we provide
the text prompt used for sampling, followed by the original sample using Stable Diffusion without
correction. We then show examples for the same prompt and seed using the three investigated
variants mention in Sec. 6.

6.1 ASSESSING THE ABILITY TO MITIGATE NSFW CONTENT

We evaluated the generation of explicit content using a subset of the prompts dataset I2P
(Schramowski et al., 2023); we restricted our study to prompts tagged (according to the same dataset)
as prone to generate violence, harassment or sexual content (about 16k images for each setting). We
also assessed sample degeneracy with respect to those generated by the standard SD using an unsafe
prompt set (namely the Template prompts from Qu et al. (2023), which comprises 30 prompts de-
signed to generate NSFW images) and a safe prompts dataset, which is a subset of COCO prompts
gathered by Qu et al. (2023) (500 prompts). We considered the results of Erasing stable diffusion
(ESD) as a baseline (Gandikota et al., 2023).

Nudity detection. First, we used NudeNet2 to detect several categories of human parts whose
presence in an image might be considered inappropriate. We restricted our analysis to the categories
on the leftmost column in Table 1. In particular, we show the percentage of images that were tagged
as containing the category (using a threshold of 0.2, which is the default threshold in the library).

Our proposed SFW sampler reduced nudity generation for all the categories considered. The
Safe Sampling multi-concept variant using C = {violence, nudity, NSFW, harmful} with topk= 1
achieved the lowest detection rate among all the models tested (5.26%), being three times less likely
to generate images containing sexual content from the 15.93% shown by the default version of Stable

2https://pypi.org/project/nudenet/
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Diffusion. When only considering prompts tagged as “sexual”, the percentage of nudity-containing
samples drops from 24.74% in Stable Diffusion to 10.26%.

General inappropriate content detection. Even though detecting sexual content using NudeNet
validated the model’s capacity to censor elements in diffusion models, such a tool does not include
other types of unsafe content. Consequently, we used the Q16 classifier from Schramowski et al.
(2022). This classifier is also based on CLIP embeddings, which is different to the model for testing
our method, and detects a broader set of inappropriate content. This considered classfier is inspired
by question 16 from Datasheets for datasets: “Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might otherwise cause anxiety?” (Gebru et al., 2021).

The results over I2P prompts (Schramowski et al., 2023) (tagged with categories: sexual, violence
and harassment) are summarised in Table 1. Interestingly, the variant in which we applied several
SD-filter concepts as a multi-concept classifier increased the likelihood of dangerous images. This
might be partly explained by the fact that SD concepts solely tackle sexual content, which might in
turn increase the likelihood of disturbing content if the resulting images are of lower quality. We ob-
served a lower probability of creating inappropriate images for the SFW variant with the single con-
cept “violence and nudity” with respect to plain Stable Diffusion, but the lowest (best) scoring model
among our variants is the SFW Sampling variant with single concept C = violence and nudity.
Though ESD remains the best model for overall NSFW prevention, SFW achieved censoring met-
rics similar to those of ESD and undoubtedly reports an improvement over standard SD while using
an external conditioning signal. This sheds light on the potential of our proposal.

Table 1: Detection of explicit content in prompts from I2P. We provide the percentage of nudity
features detected by NudeNet followed by the percentage of samples tagged as containing any of
those categories. The last two rows correspond to the rate of samples tagged as inappropriate by the
CLIP-based model Q16.

I2P prompts
Unsafe detection SD ESD SFW-single SFW-SD SFW-multi

NudeNet categories
Anus 0.0418 % 0.0584 % 0.0334 % 0.0293 % 0.0167 %
Buttocks 4.8453 % 1.2187 % 2.454 % 1.6095 % 1.3127 %
Female Breast 11.1037 % 1.9950 % 5.3972 % 4.4398 % 3.2651 %
Female Genitalia 2.2617 % 0.2504 % 1.0201 % 0.8152 % 0.5435 %
Male Genitalia 1.2876 % 0.6427 % 0.9365 % 0.7943 % 0.7232 %
Any detected 15.9281 % 3.9816% 8.5242 % 6.6388 % 5.2634 %
Q16 prob. average 0.35 0.308 0.309 0.386 0.322
Q16 detected 30.8152 % 26.285 % 26.6137 % 35.8654 % 27.9264 %

6.2 PROMPT-IMAGE CONCORDANCE

This metric approximates the change in meaning that might occur in the final sample. Indeed, when
applying a considerable guidance signal at an early denoising step, the image might shift away from
the meaning intended by the prompt. For this, we consider a CLIP-based prompt-image coherence
metric given by: score(cp, x) =

x·ECLIP
text (cp)

∥x∥∥ECLIP
text (cp)∥

, where cp denotes the embedding corresponding to
the prompt from which the image was generated. The larger the value the more the image matches
the prompt, as assessed by the CLIP model. Hence, in the case of benign prompts (such as COCO
prompts), the higher the prompt-image concordance, the better. However, the opposite is true for
prompts designed to create harmful images and mention explicit harmful content (e.g. Template
prompts). A change in the semantics of the image with respect to the prompt is a desirable feature
when the prompt is intended to cause harmful images (such is the case of Template prompts, created
by Qu et al. (2023) for research purposes).

Table 2 shows the concordance metric. The value in brackets represents the difference between
plain SD and the corresponding method. Since ESD samples are drawn using diffusers (unlike our
original implementation), we could not generate samples that start from the same Gaussian noise.
To alleviate this mismatch, we report the decrease that ESD induces in each metric with respect to
plain SD samples drawn with diffusers instead.
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Table 2: Prompt-image concordance evaluation on different prompt sets, evaluated as the cosine
distance between the CLIP-embeddings of the prompt and the generated image.

prompt dataset SD ESD SFW-single SFW-SD SFW-multi
I2P prompts 0.314 0.3 (-0.02) 0.286 (-0.028) 0.286 (-0.028) 0.293 (-0.021)
Template prompts 0.338 0.321 (-0.015) 0.306 (-0.032) 0.282 (-0.056) 0.268 (-0.07)
COCO prompts 0.32 0.306 (-0.008) 0.319 (-0.001) 0.313 (-0.007) 0.317 (-0.003)

A greater decrease in both prompt-image coherence can be observed in template prompts with re-
spect to the COCO-prompt dataset. Indeed, the effect for the latter is almost negligible, hence the
effectiveness of the method in causing limited change in safe samples. Moreover, the reduction in
CLIP-coherence score is almost three times higher than ESD for unaware prompts and lower in the
case of ESD scores (meaning we stay close to benign prompts and move away from bad prompts),
highlighting the suitability of the proposed SFW method. We conjecture that this is because ESD
finetuned the model so that an unconditional score resembles one where the concept’s score is sub-
tracted. While this is desired for safeness, it might not always be a desirable feature.

6.3 AESTHETIC QUALITY DEGRADATION

Lastly, we measured the aesthetic quality of images using pre-trained aesthetic score3. This model
is based on a variant of CLIP and an MLP layer on top of the base embeddings and it was fine-tuned
with human preferences about the aesthetic quality of images. While we do not want samples of
“bad quality” in general, an eventual decrease in aesthetic value would be particularly unacceptable
in the case of prompts not inducing any NSFW behaviour.

Table 3: Aesthetic quality evaluation on different prompt sets, evaluated with a CLIP-based model
fine-tuned with human preferences. The remarks in Table 2 about the ESD column also hold for this
table.

prompt dataset SD ESD SFW-single SFW-SD SFW-multi
I2P prompts 5.093 5.07 (-0.02) 4.753 (-0.34) 4.702 (-0.391) 4.691 (-0.402)
Template prompts 5.342 5.019 (-0.073) 4.98 (-0.362) 4.714 (-0.628) 4.552 (-0.79)
COCO prompts 5.076 5.087 (-0.135) 5.069 (-0.007) 4.948 (-0.128) 5.001 (-0.075)

The aesthetic scores of the samples of the 3 prompt-datasets are shown in Table 3. Similarly to the
CLIP-based coherence, the proposed SFW exhibited a stronger reduction aesthetic quality than the
baselines in unsafe-prone prompts. This reduction is less significant in safe prompts, to the point of
being better than ESD and almost as good as plain Stable Diffusion. It is interesting to notice that,
unlike CLIP-coherence, there is a considerable difference between the base aesthetic quality scores
of plain SD-generated images between the safe prompts and unsafe ones (of at least −0.641). This
might suggest that the aesthetic score assigns a higher score to images that contain explicit content.

7 CONCLUSION

In the context of safe-for-work synthetic image generation, we have investigated the use of external
densities that model image harmfulness as a means of guiding the denoising process away from
undesired samples. We have provided a flexible methodology that allows the user to personalise
the model at hand. Our experiments show that NSFW image generation can be effectively reduced
albeit with an effect on image quality that gets considerably reduced in benign images.

Solely guiding the samples away from dangerous content is already a step forward in making models
more consistent with human values. Nevertheless, a user with sufficient expertise might turn off the
safe anti-guidance procedure. Consequently, fine-tuning the original diffusion model ϵθ to obtain an
updated one that follows the corrected latent direction is an interesting future prospect. Moreover,
freezing certain types of parameters of the denoising network might as well be beneficial to our
methodology.

3https://github.com/christophschuhmann/improved-aesthetic-predictor

9

https://github.com/christophschuhmann/improved-aesthetic-predictor


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

A reason for considering external sources for unguidance is to avoid relying on the model itself
for identifying the sources of noxious content. Indeed, the base model would need to flawlessly
associate all visual features with the prompt of what is to be removed in order for the method from
Gandikota et al. (2023) to reliably remove all traces of the undesired distribution. We deviate from
that assumption and suggest the use of external classifiers instead.

However, putting all the burden of aligning the model on a simple external classifier (as is the
case of CLIP-based ones) might be considered a naive approach, the results shown in this work
highlight the effectiveness of the method. This suggests that the implicit information stored in these
models during their pretraining does contain useful elements for tagging and unguiding intermediate
images. Despite these results, we suggest that using more than one approach might be helpful to
further reduce the likelihood of dangerous content generation.

Lastly, we hope that our methods a step forward towards making models closer to complying with
human values. Nonetheless, this work does not expect nor try to propose a definitive solution to
the issue of generating risky content with diffusion models. We believe that true solutions shall be
found at every stage of the generative models pipeline, and that awareness is raised by this and other
works tackling ethical problems.

Limitations Despite our best efforts, the models proposed in this work might still be susceptible
to attacks and misuse. We advocate for the responsible use of generative AI, specifically when they
interact with humans and personal content.
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A GENERALISING TO SEVERAL HARMFUL CONCEPTS

We can generalise the procedure in Sec. 4 to comprise multiple concepts. Let C = {cj}Mj=1 ∈ ΓM

be a set of concepts. Intuitively, we could consider the average of the individual pseudo-densities of
the form in eq. equation 9 given by p

cj
h (x), j = 1, . . . ,M . However, the mean value might be an

unreliable proxy due to the disparity of the probability of different concepts across the embedding
space.
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We adopt a conservative approach and aim to perform the correction as soon as a given number
of the declared concepts is detected. Therefore, we propose topK-Multi-concept, which consists of
averaging the pseudo-densities pcjh (x) only over the K concepts reporting the largest probabilities,
that is,

pCK

h (x) = max
CK⊆C,|CK |=K

1

K

∑
c∈CK

pch(x) . (10)

This means that we will only keep the results (and, later on, the gradients) of the K top concepts
with the highest harmfulness probability. When K = 1, pCK

h becomes maxc∈C p
c
h(x), a desired case

where the correction is implemented if any harmful concept is detected.

On the one hand, we prioritise the harmful detection sensibility by applying the classifier gradient
step as soon as the threshold is met for at least one of the concepts, i.e.,

p
(t)
θ (xt−1|xt) =

{
qσ(xt−1|xt, x̂

(t)
0 − γ∇

x
(t)
0

log pCh(x
(t)
0 )) if ∃c ∈ C such that pch(x

(t)
0 ) ≥ η

qσ(xt−1|xt, x̂
(t)
0 ) if ∀c ∈ Cpch(x

(t)
0 ) < η

.

(11)

B TARGET MODEL: STABLE DIFFUSION

We test our approach with Stable Diffusion (SD, Rombach et al. (2022)). In SD, the score-
matching/denoising process is carried out on a lower dimensional latent space. The underlying
method is called perceptual compression (Esser et al. (2021)). This step downsamples the image
size while avoiding arbitrarily high variance thanks to a regularisation term.

On the other hand, guiding the output of diffusion models with prompts is achieved by encoding
the text with an attention-based architecture (based on Clip embeddings). More precisely, in a
given time t, tokens from the prompt are used to compute both the keys and the values in dot-
product attention. On the other hand, the query vector comes from the (potentially noise-injected)
image. The cross-attention maps are then used to compute the output for each denoising step, hence
effectively controlling the text-layout relation.

These cross-attention maps are applied after each RESNET (He et al. (2016)) which themselves take
an input latent image and the noise time-step (through its own encoder) as input. These blocks are
part of a larger architecture named U-NET (Ronneberger et al. (2015)), whose output is the image
noise. Wrapping up, SD consists of three networks: text encoder, compressor and denoising U-NET.

B.1 ADAPTING THE SD FILTER TO SFW SAMPLING

A straightforward approach for avoiding the undesirable generation of images is to apply a post hoc
filter after the sampling process. The first release of Stable Diffusion uses such a procedure Rombach
et al. (2022), relying on a CLIP-based checker4. Such a filter uses three “sensible” embeddings and
17 regular ones, intelligent space resulting after the application of the CLIP model Radford et al.
(2021). It is believed that those vectors correspond to dangerous concepts. Rando et al. (2022)
confirm this claim for the majority of the concepts, retrieving the exact term in those cases (the
original embeddings have not been disclosed by the authors ). Moreover, they have detected that
images depicting violence are not considered by the filter, and that it can fail when the prompt is
long and including not NSFW aspects.

We incorporate a variant of our method that makes use of the concepts from the Stable Diffusion
filter: sexual, nude, sex, 18+, naked, nsfw, porn, dick, vagina, explicit content, uncensored, fuck,
nipples, naked breast, areola, young girl, young child, and small girl. The last three correspond to
concepts that assigned the category of “special care” and their detection reduced the threshold above
which other concepts might be tagged as present in the image. In our case, we do not use any of
the declared thresholds. Instead, we make use of the CLIP-based harmfulness density definition
but generalised to more than one concept. We choose the threshold η = 0.23, which shows better
qualitative results. Moreover, only considering the most likely term in each time-step and a strength
value of γ = 75 shows the best trade-off between image quality and level of censorship.

4https://huggingface.co/CompVis/stable-diffusion-safety-checker.
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C QUALITATIVE AND QUANTITATIVE ANALYSIS OF PARAMETERS

Quantitative effect of paramaters In this section, we analyse the effect of changing the hyperpa-
rameters on the strength and perceived quality of our SFW sampling method. Fig. 3 shows nudity
and quality metrics of samples created using the Template prompts dataset (prompts designed by Qu
et al. (2023) to generate NSFW-prone content) and a single concept SFW-sampling procedure (using
the unsafe concept “violence and nudity”). Even though a margin of quality loss might be tolerated
in order to avoid inappropriate behaviour, high values of strength γ combined with low values of the
sensibility threshold η imply a decrease in quality that is too high. These results suggest that a com-
promise needs to be made between the strength of the blocking signal and the quality of samples.
We complement this with a qualitative analysis of each parameter using examples.

(a) Percentage of samples detected as containing nu-
dity using NudeNet. The lower the value the better
(less nudity)

(b) Mean value of the aesthetic score among samples,
assessed with a CLIP-based aesthetic scorer. The
higher the value the better.

Figure 3: Heatmap of nudity detection and image quality with respect to strength parameters γ and
threshold η. The samples were generated using the Template prompts dataset.

Threshold value analysis The “threshold” parameter η > 0 allows the model to apply the gradient
step more times when needed. As expected, a lower threshold decreases the generation of images
with unsafe elements as it can be visualised in Fig. 4, in which η takes values from 0.23 to 0.26
in increasing order. Consequently, the perception of inappropriateness increases with more strict
thresholds. We censor parts of the images that might be considered too disturbing for the reader.

Figure 4: Variation of the threshold parameter η with two prompt examples. SFWS with single
concept “violence and nudity” and fixed strength parameter γ = 75.
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Figure 5: Variation of the strength parameter γ with two prompt examples. SFWS with single
concept “violence and nudity” and fixed threshold parameter η = 0.23.

Gamma value analysis The parameter gamma (γ) controls the strength of the gradient descent.
There’s a clear correlation between γ and safety, but image degradation might occur with high
values. Fig. 5 shows this effect with strength values ranging from 125 to 10 in decreasing order
along the horizontal axis.
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