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(a) Images generated from random noise 
without guidance

(c) Images generated from refined noise 
without guidance

(b) Add residual noise signals

High QualityPoor Quality

[Standard Gaussian Noise Space 𝑁(0, 𝐼)] [Distilled Noise Space]

Figure 1: Effectiveness of NoiseRefine. Diffusion models often fail to generate high-quality images
without guidance, such as classifier-free guidance (CFG) Ho & Salimans (2022), which doubles the
inference cost. In this paper, we propose NoiseRefine, a novel approach to improve image quality
by learning to map Gaussian noise space to guidance-distilled noise space. Images are generated
using the same seed and prompt.

ABSTRACT

Diffusion models have demonstrated remarkable image generation capabilities,
but their performance heavily relies on sampling guidance such as classifier-free
guidance (CFG). While sampling guidance significantly enhances image quality,
it requires two forward passes at every denoising step, leading to substantial com-
putational overhead. Existing approaches mitigate this cost through distillation,
training a student network to learn the guided predictions. In contrast, we take
an distinct approach by refining the initial Gaussian noise, a critical yet under-
explored factor in the diffusion-based generation pipelines. We introduce Nois-
eRefine, a noise refinement framework where a refining network is trained to min-
imize the difference between images generated by unguided sampling from the re-
fined noise and those produced by guided sampling from the input Gaussian noise.
This simple approach demonstrates that images from the refined noise do not suf-
fer from artifacts or collapsed structure, achieving significantly higher quality than
those from pure Gaussian noise without modifying the diffusion model, thereby
preserving its prior knowledge and compatibility with finetuned or timestep dis-
tilled variants. Beyond its practical benefits, we provide an in-depth analysis of
refined noise, offering insights into its role in the denoising process and its interac-
tion with guidance. Our findings suggest that structured noise initialization is key
to efficient and high-fidelity image synthesis. Code and weights will be publicly
released.

1 INTRODUCTION

In recent years, text-to-image (T2I) diffusion models (Rombach et al., 2022; Esser et al., 2024;
Podell et al., 2023), which generate images conditioned on text prompts, have achieved remarkable
advancements. These models produce visually appealing images that are both realistic and well-
aligned with human perception. A central factor behind their effectiveness is the use of sampling
guidance techniques (Dhariwal & Nichol, 2021; Ahn et al., 2024; Hong et al., 2023; Hong, 2024),
most notably classifier-free guidance (CFG) (Ho & Salimans, 2022). While indispensable for high-
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Figure 2: Motivation and training framework of NoiseRefine. (a) Starting from an initial noise
xT , unguided sampling often produces low-quality images, necessitating sampling guidance such as
CFG. In contrast, the inversion noise xGuide

T , obtained by inverting guidance-generated images from
the same xT , can yield high-quality results even without guidance. This raises our central question:
can we learn to map xT into x̂T ? (b) Learning with a reconstruction loss between xT and xGuide

T may
be suboptimal due to errors during inversion. Instead, our model learns to refine xT into x̂T , with
the objective of matching unguided image from refined noise x̂T with guidance-generated image
from initial noise xT .

quality synthesis, these methods require evaluating additional prediction (unconditional prediction
in case the of CFG) at every denoising step, effectively doubling inference cost.

A common strategy to mitigate this overhead is guidance distillation, where a student net-
work (Meng et al., 2023) or an adapter (Hsiao et al., 2024) is trained to approximate the guided
predictions of the original model. However, such approaches often require modifications to the
denoising network, which is prone to catastrophic forgetting (Kirkpatrick et al., 2017), and poten-
tially incompatible with complementary techniques such as domain-specific fine-tuning (Ruiz et al.,
2023) or timestep distillation Yin et al. (2024); Lin et al. (2024); Salimans & Ho (2022); Sauer et al.
(2024b).

Recently, a growing line of work has explored the role of initial noise, suggesting that it can influ-
ence the final image structure to some extent (Singh et al., 2022; Wu & De la Torre, 2022; Mao
et al., 2023a; Ban et al., 2024; Xu et al., 2024a; Qi et al., 2024; Guo et al., 2024; Eyring et al.,
2024; Zhou et al., 2024; Mannering et al., 2025; Ma et al., 2025). Inspired by this, we ask: Instead
of distilling guidance into the denoising network, can we distill it into noise? Diffusion inversion
methods (Song et al., 2020a; Garibi et al., 2024) provide important clue. Ideally, a perfect inversion
method would reconstruct a given image without requiring any guidance. Under this idealized as-
sumption, a straightforward way to obtain the “guidance-free noise” target is to start from an initial
Gaussian noise, generate a high-quality image using guidance, and then apply inversion to compute
its corresponding noise. This resulting “inversion noise” should, in principle, reproduce a similar
image without guidance. This conceptual idea is illustrated in Fig. 2(a).

However, we show that directly learning the mapping from Gaussian noise to inversion noise is sub-
optimal due to the accumulated reconstruction errors introduced by the inversion process (Sec. 3.2).
To overcome this limitation, we shift the objective from the noise space to the image space and
propose NoiseRefine, a novel method that refines Gaussian noise into informative and structured
noise, enabling high-quality generation without guidance. As illustrated in Fig. 2 (b), a lightweight
transformation network maps arbitrary Gaussian noise into the refined noise space, trained so that
unguided samples closely match guided counterparts generated from the same seed. At inference,
a single forward pass through this network suffices to replace costly guidance while preserving the
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original diffusion pipeline intact, in a prompt-learning-like manner(Zhou et al., 2022a) that avoids
catastrophic forgetting from model fine-tuning (Kirkpatrick et al., 2017).

Beyond eliminating guidance, NoiseRefine offers several advantages. First, since it operates
solely on the noise input, it can be directly applied to fine-tuned models in various domains(e.g.
Anime) without retraining the refining network. Second, it remains fully compatible with timestep-
distillation techniques (Meng et al., 2023; Hsiao et al., 2024; Zhou et al., 2025). Together, these
properties make NoiseRefine a plug-and-play solution for enhancing base, fine-tuned, and timestep
distilled models. We validate our approach on both class-conditional and widely used text-to-image
diffusion models.

Our contributions can be summarized as follows:
• Noise refinement for guidance-free generation: To the best of our knowledge, this work is the

first to explore refining initial noise in diffusion pipelines to achieve high-quality image generation
without diffusion guidance.

• Preserving the diffusion pipeline: Our method does not modify the original diffusion model
or pipeline, which ensures compatibility with LoRA modules in the original pipeline, generalizes
well to fine-tuned models, and seamlessly integrates with existing timestep-distillation techniques.

• Thorough analysis of refined noise in diffusion models: We provide a detailed study on the role
of refined noise in the denoising process, offering insights into their impact on generation quality.

2 RELATED WORK

Diffusion guidance. Classifier Guidance (CG) (Mao et al., 2023a) enhances fidelity by leveraging
trained classifier gradients, albeit at the cost of diversity. CFG (Ho & Salimans, 2022) models an
implicit classifier to achieve similar effects. Ahn et al. (Ahn et al., 2024) and Karras et al. (Karras
et al., 2024) further generalize those guidance methods by intentionally generating lower-quality
samples to guide the process toward improved outputs and other guidance techniques (Hong et al.,
2023; Sadat et al., 2024; Hong, 2024) generate ‘perturbed’ samples in various ways. While effective,
these methods double computational and memory costs by requiring degraded sample generation at
each step, which is essential to their operation.
Distillation of diffusion models. Diffusion models are costly at inference due to guidance and it-
erative denoising. A line of work distills teacher models into lighter students (Salimans & Ho, 2022;
Meng et al., 2023; Sauer et al., 2024b; Lin et al., 2024; Sauer et al., 2024a), targeting fewer steps
(timestep distillation) (Salimans & Ho, 2022; Sauer et al., 2024b;b;a) or cheaper guidance (guid-
ance distillation) (Meng et al., 2023), with extensions via adapters (Hsiao et al., 2024) or prompt
distillation (Zhou et al., 2025). In contrast, while existing guidance distillation approaches trans-
fer guidance signals into the student network, we distill guidance directly into the initial noise of
diffusion models, making our method fully compatible with timestep distillation.
Noise optimization. Recent studies have explored improving noise through optimization, reinitial-
ization, or task-specific refinements (Samuel et al., 2024; Eyring et al., 2024; Mao et al., 2023b;a;
Karunratanakul et al., 2024; Zhou et al., 2024; Guo et al., 2024; Mannering et al., 2025; Ma et al.,
2025). Approaches include reward-model optimization (Eyring et al., 2024) and one-step inver-
sion refinement (Zhou et al., 2024) for better human preference, bootstrap sampling for rare con-
cepts (Samuel et al., 2024), patch databases for layout control (Mao et al., 2023b), and iterative
disentanglement (Guo et al., 2024), systematic noise search (Ma et al., 2025). However, whether
refining noise alone can yield high-quality, guidance-free generation remains underexplored.

3 METHOD

In Sec 3.1, we analyze the differences between the original initial noise and the inversion noise ob-
tained via guidance-generation followed by inversion. In Sec. 3.2, we address the errors introduced
during the inversion and propose to learn in the image space rather than the noise space. Finally,
Sec 3.3 presents our complete training framework, incorporating a multi-step score distillation loss
that mitigates the cost of backpropagation.

3.1 DIFFERENCE BETWEEN INITIAL NOISE AND INVERSION NOISE

When an image is generated with guidance and later inverted to the noise, through an inversion
method (Song et al., 2020a), the resulting “inversion noise” tends to reproduce a similar image even

3
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without guidance, as described in Fig. 2 (a). We investigate the relationship between the initial
noise xT and the inversion noise xGuide

T of a guidance-generated image, as their differences may
underlie the gap in the quality of denoised outputs. To this end, we sample Gaussian noise xT ∼
N (0, I), generate a guided image xGuide

0 = DenoiseGuide(xT , c) using a text-to-image diffusion
model (Rombach et al., 2022) with CFG and/or other guidance methods (Ho & Salimans, 2022; Ahn
et al., 2024; Hong, 2024), and then apply an inversion method (Song et al., 2020a; Garibi et al., 2024;
Meiri et al., 2023) to obtain the corresponding inversion noise xGuide

T := Inversion(xGuide
0 ). Both

xGuide
0 and xGuide

T depend on the condition c, which we omit for simplicity. This process yields pairs
(xT , x

Guide
T ) for subsequent analysis. The definitions of notations are provided in Appendix B.1.

Figure 3: Analysis of the relationship between
xT and xGuide

T . (a) Histogram of pixel-wise
absolute differences. Blue: pairs of Gaussian
noise and corresponding inversion noise; Or-
ange: pairs of random Gaussian noise. (b) Mag-
nitude difference of Fourier components, show-
ing that xT and xGuide

T mainly differ in low-
frequency regions.

We generate 10K {xT , x
Guide
T } pairs via the

aforementioned process with randomly selected
prompts from the MS-COCO dataset (Lin et al.,
2014) and Stable Diffusion 2.1 (Rombach et al.,
2022). Comparing the pixel-wise absolute dif-
ferences between xT and xGuide

T to those between
random noise instances, Fig. 3 (a) shows that the
differences in {xT , x

Guide
T } pairs are significantly

smaller than those of ‘Random’ pairs. These
differences correspond to low-frequency compo-
nents in the frequency domain, as shown in Fig. 3
(b), which plots the magnitude differences be-
tween Fourier-transformed noises. This analysis
indicates that the initial noise and inversion noise
exhibit a non-trivial relationship beyond that of
random Gaussian pairs. If such a relationship
can be effectively learned, it may provide a path-
way to generating high-quality samples without
explicit guidance during the sampling stage.

3.2 LEARNING IN IMAGE SPACE RATHER THAN NOISE SPACE Original Reconstructed

Figure 4: Inversion error.
The right image is recon-
structed from the inversion
noise of the left one. 50 in-
version steps were used.

Mitigating inversion error. A straightforward approach would
be to directly learn the mapping from initial noise to inversion noise.
Although feasible, inversion methods (Song et al., 2020a; Meiri
et al., 2023; Garibi et al., 2024) have inherent limitations: they rely
on approximations, and the true inversion noise xGuide†

T is not guar-
anteed. As a result, training on approximated inversion noise that
includes inversion error may limit performance (Fig. 4). In prac-
tice, we trained two noise refining networks on 10K guided images
and 10K inverted noises from the prompt “a photo of a corgi riding
a skateboard.” As shown in Fig. 5 top row, directly learning this
mapping produces blurry results.

To sidestep this issue, we move from the noise space to the image space. The key idea is to reduce
the distance between images generated with and without guidance, d(x0, x

Guide
0 ), rather than directly

reducing the distance between their corresponding noises, d(xT , x
Guide
T ). Here d denotes a distance

metric, instantiated as the L2 distance. We formally state this relationship in Proposition 1 and
provide a proof in Appendix B.2.

Proposition 1. Let xT be an initial noise, and suppose that x0 is the image obtained through de-
noising. Assuming Lipschitz continuity with distance metric d, for every xT , there exists a constant
κ > 0 such that the following holds:

d(xT , x
Guide†
T ) < κd(x0, x

Guide
0 ).

In the following sections, we detail how to train the refining network, our architectural choice for
the refining network, and how to mitigate the costly backpropagation through full denoising steps.

4
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3.3 TRAINING FRAMEWORK

Fig. 2 (b) illustrates the training framework. Starting from Gaussian noise xT and a prompt c,
a diffusion model generates a guided image xGuide

0 using N ′ denoising steps with guidance. Any
diffusion guidance (Ho & Salimans, 2022; Ahn et al., 2024; Hong et al., 2023; Sadat et al., 2024;
Hong, 2024; Karras et al., 2024) or their combination can be applied for distillation.

Our model, noise refining network gϕ(·), refines the initial noise xT into the refined noise x̂T ,
which is then fed into the same diffusion pipeline to generate an image x̂0 using N denoising steps
without guidance. The training objective minimizes the difference between x̂0 and xGuide

0 using
L2 loss. Through this process, noise refining network learns to transform initial noise into refined
noise, capturing the benefits of guidance without modifying the diffusion model. At inference time,
we simply sample a Gaussian noise as usual, apply a single refinement step, and then perform the
standard unguided denoising process starting from the refined noise. Note that both noise refining
network and the original model also receive a prompt c, though omitted for simplicity.

Table 1: Quantitative comparison between
noise space loss vs. image space loss (ours).

Method PickScore HPSv2 AES IR CLIPScore
Noise space 17.97 0.087 4.079 -2.269 18.39

Ours 21.62 0.258 5.296 0.190 36.43

Figure 5: Sample images from models us-
ing noise space loss and image space loss.

Noise refining network. Although the architec-
ture of noise refining network gϕ(·) can be chosen
flexibly, we adopt a lightweight LoRA (Hu et al.,
2021) on pretrained diffusion models. This allows
noise refining network to effectively leverage the dif-
fusion model’s rich knowledge of text and image
information while enabling parameter-efficient fine-
tuning and faster convergence. Moreover, instead of
loading a new refining network, LoRA can be at-
tached for refinement and then detached, reducing
GPU memory usage and seamlessly integrating with
the original diffusion pipeline.

To better capture the signal between Gaussian and
refined noise, as shown in Fig. 3, we introduce a
residual connection in gϕ(·), as shown in Fig. 2 (b),
allowing the network to predict only the correction
rather than the full refined noise.
Mitigating the cost of backpropagation on mul-
tiple denoising steps. Widely used foundational
diffusion models, such as the Stable Diffusion family, typically require 20–30 denoising steps to
produce high-quality results. Although it is possible to naively apply our method, doing so would
incur high computational costs due to backpropagation through the denoising network up to N times,
along with substantial GPU memory usage, making training inefficient. These constraints are a key
reason why recent noise optimization methods (Eyring et al., 2024; Kim et al., 2024) are primarily
limited to one- or few-step diffusion models (Lin et al., 2024; Sauer et al., 2024b).

To circumvent the backpropagation costs of the full-step diffusion model, we propose a novel ap-
proach, “multistep score distillation (MSD)”, where we detach gradients through a denoising net-
work during backpropagation inspired by score distillation sampling (Poole et al., 2022).

Figure 6: Comparison of optimization re-
sults. Orange: full-gradient MSE optimiza-
tion; Blue: MSD loss optimization.

Specifically, the typical denoising process is:

D1(. . . DT (gϕ(xT )), (1)

where Dt(x) represents a single denoising step:

Dt(x) = atxt + btϵ
(t)
θ (x), (2)

where at and bt are coefficients derived from the
DDIM sampler (Song et al., 2020a) and are formally
defined in Appendix B.1. Then, the loss LDenoise, de-
fined as the L2 loss between the denoised image and
the target image xGuide

0 , is given by

LDenoise(gϕ(xT ), θ) := d
(
D1 (. . . DT (gϕ(xT ))) , x

Guide
0

)
, (3)

where d represents the L2 distance.

5
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“A man in a purple shirt and tie and purple hair.”

“A steampunk airship”“majestic cat mountain top”

Random noise
w/o guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

Random noise
w/o guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

“A man standing in a room next to a metal and red pole.”

goldfish tree frog

Figure 7: Qualitative results. Samples generated (left) from Gaussian noise without guidance,
(middle) from Gaussian noise with sampling guidance (Ho & Salimans, 2022; Ahn et al., 2024), and
(right) from refined noise without guidance. The first row present results from SiT-XL/2, the next
row from SD2.1, and the final row from SDXL.

In MSD, we perform the typical denoising process but detach the gradients on the denoising network
ϵθ at each step. Specifically:

LMSD(gϕ(xT ), θ) := d
(
F1 (. . . FT (gϕ(xT ))) , x

Guide
0

)
, (4)

where
Ft(x) = atxt + bt SG(ϵ

(t)
θ (x)). (5)

SG(·) denotes the stop-gradient (detach) operation.

We conduct a pilot experiment to examine the effect of detaching gradients in the denoising process.
Specifically, we optimize an initial Gaussian noise xT using the MSD loss LMSD and the full-step
gradient loss LDenoise to make the denoised image close to the given target xGuide

0 , and compare the
results in Fig. 6. As shown, detaching gradients leads to faster convergence and sharper images
while significantly reducing computational costs. This improvement arises because skipping the
denoiser Jacobian avoids unstable multi-step backpropagation and prevents the gradient explosion
or vanishing that occurs when repeatedly backpropagating through the same denoiser, similar to
long-horizon instability in recurrent networks. We provide further discussion in Appendix B.3.

In our training framework, the noise refining network gϕ(·) is trained to minimize LMSD(gϕ(xT ), θ)
with respect to the refining network parameters ϕ. We validate our approach, demonstrating that
MSD closely approximates learning with the full-gradient loss LDenoise(gϕ(xT ), θ). This is formal-
ized in the following proposition, with a detailed proof provided in Appendix B.2.

Proposition 2. By approximating the gradients through multistep score distillation (MSD) using
detached gradients at each step, we approximate the full-gradient objective with a mild assumption.
In conclusion, the two gradients can be approximated as follows:

∇ϕLDenoise(gϕ(xT ), θ) ≈ k∇ϕLMSD(gϕ(xT ), θ), (6)

where k ∈ (0, 1) is constant.

6
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4 EXPERIMENTS

In this section, to show the effectiveness and efficiency of the noise refining network, we present
extensive qualitative and quantitative results. Following this, we demonstrate the advantages of our
method which stem from preserving the diffusion pipeline intact, such as its generalizability to other
fine-tuned diffusion models and compatibility with time-step distillation methods.

4.1 SETUP

Training setup. To evaluate the effectiveness of NoiseRefine, we train the noise refining network
on three models with distinct conditions, objectives, and architectures: a class-conditional flow-
matching model (SiT-XL/2 (Ma et al., 2024)) and two text-to-image (T2I) diffusion models (Stable
Diffusion (SD) 2.1 (Rombach et al., 2022) and SDXL (Podell et al., 2023)). For T2I models, prompts
are sampled from MS COCO (Lin et al., 2014) and Pick-a-Pic (Kirstain et al., 2023) for training.
Notably, our method does not require paired image datasets. The refining network is trained with
classifier-free guidance (CFG) (Ho & Salimans, 2022) on the class-conditional model, and with
both CFG and perturbed-attention guidance (PAG) (Ahn et al., 2024) on the T2I models. Further
implementation details are provided in Appendix D.
Evaluation setup. For T2I models, we generate 30K images for evaluation from 30K unique
prompts randomly sampled from the MS COCO 2014 validation set, disjoint from the training split.
For SiT-XL/2, we use 50K samples with ImageNet conditions. All qualitative examples are drawn
from these sets. For the main experiments with SiT-XL/2, we use the Euler sampler with 20 denois-
ing steps. For SDXL and SD 2.1, we use the DDIM sampler with 20 denoising steps.

4.2 QUALITATIVE AND QUANTITATIVE EVALUATION

Table 2: Quantitative comparison of image
quality. 30K prompts from MS-COCO (Lin et al.,
2014) validation dataset were used for evalua-
tion. Guidance Distil. indicates guidance distil-
lation (Meng et al., 2023).

Model Initial Noise Sampling Guidance FID ↓ IS ↑

SiT-XL/2

Gaussian ✗ 18.43 40.00
Gaussian ✓ 14.20 63.99
Gaussian ✗ (Guidance Distil.) 12.12 58.90

Refined (Ours) ✗ 10.80 50.59

SD2.1

Gaussian ✗ 42.71 20.86
Gaussian ✓ 16.19 37.95
Gaussian ✗ (Guidance Distil.) 19.09 33.45

Refined (Ours) ✗ 14.62 34.90

SDXL

Gaussian ✗ 63.28 17.64
Gaussian ✓ 21.20 34.60
Gaussian ✗ (Guidance Distil.) 18.57 37.51

Refined (Ours) ✗ 26.22 27.63

Table 3: User study on image quality and
prompt adherence.

Metric Gaussian Noise
w/ Guidance

Refined Noise (Ours)
w/o Guidance

Image Quality 46.04% 53.96%
Prompt Adherence 48.24% 51.76%

Qualitative comparison. Fig. 7 presents rep-
resentative samples. Without guidance, Gaus-
sian noise yields spatially incoherent images
(1st, 4th columns), while refined noise pro-
duces consistently higher-quality results with
plausible structure (3rd, 6th columns). This un-
derscores the critical role of the initial noise and
demonstrates that our refining network distills
guidance signals into spatially informed noise,
enabling consistent generations. Additional re-
sults on SiT-XL/2, SD 2.1, and SDXL are pro-
vided in Appendix E (Figs. 40–45).
Quantitative comparison. To evaluate im-
age fidelity and diversity, we compute Fréchet
Inception Distance (FID) (Heusel et al., 2017)
and Inception Score (IS) (Salimans et al., 2016)
as shown in Tab. 2. For each model, we
compare four settings: (1) unguided sampling
from Gaussian noise (our baseline), (2) guided
sampling from Gaussian noise, (3) guidance-
distilled sampling (Meng et al., 2023) from
Gaussian noise, and (4) unguided sampling
from refined noise with noise refining network.
Refined noise consistently improves FID and IS
over Gaussian noise, and achieves quality close to guided or guidance-distilled sampling with only
a single refinement step. Details on implementation of each method are provided in Appendix D.

Training cost. Since our proposed method involves guided sampling during training, it introduces
additional computational overhead compared to guidance distillation Meng et al. (2023). For a fair
comparison, we provide a detailed training cost analysis in Appendix A.7, and report the perfor-
mance of both methods over training steps in Fig. 26 (Appendix A.8). While our noise-refining
network converges more gradually, it reaches the same FID as guidance distillation at around 2K
steps and continues to improve thereafter.
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(a) Generalizability on fine-tuned model (b) Generalizability on timestep-distilled model

Figure 8: Generalizability and compatibility of refined noise. (a) Results on fine-tuned models
(animation and clay object domains) comparing Gaussian vs. refined noise. (b) Results on timestep-
distilled models (SD-Turbo), showing that refined noise improves structural coherence and quality
over Gaussian noise.

Table 4: Quantitative results on generalization to finetuned models across different domains.

Domain Initial Noise Guidance PickScore HPSv2 ImageReward Aesthetic CLIPScore

Clay
Gaussian ✗ 17.95 0.18 -1.69 5.32 18.31
Gaussian ✓ 19.17 0.24 -0.32 5.53 26.36

Refined (Ours) ✗ 18.82 0.21 -0.95 5.39 23.61

Anime
Gaussian ✗ 16.47 0.17 -1.59 5.21 22.37
Gaussian ✓ 17.68 0.24 0.04 5.56 30.04

Refined (Ours) ✗ 18.08 0.24 -0.34 5.48 29.62

User study. We conducted a user study to evaluate prompt adherence and image quality by com-
paring images generated from random Gaussian noise using guided sampling and images generated
from refined noise. As shown in Tab. 3, participants preferred the refined-noise samples (obtained
with a single refinement step) and the guided samples at similar rates. Additional details and com-
parisons with Gaussian noise without guided sampling are provided in Appendix E.2.

Ablation studies. We provide additional ablations in Appendix C, including network architec-
ture, number of denoising steps N , and other factors. We also report the results of SiT-XL/2 Ma
et al. (2024) using the Heun sampler with 125 denoising steps, following the original SiT paper, in
Appendix A.13.

4.3 ADVANTAGES OF NOISE REFINEMENT

In this subsection, we highlight the advantages of noise refining for guidance-free generation. This
approach preserves the diffusion pipeline, including the denoising network, maintaining the model’s
integrity. Our method can be viewed as a form of prompt learning (Zhou et al., 2022a), which
prevents catastrophic forgetting (Kirkpatrick et al., 2017). Further discussion is available in A.1.

Generalizability on different domains. Guidance distillation (Meng et al., 2023) can remove the
need for guidance in a base model. Yet, applying it to fine-tuned models necessitates a separate
distillation step for each variant, making the process computationally expensive. In contrast, our
noise refining network, trained on the base model, can be directly applied to fine-tuned models,
enabling efficient adaptation across multiple domains. We present this by transferring our noise
refining network, trained on Stable Diffusion 2.1, to a fine-tuned model in the animation and clay
object domain. Fig. 8 (a) show that our model effectively refines noise, eliminating the need for
guidance across different domains. We also provide quantitative results for this zero-shot transfer
of the noise refining network in Tab. 4, showing performance comparable to guided generation.
Additional results are in Appendix E.3.

Compatibility with timestep distillation models. Our method integrates seamlessly with existing
timestep distillation approaches (Luo et al., 2023a; Sauer et al., 2024a; Xu et al., 2024b; Luo et al.,
2023b; Yin et al., 2024; Lin et al., 2024; Salimans & Ho, 2022) without requiring additional training,
since it preserves the diffusion pipeline unchanged. We apply refined noise to SD-Turbo (Luo et al.,
2023a) and evaluate its performance. Qualitative results are shown in Fig. 8 (b), and quantitative
comparisons are reported in Table 5.

Compared to generation starting from Gaussian noise, our approach improves structural coherence
and overall quality, highlighting the role of structured initial noise even in few-step models. More-
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Table 5: Quantitative results of refined noise on timestep-distilled model (SD-Turbo).

Noise Inference Step PickScore HPSv2 AES ImageReward CLIPScore FID ↓ IS ↑
Gaussian 1 Step 21.38 0.270 5.47 0.04 30.97 27.18 34.31
Gaussian 2 Step 21.75 0.295 5.62 0.11 30.87 30.24 32.46
Refined 1 Step 21.92 0.300 5.51 0.43 31.19 24.94 38.07

(a) Absolute Difference Histogram (b) Radial Frequency-Magnitude Plot

Figure 9: Analysis of initial noise xT vs.
refined noise x̂T . (a) Histogram of ab-
solute differences (vs. pairs of random
Gaussian noise). (b) Fourier magnitude
differences, showing variation mainly in
low frequencies.

Figure 10: Analysis of initial noise xT vs. re-
fined noise x̂T . The top row visualizes the absolute
noise difference, and the bottom row shows the cor-
responding generated images. The added signal acts
as a coarse structural layout for generation.

over, single-step inference with refined noise generally outperforms two-step inference from Gaus-
sian noise in terms of numerical metrics.

5 DISCUSSION

In this section, we analyze what noise refining network learns and identify components in refined
noise that support better generation quality.

Low-frequency components aid denoising. Analysis of the refining network’s output shows that
it primarily adds low-magnitude, low-frequency signals. In Fig. 9 (a), the difference between Gaus-
sian and refined noise is concentrated in small values, unlike the difference between two Gaussian
samples. Moreover, (b) indicates that noise refining network naturally produces low-frequency lay-
outs without explicit constraints. This observation is consistent with Fig. 3, where the gap between
inversion noise and Gaussian noise also lies mainly in the low-frequency range.

As illustrated in Fig. 10, these components are condition-dependent and serve as an initial layout,
shaping object structures early in denoising and improving coherence. To further examine their
role, we performed frequency decomposition (separating low- and high-frequency contributions;
Appendix A.2) and cross-prompt experiments (testing robustness under mismatched prompts; Ap-
pendix A.3), which highlight the critical importance of low-frequency signals.

Training Dataset Generated image w/ same prompt (Ours)

“A white plate with a brownie and white frosting”

“a pizza is covered in greens on a plate"

Figure 11: Nearest generated images from
training images. From 10 generated samples,
the 3 most similar to the training data are se-
lected, showing novelty beyond the training
data.

Consistent trajectory. The third row of Fig. 12
shows that starting from refined noise, the model
quickly forms plausible layouts in early steps, en-
abling it to focus on adding details during denois-
ing. In contrast, the first row shows that Gaus-
sian noise fails to establish a coherent structure
early, leading to misplaced details and leaving
ambiguous regions untouched throughout denois-
ing. We also analyze the corresponding cross-
attention maps in Fig. 20 of Appendix.

Diversity and novelty. Although refined noise
provides an initial layout, results remain diverse
across seeds, with IS (Salimans et al., 2016)
scores surpassing those from Gaussian noise
(Tab. 2). Nearest-neighbor retrieval (Fig. 11) con-
firms that the outputs are not simple replicas of
training data but genuinely novel samples.
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Random noise w/o guidance

Refined noise w/o guidance (ours) 

Random noise w/ guidance

Figure 12: Refined noise enables coherent trajectories.
From left to right, x0 predictions are shown as t decreases
from T to 0. Refined noise yields a consistent trajectory
by providing initial layout.

0.0 0.25 0.5 0.75

1.0 1.25 1.5 1.75

Figure 13: Controlling the strength
of noise refinement. Numbers in
the top-left corner indicate the scaling
factor of gϕ.

Controllability. The strength of guidance can be adjusted in two ways. In the training-free case,
scaling the output of gϕ, the residual between Gaussian and refined noise, controls the coherence
of image structure (Fig. 13), analogous to tuning the guidance scale. In the training-based case, the
model can be conditioned on an additional guidance-scale embedding, with results in Appendix A.4.
Comparison to related works. Our goal is to distill diffusion guidance into the noise space, which
differs from prior work on noise reinitialization, search, or optimization. For completeness, we dis-
cuss related approaches and their objectives, and provide comparison experiments in Appendix A.9.

6 CONCLUSION

In this work, we propose NoiseRefine, a method that replaces costly guidance in diffusion sam-
pling with a single noise refinement step. Our approach preserves the original diffusion pipeline,
prevents catastrophic forgetting, and enables seamless integration with existing timestep distillation
techniques (Meng et al., 2023; Sauer et al., 2024b) to enhance image quality and coherence. Ad-
ditionally, we analyze the properties of refined noise and its role in denoising, providing insights
into the influence of noise in diffusion models. We believe our work paves the way for leveraging
expressive noise space in a training-based manner.

7 REPRODUCIBILITY STATEMENT

We provide detailed explanations and proofs of the theoretical results in Appendix B, and further
describe the architecture, implementation, and experimental details in Appendix D. We will also
release our code and model checkpoints to ensure reproducibility.
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APPENDIX

In the Appendix, we provide discussions including the in-depth analysis on refined noise and its
impact on denoising process (Section A), clarify the notations and formulations related to diffusion
models used in the main paper and provide the proofs for our propositions (Section B), more abla-
tion studies regarding noise refining network (Section C), implementation details and experimental
settings (Section D), additional results including qualitative results, comparison with other methods,
user study (Section E).
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A ADDITIONAL DISCUSSIONS

In this section, we discuss the advantages of training noise refining network gϕ for guidance-free
generation (Sec. A.1). In addition, we present our hypothesis on why refined noise eliminates the
need for guidance methods, explaining it step by step (Sec. A.2). We further analyze the impact of
initial noise and prompt on the generated image (Sec. A.3).

A.1 EFFECTIVENESS OF PROMPT LEARNING

Why is learning noise mapping beneficial? A useful perspective comes from the success of prompt
learning in large-scale models. Models such as CLIP (Radford et al., 2021), trained on web-scale
datasets with billions of parameters, are difficult to fine-tune due to their sheer size and the risk
of disturbing well-learned representations (Zhou et al., 2022b). Instead, prompt learning, which
optimizes input prompts rather than model parameters, has emerged as an effective alternative (Zhou
et al., 2022b;a; Jiang et al., 2020; Shin et al., 2020). In particular, conditional prompt learning
methods like CoCoOp (Zhou et al., 2022a) generate prompts based on different inputs. Similarly, in
our approach, noise prompts are learned based on Gaussian noise xT and the text prompt c, allowing
for more efficient guidance.

In this context, restricting training to the noise space rather than modifying the entire denoising
pipeline offers several advantages. As illustrated in Fig. 9 and Fig. 10, key low-frequency compo-
nents in the noise space encode structural information such as image layout. This enables efficient
learning with a relatively small dataset, without requiring modifications to the entire model. By
contrast, full fine-tuning often leads to excessive computational costs and the risk of overfitting.

More importantly, unlike guidance distillation methods such as (Meng et al., 2023), our approach
preserves the original model and prevents catastrophic forgetting (Kirkpatrick et al., 2017). This
ensures that pretrained modules, such as DreamBooth (Ruiz et al., 2023) or LoRA (Hu et al., 2021),
remain fully compatible. Fig. 14 illustrates this effect: when applying the Miranda Kerr LoRA,
guidance distillation (Meng et al., 2023) alters identity characteristics, whereas our method preserves
the original sample’s identity while improving image quality. This demonstrates that our method
maintains the integrity of the representation space, while guidance distillation compromises it.

Gaussian noise Refined noise Guidance Distill

Figure 14: Compatibility of LoRA for each method. Results of applying the ’Miranda Kerr’
LoRA, trained on SD 2.1. Distilled model exhibits different identity with ‘Miranda Kerr’.

A.2 WHY DOES REFINED NOISE HELP DENOISING?

To identify which refined noise components contribute to guidance-free generation, we first de-
compose the refined noise into multiple frequency components. In this study, we utilize a two-
dimensional Fourier transform to break down both the refined noise and the initial noise into their
respective frequency components. Each frequency component is represented by a frequency band,
denoted as (a, b), which corresponds to the frequency range from a to b. Note that although we
explored other decomposition methods, such as dividing the noise into patches, they did not yield
interpretable results.
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(b) denoised images according to the cutoff radius

(a) denoised images according to the cutoff band

R = 0 0.01 … 0.1

(0, 0.1) (0.1, 0.2) … (0.9, 1)

Figure 15: Visualization of denoised images according to the cutoff band. Both refined and
initial noise were transformed into the frequency domain using Fourier transforms. The frequency
domain of the initial noise, normalized such that the maximum radius is 1. (a) The frequency divided
into intervals of 0.1. For each interval, the corresponding frequency components were replaced
with those from the refined noise, followed by denoising. The results show that only when the
(0, 0.1) frequency band was replaced does an image generated by the refined noise emerge. (b)
Visualization of denoised images by incrementally increasing the cutoff radius from 0 in steps of
0.01 and replacing the corresponding components of the initial noise with refined noise. The results
demonstrate that images denoised using refined noise are obtained starting at a cutoff radius of 0.03.

Figure 16: Visualization of the norm based on the frequency-filtered radius of refined noise.
This visualization demonstrates the increase in norm as the cutoff radius in the frequency domain is
expanded. The refined noise was transformed into the frequency domain using a Fourier transform,
and the norm corresponding to each cutoff radius was calculated and plotted.

Low-frequency components matter. Using 2D Fourier transforms, we transform both refined and
initial noise into the frequency domain. The initial and refined noise frequency domain is normalized
into (0, 1). We synthesize a new noise signal by replacing specific frequency bands of the initial
noise with the corresponding bands from the refined noise. Fig. 15 (a) presents the generated images
corresponding to different frequency bands, demonstrating that the low-frequency components of the
refined noise predominantly influence the generation process. In Fig. 15 (b), images are generated
by varying the band length within the low-frequency region. The results indicate that, despite the
low magnitude of the low-frequency components, which can be confirmed through Fig. 16, they are
sufficient to reconstruct the image effectively.

Diffusion models can generate images using only low-frequency components. In Fig. 17, we
examine how well diffusion models can denoise when specific frequency bands of refined noise are
retained, and the values of the remaining bands are set to zero (using ideal high/low pass filters).
The top row shows the results of applying a 2D Fourier transform to the refined noise, normalizing
the FFT frequency domain into (0, 1), and sequentially retaining lower frequency bands, such as
(0, 0), (0, 0.1), (0, 0.2), ..., (0, 1), while setting the remaining bands to zero. These noise inputs are
then denoised without CFG (Ho & Salimans, 2022). The figure demonstrates that the diffusion
model begins forming a recognizable corgi shape even when only the lower 50% of frequency bands
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Figure 17: Denoised images using only low(top) / high(bottom) frequency components. Diffu-
sion models can generate the overall structure of the image using only the low-frequency bands of
the refined noise. We use DDIM (Song et al., 2020a) with 20 steps for denoising without CFG, and
the prompt was “a photo of a corgi”.

of the refined noise are present. In contrast, noise containing only high-frequency bands fails to
generate coherent images.
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Figure 18: Denoised images using only low (top) / high (bottom) frequency components with
reinitialization. We use DDIM (Song et al., 2020a) with 20 steps for denoising without CFG, and
the prompt was “a photo of a corgi”.

High-frequency components contribute details. Here, we use the same noise decomposition
process of refined noise as Fig. 17 but following (Geng et al., 2025), we reinitialize the frequency
components that were set to zero with corresponding components from standard Gaussian noise,
then denoise again. The results, shown in Fig. 18, indicate that when all frequency components
are present, the diffusion model can generate clear and complete images. Randomly reinitialized
high-frequency components appear to add details onto the structure formed by the low-frequency
components. While refined noise retaining only the lower 10%–20% of frequencies can still re-
construct the original image when the rest is reinitialized, noise retaining only the high-frequency
components fails to do so. This suggests that low-frequency components alone carry the significant
information needed for image generation.

In Fig. 19, each row visualizes images generated with only the lower 5%, 10%, 20%, and 30% (from
the top rows to last rows) frequency components of the refined noise, while the bottom row shows
images generated with only the upper 5%, 10%, 20%, and 30% frequency components. These
results confirm that low-frequency components encode the overall layout and structure, whereas
high-frequency components lack meaningful information.

From these observations, we infer that the poor quality of unguided diffusion model outputs is due
to their failure to form appropriate low-frequency components during denoising. High-frequency
details added on poorly formed layouts result in artifacts that are perceived as unnatural.
How do guidance methods form plausible initial layouts? As highlighted in (Ahn et al., 2024),
classifier-free guidance (CFG) (Ho & Salimans, 2022) enhances the difference between conditional
and unconditional predictions at each step, amplifying “signals that can only be generated with the
condition” (e.g., features like the eyes or nose of a corgi in “a photo of a corgi”). This effectively
strengthens salient features corresponding to low-frequency components in the early denoising steps.
From this, we deduce that guidance methods (Ahn et al., 2024; Ho & Salimans, 2022; Hong et al.,
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Figure 19: Different denoised images using only low(a) / high(b) frequency components for
different seeds. Here we use 8 different seeds. From the top rows, it visualizes 8 images using
only the lower (a) / higher (b) 5%, 10%, 20%, and 30% (from the top to the last rows) frequency
components of the refined noise.

2023) add appropriate low-frequency components during inference, aiding the formation of high-
quality layouts.
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Denoising Direction 

Figure 20: Visualization of 11th layer cross attention map. Token corresponding to ‘cat’ is used
for visualization among the prompt ‘a photo of a cat’. For each case, first row shows x0 prediction
at each timestep and second row shows cross attention map at the timestep. When guidance is not
used, failure to create meaningful attention map across all timestep is notable, leading to completely
broken generation. However when guidance or our refined noise is used, meaningful cross attention
map is observed, leading to successful generation.

How does noise refining network form low-frequency layouts? Interestingly, noise refining net-
work naturally forms low-frequency layouts even though our training framework does not explicitly
enforce learning them as can be seen in Fig. 9. To understand this, we analyze cross-attention maps
across denoising steps. Fig. 20 visualizes these maps at different timesteps. Gaussian noise fails to
form meaningful cross-attention maps in early steps due to its near-zero signal-to-noise ratio (SNR),
which is expected. However, this failure persists in later steps, indicating an inability to form well-
aligned layouts (Fig. 20 first row).
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Several studies (Chefer et al., 2023; Guo et al., 2024; Mao et al., 2023b) has shown that reducing
noisy artifacts in cross-attention maps and aligning them with object regions during inference im-
proves performance. This suggests that the failure of cross-attention maps to align is a key reason
for the diffusion model’s inability to create coherent layouts. When using CFG (Ho & Salimans,
2022) (second row) or refined noise (third row), the cross-attention maps align well with the prompt,
resulting in better outputs. Notably, cross-attention maps for refined noise exhibit accurate object
shapes from the very first step, implying that the diffusion model can form plausible layouts from
the beginning of the denoising process. This is further supported by x0 predictions of Fig. 20 at each
denoising step.

Implications for guidance-free generation. Without guidance methods or noise refiners aiding
the formation of low-frequency layouts, diffusion models fail to create plausible initial layouts. Ran-
dom low-frequency components lead to artifacts that are perceived as unnatural. An interesting av-
enue for future research would be identifying why diffusion models struggle to form low-frequency
components without guidance and developing training techniques to eliminate the need for guidance
during the training stage.

A.3 IMPACT OF AN INITIAL NOISE AND PROMPT ON THE GENERATED IMAGE

(a) Gaussian noise, !! = “a photo of a lion in the wild”

(b) Refined noise, !! = “a photo of a lion in the wild”

(d) Refined noise, !! = “a photo of a tiger in the wild”

(c) Refined noise, !! = “”

(e) Refined noise, !! = “a laptop computer on a desk”

(e) Refined noise, !! = “a laptop computer on a desk”, with CFG

Noise refining prompt !" = “a photo of a lion in the wild”

Denoising Direction 

! = # # − 1 … ! = 0

Figure 21: Visualization of denoised image using different prompt for noise refinement ϵθ and
denoising gϕ.
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We previously demonstrated how refined noise affects initial layouts and how guidance and refined
noise contribute to forming these layouts effectively. In this section, we investigate how the ‘layout’
and the prompt influence the final generated image during the denoising process. Specifically, we
explore what happens when the prompt used to generate the initial layout (P1, one of the inputs
to noise refining network gϕ) differs from the prompt used during denoising (P2, one of the inputs
to the denoising network ϵθ in the Guidance-Free T2I Pipeline shown in Fig. 38). Does the model
prioritize one prompt over the other? Or does it attempt to harmonize both? We investigate this
question through the results shown in Fig. 21.

• Fig. 21 (a) visualizes the predicted x0 term in Eq. 15 during the denoising process when no
layout is provided (starting from Gaussian noise). The leftmost image corresponds to the
predicted x0 at t = T , and subsequent images are visualized every three steps. Due to the
noisy and ambiguous nature of the initial layout of Gaussian noise, the diffusion model fails
to form a coherent lion layout from the initial structure. Instead, it partially adds features
such as fur, mane, nose, or mouth, resulting in poor perceptual quality.

• In contrast, (b) shows that in the case of P1 = P2, refined noise effectively forms the lion
layout from the beginning. The diffusion model accurately places the overall lion shape,
including its mane, eyes, nose, and mouth, in appropriate positions during the denoising
process.

• (c) shows the results when the denoising prompt P2 is set to an empty prompt (null prompt).
Despite this, the model successfully generates a feline animal based solely on unconditional
generation, as the layout sufficiently captures the overall structure of the object. This can
be interpreted as the information embedded in the refined noise.

• (d) demonstrates the case where the denoising prompt P2 is set to a prompt similar to the
initial layout prompt (“a photo of a tiger in the wild”). When a similar prompt is used, the
image retains the layout provided by the refined noise while also adhering to the prompt.

• In (e), P2 is set to an entirely independent prompt (“a laptop computer on a desk”). Here,
the model fails to generate a coherent image corresponding to the layout or the prompt.
The diffusion model attempts to form a laptop on the existing lion or feline layout but fails
to align with the laptop prompt, leading to failure.

• Finally, (f) shows that applying CFG (Ho & Salimans, 2022) in the settings of (e) allows the
diffusion model to disregard the initial layout and generate a laptop. This partially explains
why CFG consistently produces high-quality images. Randomly generated initial noise is
unlikely to align with the prompt (as shown in (a)), and CFG helps the model ignore such
initial noise and generate images consistent with the given prompt.

(b) Refined noise

𝑎 = 0.0 𝑎 = 0.2 𝑎 = 1.0𝑎 = 0.8𝑎 = 0.4 𝑎 = 0.6

(a) Interpolated Gaussian noise

Figure 22: Images from interpolated refined Gaussian noise.

Interpolation between refined noise. To evaluate whether noise refining network effectively
learns noise mapping, we follow (Song et al., 2020a;b) to perform spherical interpolation on ini-
tial noise samples, generating multiple interpolated noises. We then refine each interpolated noise
using noise refining network and verify that the refined noises effectively interpolate natural images.
In Fig. 22, (a) shows the images denoised by the diffusion model without any guidance method,
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“A photo of a car, detailed, 8k, realistic..”

“A photo of a cute, beautiful, teddy bear.”

“A photo of a cat.”

“A face of beautiful woman.”

3.0 6.0 9.00.0

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

3.0 6.0 9.00.0

Figure 23: Qualitative results of the training-based approach for controlling guidance strength.
Numbers above each column indicate the guidance scale provided as input to the model. Our results
show that NoiseRefine effectively learns the controllability of classifier-free guidance, preserving
the expected variations in image characteristics as the guidance scale changes.

starting from spherical interpolations of two random Gaussian noises. Specifically, each interpo-
lated noise is obtained by performing slerp(xT1 , xT2 , a) for various interpolation ratios a, where
slerp performs spherical interpolation between two Gaussian noise at a ratio of a.

Fig. 22 (b) shows the results of denoising the refined versions of these interpolated noises without
guidance. The results demonstrate that the refined noises effectively interpolate between the two
images. This indicates that noise refining network does not simply memorize specific low-frequency
signals while ignoring the input noise. Instead, it effectively learns a mapping from a Gaussian noise
space to a guidance-free noise space where semantic interpolation between guidance-free images is
possible.

A.4 CONTROLLABILITY

The guidance strength can be controlled by scaling the output of noise refining network, which is
a training-free approach. Here, we further demonstrate on SD2.1 that the model can also refine
noise through a training-based approach by incorporating the guidance scale as an additional in-
put, following (Meng et al., 2023; Luo et al., 2023a). The model architecture and dataset remain
unchanged except for adding a small linear projection layer for the guidance scale. Specifically, fol-
lowing the conditioning design in (Meng et al., 2023), we inject the guidance scale into the existing
timestep embedding rather than introducing a new conditioning branch. The scale is first encoded
using a sinusoidal embedding and then projected through a linear layer to match the dimension of
the timestep embedding. This keeps the architectural modification minimal and leaves the overall
training pipeline nearly identical. Training is conducted for one epoch. Fig.23 presents qualitative
results and Fig.24 provides the quantitative results.

A.5 GUIDED SAMPLING WITH REFINED NOISE

Our noise refining network improves image quality not only in unguided sampling but also when
guidance is applied. Unlike random Gaussian noise, refined noise (Fig. 10) preserves structural
cues and provides a consistent “initial layout”, reducing artifacts such as extra limbs and enhancing
overall coherence (Fig. 25).

We also provide quantitative results in Tab. 6, using MS-COCO prompts under the same settings
as the main quantitative results in Tab. 2, following the evaluation configurations detailed in Ap-
pendix D.2.2. This shows gains in prompt alignment and human preference.
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Figure 24: Quantitative results of training-based approach to control guidance strength. The
metrics were computed using 5K prompts from the MS COCO 2014 validation set (Lin et al., 2014).

SD
2.

1
SD

X
L

Gaussian noise Refined noise Gaussian noise Refined noise

Figure 25: Effectiveness of refined noise in guided sampling.

A.6 INFERENCE TIME ANALYSIS

We report comparison results of inference time for each method in Tab. 7. Inference time is com-
puted by averaging time per image across 30K images generated with the inference step of 20 and a
batch size of 1 on RTX 3090.

A.7 TRAINING COST ANALYSIS

For training cost analysis based on NFE (Number of Function Evaluation), we assume unit cost for
Refine (R), Backpropagation (B), Denoising (D), and VAE (V ) operations. Following Appendix D,
we denote N ′ as the number of denoising steps used during inference (including dataset generation)
and N as number of denoising steps used during training. In our SD2.1 setting, we used M = 50K
samples, E = 6 epochs, N ′ = 20, and N = 10.

Based on these parameters, the total training cost of our method amounts to 5.65M steps, which is
only 0.054% of the original training cost of SD2.1 (Tab. 8).

A.8 COMPARISON OF TRAINING EFFICIENCY WITH GUIDANCE DISTILLATION

Although our primary aim is not to develop a more efficient guidance distillation procedure but
rather to explore whether diffusion guidance can be distilled into noise instead of the network, we
nevertheless provide a training-efficiency comparison with conventional guidance distillation for
reference. To this end, we present the FID curves over steps for training noise refining network and
a guidance-distilled model on SiT-XL/2 in Fig. 26.

Note that, aside from the dataset generation phase, training noise refining network imposes a higher
per-step computational cost: our method applies a loss after denoising for N steps, whereas standard
guidance distillation computes its loss after a single denoising step. Thus, in theory, the GPU cost
per step differs by approximately a factor of N . Because the two models were trained on different
hardware environments, we present step-wise FID curves rather than wall-clock comparisons.
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Model Noise PickScore ↑ HPSv2 ↑ AES ↑ IR ↑ CLIPScore ↑ FID ↓ IS ↑

SD 2.1
Gaussian 21.70 0.280 5.530 0.294 30.72 18.74 32.55
Refined 21.93 0.324 5.602 0.448 30.99 22.94 34.37

SDXL
Gaussian 22.02 0.280 5.706 0.717 30.77 21.02 34.60
Refined 22.48 0.289 5.720 0.977 31.36 22.34 35.23

Table 6: Quality improvement of refined noise in guided sampling.

Model Initial Noise Guidance Inference Time ↓

SD2.1
Gaussian ✗ 1.357s
Refined ✗ 1.504s

Gaussian ✓ 2.589s

SDXL
Gaussian ✗ 3.218s
Refined ✗ 3.323s

Gaussian ✓ 5.525s

Table 7: Quantitative comparison of image quality and computational cost. 30K prompts from
MS-COCO (Lin et al., 2014) validation dataset were used for evaluation.

As shown in the figure, training noise refining network converges somewhat more slowly, but it
reaches the same FID to guidance distillation at around 2K steps

A.9 COMPARISON WITH OTHER NOISE OPTIMIZATION/REFINEMENT WORKS

Our primary goal is to learning noise space where diffusion guidance is distilled. This objective
fundamentally differs from prior work on noise optimization or refinement. As a result, direct com-
parisons are not entirely fair. Several other studies pursue distinct objectives, such as layout syn-
thesis (Mao et al., 2023b), rare concept generation (Samuel et al., 2024), or prompt alignment (Guo
et al., 2024). Also, method of (Eyring et al., 2024) is restricted to timestep distilled (one-step) diffu-
sion models, where comparisons with multi-step models are infeasible due to memory constraints.
Nevertheless, our approach is related in terms of improved noise initialization, and thus partial com-
parisons can still be informative. Thus, we present some comparisons to provide useful insights for
the research community.

A.9.1 INITNO

We compare image quality with (Guo et al., 2024) using a subset of the Attend-and-Excite prompt
dataset and Stable Diffusion 2.1, optimizing only the initial noise. Since there are no corresponding
ground truth images for the Attend-and-Excite prompts, we evaluate both human preference metrics
and prompt alignment scores. As shown in Tab. 9, our method outperforms in all metrics, especially
in the setting guidance is not used.

A.9.2 PAHI

PAHI (Kim et al., 2024) exists under the category of noise manipulation. To the best of our knowl-
edge, this work is the first in its focus on learning the noise space itself, rather than optimizing
or selecting. Therefore, we compare our proposed approach with this methodology PAHI (Prompt
Adaptive Human preference Inversion) (Kim et al., 2024) in this section.

There are several key differences between the two approaches. First, the tasks being addressed are
distinct. While PAHI (Kim et al., 2024) aims at generating outputs aligned with human preferences,
our objective is to replace conventional guidance mechanisms entirely. Second, our method offers
much greater flexibility. PAHI (Kim et al., 2024) assumes that sampling from certain N (µ,Σ)
instead of a standard normal Gaussian distribution is more beneficial and predict µ and Σ. However,
this assumption lacks a strong theoretical foundation. In contrast, our approach aims to learn a
gaussian-free noise space without imposing such constraints. Additionally, while PAHI (Kim et al.,
2024) is limited to few-step models due to the computational overhead of backpropagation, our
approach leverages MSD loss, enabling the use of full-step models without modification.
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Stage Formula # of NFE
Dataset Generation (2N ′ ·D + 1 · V ) ·M 2,050K

Post-Training (1 ·R+N ·D + 1 ·B) ·M · E 3,600K
Total Training Cost Dataset Generation + Post-Training 5,650K

Original SD2.1 Training Batch Size (2048) * Total Step (1.69M) * (1 ·D + 1 · V + 1 ·B) 10.383B

Table 8: Training cost analysis based on NFE (Number of Function Evaluation).
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Figure 26: Comparison of training efficiency with guidance distillation on SiT-XL/2 (Ma et al.,
2024).

Although the official code for PAHI (Kim et al., 2024) is unavailable, we adhere to the guidelines
presented in their paper as possible and compare with our method. Specifically, we compare noise
refining network with the setup that samples noise from N (µ,Σ) where µ and Σ is predicted by
MLP for a given prompt. Both models are trained with filtered 20K MS COCO(Lin et al., 2014)
dataset for 25K steps using two RTX 3090 GPUs. Example qualitative results of employing MLP
are presented in Fig. 27, and quantitative comparisons are shown in Tab.10. Across both evaluations,
noise refining network outperforms the other setup by a significant margin, showing the effectiveness
of our proposed method.

Figure 27: Qualitative results when employing
a shallow 2-layer MLP for estimating Gaussian
parameters, as proposed by (Kim et al., 2024).
The results are significantly blurry, indicating that
the simple approach of predicting µ and Σ under
the assumption that the optimal noise lies within
N (µ,Σ) performs poorly.

Method FID
MLP (Kim et al., 2024)
estimating Gaussian parameters 217.30

Noise refining network 13.74

Table 10: Quantitative results when em-
ploying a shallow 2-layer MLP for esti-
mating Gaussian parameters, as proposed
by (Kim et al., 2024).

A.10 ROBUSTNESS TO THE NUMBER OF DENOISING STEPS AND SAMPLERS

Since noise refining network is trained with a fixed sampler (DDIM (Song et al., 2020a)) and denois-
ing steps (10), concerns arise regarding its performance when using different samplers or denoising
steps. To examine the impact of varying samplers and denoising steps, we conduct experiments com-
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Guidance Initial Noise PickScore HPSv2 AES ImageReward CLIPScore
✗ Gaussian 19.78 0.174 5.073 -1.684 24.95
✗ InitNo 19.80 0.176 5.071 -1.666 25.02
✗ Refined (Ours) 21.14 0.241 5.389 -0.307 30.31
✓ Gaussian 21.67 0.260 5.525 0.368 32.25
✓ InitNo 21.68 0.261 5.524 0.376 32.26
✓ Refined (Ours) 21.83 0.276 5.571 0.533 32.51

Table 9: Comparison with different noise initialization methods under guided (top) and un-
guided (bottom) settings.

paring qualitative results across diverse configurations. For comparison, we select DPM++ SDE (Lu
et al., 2022), DPM++ 2M (Lu et al., 2022), and EDM (Karras et al., 2022), using the prompt “a photo
of a cat”. The results, presented in Fig. 28, show that our refined noise consistently produces reliable
outputs regardless of the denoising timestep or sampler. This demonstrates the robustness of noise
refining network across diverse samplers and denoising step configurations.
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DDIM

DPM++ 2M

EDM 

DPM++ SDE

(b) 20 Steps

DDIM

DPM++ 2M

EDM 

DPM++ SDE

(a) 10 Steps

DDIM

DPM++ 2M

EDM 

DPM++ SDE

(c) 50 Steps

Figure 28: Inference results on our refined noise in various denoising steps and sampler set-
tings. (a), (b), and (c) present inference results employing different samplers at denoising steps of
10, 20, and 50, respectively. The consistency observed across these results highlights the robustness
of our refined noise to variations in both denoising steps and samplers.
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A.11 ANALYSIS OF DDIM INVERSION

Following Tab.2 in the DDIM (Song et al., 2020a), we evaluate reconstruction quality under different
numbers of DDIM inversion steps. Using 100 COCO (Lin et al., 2014) prompts, we first generate
images with CFG (Ho & Salimans, 2022) scale 7.0 and PAG (Ahn et al., 2024) scale 3.0, and
then perform inversion and reconstruction using the same number of DDIM steps. Qualitative and
quantitative results are reported in Fig.29 and Tab.11, respectively.

The results show that simply increasing the number of inversion steps does not necessarily improve
reconstruction quality. Instead, performance stabilizes within a moderate range, typically around
50–200 steps. This observation is consistent with prior findings of ReNoise (Garibi et al., 2024),
whose Fig. 8 also indicates that more steps of DDIM Inversion do not always lead to better recon-
structions.

Due to the inherent approximation nature of DDIM inversion, even within this favorable step range,
perfect reconstructions remain challenging. Fine-grained details are often lost compared to the orig-
inal images, highlighting the intrinsic limitations of the DDIM inversion.

DDIM Inversion Step 10 20 50 199 200 500 999
Avg. Error 85727.84 58266.11 24523.32 20565.77 25935.91 46407.59 63493.84
Avg. PSNR 12.16 15.82 23.24 24.83 22.93 17.71 14.84

Table 11: Quantitative reconstruction error analysis across different DDIM inversion steps.

Original 10 Step 20 Step 50 Step 100 Step 200 Step 500 Step 1000 Step

Figure 29: Qualitative reconstruction error analysis across different DDIM inversion steps.
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A.12 COMPARISONS WITH DIRECT TRAINING WITH CFG-GENERATED DATA.

An alternative to our approach is to directly learn a mapping from the initial noise xT to the guided
image output xguide

0 . To explore this, we fine-tune the SiT-XL/2 model on 10K images generated
using classifier-free guidance (CFG) with guidance scale w = 4.0 and 20-step Euler sampling—the
same dataset used in Tab. 2 (SiT-XL/2 row). The results are shown in Tab. 12.

We observe that this direct mapping achieves slightly worse performance than guidance distillation,
while introducing significantly more complexity—requiring the update of all parameters in the dif-
fusion model and affecting every denoising step. This full-model finetuning approach also carries
the risk of catastrophic forgetting and lacks flexibility across domains or sampler configurations.

In contrast, NoiseRefine preserves the pretrained diffusion model entirely. It modifies only the
initial noise and thus remains compatible with domain-finetuned backbones, few-step or single-
step samplers, and alternate denoising strategies without retraining the base model (see Sec. 4.3,
Appendix A.10). This model-preserving property is a key design goal of our method: to distill
guidance into the initial condition without altering the diffusion pipeline. If one allows modifying
the denoising model itself, then existing guidance distillation methods already offer a more direct
and stable solution than finetuning on generated samples.

While the direct noise-to-image mapping is conceptually interesting, our results suggest that Nois-
eRefine offers a novel and practical alternative that preserves the model and operates by refining the
initial noise rather than modifying the full network.

Model Initial Noise Sampling Guidance Training Dataset FID ↓ IS ↑

SiT-XL/2

Gaussian ✗ Original 18.43 40.00

Gaussian ✓ CFG-Generated 12.31 58.59
Gaussian ✗ (Guidance Distil.) Original 11.90 59.14

Refined (Ours) ✗ CFG-Generated 10.42 50.39

Table 12: Comparison with direct mapping from noise to guided images.
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A.13 COMPARISON UNDER THE SAME SETTINGS AS THE SIT PAPER

In the main experiment, we reported SiT-XL/2 results using a CFG scale of 4.0, as higher guidance
scales often yield slightly worse FID but produce qualitatively superior samples.

For clearer comparison with the original SiT results, we use a CFG scale of 1.5, expand the eval-
uation to the full 1K ImageNet classes, and adopt the evaluation protocol of the SiT paper (Ma
et al., 2024). Specifically, we follow their setup by using the second-order Heun sampler with 250
NFE (equivalently, 125 denoising steps) for all procedures, including dataset generation, training,
and evaluation. Due to limited computational budget, this comparison experiment was trained for 5
epochs, whereas the main experiment used 8 epochs.

We report quantitative results in Tab.13 and qualitative results in Fig.30. Both evaluations show that
NoiseRefine produces refined noise that achieves image quality comparable to that of CFG samples
under the SiT evaluation setting.

Model Initial Noise Sampling Guidance FID ↓ IS ↑

SiT-XL/2
Gaussian ✗ 9.35 126.06
Gaussian ✓ 2.15 258.09

Refined (Ours) ✗ 4.50 173.48

Table 13: Quantitative results of SiT-XL/2 with settings of the SiT paper (Ma et al., 2024). The
reference values used for comparison were sourced from the original paper.

Random noise
w/o guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

Random noise
w/o guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

Random noise
w/o guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

Figure 30: Qualitative results of SiT-XL/2 with settings of the SiT paper (Ma et al., 2024).
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B THEORETICAL BACKGROUND

B.1 PRELIMINARIES

Denoising Diffusion Probabilistic Models (DDPM). DDPM Ho et al. (2020) defines a forward
process that derives xt by adding Gaussian noise to the image xt−1 according to the variance sched-
ule, and a reverse process that samples xt−1 from xt, both as a Markovian chain. The forward
process is defined as

q(xt|xt−1) = N
(
xt;

√
αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
, (7)

q(xt|x0) = N (xt;
√
αt x0, (1− αt)I), (8)

with noise rate at timestep t as 1− αt/αt−1, where αt denotes noise scaling factors up to time step
t. The reverse process is defined below.

pθ(xt−1|xt) = N
(
xt−1;µ

(t)
θ (xt), σ

2
t I
)
. (9)

To reparameterize the equation using

xt =
√
αtx0 +

√
1− αt ϵ for ϵ ∼ N (0, I), (10)

and ϵθ, which is a function approximator for predicting ϵ from xt, the inference process becomes

xt−1 =
1√
αt

αt−1

(
xt −

1− αt

αt−1√
1− αt

ϵ
(t)
θ (xt)

)
+ σtz, (11)

Where z ∼ N (0, I) and σ2
t denotes the variance of Gaussian trainsitions .The objective of DDPM

is defined as

Lsimple(θ) = Et,x0,ϵ

[
∥ϵ− ϵ

(t)
θ (xt)∥2

]
, (12)

where the L2 loss between the actual noise ϵ added during training and the noise prediction ϵθ(xt, t)
for uniformly sampled t ∈ {1, ..., T}.

Denoising Diffusion Implicit Models (DDIM). DDIM Song et al. (2020a) consider the following
inference distributions:

qσ(x1:T |x0) := qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt, x0). (13)

with a mean function as below.

qσ(xt−1|xt, x0) = N
(
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I

)
. (14)

Distinctively from DDPM, the forward process is Non-Markovian since each xt could depend on
both xt−1 and x0. Reparameterizing with ϵθ, we can sample xt−1 from xt through an equation:

xt−1 =
√
αt−1

(
xt −

√
1− αt ϵ

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

predicted x0

+
√
1− αt−1 − σ2

t · ϵ
(t)
θ (xt) + σtϵt

= atxt + btϵ
(t)
θ (x),

(15)

where ϵt ∼ N (0, I) and at =
√
αt−1/

√
αt, bt =

√
1− αt−1 − at

√
1− αt.

The objective of DDIM is the same as that of DDPM:

LDDIM(θ) = Et,x0,ϵ

[
∥ϵ− ϵ

(t)
θ (xt)∥2

]
. (16)
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Denoising and inversion process. We denote the denoising process as Denoise(xT ). When using
the DDIM sampler (Song et al., 2020a), the denoising process is defined as:

Denoise(xT ) := D1 (. . . DT (gϕ(xT ))) , (17)

where each step Dt is given by:

Dt(x) := atxt + btϵ
(t)
θ (x). (18)

The guided denoising process, denoted as DenoiseGuide(xT , c), follows the same steps as Eq. 17,
but replaces ϵ

(t)
θ (x) with guided scores, such as the classifier-free guided score ϵCFG

θ (xt, c) (Ho &
Salimans, 2022), the perturbed-attention guided score ϵPAG

θ (xt) (Ahn et al., 2024), or a combination
of both (ϵCFG,PAG

θ (xt)). These guided scores are defined in Eqs. 31 and 32.

While we utilize the DDIM scheduler in this work, any other diffusion scheduler (Ho et al., 2020;
Song et al., 2020a; Karras et al., 2022) can be used by appropriately modifying at and bt.

For the inversion process Inversion(x0, c), we follow the method in (Garibi et al., 2024) to obtain the
initial noise xT , which can be denoised back to the given image x0 without employing any guidance
methods (Ho & Salimans, 2022; Ahn et al., 2024) during inversion.

B.2 DERIVATIONS

Proposition 1. Let xT be an initial noise, and suppose that x0 is the image obtained through de-
noising. Assuming Lipschitz continuity with distance metric d, for every xT , there exists a constant
κ > 0 such that the following holds:

d(xT , x
Guide†
T ) < κd(x0, x

Guide
0 ).

proofs. The Lipschitz condition is expressed as follows:

d(ϵ
(t)
θ (x), ϵ

(t)
θ (y)) ≤ Ltd(x, y), (19)

where Lt is constant dependent on t, x and y are arbitrary inputs to ϵ
(t)
θ . DDIM step in terms of xt

can be expressed as follows:

xt−1 =

√
αt−1

αt
xt +

√1− αt−1 −

√
αt−1(1− αt)

αt

 ϵ
(t)
θ (xt). (20)

Eq. 20 can be expressed in terms of xGuide†
t which is denoised from xGuide†

T . With those equations,
we can get the following equation,

xt−1 − xGuide†
t−1 =

√
αt−1

αt
(xt − xGuide†

t ) +

√1− αt−1 −

√
αt−1(1− αt)

αt

 (ϵ
(t)
θ (xt)− ϵ

(t)
θ (xGuide†

t ))

=

√
αt−1

αt
(xt − xGuide†

t )− γt(ϵ
(t)
θ (xt)− ϵ

(t)
θ (xGuide†

t )),

where γt =
(√

αt−1(1− αt)/αt −
√
1− αt−1

)
> 0. If the distance metric d have translation

invariance, the equation can be expressed as follows with Eq. 19:

d(xt−1, x
Guide†
t−1 ) ≤

√
αt

αt−1
(1 + γtLt)d(xt, x

Guide†
t ). (21)

Recursively organizing Eq. 21 for t = T, T − 1, . . . , 1, it can be expressed as follows:

d(xT , x
Guide†
T ) ≤

(
T∏

t=1

(1 + γtLt)

)√
αT

α0
d(x0, x

Guide†
0 ). (22)

Since αT is close to 0, using d(x0, x
Guide†
0 ) is sufficient to directly learn xGuide†

T if d(x0, x
Guide†
0 ) is

small enough.
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Proposition 2. By approximating the gradients through Multistep Score Distillation (MSD) using
detached gradients at each step, we approximate the full-gradient objective with a mild assumption.
In conclusion, the two gradients can be approximated as follows:

∇ϕLDenoise(gϕ(xT ), θ) ≈ k∇ϕLMSD(gϕ(xT ); θ), (23)
where k ∈ (0, 1) is constant.

Warmup. We begin by recalling the typical denoising process in DDIM sampling:
D1 ◦D2 ◦ · · · ◦DT (xT ), (24)

where Dt(x) = atx + btϵ
(t)
θ (x) denotes a single denoising step, and at, bt are DDIM-derived

coefficients (Song et al., 2020a).

The final generated image x̄0, obtained by applying the full denoising trajectory to the refined noise,
is:

x̄0 = D1 ◦D2 ◦ · · · ◦DT (gϕ(xT )), (25)
where gϕ(xT ) is the refined noise output from the refining network gϕ.

From Eq. 15, the denoised image from the full DDIM denoising process x̄0 is:

x̄0 =

√
α0

αT
gϕ(xT )−

T∑
t=1

√
α0

αt−1
γtϵ

(t)
θ (xt). (26)

This expression is derived by recursively applying the DDIM update rule (Eq. 20) from xT to x0,
unfolding the full denoising trajectory step by step. The result is a closed-form expression for the cu-
mulative DDIM trajectory, expressing x̂0 as a function of the refined noise gϕ(xT ) and intermediate
model predictions.

We define the denoising loss as follows:
LDenoise(gϕ(xT ); θ) := d

(
x̄0, x

Guide
0

)
(27)

where d(·, ·) denotes the L2 distance.

proofs. Since the only difference between the two losses is the stop gradient in the diffusion model
and all other components are identical, it suffices, by the chain rule, to show that the gradient of
F1(F2(. . . FT (gϕ(xT )) with respect to ϕ is proportional to the gradient of Denoise(gϕ(xT )) with
respect to ϕ. The derivation proceeds as follows:

∇ϕDenoise(gϕ(xT )) = ∇ϕ

(√
α0

αT
gϕ(xT )−

T∑
t=1

√
α0

αt−1
γtϵ

(t)
θ (xt)

)

=

(√
α0

αT
I −

T∑
t=1

γt

√
α0

αt−1

∂ϵ
(t)
θ (xt)

∂xt

∂xt

∂gϕ(xT )

)
∂gϕ(xT )

∂ϕ
.

(28)

As detailed in B.3, the term ∂ϵ
(t)
θ (xk)/∂xk can be approximated as being proportional to the iden-

tity matrix. Additionally, the term ∂xk/∂gϕ(xT ) can be expressed in terms of ∂ϵ
(t)
θ (xk)/∂xk.

Then, each component of ∂ϵ(t)θ (xk)/∂xk can be approximated by the identity matrix. Consequently,
(∂ϵ

(t)
θ (xk)/∂xk) (∂xk/∂gϕ(xT )) becomes proportional to the identity matrix. Denoting the propor-

tionality constant as ηt :=
(

∂ϵ
(t)
θ (xt)

∂xt
· ∂xt

∂gϕ(xT )

)
, Eq. 28 is simplified as follows:

Eq. 28 =

(√
α0

αT
−

T∑
t=1

√
α0

αt−1
γtηt

)
∂gϕ(xT )

∂ϕ

=

(
1−

√
αT

T∑
t=1

1
√
αt−1

γtηt

)√
α0

αT

∂gϕ(xT )

∂ϕ

=

(
1−

√
αT

T∑
t=1

1
√
αt−1

γtηt

)
∇ϕF1(F2(. . . FT (gϕ(xT ))).

(29)
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B.3 DIFFUSION MODEL JACOBIAN APPROXIMATION

Why is the approximation possible? In this subsection, we present experimental results demon-
strating that the Jacobian of the diffusion model ϵtθ with respect to the input xt can be approximated
as proportional to the identity matrix. Fig. 31 illustrates the Jacobian ∂ϵtθ/∂xt. We observe that the
Jacobian behaves like the identity matrix regardless of timestep, except when t is significantly small.
To quantify this observation, we plot the distributions of the Jacobian’s diagonal and off-diagonal
elements across timesteps in Fig. 32 (log scale). The off-diagonal elements are consistently much
smaller and concentrated near zero, while the diagonal elements remain significantly larger, con-
firming the strong diagonal dominance of the Jacobian. Fig. 33 shows the same analysis for DiT-
XL/2 Peebles & Xie (2023), where we observe a similar pattern: the off-diagonal values stay close
to zero across timesteps, whereas the diagonal values remain substantially larger. This demonstrates
that the identity-matrix-like Jacobian structure holds not only for Stable Diffusion 2.1 but also for
transformer-based models such as DiT.

In such cases, the deviation does not affect our primary analysis. According to the results of Propo-
sition 1, the timestep-dependent constant 1√

αt−1
γt multiplied to each Jacobian term ηt is expressed

as follows:

1
√
αt−1

γt =

√
1− αt

αt
−

√
1− αt−1

αt−1
. (30)

This value can be numerically determined based on the scheduling, and in the case of DDIM (Song
et al., 2020a), it is presented in Fig. 34. The graph shows that the constant decreases toward zero as
t approaches 0.

Figure 31: Visualization of Jacobian of a denoising network. Starting from T = 1000, we
performed denoising over 10 steps and plotted the Jacobian heatmap at each timestep.We extracted
a 500× 500 section from the full Jacobian matrix for visualization. Each plot demonstrates that the
Jacobian is close to the identity matrix.
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Figure 32: Distribution of Jacobian elements in Stable Diffusion 2.1 (log scale). Scatter plot of
diagonal and off-diagonal Jacobian magnitudes across timesteps. The off-diagonal elements remain
close to zero, while the diagonal elements are significantly larger, demonstrating strong diagonal
dominance of the Jacobian.

Figure 33: Distribution of Jacobian elements in DiT/XL-2 (log scale). Violin plot of diagonal
and off-diagonal Jacobian values across timesteps for the DiT/XL-2 Peebles & Xie (2023). Despite
its transformer structure and larger receptive field, the off-diagonal values remain close to zero,
showing an identity-like Jacobian similar to Stable Diffusion.

Figure 34: Visualization of constant values over timesteps. Visualization of the time-dependent
constant value γt√

αt−1
corresponding to Eq. 30 across different timesteps. The results numerically

demonstrate that for small timesteps, where the Jacobian deviates from the identity matrix, the
multiplied constant values are sufficiently close to zero.
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Why does the approximation enhance performance? The above analysis explains why the Ja-
cobian can be approximated by the identity matrix, but it does not address why this approximation
empirically improves optimization, yielding faster convergence and higher-quality results. Although
the Jacobian is “close enough” to identity, it is not perfectly identity, especially at small timesteps.
When full gradients are backpropagated through multiple denoising steps, these small off-diagonal
components accumulate across steps and induce optimization instability, similar to exploding and
vanishing gradients in recurrent networks.

To illustrate this effect, we perform a simple toy experiment in which we directly optimize an initial
Gaussian noise xT so that its denoised output x̂0 matches a given target image. Fig. 35 shows the
MSE loss ||x̂0 − xtarget||2 and the gradient norm during optimization. Using the full-step gradient
leads to unstable behavior: the loss fails to converge, and the gradient norm becomes large and
highly erratic. We also visualize the gradient norm ||∂L/∂xt||2 at each denoising step (Fig. 36 top),
and observe that for some iterations the gradients become progressively larger as t approaches 1,
clear evidence of gradient explosion.

By skipping the Jacobian ∂ϵtθ/∂xt at each step, MSD avoids this long-horizon accumulation and
yields a far more stable optimization process. As shown in Fig. 36 (bottom), the gradient norms
remain well-behaved and stable throughout optimization. This behavior aligns with prior findings
in score distillation sampling, and further demonstrates that gradient skipping acts as an effective
regularizer that prevents instability arising from multi-step backpropagation.

Figure 35: Optimization instability of full-step gradients. We optimize the initial noise so that
the denoised output x̂0 matches a target image and plot the MSE loss (left) and gradient norm
(right) over iterations. The full-step gradient exhibits unstable dynamics, with the loss failing to
converge and the gradient norm becoming large and erratic. In contrast, the MSD approximation
maintains stable gradients and converges reliably, demonstrating that skipping the Jacobian ∂ϵtθ/∂xt

effectively prevents long-horizon instability.
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Figure 36: Gradient explosion across denoising steps when using full-step gradients. We visual-
ize the gradient norm ||∂L/∂xt||2 at each denoising step during optimization. With full-step back-
propagation, the gradients become progressively larger as t approaches 1, and in several iterations
the norm reaches values close to 1, indicating clear gradient explosion. In contrast, when apply-
ing MSD (gradient skipping), the gradients remain small and stable. This confirms that multi-step
Jacobian accumulation is the primary source of instability, and that skipping the Jacobian ∂ϵtθ/∂xt

effectively prevents this issue.
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C MORE ABLATION STUDIES

C.1 NOISE REFINING NETWORK

To effectively leverage pretrained knowledge, we attach LoRA layers to the original model when
training noise refining network. To evaluate the effectiveness of LoRA (Hu et al., 2021), we conduct
an ablation by training the refining network using the same original Stable Diffusion 2.1 UNet
architecture, but from scratch. We use the filtered MS COCO dataset from both datasets and train
the models for 25K steps on two RTX 3090 GPUs, keeping all other experimental configurations
identical. As shown in Tab. 14 and Fig. 37, the LoRA-based approach achieves faster convergence
and significantly lower FID at the same iteration, demonstrating its efficiency in training. These
results indicate that leveraging pretrained knowledge leads to superior performance compared to
training from scratch.

Figure 37: Qualitative comparison with noise refin-
ing network (top) and UNet trained from scratch
(bottom).

Model FID
From scratch 37.87
Pretrained (Ours) 13.74

Table 14: Quantitative comparison
with noise refining network using
pretrained UNet + LoRA and UNet
trained from scratch.

Parameter FID (Heusel et al., 2017) ↓ IS (Salimans et al., 2016) ↑

# of steps 5 13.74 30.80
10 13.36 32.81

Table 15: Ablation study on the number of denoising steps.

C.2 NUMBER OF DENOISING STEPS

We analyze the impact of denoising steps by comparing N = 5 and N = 10, reporting FID (Heusel
et al., 2017) and IS (Salimans et al., 2016) in Tab. 15. The results show improved performance with
more steps, but high step counts (N ≥ 10) incur prohibitive backpropagation costs, highlighting the
need for MSD to mitigate computational overhead.
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D IMPLEMENTATION AND EXPERIMENTAL DETAILS

D.1 IMPLEMENTATION DETAILS

Generated image 
w/ Guidance 𝑥0

Guide

Backpropagation

ො𝑥𝑡 ො𝑥𝑡−1

𝜀0 𝑥𝑡

Guidance-free noise
ො𝑥𝑇

𝜃

𝜃

Noise Refining
LoRA

Initial noise 
𝑥𝑇~𝑁(0, 𝐼)

Distance 𝒅

× 𝑁

NoiseRefiner 𝑔𝜙

Generated image 
w/o Guidance ො𝑥0

residual
connection

𝜃

Stop 
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× 𝑁′

Guidance T2I Pipeline

Guidance-Free T2I Pipeline

Text prompt 𝑐

Text prompt 𝑐 (𝑃2)

Text prompt 𝑐 (𝑃1)

Figure 38: Training framework with annotations. We provide an annotated illustration of the
training framework to clarify the notation in the following discussion.

More details of our framework. Most experiments are conducted with text-to-image diffusion
models (Rombach et al., 2022; Podell et al., 2023), so we provide implementation details for these
models here. Although our framework NoiseRefine can be generalized from pixel-level to latent-
level diffusion models, in our experiments we use MSE loss in latent space for d(xGuide

0 , x̂0).

We provide our training framework in Fig. 38. It consists of three parts: Guidance T2I Pipeline
takes Gaussian noise xT ∼ N (0, I) and condition (text prompt) c as inputs and generates an image
xGuide
0 with guidance methods (Ho & Salimans, 2022; Ahn et al., 2024; Hong et al., 2023; Sadat

et al., 2024; Hong, 2024; Karras et al., 2024). The noise refining network gϕ refines Gaussian noise
xT . Guidance-Free T2I Pipeline takes refined noise x̂T = gϕ(xT ) and condition (text prompt) c and
generates an image x̂0 without guidance. For Guidance T2I Pipeline, with the denoising network ϵθ,
we can use the guided score ϵCFG

θ (xt, c) for CFG (Ho & Salimans, 2022) or ϵPAG
θ (xt, c) for PAG (Ahn

et al., 2024) in denoising process as below:

ϵCFG
θ (xt, c) = ϵθ(xt, c) + w(ϵθ(xt, c)− ϵθ(xt)), (31)

ϵPAG
θ (xt) = ϵθ(xt) + s(ϵθ(xt)− ϵ̂θ(xt)), (32)

where w and s denote the guidance scale of CFG (Ho & Salimans, 2022) and PAG (Ahn et al.,
2024), and c is for the condition. Note that the perturbed score ϵ̂θ is from perturbing the forward
process of the denoising network ϵθ (Ahn et al., 2024). With the denoising step N ′ = 20, we can get
the guided image xGuide

0 . Our noise refining network refines Gaussian noise xT with gϕ at timestep
t = T , which is from the reverse step of DDIM (Song et al., 2020a) in Eq. 15. The output of
noise refining network gϕ is denoted as x̂T = gϕ(xT ) and becomes the input of Guidance-Free T2I
Pipeline. In this pipeline, x̂T is denoised into x̂0 without guidance using N denoising steps.

Architecture details. For noise refining network gϕ, we use Stable Diffusion 2.1 (Rombach et al.,
2022) with LoRA (Hu et al., 2021) rank of 128, applied to all attention, convolutional, and feed-
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forward layers. We use DDIM (Song et al., 2020a) scheduler with the same settings as the pre-
trained model. For noise refinement, we use an input timestep T = 999, and the default denoising
step N is set to 10. In Stable Diffusion XL (Lin et al., 2024), we use the same configs of Stable
Diffusion 2.1 except LoRA rank which is set to 256.

D.2 EXPERIMENTAL DETAILS

D.2.1 TRAINING SETUP

Note that our model requires only text prompts for training, eliminating the need for real images, as
we leverage self-generated images from the model we aim to train using guidance methods.

For Stable Diffusion 2.1 (Rombach et al., 2022), we train our model on 20K MS COCO prompts,
30K Pick-a-Pic prompts, using CFG scale 7.0 and PAG scale 3.0 for all generated images.

For Stable Diffusion XL (Podell et al., 2023), we train our model on 55K MS COCO prompts, 36K
Pick-a-Pic prompts, and 90K LAION prompts, using the same CFG and PAG scales as for Stable
Diffusion 2.1.

For SiT-XL/2 (Ma et al., 2024), we train our model on 100 classes of ImageNet (Krizhevsky et al.,
2012) (class 1 to class 100) using CFG scale 4.0. Total dataset consists of 100K images, 1K images
for each class. For dataset generation, we employ Euler sampler with 20 denoising steps.

For SD2.1 and SDXL, we generated images for all datasets with guidance and retained only the
top-N samples ranked by AES (Schuhmann, 2022) scores, where N denotes the reported dataset
size. For SiT-XL/2, no filtering was applied.

For the ablation study on the number of denoising steps, we primarily use SD2.1.

D.2.2 EVALUATION SETUP

The datasets used are described in Sec. 4.1. For guided sampling, we use the same guidance scale
as in the training of the noise refining network across all models. For guidance-distilled sampling
with a distilled denoising network (Meng et al., 2023), since no official implementation is available,
we follow Eq. 3 in their paper for reimplementation. The same dataset and guidance scale are used
for training the distilled model.

For all experiments using SiT-XL/2 except A.13, we generate 50K samples using random initial
noise and the Euler sampler with 20 denoising steps.
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E ADDITIONAL RESULTS

E.1 ADDITIONAL QUALITATIVE RESULTS

We present our additional qualitative results of SD2.1 on Fig. 41, 42, 43, 44 and results of SDXL
on Fig. 45. Results show that the performance of using refined noise by noise refining network is
comparable to that of using guidance on random Gaussian noise. All the results are selected from
images used in Tab. 2.

E.2 USER STUDY

Gaussian noise vs refined noise. We conducted a user study to evaluate prompt adherence and im-
age quality by comparing images generated from random Gaussian noise and our refined noise. The
images are generated using randomly sampled MS COCO validation prompts, as shown in Tab. 2.
The results are presented in Tab. 16. The study demonstrates that our method outperformed the
baseline in all human evaluation criteria. A total of 26 participants anonymously evaluated 20 pairs
of images, each pair consisting of an image generated using initial Gaussian noise and our refined
noise from noise refining network. The percentage was calculated by dividing the total number of
selections for each option by the total number of responses, following the same methodology as in
Tab. 16.

Participants were provided with the following instructions for each pair of images:

1. Which image has better overall quality? (left/right)
2. Which image more faithfully reflects the given prompt? (left/right)

Metric Gaussian Noise Refined Noise (Ours)
Image Quality 3.08% 96.92%
Prompt Adherence 6.73% 93.27%

Table 16: User study on the image quality and prompt adherence of generated images.
Guided sampling vs refined noise. Tab. 17 shows the results of user study, confirming noise re-
fining network’s comparable to results starting from Gaussian initial noise without guidance. 45
participants compared 30 image pairs generated with guidance and our method (refined noise with-
out guidance), using generated images for evaluation in Tab. 2, and evaluated visual appealing and
prompt alignment. The instructions for the survey are the same as the above.

Metric Gaussian Noise + Guided Sampling Refined Noise (Ours)
Image Quality 46.04% 53.96%
Prompt Adherence 48.24% 51.76%

Table 17: User study on the image quality and prompt adherence of generated images.
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E.3 GENERALIZATION ON OTHER DOMAINS

Fig. 39 presents additional qualitative results across different domains, including anime and clay.
The prompts used for generation are provided in Tab. 18.

A
ni

m
e

C
la

y

Gaussian noise Refined Noise Gaussian noise Refined Noise Gaussian noise Refined Noise Gaussian noise Refined Noise Gaussian noise Refined Noise Gaussian noise Refined Noise

Figure 39: Additional qualtitative results of generalization on other domains.

(masterpiece, best quality, ultra-detailed, best shadow), (detailed background,dark fantasy), (beauti-
ful detailed face), high contrast, (best illumination, an extremely delicate and beautiful), (cinematic
light), colorful, hyper detail, dramatic light, intricate details, (1 girl, solo,black hair, sharp face,low
twintails,red eyes)
(masterpiece,best quality), 1girl, long hair, red hair, solo, dress, red eyes, looking at viewer, long
sleeves, standing, building, white dress, gloves, hair ornament, black jacket, smile, floating hair,
dutch angle, closed mouth, looking away, outdoors
(masterpiece,best quality), 1girl, solo, black skirt, blue eyes, electric guitar, guitar, headphones,
holding, holding plectrum, instrument, long hair, music, one side up, pink hair, playing guiter,
pleated skirt, black shirt, indoors
(masterpiece, best quality, ultra detailed:1.3), perfect composition, anime, illustration 4k, (extremely
detailed, hyper detailed), raw, hdr, 8k textures, extreme detail, hight detailed skin texture, high
sharpness, 1girl, (detailed eyes:1.3), petite, on the street, in public, night street, night lights
(masterpiece, best quality, ultra detailed:1.3), A beautiful, anime-style female character with long
flowing hair, wearing a flowing summer dress, standing in a field of flowers at sunset, soft pastel
colors, detailed facial features
1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop
earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow
shirt, (waifu, anime, exceptional, best aesthetic, new, newest, best quality, masterpiece, extremely
detailed:1.2)
clayitization, A portrait of a black cat with piercing green eyes, Ultra-detailed, 3d, octane render,
intricate details
clayitization, a photo of a cheese burger, ultra detailed, 3d, octane render, intricate details
clayitization, colorful tropical bird perched on branch, ultra detailed, 3d render, smooth clay textures,
vibrant palette, 3d, octane render, soft lighting, realistic textures
clayitization, stylish pair of sneakers, detailed textures, 3d, vibrant colors, realistic clay appearance,
octane render
clayitization, classic red Vespa scooter, highly detailed, glossy clay finish, 3d model, studio lighting,
octane render
clayitization, a photo of the Eiffel Tower, ultra detailed, intricate architectural details, 3d, octane
render

Table 18: Example prompts used for domain generalization experiment (Fig 39).
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goldfish cock

green lizard junco, snowbird

sulphur-crested cockatoo goldfinch

great grey owl mud turtle

Random noise
w/o guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

Random noise
w/o guidance

(ours) 
Refined noise
w/o guidance

Random noise
w/ guidance

partridge lorikeet

toucan drake

tiger shark ostrich

Figure 40: Additional qualitative results on SiT-XL/2.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

“Two cars on the street.” “a bedroom with a night stand near the bed”

“A large motor vehicle carrying passengers by road, typically 

one serving the public on a fixed route and for a fare.”
“A woman in sunglasses and hat standing by plant.”

“A brightly painted temple with ornate structures and dramatic 

lighting inspired by Mayan and Islamic architecture.”
“A bathroom is shown with a toilet, sink and a mirror.”

“opal gun” “A close-up of grains and pastries on a table.”

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

“The stainless steel refrigerator is being moved into the newly 

constructed home.”
“A small vase with a few flowers is in the snow.”

“An image of Malta, covered in Palm trees, highly detailed and 

realistic”
“Photo of a guy having with a chubby young 

redhead, POV”

“Some luggage sets in the living room ready to go.” “beautiful summer landscape, an ultrafine detailed painting, intricate 

pasta waves, made of noodles, paper quilling, inspired by van Gogh”

Figure 41: Additional qualitative results on SD2.1.
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“Traditional library with floor-to-ceiling bookcases” “A large hawk flying through a purple and orange sky.”

“Navy blue wall livingroom with dusty pink curtains” “a boy in a blue shirt is eating some food”

“far away camera shot of an abandoned pickup truck, 

overgrown”
“A blue plate topped with rice and stew.”

“A painting depicting a foothpath at Indian summer with an epic 

evening sky at sunset and low thunder clouds.”
“A bench sitting on top of a sandy beach next to the ocean.”

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

“A watercolor portrait of a woman by Luke Rueda Studios and 

David Downton.”
“a man that is on a surfboard on some water”

“A painting depicting a snowy winter scene featuring a river, a 

small house on a hill, and a dreamy cloudy sky.”
“An orange colored sandwich.”

“A lighted birthday cake with chunks of walnuts.” “A yellow and black bus cruising through the rainforest.”

Figure 42: Additional qualitative results on SD2.1.
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“logo of a blue elephant, flat modern vector icon” “A beautiful ancient Chinese chivalrous woman”

“Alight blue haired anime girl ocean themed anime is opon

antenna twintails”
“A sail boat entering a majestic fjord landscape in winter”

“<pixel art> gray French bulldog” “An oil painting of a bowl of fruit”

“A silhouette of a dog looking at the stars” “portrait of sir borzoi dog wearing royal uniform 

and crown”

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

“A snowy Chicago street during Christmas art by 

Ludwig Fahrenkrog”
“a low light photo of a city at night”

“Gothic cathedral in a stormy night” “Face shaped out of old rusty technology”

“Photo of a black panther” “An stylized entrance to a rocky cave”

Figure 43: Additional qualitative results on SD2.1.
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“A black vase on display with lights in the background.” “A feast of meat, potatos, and veggies on a plate”

“A red fire hydrant on the side of a street.” “photograph of a man when he was much younger”

“A subway train next to the boarding platform.” “A white sandy beach has a chair and straw umbrella.”

“A woman holding a plate with a slice of cake.” “A cute kitten hiding in something on a chair.”

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

“A large boat sitting in the middle of a body of water.” “A grey motorcycle on dirt road next to a building.”

“A bird perched on a branch by some leaves.” “A mirror image of a bathroom and a scenic view 
from a window.”

“A building has a gold clock inside of it.” “A white Volkswagen beetle parked on a lush grass field.”

Figure 44: Additional qualitative results on SD2.1.
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“A brown dog on a bed sitting under the covers” “A large dog sitting in the mud outside”

“A bench in a a park with trees in the background” “A man smiling wearing a white shirt and bow tie”

“a mouse sits in front of a keyboard and monitor” “Open faced sandwich being held by someone at a table.”

“A bottle and half a glass of dark liquid” “A tennis player in yellow shirt with striped shorts”

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

Random noise

w/o guidance

(ours) 

Refined noise

w/o guidance

Random noise

w/ guidance

“A polar bear balances on a blue ball.” “A woman in a kitchen preparing a sandwich with tomatoes.”

“A dog walking down the middle of a street next to a store lined sidewalk.” “A small sandwich sitting on a white china plate.”

“An Olympic skier who is racing down a mountain” “A gray cat sitting on top of a chair near a table”

Figure 45: Additional qualitative results on SDXL.
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F LLM USAGE DISCLOSURE

During the preparation of this paper, the authors made limited use of large language models (LLMs)
for polishing the writing, grammar refinement and LaTeX formatting. LLMs were not used for
generating research ideas, designing or conducting experiments, analyzing results, or formulating
conclusions. All scientific content and contributions are entirely the responsibility of the authors,
and any LLM-assisted text was carefully reviewed and revised before inclusion.
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