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Figure 1: Effectiveness of NoiseRefine. Diffusion models often fail to generate high-quality images
without guidance, such as classifier-free guidance (CFG) Ho & Salimans|(2022), which doubles the
inference cost. In this paper, we propose NoiseRefine, a novel approach to improve image quality

by learning to map Gaussian noise space to guidance-distilled noise space. Images are generated
using the same seed and prompt.

ABSTRACT

Diffusion models have demonstrated remarkable image generation capabilities,
but their performance heavily relies on sampling guidance such as classifier-free
guidance (CFG). While sampling guidance significantly enhances image quality,
it requires two forward passes at every denoising step, leading to substantial com-
putational overhead. Existing approaches mitigate this cost through distillation,
training a student network to learn the guided predictions. In contrast, we take
an distinct approach by refining the initial Gaussian noise, a critical yet under-
explored factor in the diffusion-based generation pipelines. We introduce Nois-
eRefine, a noise refinement framework where a refining network is trained to min-
imize the difference between images generated by unguided sampling from the re-
fined noise and those produced by guided sampling from the input Gaussian noise.
This simple approach demonstrates that images from the refined noise do not suf-
fer from artifacts or collapsed structure, achieving significantly higher quality than
those from pure Gaussian noise without modifying the diffusion model, thereby
preserving its prior knowledge and compatibility with finetuned or timestep dis-
tilled variants. Beyond its practical benefits, we provide an in-depth analysis of
refined noise, offering insights into its role in the denoising process and its interac-
tion with guidance. Our findings suggest that structured noise initialization is key
to efficient and high-fidelity image synthesis. Code and weights will be publicly
released.

1 INTRODUCTION

In recent years, text-to-image (T2I) diffusion models (Rombach et al.l 2022} [Esser et al., 2024}
Podell et al.}[2023), which generate images conditioned on text prompts, have achieved remarkable
advancements. These models produce visually appealing images that are both realistic and well-
aligned with human perception. A central factor behind their effectiveness is the use of sampling

guidance techniques (Dhariwal & Nicholl, 2021}, [Ahn et al., [2024}; [Hong et al.} 2023} [Hong}, [2024),
most notably classifier-free guidance (CFG) (Ho & Salimans), 2022). While indispensable for high-
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Figure 2: Motivation and training framework of NoiseRefine. (a) Starting from an initial noise
7, unguided sampling often produces low-quality images, necessitating sampling guidance such as
CFG. In contrast, the inversion noise z3"1%, obtained by inverting guidance-generated images from
the same x7, can yield high-quality results even without guidance. This raises our central question:
canwe learn to map x into #7? (b) Learning with a reconstruction loss between z7 and 2" may
be suboptimal due to errors during inversion. Instead, our model learns to refine z into £, with
the objective of matching unguided image from refined noise 7 with guidance-generated image

from initial noise x7.

quality synthesis, these methods require evaluating additional prediction (unconditional prediction
in case the of CFG) at every denoising step, effectively doubling inference cost.

A common strategy to mitigate this overhead is guidance distillation, where a student net-
work (Meng et al] [2023) or an adapter (Hsiao et all, [2024) is trained to approximate the guided
predictions of the original model. However, such approaches often require modifications to the
denoising network, which is prone to catastrophic forgetting (Kirkpatrick et al.l 2017), and poten-
tially incompatible with complementary techniques such as domain-specific fine-tuning
or timestep distillation|Yin et al.|(2024)); Lin et al.|(2024); Salimans & Ho|(2022); |Sauer et al.
(2024D).

Recently, a growing line of work has explored the role of initial noise, suggesting that it can influ-
ence the final image structure to some extent (Singh et al| [Wu & De Ta Torre), 2022}, Mao|
et al., [2023a; Ban et al, 2024} Xu et all [2024a; Qi et al., 2024} |Guo et al., 2024; [Eyring et al.,
2024} Zhou et al.} [2024; Mannering et al., 2025} Ma et al.,[2025). Inspired by this, we ask: Instead
of distilling guidance into the denoising network, can we distill it into noise? Diffusion inversion
methods (Song et al.} 2020a} (Garibi et al.,[2024) provide important clue. Ideally, a perfect inversion
method would reconstruct a given image without requiring any guidance. Under this idealized as-
sumption, a straightforward way to obtain the “guidance-free noise” target is to start from an initial
Gaussian noise, generate a high-quality image using guidance, and then apply inversion to compute
its corresponding noise. This resulting “inversion noise” should, in principle, reproduce a similar
image without guidance. This conceptual idea is illustrated in Fig. P}a).

However, we show that directly learning the mapping from Gaussian noise to inversion noise is sub-
optimal due to the accumulated reconstruction errors introduced by the inversion process (Sec. [3-2).
To overcome this limitation, we shift the objective from the noise space to the image space and
propose NoiseRefine, a novel method that refines Gaussian noise into informative and structured
noise, enabling high-quality generation without guidance. As illustrated in Fig.[2](b), a lightweight
transformation network maps arbitrary Gaussian noise into the refined noise space, trained so that
unguided samples closely match guided counterparts generated from the same seed. At inference,
a single forward pass through this network suffices to replace costly guidance while preserving the
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original diffusion pipeline intact, in a prompt-learning-like manner(Zhou et al.| 2022a)) that avoids
catastrophic forgetting from model fine-tuning (Kirkpatrick et al., [2017).

Beyond eliminating guidance, NoiseRefine offers several advantages. First, since it operates
solely on the noise input, it can be directly applied to fine-tuned models in various domains(e.g.
Anime) without retraining the refining network. Second, it remains fully compatible with timestep-
distillation techniques (Meng et al., 2023} |[Hsiao et al.l 2024} Zhou et al 2025). Together, these
properties make NoiseRefine a plug-and-play solution for enhancing base, fine-tuned, and timestep
distilled models. We validate our approach on both class-conditional and widely used text-to-image
diffusion models.

Our contributions can be summarized as follows:

* Noise refinement for guidance-free generation: To the best of our knowledge, this work is the
first to explore refining initial noise in diffusion pipelines to achieve high-quality image generation
without diffusion guidance.

* Preserving the diffusion pipeline: Our method does not modify the original diffusion model
or pipeline, which ensures compatibility with LoORA modules in the original pipeline, generalizes
well to fine-tuned models, and seamlessly integrates with existing timestep-distillation techniques.

* Thorough analysis of refined noise in diffusion models: We provide a detailed study on the role
of refined noise in the denoising process, offering insights into their impact on generation quality.

2 RELATED WORK

Diffusion guidance. Classifier Guidance (CG) (Mao et al.,[2023a)) enhances fidelity by leveraging
trained classifier gradients, albeit at the cost of diversity. CFG (Ho & Salimans, 2022) models an
implicit classifier to achieve similar effects. Ahn et al. (Ahn et al.| [2024) and Karras et al. (Karras
et al.l 2024) further generalize those guidance methods by intentionally generating lower-quality
samples to guide the process toward improved outputs and other guidance techniques (Hong et al.,
2023 (Sadat et al.| [2024; Hong, 2024)) generate ‘perturbed’ samples in various ways. While effective,
these methods double computational and memory costs by requiring degraded sample generation at
each step, which is essential to their operation.

Distillation of diffusion models. Diffusion models are costly at inference due to guidance and it-
erative denoising. A line of work distills teacher models into lighter students (Salimans & Ho, 2022;
Meng et al} [2023; |Sauer et al., 2024b; |Lin et al., 2024} |Sauer et al.| [2024a)), targeting fewer steps
(timestep distillation) (Salimans & Hol 2022} Sauer et al.l |2024biba) or cheaper guidance (guid-
ance distillation) (Meng et al., [2023)), with extensions via adapters (Hsiao et al.l 2024) or prompt
distillation (Zhou et al., [2025). In contrast, while existing guidance distillation approaches trans-
fer guidance signals into the student network, we distill guidance directly into the initial noise of
diffusion models, making our method fully compatible with timestep distillation.

Noise optimization. Recent studies have explored improving noise through optimization, reinitial-
ization, or task-specific refinements (Samuel et al., 2024; |[Eyring et al., 2024} Mao et al.| [2023bza;
Karunratanakul et al., 2024; Zhou et al., [2024; |Guo et al., 2024; [Mannering et al., 2025; |[Ma et al.,
2025). Approaches include reward-model optimization (Eyring et al., 2024) and one-step inver-
sion refinement (Zhou et al., [2024)) for better human preference, bootstrap sampling for rare con-
cepts (Samuel et al) [2024), patch databases for layout control (Mao et al., [2023b)), and iterative
disentanglement (Guo et al.l 2024)), systematic noise search (Ma et al., 2025). However, whether
refining noise alone can yield high-quality, guidance-free generation remains underexplored.

3 METHOD

In Sec we analyze the differences between the original initial noise and the inversion noise ob-
tained via guidance-generation followed by inversion. In Sec.[3.2] we address the errors introduced
during the inversion and propose to learn in the image space rather than the noise space. Finally,
Sec[3.3] presents our complete training framework, incorporating a multi-step score distillation loss
that mitigates the cost of backpropagation.

3.1 DIFFERENCE BETWEEN INITIAL NOISE AND INVERSION NOISE

When an image is generated with guidance and later inverted to the noise, through an inversion
method (Song et al., 2020a), the resulting “inversion noise” tends to reproduce a similar image even
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without guidance, as described in Fig. [2] (a). We investigate the relationship between the initial
noise xp and the inversion noise x%‘“de of a guidance-generated image, as their differences may
underlie the gap in the quality of denoised outputs. To this end, we sample Gaussian noise x7 ~
N(0,1), generate a guided image 25" = Denoise™(x7, ¢) using a text-to-image diffusion
model (Rombach et al., 2022)) with CFG and/or other guidance methods (Ho & Salimans|,2022;/Ahn
et al., |2024; Hongl [2024])), and then apply an inversion method (Song et al.| | 2020a;|Garibi et al., 2024;
Meiri et al., 2023) to obtain the corresponding inversion noise x5 := Inversion(zg"'“). Both
x5"% and 2$% depend on the condition ¢, which we omit for simplicity. This process yields pairs
(zr, 2541%) for subsequent analysis. The definitions of notations are provided in Appendix

le7

We generate 10K {z7,x$"%} pairs via the

aforementioned process with randomly selected 2ol (xr x94%) (o, i)
prompts from the MS-COCO dataset (Lin et al. 25 ondem | ¢ 0
2014) and Stable Diffusion 2.1 (Rombach et al., ] g 01
2022). Comparing the pixel-wise absolute dif- 3 ,s] g oos
ferences between z7 and 25" to those between 10 £ o000
random noise instances, Fig. [3| (a) shows that the 051 * oos
differences in {z7, 3"} pairs are significantly ool T % 3

Absolute difference Radial Frequency

smaller than those of ‘Random’ pairs. These
differences correspond to low-frequency compo-

nents in the frequency domain, as shown in Fig.
(b), which plots the magnitude differences be-
tween Fourier-transformed noises. This analysis
indicates that the initial noise and inversion noise
exhibit a non-trivial relationship beyond that of
random Gaussian pairs. If such a relationship
can be effectively learned, it may provide a path-
way to generating high-quality samples without

Figure 3: Analysis of the relationship between
o7 and x$U9,  (a) Histogram of pixel-wise
absolute differences. Blue: pairs of Gaussian
noise and corresponding inversion noise; Or-
ange: pairs of random Gaussian noise. (b) Mag-
nitude difference of Fourier components, show-
ing that zr and x%“ide mainly differ in low-
frequency regions.

explicit guidance during the sampling stage.

3.2 LEARNING IN IMAGE SPACE RATHER THAN NOISE SPACE Original Reconstructed
Mitigating inversion error. A straightforward approach would

be to directly learn the mapping from initial noise to inversion noise.

Although feasible, inversion methods (Song et al. 2020a; Meiri

et al.,[2023} |Garibi et al., [2024)) have inherent limitations: they rely

on approximations, and the frue inversion noise x%‘”dﬁ is not guar-
anteed. As a result, training on approximated inversion noise that
includes inversion error may limit performance (Fig. [d). In prac-
tice, we trained two noise refining networks on 10K guided images
and 10K inverted noises from the prompt “a photo of a corgi riding
a skateboard.” As shown in Fig. [5 top row, directly learning this
mapping produces blurry results.

Figure 4: Inversion error.
The right image is recon-
structed from the inversion
noise of the left one. 50 in-
version steps were used.

To sidestep this issue, we move from the noise space to the image space. The key idea is to reduce
the distance between images generated with and without guidance, d(xq, z519), rather than directly
reducing the distance between their corresponding noises, d(z7, 25"1%). Here d denotes a distance
metric, instantiated as the L2 distance. We formally state this relationship in Proposition [1| and

provide a proof in Appendix [B.2]

Proposition 1. Let x7 be an initial noise, and suppose that xg is the image obtained through de-
noising. Assuming Lipschitz continuity with distance metric d, for every xr, there exists a constant
K > 0 such that the following holds:

d(zp, 25N < kd(x, 2§1%).

In the following sections, we detail how to train the refining network, our architectural choice for
the refining network, and how to mitigate the costly backpropagation through full denoising steps.
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3.3 TRAINING FRAMEWORK

Fig. 2] (b) illustrates the training framework. Starting from Gaussian noise x7 and a prompt c,
a diffusion model generates a guided image 5" using N’ denoising steps with guidance. Any
diffusion guidance (Ho & Salimans}, [2022} [Ahn et al.} 2024} [Hong et al, 2023} [Sadat et al., 2024}

[Hong| 2024} [Karras et al.,[2024) or their combination can be applied for distillation.

Our model, noise refining network g,(-), refines the initial noise zp into the refined noise &,
which is then fed into the same diffusion pipeline to generate an image & using /N denoising steps
without guidance. The training objective minimizes the difference between & and z5% using
L2 loss. Through this process, noise refining network learns to transform initial noise into refined
noise, capturing the benefits of guidance without modifying the diffusion model. At inference time,
we simply sample a Gaussian noise as usual, apply a single refinement step, and then perform the
standard unguided denoising process starting from the refined noise. Note that both noise refining

network and the original model also receive a prompt ¢, though omitted for simplicity.

Noise refining network. Although the architec-
ture of noise refining network g4 (-) can be chosen
flexibly, we adopt a lightweight LoRA
2021)) on pretrained diffusion models. This allows Method | PickScore HPSv2 AES IR CLIPScore
noise refining network to effectively leverage the dif-  Noise space
fusion model’s rich knowledge of text and image Ours
information while enabling parameter-efficient fine-

tuning and faster convergence. Moreover, instead of

loading a new refining network, LoRA can be at-

tached for refinement and then detached, reducing

GPU memory usage and seamlessly integrating with

the original diffusion pipeline.

Table 1: Quantitative comparison between
noise space loss vs. image space loss (ours).

17.97 0.087  4.079 -2.269 18.39
21.62 0.258 5296 0.190 36.43

To better capture the signal between Gaussian and
refined noise, as shown in Fig. 3] we introduce a
residual connection in g4(-), as shown in Fig. EI (b),
allowing the network to predict only the correction
rather than the full refined noise.

Mitigating the cost of backpropagation on mul- Figure 5: Sample images from models us-
tiple denoising steps. Widely used foundational —ing noise space loss and image space loss.

diffusion models, such as the Stable Diffusion family, typically require 20-30 denoising steps to
produce high-quality results. Although it is possible to naively apply our method, doing so would
incur high computational costs due to backpropagation through the denoising network up to /V times,
along with substantial GPU memory usage, making training inefficient. These constraints are a key
reason why recent noise optimization methods (Eyring et al| 2024} [Kim et al] 2024)) are primarily
limited to one- or few-step diffusion models (Lin et al.| 2024} [Sauer et al.| 2024b).

To circumvent the backpropagation costs of the full-step diffusion model, we propose a novel ap-
proach, “multistep score distillation (MSD)”, where we detach gradients through a denoising net-

work during backpropagation inspired by score distillation sampling (Poole et al., 2022).
Specifically, the typical denoising process is: ‘

D1(... Dr(gy(xT)), )]

where D;(z) represents a single denoising step:

Dt(l‘) = a+Ts + btﬁét) (l‘), (2)

where a; and b; are coefficients derived from the

DDIM sampler (Song et al., 2020a) and are formally
defined in Appendix [B.I} Then, the loss Lpenoise, de-

fined as the L2 loss between the denoised image and

the target image z5"%, is given by

Lpenoise (96 (x7),0) :=d (D1 (... Dr(gs(z7))) , 2§"%) 3)

where d represents the L2 distance.

-0

Q
¢ ¢

Figure 6: Comparison of optimization re-
sults. Orange: full-gradient MSE optimiza-
tion; Blue: MSD loss optimization.
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(ours) (ours)
Random noise ~ Random noise  Refined noise Random noise ~ Random noise  Refined noise
w/o guidance w/ guidance w/o guidance w/o guidance w/ guidance w/o guidance
goldfish tree frog
“majestic cat mountain top” “A steampunk airship”
“A man standing in a room next to a metal and red pole.” “A man in a purple shirt and tie and purple hair.”

Figure 7: Qualitative results. Samples generated (left) from Gaussian noise without guidance,
(middle) from Gaussian noise with sampling guidance (Ho & Salimans, 2022} [Ahn et al.| 2024)), and
(right) from refined noise without guidance. The first row present results from SiT-XL/2, the next
row from SD2.1, and the final row from SDXL.

In MSD, we perform the typical denoising process but detach the gradients on the denoising network
€p at each step. Specifically:

Lymsp(ge(xr),0) :=d (F1 (... Fr(gs(zr))) , 25"*) “4)
where
Fi(x) = apxy + by SG(eét)(x)). 5

SG(+) denotes the stop-gradient (detach) operation.

We conduct a pilot experiment to examine the effect of detaching gradients in the denoising process.
Specifically, we optimize an initial Gaussian noise x7 using the MSD loss Lysp and the full-step
gradient 10ss Lpenoise to make the denoised image close to the given target acg“id"‘, and compare the
results in Fig. [0l As shown, detaching gradients leads to faster convergence and sharper images
while significantly reducing computational costs. This improvement arises because skipping the
denoiser Jacobian avoids unstable multi-step backpropagation and prevents the gradient explosion
or vanishing that occurs when repeatedly backpropagating through the same denoiser, similar to
long-horizon instability in recurrent networks. We provide further discussion in Appendix[B3]

In our training framework, the noise refining network g (-) is trained to minimize Lysp(ge(z7), 6)
with respect to the refining network parameters ¢. We validate our approach, demonstrating that

MSD closely approximates learning with the full-gradient 1oss Lpenoise (94 (1), 6). This is formal-
ized in the following proposition, with a detailed proof provided in Appendix [B.2}

Proposition 2. By approximating the gradients through multistep score distillation (MSD) using
detached gradients at each step, we approximate the full-gradient objective with a mild assumption.
In conclusion, the two gradients can be approximated as follows:

vd)EDenoise (9¢> (xT)7 9) ~ kv¢£MSD(g¢($T)7 9)7 (6)

where k € (0, 1) is constant.
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4 EXPERIMENTS

In this section, to show the effectiveness and efficiency of the noise refining network, we present
extensive qualitative and quantitative results. Following this, we demonstrate the advantages of our
method which stem from preserving the diffusion pipeline intact, such as its generalizability to other
fine-tuned diffusion models and compatibility with time-step distillation methods.

4.1 SETUP

Training setup. To evaluate the effectiveness of NoiseRefine, we train the noise refining network
on three models with distinct conditions, objectives, and architectures: a class-conditional flow-
matching model (SiT-XL/2 (Ma et al., 2024)) and two text-to-image (T2I) diffusion models (Stable
Diffusion (SD) 2.1 (Rombach et al.,2022) and SDXL (Podell et al., 2023)). For T2I models, prompts
are sampled from MS COCO (Lin et al., 2014) and Pick-a-Pic (Kirstain et al., [2023) for training.
Notably, our method does not require paired image datasets. The refining network is trained with
classifier-free guidance (CFG) (Ho & Salimans), [2022)) on the class-conditional model, and with
both CFG and perturbed-attention guidance (PAG) 2024) on the T2I models. Further
implementation details are provided in Appendix [D]

Evaluation setup. For T2I models, we generate 30K images for evaluation from 30K unique
prompts randomly sampled from the MS COCO 2014 validation set, disjoint from the training split.
For SiT-XL/2, we use 50K samples with ImageNet conditions. All qualitative examples are drawn
from these sets. For the main experiments with SiT-XL/2, we use the Euler sampler with 20 denois-
ing steps. For SDXL and SD 2.1, we use the DDIM sampler with 20 denoising steps.

4.2 QUALITATIVE AND QUANTITATIVE EVALUATION

Qualitative comparison. Fig.[7]presents rep-  ypje 2. Quantitative comparison of image
r@:sentat.ive SE}mples. Withoqt guidance,' Gaus- quality. 30K prompts from MS-COCO
sian noise yields spatlauy 1ncoherent.1mages validation dataset were used for evalua-
(Ist, 4th columns), while refined noise pro- ion " Guidance Distil. indicates guidance distil-

duces consistently higher-quality results with 1,400 (Meng et al},[2023).

plausible structure (3rd, 6th columns). This un-

derscores the critical role of the initial noise and Model | Initial Noise | Sampling Guidance | FID| IS |
demonstrates that our refining network distills Gaussian X 1843 40.00
guidance signals into spatially informed noise, sitxi2 | G|y G piviy | 1212 S0
enabling consistent generations. Additional re- Refined (Ours) X 1080 5059
sults on SiT-XL/2, SD 2.1, and SDXL are pro- Gaussian X 271 2086
vided in Appendlx @ (FlgS. @-@ Sb2.1 giﬁ:::: X (Guidar‘z/ce Distil.) ig(l)g g;ig
Quantitative comparison. To evaluate im- Refined (Ours) d 1462 3490
age fidelity and diversity, we compute Fréchet Gaussian s g8 ol
Inception Distance (FID) (Heusel et al, 2017 SDXL | Gaussian | X (Guidance Distil) | 1857 3751
and Inception Score (IS) (Salimans et al., 2016 Refined (Ours) X 2622 2763

as shown in Tab. P] For each model, we .

. . . Table 3:
compare four settings: (1) unguided sampling
from Gaussian noise (our baseline), (2) guided
sampling from Gaussian noise, (3) guidance-

User study on image quality and
prompt adherence.

Gaussian Noise ~ Refined Noise (Ours)

distilled sampling (Meng et al}, 2023) from  Metric w/ Guidance w/o Guidance
Gaussian noise., anq “@ .unguidc.id sampling  “pa0c Quality 46.04% 53.96%
from refined noise with noise refining network.  Prompt Adherence 48.24% 51.76%

Refined noise consistently improves FID and IS
over Gaussian noise, and achieves quality close to guided or guidance-distilled sampling with only
a single refinement step. Details on implementation of each method are provided in Appendix

Training cost. Since our proposed method involves guided sampling during training, it introduces
additional computational overhead compared to guidance distillation (2023). For a fair
comparison, we provide a detailed training cost analysis in Appendix and report the perfor-
mance of both methods over training steps in Fig. 26| (Appendix [A-8). While our noise-refining
network converges more gradually, it reaches the same FID as guidance distillation at around 2K
steps and continues to improve thereafter.
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Gaussian noise Refined noise Gaussian noise Refined noise Gaussian noise Refined noise Gaussian noise Refined noise

Anime
SD-Turbo (1 Step)

Clay

(a) Generalizability on fine-tuned model (b) Generalizability on timestep-distilled model

Figure 8: Generalizability and compatibility of refined noise. (a) Results on fine-tuned models
(animation and clay object domains) comparing Gaussian vs. refined noise. (b) Results on timestep-
distilled models (SD-Turbo), showing that refined noise improves structural coherence and quality
over Gaussian noise.

Table 4. Quantitative results on generalization to finetuned models across different domains.

Domain | Initial Noise | Guidance | PickScore HPSv2 ImageReward Aesthetic CLIPScore

Gaussian X 17.95 0.18 -1.69 532 18.31

Clay Gaussian 4 19.17 0.24 -0.32 5.53 26.36
Refined (Ours) X 18.82 0.21 -0.95 5.39 23.61

Gaussian X 16.47 0.17 -1.59 5.21 22.37

Anime Gaussian v 17.68 0.24 0.04 5.56 30.04
Refined (Ours) X 18.08 0.24 -0.34 5.48 29.62

User study. We conducted a user study to evaluate prompt adherence and image quality by com-
paring images generated from random Gaussian noise using guided sampling and images generated
from refined noise. As shown in Tab. ] participants preferred the refined-noise samples (obtained
with a single refinement step) and the guided samples at similar rates. Additional details and com-
parisons with Gaussian noise without guided sampling are provided in Appendix [E.2]

Ablation studies. We provide additional ablations in Appendix |C| including network architec-
ture, number of denoising steps IV, and other factors. We also report the results of SiT-XL/2

(2024) using the Heun sampler with 125 denoising steps, following the original SiT paper, in
Appendix |A.13]

4.3 ADVANTAGES OF NOISE REFINEMENT

In this subsection, we highlight the advantages of noise refining for guidance-free generation. This
approach preserves the diffusion pipeline, including the denoising network, maintaining the model’s
integrity. Our method can be viewed as a form of prompt learning (Zhou et al.| [2022a)), which
prevents catastrophic forgetting (Kirkpatrick et al.,2017). Further discussion is available in[A.T}

Generalizability on different domains. Guidance distillation can remove the
need for guidance in a base model. Yet, applying it to fine-tuned models necessitates a separate
distillation step for each variant, making the process computationally expensive. In contrast, our
noise refining network, trained on the base model, can be directly applied to fine-tuned models,
enabling efficient adaptation across multiple domains. We present this by transferring our noise
refining network, trained on Stable Diffusion 2.1, to a fine-tuned model in the animation and clay
object domain. Fig. [§] (a) show that our model effectively refines noise, eliminating the need for
guidance across different domains. We also provide quantitative results for this zero-shot transfer
of the noise refining network in Tab. 4} showing performance comparable to guided generation.
Additional results are in Appendix@m

Compatibility with timestep distillation models. Our method integrates seamlessly with existing

timestep distillation approaches (Luo et al.,[2023a} 2024a; [Xu et all, 2024b; [Luo et al}
2023D;|Yin et al.}[2024; [Lin et al., [2024; [Salimans & Ho} [2022) without requiring additional training,
since it preserves the diffusion pipeline unchanged. We apply refined noise to SD-Turbo (Luo et al.,

2023a)) and evaluate its performance. Qualitative results are shown in Fig. [§] (b), and quantitative
comparisons are reported in Table 5]

Compared to generation starting from Gaussian noise, our approach improves structural coherence
and overall quality, highlighting the role of structured initial noise even in few-step models. More-
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Table 5: Quantitative results of refined noise on timestep-distilled model (SD-Turbo).

Noise | Inference Step PickScore HPSv2 AES ImageReward CLIPScore | FID | ISt

Gaussian 1 Step 21.38 0270  5.47 0.04 30.97 27.18 3431
Gaussian 2 Step 21.75 0295  5.62 0.11 30.87 30.24 3246
Refined 1 Step 21.92 0.300 5.51 0.43 31.19 2494 38.07

(xr, %7) (X1, Xr)

Random

o o o o
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Figure 9: Analysis of initial noise 1 vs.  Figure 10: Analysis of initial noise x vs. re-
refined noise Z7. (a) Histogram of ab-  fined noise Z7. The top row visualizes the absolute
solute differences (vs. pairs of random noise difference, and the bottom row shows the cor-
Gaussian noise). (b) Fourier magnitude  responding generated images. The added signal acts
differences, showing variation mainly in as a coarse structural layout for generation.

low frequencies.

over, single-step inference with refined noise generally outperforms two-step inference from Gaus-
sian noise in terms of numerical metrics.

5 DISCUSSION

In this section, we analyze what noise refining network learns and identify components in refined
noise that support better generation quality.

Low-frequency components aid denoising. Analysis of the refining network’s output shows that
it primarily adds low-magnitude, low-frequency signals. In Fig.[9 (), the difference between Gaus-
sian and refined noise is concentrated in small values, unlike the difference between two Gaussian
samples. Moreover, (b) indicates that noise refining network naturally produces low-frequency lay-
outs without explicit constraints. This observation is consistent with Fig. 3] where the gap between
inversion noise and Gaussian noise also lies mainly in the low-frequency range.

As illustrated in Fig. these components are condition-dependent and serve as an initial layout,
shaping object structures early in denoising and improving coherence. To further examine their
role, we performed frequency decomposition (separating low- and high-frequency contributions;
Appendix and cross-prompt experiments (testing robustness under mismatched prompts; Ap-
pendix [A.3)), which highlight the critical importance of low-frequency signals.

Consistent trajectory. The third row of Fi g. Training Dataset Generated image w/ same prompt (Ours)
shows that starting from refined noise, the model

quickly forms plausible layouts in early steps, en-

abling it to focus on adding details during denois-

ing. In contrast, the first row shows that Gaus-

sian noise fails to establish a coherent structure “a pizza is covered in greens on a plate”

early, leading to misplaced details and leaving

ambiguous regions untouched throughout denois-

ing. We also analyze the corresponding cross-

attention maps in Fig. 20|of Appendix.

Diversity and novelty. Although refined noise
provides an initial layout, results remain diverse
across seeds, with IS (Salimans et al., 2016)
scores surpassing those from Gaussian noise
(Tab.]2). Nearest-neighbor retrieval (Fig.[T)) con-
firms that the outputs are not simple replicas of
training data but genuinely novel samples.

“A white plate with a brownie and white frosting”

Figure 11: Nearest generated images from
training images. From 10 generated samples,
the 3 most similar to the training data are se-
lected, showing novelty beyond the training
data.
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Random noise w/o guidance

Random noise w/ guidance

Refined noise w/o guidance (ours)

Figure 13: Controlling the strength
of noise refinement. Numbers in
the top-left corner indicate the scaling
factor of gg.

Figure 12: Refined noise enables coherent trajectories.
From left to right, ¢ predictions are shown as ¢ decreases
from T to 0. Refined noise yields a consistent trajectory
by providing initial layout.

Controllability. The strength of guidance can be adjusted in two ways. In the training-free case,
scaling the output of gy, the residual between Gaussian and refined noise, controls the coherence
of image structure (Fig. [T3), analogous to tuning the guidance scale. In the training-based case, the
model can be conditioned on an additional guidance-scale embedding, with results in Appendix[A.4]

Comparison to related works. Our goal is to distill diffusion guidance into the noise space, which
differs from prior work on noise reinitialization, search, or optimization. For completeness, we dis-
cuss related approaches and their objectives, and provide comparison experiments in Appendix [A.9]

6 CONCLUSION

In this work, we propose NoiseRefine, a method that replaces costly guidance in diffusion sam-
pling with a single noise refinement step. Our approach preserves the original diffusion pipeline,
prevents catastrophic forgetting, and enables seamless integration with existing timestep distillation
techniques (Meng et al.l 2023}, [Sauer et al.l |2024b) to enhance image quality and coherence. Ad-
ditionally, we analyze the properties of refined noise and its role in denoising, providing insights
into the influence of noise in diffusion models. We believe our work paves the way for leveraging
expressive noise space in a training-based manner.

7 REPRODUCIBILITY STATEMENT

We provide detailed explanations and proofs of the theoretical results in Appendix [B] and further
describe the architecture, implementation, and experimental details in Appendix @} We will also
release our code and model checkpoints to ensure reproducibility.
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APPENDIX

In the Appendix, we provide discussions including the in-depth analysis on refined noise and its
impact on denoising process (Section [A), clarify the notations and formulations related to diffusion
models used in the main paper and provide the proofs for our propositions (Section [B]), more abla-
tion studies regarding noise refining network (Section [C)), implementation details and experimental
settings (Section D), additional results including qualitative results, comparison with other methods,
user study (Section [E).
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A  ADDITIONAL DISCUSSIONS

In this section, we discuss the advantages of training noise refining network g4 for guidance-free
generation (Sec. [A-I). In addition, we present our hypothesis on why refined noise eliminates the
need for guidance methods, explaining it step by step (Sec.[A.2). We further analyze the impact of
initial noise and prompt on the generated image (Sec. [A.3).

A.1 EFFECTIVENESS OF PROMPT LEARNING

Why is learning noise mapping beneficial? A useful perspective comes from the success of prompt
learning in large-scale models. Models such as CLIP (Radford et al, 2021), trained on web-scale
datasets with billions of parameters, are difficult to fine-tune due to their sheer size and the risk
of disturbing well-learned representations (Zhou et all, [2022b). Instead, prompt learning, which
optimizes input prompts rather than model parameters, has emerged as an effective alternative (Zhou
et al} [2022bla; Jiang et al.| 2020} [Shin et all, [2020). In particular, conditional prompt learning
methods like CoCoOp (Zhou et al.,|2022a) generate prompts based on different inputs. Similarly, in
our approach, noise prompts are learned based on Gaussian noise x7 and the text prompt ¢, allowing
for more efficient guidance.

In this context, restricting training to the noise space rather than modifying the entire denoising
pipeline offers several advantages. As illustrated in Fig. 9] and Fig. [I0] key low-frequency compo-
nents in the noise space encode structural information such as image layout. This enables efficient
learning with a relatively small dataset, without requiring modifications to the entire model. By
contrast, full fine-tuning often leads to excessive computational costs and the risk of overfitting.

More importantly, unlike guidance distillation methods such as (Meng et al., [2023)), our approach
preserves the original model and prevents catastrophic forgetting (Kirkpatrick et al., [2017). This
ensures that pretrained modules, such as DreamBooth (Ruiz et al.,[2023) or LoRA (Hu et al., 2021),
remain fully compatible. Fig. [T4] illustrates this effect: when applying the Miranda Kerr LoRA,
guidance distillation alters identity characteristics, whereas our method preserves
the original sample’s identity while improving image quality. This demonstrates that our method
maintains the integrity of the representation space, while guidance distillation compromises it.

Refined noise  Guidance Distill

Figure 14: Compatibility of LoRA for each method. Results of applying the Miranda Kerr’
LoRA, trained on SD 2.1. Distilled model exhibits different identity with ‘Miranda Kerr’.

A.2 WHY DOES REFINED NOISE HELP DENOISING?

To identify which refined noise components contribute to guidance-free generation, we first de-
compose the refined noise into multiple frequency components. In this study, we utilize a two-
dimensional Fourier transform to break down both the refined noise and the initial noise into their
respective frequency components. Each frequency component is represented by a frequency band,
denoted as (a, b), which corresponds to the frequency range from a to b. Note that although we
explored other decomposition methods, such as dividing the noise into patches, they did not yield
interpretable results.
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(a) denoised images according to the cutoff band

0,0.1) (0.1,0.2) 0.9, 1)

(b) denoised images according to the cutoff radius

R=0 0.01 0.1

Figure 15: Visualization of denoised images according to the cutoff band. Both refined and
initial noise were transformed into the frequency domain using Fourier transforms. The frequency
domain of the initial noise, normalized such that the maximum radius is 1. (a) The frequency divided
into intervals of 0.1. For each interval, the corresponding frequency components were replaced
with those from the refined noise, followed by denoising. The results show that only when the
(0, 0.1) frequency band was replaced does an image generated by the refined noise emerge. (b)
Visualization of denoised images by incrementally increasing the cutoff radius from 0 in steps of
0.01 and replacing the corresponding components of the initial noise with refined noise. The results
demonstrate that images denoised using refined noise are obtained starting at a cutoff radius of 0.03.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Radius

Figure 16: Visualization of the norm based on the frequency-filtered radius of refined noise.
This visualization demonstrates the increase in norm as the cutoff radius in the frequency domain is
expanded. The refined noise was transformed into the frequency domain using a Fourier transform,
and the norm corresponding to each cutoff radius was calculated and plotted.

Low-frequency components matter. Using 2D Fourier transforms, we transform both refined and
initial noise into the frequency domain. The initial and refined noise frequency domain is normalized
into (0,1). We synthesize a new noise signal by replacing specific frequency bands of the initial
noise with the corresponding bands from the refined noise. Fig.|15|(a) presents the generated images
corresponding to different frequency bands, demonstrating that the low-frequency components of the
refined noise predominantly influence the generation process. In Fig. [I3](b), images are generated
by varying the band length within the low-frequency region. The results indicate that, despite the
low magnitude of the low-frequency components, which can be confirmed through Fig.[16] they are
sufficient to reconstruct the image effectively.

Diffusion models can generate images using only low-frequency components. In Fig. we
examine how well diffusion models can denoise when specific frequency bands of refined noise are
retained, and the values of the remaining bands are set to zero (using ideal high/low pass filters).
The top row shows the results of applying a 2D Fourier transform to the refined noise, normalizing
the FFT frequency domain into (0, 1), and sequentially retaining lower frequency bands, such as
(0,0),(0,0.1),(0,0.2), ..., (0, 1), while setting the remaining bands to zero. These noise inputs are
then denoised without CFG (Ho & Salimans|, [2022). The figure demonstrates that the diffusion
model begins forming a recognizable corgi shape even when only the lower 50% of frequency bands
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Frequency band to keep, otherwise zero
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Figure 17: Denoised images using only low(top) / high(bottom) frequency components. Diffu-
sion models can generate the overall structure of the image using only the low-frequency bands of
the refined noise. We use DDIM (Song et al., [2020a)) with 20 steps for denoising without CFG, and

the prompt was “a photo of a corgi”.

of the refined noise are present. In contrast, noise containing only high-frequency bands fails to
generate coherent images.

Frequency band to keep, otherwise reinitialize
(0,0) (0,0.1) (0,0.2) (0,0.3) (0,0.4) (0,0.5) (0, 0.6) (0,0.7) (0,0.8) (0,0.9) (0, 1.0)

Low freq

High freq

©, 1) (0.1, 1) 0.2, 1) 0.3, 1) (0.4, 1) (0.5, 1) 0.6, 1) 0.7,1) 0.8, 1) 0.9, 1) (1,1

Figure 18: Denoised images using only low (top) / high (bottom) frequency components with
reinitialization. We use DDIM (Song et al., [2020a) with 20 steps for denoising without CFG, and
the prompt was “a photo of a corgi”.

High-frequency components contribute details. Here, we use the same noise decomposition
process of refined noise as Fig. |17|but following (Geng et al., [2025), we reinitialize the frequency
components that were set to zero with corresponding components from standard Gaussian noise,
then denoise again. The results, shown in Fig. [I8] indicate that when all frequency components
are present, the diffusion model can generate clear and complete images. Randomly reinitialized
high-frequency components appear to add details onto the structure formed by the low-frequency
components. While refined noise retaining only the lower 10%—-20% of frequencies can still re-
construct the original image when the rest is reinitialized, noise retaining only the high-frequency
components fails to do so. This suggests that low-frequency components alone carry the significant
information needed for image generation.

In Fig. each row visualizes images generated with only the lower 5%, 10%, 20%, and 30% (from
the top rows to last rows) frequency components of the refined noise, while the bottom row shows
images generated with only the upper 5%, 10%, 20%, and 30% frequency components. These
results confirm that low-frequency components encode the overall layout and structure, whereas
high-frequency components lack meaningful information.

From these observations, we infer that the poor quality of unguided diffusion model outputs is due
to their failure to form appropriate low-frequency components during denoising. High-frequency
details added on poorly formed layouts result in artifacts that are perceived as unnatural.

How do guidance methods form plausible initial layouts? As highlighted in (Ahn et al.,|2024),
classifier-free guidance (CFG) (Ho & Salimans, [2022) enhances the difference between conditional
and unconditional predictions at each step, amplifying “signals that can only be generated with the
condition” (e.g., features like the eyes or nose of a corgi in “a photo of a corgi”). This effectively
strengthens salient features corresponding to low-frequency components in the early denoising steps.
From this, we deduce that guidance methods (Ahn et al., |2024; Ho & Salimans, |2022; Hong et al.,
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Seed 0 Seed 1 Seed 2 Seed 0 Seed 1 Seed 2

(0, 0.05)
(0.95, 1)

0,02)  (0,0.1)
0.9, 1)

(0.8, 1)

(0,0.3)
0.7, 1)

(a) Low-frequency components of refined noise (b) High-frequency components of refined noise

Figure 19: Different denoised images using only low(a) / high(b) frequency components for
different seeds. Here we use 8§ different seeds. From the top rows, it visualizes 8 images using
only the lower (a) / higher (b) 5%, 10%, 20%, and 30% (from the top to the last rows) frequency
components of the refined noise.

2023)) add appropriate low-frequency components during inference, aiding the formation of high-
quality layouts.
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Figure 20: Visualization of 11th layer cross attention map. Token corresponding to ‘cat’ is used
for visualization among the prompt ‘a photo of a cat’. For each case, first row shows x( prediction
at each timestep and second row shows cross attention map at the timestep. When guidance is not
used, failure to create meaningful attention map across all timestep is notable, leading to completely
broken generation. However when guidance or our refined noise is used, meaningful cross attention
map is observed, leading to successful generation.

How does noise refining network form low-frequency layouts? Interestingly, noise refining net-
work naturally forms low-frequency layouts even though our training framework does not explicitly
enforce learning them as can be seen in Fig.[9] To understand this, we analyze cross-attention maps
across denoising steps. Fig.[20| visualizes these maps at different timesteps. Gaussian noise fails to
form meaningful cross-attention maps in early steps due to its near-zero signal-to-noise ratio (SNR),
which is expected. However, this failure persists in later steps, indicating an inability to form well-
aligned layouts (Fig.|20|first row).
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Several studies (Chefer et al., 2023} |Guo et al, 2024} Mao et al.,|2023b) has shown that reducing
noisy artifacts in cross-attention maps and aligning them with object regions during inference im-
proves performance. This suggests that the failure of cross-attention maps to align is a key reason
for the diffusion model’s inability to create coherent layouts. When using CFG (Ho & Salimans,
2022)) (second row) or refined noise (third row), the cross-attention maps align well with the prompt,
resulting in better outputs. Notably, cross-attention maps for refined noise exhibit accurate object
shapes from the very first step, implying that the diffusion model can form plausible layouts from
the beginning of the denoising process. This is further supported by x predictions of Fig.[20]at each
denoising step.

Implications for guidance-free generation. Without guidance methods or noise refiners aiding
the formation of low-frequency layouts, diffusion models fail to create plausible initial layouts. Ran-
dom low-frequency components lead to artifacts that are perceived as unnatural. An interesting av-
enue for future research would be identifying why diffusion models struggle to form low-frequency
components without guidance and developing training techniques to eliminate the need for guidance
during the training stage.

A.3 IMPACT OF AN INITIAL NOISE AND PROMPT ON THE GENERATED IMAGE

Noise refining prompt P; = “a photo of a lion in the wild”
Denoising Direction

t=T T-1 t=0

(a) Gaussian noise, P, = “a photo of a lion in the wild”

(b) Refined noise, P, = “a photo of a lion in the wild”

(¢) Refined noise, P, = “”

(d) Refined noise, P, = “a photo of a tiger in the wild”

(e) Refined noise, P, = “a laptop computer on a desk”

(e) Refined noise, P, = “a laptop computer on a desk”, with CFG

Figure 21: Visualization of denoised image using different prompt for noise refinement ¢y and
denoising g,.
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We previously demonstrated how refined noise affects initial layouts and how guidance and refined
noise contribute to forming these layouts effectively. In this section, we investigate how the ‘layout’
and the prompt influence the final generated image during the denoising process. Specifically, we
explore what happens when the prompt used to generate the initial layout (P;, one of the inputs
to noise refining network g4) differs from the prompt used during denoising (P», one of the inputs
to the denoising network ¢y in the Guidance-Free T2I Pipeline shown in Fig. [38). Does the model
prioritize one prompt over the other? Or does it attempt to harmonize both? We investigate this
question through the results shown in Fig.

* Fig.[21](a) visualizes the predicted x( term in Eq.[T3|during the denoising process when no
layout is provided (starting from Gaussian noise). The leftmost image corresponds to the
predicted zg at t = T', and subsequent images are visualized every three steps. Due to the
noisy and ambiguous nature of the initial layout of Gaussian noise, the diffusion model fails
to form a coherent lion layout from the initial structure. Instead, it partially adds features
such as fur, mane, nose, or mouth, resulting in poor perceptual quality.

* In contrast, (b) shows that in the case of P, = P>, refined noise effectively forms the lion
layout from the beginning. The diffusion model accurately places the overall lion shape,
including its mane, eyes, nose, and mouth, in appropriate positions during the denoising
process.

* (c) shows the results when the denoising prompt P is set to an empty prompt (null prompt).
Despite this, the model successfully generates a feline animal based solely on unconditional
generation, as the layout sufficiently captures the overall structure of the object. This can
be interpreted as the information embedded in the refined noise.

* (d) demonstrates the case where the denoising prompt P is set to a prompt similar to the
initial layout prompt (“a photo of a tiger in the wild”’). When a similar prompt is used, the
image retains the layout provided by the refined noise while also adhering to the prompt.

* In (e), P is set to an entirely independent prompt (“a laptop computer on a desk’). Here,
the model fails to generate a coherent image corresponding to the layout or the prompt.
The diffusion model attempts to form a laptop on the existing lion or feline layout but fails
to align with the laptop prompt, leading to failure.

* Finally, (f) shows that applying CFG (Ho & Salimans|,2022) in the settings of (e) allows the
diffusion model to disregard the initial layout and generate a laptop. This partially explains
why CFG consistently produces high-quality images. Randomly generated initial noise is
unlikely to align with the prompt (as shown in (a)), and CFG helps the model ignore such
initial noise and generate images consistent with the given prompt.

a=0.0 a=02 a=04 a=0.6 a=038 a=1.0

(a) Interpolated Gaussian noise

(b) Refined noise

Figure 22: Images from interpolated refined Gaussian noise.

Interpolation between refined noise. To evaluate whether noise refining network effectively
learns noise mapping, we follow (Song et al., |2020ajb) to perform spherical interpolation on ini-
tial noise samples, generating multiple interpolated noises. We then refine each interpolated noise
using noise refining network and verify that the refined noises effectively interpolate natural images.
In Fig. (a) shows the images denoised by the diffusion model without any guidance method,
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0.0 3.0 6.0 9.0 0.0 3.0 6.0 9.0
(ours) (ours)
Refined noise Refined noise
w/o guidance w/o guidance
Random noise Random noise
w/ guidance w/ guidance
“A photo of a car, detailed, 8k, realistic..” “A photo of a cat.”
(ours) (ours)
Refined noise Refined noise
w/o guidance w/o guidance
Random noise Random noise
w/ guidance w/ guidance
“A photo of a cute, beautiful, teddy bear.” “A face of beautiful woman.”

Figure 23: Qualitative results of the training-based approach for controlling guidance strength.
Numbers above each column indicate the guidance scale provided as input to the model. Our results
show that NoiseRefine effectively learns the controllability of classifier-free guidance, preserving
the expected variations in image characteristics as the guidance scale changes.

starting from spherical interpolations of two random Gaussian noises. Specifically, each interpo-
lated noise is obtained by performing slerp(zr,, x1,, a) for various interpolation ratios a, where
slerp performs spherical interpolation between two Gaussian noise at a ratio of a.

Fig. [22] (b) shows the results of denoising the refined versions of these interpolated noises without
guidance. The results demonstrate that the refined noises effectively interpolate between the two
images. This indicates that noise refining network does not simply memorize specific low-frequency
signals while ignoring the input noise. Instead, it effectively learns a mapping from a Gaussian noise
space to a guidance-free noise space where semantic interpolation between guidance-free images is
possible.

A.4 CONTROLLABILITY

The guidance strength can be controlled by scaling the output of noise refining network, which is
a training-free approach. Here, we further demonstrate on SD2.1 that the model can also refine
noise through a training-based approach by incorporating the guidance scale as an additional in-

put, following (Meng et all, 2023 [Luo et al [2023a). The model architecture and dataset remain

unchanged except for adding a small linear projection layer for the guidance scale. Specifically, fol-
lowing the conditioning design in [2023), we inject the guidance scale into the existing
timestep embedding rather than introducing a new conditioning branch. The scale is first encoded
using a sinusoidal embedding and then projected through a linear layer to match the dimension of
the timestep embedding. This keeps the architectural modification minimal and leaves the overall
training pipeline nearly identical. Training is conducted for one epoch. Fig[23|presents qualitative
results and Fig[24] provides the quantitative results.

A.5 GUIDED SAMPLING WITH REFINED NOISE

Our noise refining network improves image quality not only in unguided sampling but also when
guidance is applied. Unlike random Gaussian noise, refined noise (Fig. [I0) preserves structural
cues and provides a consistent “initial layout”, reducing artifacts such as extra limbs and enhancing
overall coherence (Fig. [23).

We also provide quantitative results in Tab. [6] using MS-COCO prompts under the same settings
as the main quantitative results in Tab. 2] following the evaluation configurations detailed in Ap-
pendix [D:2.2] This shows gains in prompt alignment and human preference.
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Figure 24: Quantitative results of training-based approach to control guidance strength. The
metrics were computed using 5K prompts from the MS COCO 2014 validation set 2014).

Gaussiannoise  Refined noise Gaussiannoise  Refined noise
a B

SD2.1

SDXL

Figure 25: Effectiveness of refined noise in guided sampling.

A.6 INFERENCE TIME ANALYSIS

We report comparison results of inference time for each method in Tab. [/} Inference time is com-
puted by averaging time per image across 30K images generated with the inference step of 20 and a
batch size of 1 on RTX 3090.

A.7 TRAINING COST ANALYSIS

For training cost analysis based on NFE (Number of Function Evaluation), we assume unit cost for
Refine (R), Backpropagation (B), Denoising (D), and VAE (V') operations. Following Appendix
we denote N’ as the number of denoising steps used during inference (including dataset generation)
and N as number of denoising steps used during training. In our SD2.1 setting, we used M = 50K
samples, E = 6 epochs, N’ = 20, and N = 10.

Based on these parameters, the total training cost of our method amounts to 5.65M steps, which is
only 0.054% of the original training cost of SD2.1 (Tab.[g).

A.8 COMPARISON OF TRAINING EFFICIENCY WITH GUIDANCE DISTILLATION

Although our primary aim is not to develop a more efficient guidance distillation procedure but
rather to explore whether diffusion guidance can be distilled into noise instead of the network, we
nevertheless provide a training-efficiency comparison with conventional guidance distillation for
reference. To this end, we present the FID curves over steps for training noise refining network and
a guidance-distilled model on SiT-XL/2 in Fig. 26]

Note that, aside from the dataset generation phase, training noise refining network imposes a higher
per-step computational cost: our method applies a loss after denoising for IV steps, whereas standard
guidance distillation computes its loss after a single denoising step. Thus, in theory, the GPU cost
per step differs by approximately a factor of N. Because the two models were trained on different
hardware environments, we present step-wise FID curves rather than wall-clock comparisons.
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Model | Noise | PickScoret HPSv2+ AEST IRt CLIPScoret FID| ISt

SD 2.1 Gaussian 21.70 0.280 5.530 0.294 30.72 18.74  32.55
' Refined 21.93 0.324 5.602  0.448 30.99 2294  34.37
SDXL Gaussian 22.02 0.280 5.706  0.717 30.77 21.02  34.60
Refined 22.48 0.289 5720  0.977 31.36 2234 3523

Table 6: Quality improvement of refined noise in guided sampling.

Model | Initial Noise | Guidance | Inference Time |

Gaussian X 1.357s

SD2.1 Refined X 1.504s
| Gaussian | v | 2.589s
Gaussian X 3.218s

SDXL Refined X 3.323s
| Gaussian | v | 5.525s

Table 7: Quantitative comparison of image quality and computational cost. 30K prompts from
MS-COCO (Lin et al.,|2014)) validation dataset were used for evaluation.

As shown in the figure, training noise refining network converges somewhat more slowly, but it
reaches the same FID to guidance distillation at around 2K steps

A.9 COMPARISON WITH OTHER NOISE OPTIMIZATION/REFINEMENT WORKS

Our primary goal is to learning noise space where diffusion guidance is distilled. This objective
fundamentally differs from prior work on noise optimization or refinement. As a result, direct com-
parisons are not entirely fair. Several other studies pursue distinct objectives, such as layout syn-
thesis (Mao et al., 2023b)), rare concept generation (Samuel et al., [2024)), or prompt alignment (Guo
et al.;,2024). Also, method of (Eyring et al.,2024) is restricted to timestep distilled (one-step) diffu-
sion models, where comparisons with multi-step models are infeasible due to memory constraints.
Nevertheless, our approach is related in terms of improved noise initialization, and thus partial com-
parisons can still be informative. Thus, we present some comparisons to provide useful insights for
the research community.

A.9.1 INITNO

We compare image quality with (Guo et al.;|2024) using a subset of the Attend-and-Excite prompt
dataset and Stable Diffusion 2.1, optimizing only the initial noise. Since there are no corresponding
ground truth images for the Attend-and-Excite prompts, we evaluate both human preference metrics
and prompt alignment scores. As shown in Tab.[9] our method outperforms in all metrics, especially
in the setting guidance is not used.

A.9.2 PAHI

PAHI (Kim et al., [2024) exists under the category of noise manipulation. To the best of our knowl-
edge, this work is the first in its focus on learning the noise space itself, rather than optimizing
or selecting. Therefore, we compare our proposed approach with this methodology PAHI (Prompt
Adaptive Human preference Inversion) (Kim et al., 2024) in this section.

There are several key differences between the two approaches. First, the tasks being addressed are
distinct. While PAHI (Kim et al.||2024) aims at generating outputs aligned with human preferences,
our objective is to replace conventional guidance mechanisms entirely. Second, our method offers
much greater flexibility. PAHI (Kim et al.| 2024) assumes that sampling from certain A (p, X)
instead of a standard normal Gaussian distribution is more beneficial and predict ;« and ¥. However,
this assumption lacks a strong theoretical foundation. In contrast, our approach aims to learn a
gaussian-free noise space without imposing such constraints. Additionally, while PAHI (Kim et al.,
2024) is limited to few-step models due to the computational overhead of backpropagation, our
approach leverages MSD loss, enabling the use of full-step models without modification.
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Stage | Formula | # of NFE
Dataset Generation 2N"-D+1-V)-M 2,050K
Post-Training (1-R+N-D+1-B)-M-E 3,600K
Total Training Cost Dataset Generation + Post-Training 5,650K

Original SD2.1 Training \ Batch Size (2048) * Total Step (1.69M) * (1- D +1-V +1- B) \ 10.383B

Table 8: Training cost analysis based on NFE (Number of Function Evaluation).

—8— NoiseRefine
181 Guidance Distill

174

16

15 A

FID

14
13
12

104

0 1000 2000 3000 4000 5000 6000
Step

Figure 26: Comparison of training efficiency with guidance distillation on SiT-XL/2 (Ma et al.,
2024).

Although the official code for PAHI (Kim et al. [2024) is unavailable, we adhere to the guidelines
presented in their paper as possible and compare with our method. Specifically, we compare noise
refining network with the setup that samples noise from A (i, ) where 1 and ¥ is predicted by
MLP for a given prompt. Both models are trained with filtered 20K MS COCO(Lin et al., [2014)
dataset for 25K steps using two RTX 3090 GPUs. Example qualitative results of employing MLP
are presented in Fig.[27] and quantitative comparisons are shown in Tab[I0} Across both evaluations,
noise refining network outperforms the other setup by a significant margin, showing the effectiveness
of our proposed method.

Method \ FID
MLP (Kim et al.}[2024)

oL ) 217.30
estimating Gaussian parameters
Figure 27: Qualitative results when employing Noise refining network | 13.74
a shallow 2-layer MLP for estimating Gaussian
parameters, as proposed by (Kim et al.,|2024). Table 10: Quantitative results when em-

The results are significantly blurry, indicating that ploying a shallow 2-layer MLP for esti-
the simple approach of predicting p and 3 under mating Gaussian parameters, as proposed
the assumption that the optimal noise lies within by (Kim et al., 2024).

N (u, X) performs poorly.

A.10 ROBUSTNESS TO THE NUMBER OF DENOISING STEPS AND SAMPLERS
Since noise refining network is trained with a fixed sampler (DDIM (Song et al.,|2020a)) and denois-

ing steps (10), concerns arise regarding its performance when using different samplers or denoising
steps. To examine the impact of varying samplers and denoising steps, we conduct experiments com-
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Guidance | Initial Noise | PickScore HPSv2 AES ImageReward CLIPScore

X Gaussian 19.78 0.174  5.073 -1.684 24.95
X InitNo 19.80 0.176 ~ 5.071 -1.666 25.02
X Refined (Ours) 21.14 0.241  5.389 -0.307 30.31
v Gaussian 21.67 0.260  5.525 0.368 32.25
v InitNo 21.68 0.261  5.524 0.376 32.26
4 Refined (Ours) 21.83 0.276 5.571 0.533 32.51

Table 9: Comparison with different noise initialization methods under guided (top) and un-
guided (bottom) settings.

paring qualitative results across diverse configurations. For comparison, we select DPM++ SDE (Lu
et al.}|2022), DPM++ 2M (Lu et al.,|2022)), and EDM (Karras et al.,[2022)), using the prompt “a photo
of a cat”. The results, presented in Fig. [28] show that our refined noise consistently produces reliable
outputs regardless of the denoising timestep or sampler. This demonstrates the robustness of noise
refining network across diverse samplers and denoising step configurations.
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DDIM

DPM++ SDE

DPM++2M

EDM

DDIM

DPM++ SDE

DPM++2M

EDM

DDIM

DPM++ SDE

DPM++2M

EDM

(a) 10 Steps

(c) 50 Steps

Figure 28: Inference results on our refined noise in various denoising steps and sampler set-
tings. (a), (b), and (c) present inference results employing different samplers at denoising steps of
10, 20, and 50, respectively. The consistency observed across these results highlights the robustness
of our refined noise to variations in both denoising steps and samplers.

27



Under review as a conference paper at ICLR 2026

A.11 ANALYSIS OF DDIM INVERSION

Following Tab.2 in the DDIM (Song et al.}[2020al), we evaluate reconstruction quality under different
numbers of DDIM inversion steps. Using 100 COCO (Lin et al.| 2014) prompts, we first generate
images with CFG (Ho & Salimans| [2022)) scale 7.0 and PAG (Ahn et al] 2024) scale 3.0, and
then perform inversion and reconstruction using the same number of DDIM steps. Qualitative and
quantitative results are reported in Fig[29)and Tab[TT] respectively.

The results show that simply increasing the number of inversion steps does not necessarily improve
reconstruction quality. Instead, performance stabilizes within a moderate range, typically around
50-200 steps. This observation is consistent with prior findings of ReNoise (Garibi et all [2024)),
whose Fig. 8 also indicates that more steps of DDIM Inversion do not always lead to better recon-
structions.

Due to the inherent approximation nature of DDIM inversion, even within this favorable step range,
perfect reconstructions remain challenging. Fine-grained details are often lost compared to the orig-
inal images, highlighting the intrinsic limitations of the DDIM inversion.

DDIM Inversion Step | 10 20 50 199 200 500 999
Avg. Error 85727.84 58266.11 24523.32 20565.77 2593591 46407.59 63493.84
Avg. PSNR 12.16 15.82 23.24 24.83 22.93 17.71 14.84

Table 11: Quantitative reconstruction error analysis across different DDIM inversion steps.

Original 10 Step 20 Step 50 Step 100 Step 200Step  500Step 1000 Step

Figure 29: Qualitative reconstruction error analysis across different DDIM inversion steps.
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A.12 COMPARISONS WITH DIRECT TRAINING WITH CFG-GENERATED DATA.

An alternative to our approach is to directly learn a mapping from the initial noise xr to the guided
image output x5, To explore this, we fine-tune the SiT-XL/2 model on 10K images generated
using classifier-free guidance (CFG) with guidance scale w = 4.0 and 20-step Euler sampling—the

same dataset used in Tab.[2] (SiT-XL/2 row). The results are shown in Tab.[T2]

We observe that this direct mapping achieves slightly worse performance than guidance distillation,
while introducing significantly more complexity—requiring the update of all parameters in the dif-
fusion model and affecting every denoising step. This full-model finetuning approach also carries
the risk of catastrophic forgetting and lacks flexibility across domains or sampler configurations.

In contrast, NoiseRefine preserves the pretrained diffusion model entirely. It modifies only the
initial noise and thus remains compatible with domain-finetuned backbones, few-step or single-
step samplers, and alternate denoising strategies without retraining the base model (see Sec. 3]
Appendix [A-T0). This model-preserving property is a key design goal of our method: to distill
guidance into the initial condition without altering the diffusion pipeline. If one allows modifying
the denoising model itself, then existing guidance distillation methods already offer a more direct
and stable solution than finetuning on generated samples.

While the direct noise-to-image mapping is conceptually interesting, our results suggest that Nois-
eRefine offers a novel and practical alternative that preserves the model and operates by refining the
initial noise rather than modifying the full network.

Model | Initial Noise | Sampling Guidance | Training Dataset | FID | IS

|  Gaussian | X | Original | 1843  40.00

SiT-XL/2 Gaussian v CFG-Generated 12.31  58.59
Gaussian X (Guidance Distil.) Original 1190 59.14

Refined (Ours) X CFG-Generated 10.42  50.39

Table 12: Comparison with direct mapping from noise to guided images.
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A.13 COMPARISON UNDER THE SAME SETTINGS AS THE SIT PAPER

In the main experiment, we reported SiT-XL/2 results using a CFG scale of 4.0, as higher guidance
scales often yield slightly worse FID but produce qualitatively superior samples.

For clearer comparison with the original SiT results, we use a CFG scale of 1.5, expand the eval-
uation to the full 1K ImageNet classes, and adopt the evaluation protocol of the SiT paper
[2024). Specifically, we follow their setup by using the second-order Heun sampler with 250
NFE (equivalently, 125 denoising steps) for all procedures, including dataset generation, training,
and evaluation. Due to limited computational budget, this comparison experiment was trained for 5
epochs, whereas the main experiment used 8 epochs.

We report quantitative results in Tab[T3]and qualitative results in Fig[30] Both evaluations show that
NoiseRefine produces refined noise that achieves image quality comparable to that of CFG samples
under the SiT evaluation setting.

Model | Initial Noise | Sampling Guidance | FID | | IS*

Gaussian X 9.35 126.06
SiT-XL/2 Gaussian v 2.15 258.09
Refined (Ours) X 4.50 173.48

Table 13: Quantitative results of SiT-XL/2 with settings of the SiT paper (Ma et al.|[2024). The
reference values used for comparison were sourced from the original paper.

(ours) (ours) (ours)
Random noise Random noise Refined noise ~ Random noise Random noise Refined noise Random noise Random noise Refined noise
w/o guidance ~ w/ guidance w/o guidance w/o guidance  w/ guidance  w/o guidance ~ W/o guidance  w/ guidance  w/o guidance

Figure 30: Qualitative results of SiT-XL/2 with settings of the SiT paper (Ma et al., 2024).

30



Under review as a conference paper at ICLR 2026

B THEORETICAL BACKGROUND

B.1 PRELIMINARIES

Denoising Diffusion Probabilistic Models (DDPM). DDPM Ho et al.| (2020) defines a forward
process that derives z; by adding Gaussian noise to the image z;_; according to the variance sched-
ule, and a reverse process that samples x;_; from z;, both as a Markovian chain. The forward
process is defined as

q(xi]zi—) =N <Jﬁt; %xt—la (1 - )I> ) (N

Q1
q(xilzo) = N(w; Vo o, (1 — o)), (8)

with noise rate at timestep ¢ as 1 — o /a1, where «; denotes noise scaling factors up to time step
t. The reverse process is defined below.

po(zi-1|ze) =N (l’t—l; Hét)(l’t), Uﬁ) . )
To reparameterize the equation using

zy = J/ogzo + V1 —aze fore~ N(0,T), (10)

and ey, which is a function approximator for predicting e from z;, the inference process becomes

Q¢ 1-— Qi
oy —

1 1—
Ty = ——— <xt - a”éé”(éﬂt)) + 042, (1)
1

Where z ~ N(0,I) and o7 denotes the variance of Gaussian trainsitions .The objective of DDPM
is defined as

Linpte(6) = B an,c [lle = e (@) 2] (12)

where the L2 loss between the actual noise € added during training and the noise prediction eg (¢, t)
for uniformly sampled t € {1,...,T'}.

Denoising Diffusion Implicit Models (DDIM). DDIM Song et al.| (2020a) consider the following
inference distributions:

T

do(21:7|70) = o (27l 70) | | 00 (30 -1 121, 20).- (13)
t=2

with a mean function as below.

Tt — /0T
Qo (Ti1|ze,20) =N <\/Oét—1$o +4/1 =1 —0of- HJ?O . (14)
— oy

Distinctively from DDPM, the forward process is Non-Markovian since each x; could depend on
both x;_1 and xy. Reparameterizing with €y, we can sample x;_1 from x; through an equation:

(t)
T — V11—« T
xt_l:m( t \/OTtEH ( t)>+ 1— g1 — 07 - e (@) + oves
t

15)
predicted xg
—a b (t)
=y + biey’ (),
where € ~~ N(O,I) and ay = ‘/Oét_l/\/Oét, bt = v/ 1-— Q1 — A/ 1— Q.
The objective of DDIM is the same as that of DDPM:
Looma(6) = Erag.e [lle = e (@)12] (16)
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Denoising and inversion process. We denote the denoising process as Denoise(zr). When using
the DDIM sampler (Song et al., 2020a), the denoising process is defined as:

Denoise(zr) := D1 (... Dr(gs(z7))), (17)

where each step D; is given by:

Dt(fl,') = ;T + bt€§t) (LC) (18)
The guided denoising process, denoted as DenoiseG“ide(a:T, ¢), follows the same steps as Eq. [ﬂ

but replaces e((,t)(a:) with guided scores, such as the classifier-free guided score €57 (z¢, ¢) (Ho &

Salimans} |2022), the perturbed-attention guided score el;AG (z¢) (Ahn et al.l[2024), or a combination
of both (egFG’PAG(xt)). These guided scores are defined in Egs. and

While we utilize the DDIM scheduler in this work, any other diffusion scheduler (Ho et al.| [2020;
Song et al., [2020a; |[Karras et al.,|2022) can be used by appropriately modifying a; and b;.

For the inversion process Inversion(z, ¢), we follow the method in (Garibi et al.,[2024) to obtain the
initial noise x7, which can be denoised back to the given image x without employing any guidance
methods (Ho & Salimans| 2022; /Ahn et al.,|2024) during inversion.

B.2 DERIVATIONS

Proposition 1. Let x7 be an initial noise, and suppose that x is the image obtained through de-
noising. Assuming Lipschitz continuity with distance metric d, for every z, there exists a constant
# > 0 such that the following holds:

d(z, x(T}uideT) < kd(zq, z5U%).
proofs. The Lipschitz condition is expressed as follows:

d(ey (@), (y)) < Lid(w,y), (19)
where L; is constant dependent on ¢, x and y are arbitrary inputs to e((f). DDIM step in terms of x;
can be expressed as follows:

_ (1 —
Ty =4/ a; Yo+ | VT—a 1 — \/ w eét)(art)- (20)
t t

Eq. 20| can be expressed in terms of 2" which is denoised from z$"“". With those equations,
we can get the following equation,

A B A (11— A
Lo g — Z‘?E{leT _ Oé; 1 (xt - x?ulde'f) + m o Qi l(a Olt) (eét) (xt) - 6ét) (x?mde]‘))
t t
1 . .
=\ o =) — (e ) — ) @),

where ; = (\/at,l(l —at)fop — /T = at,l) > (. If the distance metric d have translation

invariance, the equation can be expressed as follows with Eq.[T%

Qi

d(xpy, 22Ty < (14 v Le)d(zs, 9. (21)

Qi1

Recursively organizing Eq.[21]fort = T, 7 — 1,..., 1, it can be expressed as follows:

T
d(xT,xgu'deT) < (H(l + %Lt)> \/ O[—Td(aco, g §Uidety, (22)
(&%)

t=1

Since v is close to 0, using d(xo, 5"*") is sufficient to directly learn 25" %" if d(x, 25" %) is

small enough.
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Proposition 2. By approximating the gradients through Multistep Score Distillation (MSD) using
detached gradients at each step, we approximate the full-gradient objective with a mild assumption.
In conclusion, the two gradients can be approximated as follows:

V ¢ Lpenoise (96 (1), 0) ~ kV  Lmsp (g4 (x7); 6), (23)
where k € (0, 1) is constant.

Warmup. We begin by recalling the typical denoising process in DDIM sampling:
DyoDjyo---o0Dp(xr), (24)
where Dy(z) = ayx + bteét)(m) denotes a single denoising step, and a;, b, are DDIM-derived

coefficients (Song et al.| [2020a)).

The final generated image 7z, obtained by applying the full denoising trajectory to the refined noise,
is:

Tg= DyoDyo---o0Dr(gs(rr)), (25)
where g4 (z7) is the refined noise output from the refining network g,.

From Eq.[[3} the denoised image from the full DDIM denoising process Zy is:

T
70— |20 _ [ Q0 (6. 2%
To aTytb(T/T) ; Tt (7). (26)

This expression is derived by recursively applying the DDIM update rule (Eq. 20) from z7 to zo,
unfolding the full denoising trajectory step by step. The result is a closed-form expression for the cu-
mulative DDIM trajectory, expressing & as a function of the refined noise g4 () and intermediate
model predictions.

We define the denoising loss as follows:
Loenoise (9o (27); 0) = d (To, 76") 27
where d(-, -) denotes the L2 distance.

proofs. Since the only difference between the two losses is the stop gradient in the diffusion model
and all other components are identical, it suffices, by the chain rule, to show that the gradient of
Fi(F»(...Fr(ge(zr)) with respect to ¢ is proportional to the gradient of Denoise(gq4(27)) with
respect to ¢. The derivation proceeds as follows:

'Ytee xt))

T

V ;Denoise(gy(z7)) = Vg <,/ —go(z7) Z
t=1

_ o Geét) x¢) Oy 094 ()

Q41 8$t 8g¢ -TT) a¢ .

As detailed in the term Geét) (zx)/ 8xk can be approximated as being proportional to the iden-
tity matrix. Additionally, the term Oz /dg4 () can be expressed in terms of aeét)(xk) [0z

(28)

Then, each component of 8eét) (zx)/Oxy, can be approximated by the identity matrix. Consequently,

(86@” (x)/0xy) (0xk/0gs(xr)) becomes proportional to the identity matrix. Denoting the propor-
5 ,
ti()na]ity constant as 7, := (()Et‘j;,;(,mf) . ()y()?ltT) > s Eq iS snnphﬁed as follows:

T

Eq. @ (\/; ; m7tﬁt> 8g(g(;T)

& 1 ag Ogg(xT)
=(1- —_— 29
( \ﬁaT; =" |\ e 5 (29)
A
= (1 —voar Z %m)
t=1

V-1
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B.3 DIFFUSION MODEL JACOBIAN APPROXIMATION

Why is the approximation possible? In this subsection, we present experimental results demon-
strating that the Jacobian of the diffusion model €, with respect to the input 2, can be approximated
as proportional to the identity matrix. Fig. illustrates the Jacobian O¢}, /0. We observe that the
Jacobian behaves like the identity matrix regardless of timestep, except when ¢ is significantly small.
To quantify this observation, we plot the distributions of the Jacobian’s diagonal and off-diagonal
elements across timesteps in Fig. [32] (log scale). The off-diagonal elements are consistently much
smaller and concentrated near zero, while the diagonal elements remain significantly larger, con-
firming the strong diagonal dominance of the Jacobian. Fig.[33]shows the same analysis for DiT-
XL/2 Peebles & Xie| (2023), where we observe a similar pattern: the off-diagonal values stay close
to zero across timesteps, whereas the diagonal values remain substantially larger. This demonstrates
that the identity-matrix-like Jacobian structure holds not only for Stable Diffusion 2.1 but also for
transformer-based models such as DiT.

In such cases, the deviation does not affect our primary analysis. According to the results of Propo-
sition 1, the timestep-dependent constant \/%% multiplied to each Jacobian term 7, is expressed

1 1-— 1— oy
o=y — et (30)
Vat—1 Qi Q1

This value can be numerically determined based on the scheduling, and in the case of DDIM (Song
et al,[2020a), it is presented in Fig.[34] The graph shows that the constant decreases toward zero as
t approaches O.

as follows:

Figure 31: Visualization of Jacobian of a denoising network. Starting from 7" = 1000, we
performed denoising over 10 steps and plotted the Jacobian heatmap at each timestep.We extracted
a 500 x 500 section from the full Jacobian matrix for visualization. Each plot demonstrates that the
Jacobian is close to the identity matrix.
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Figure 32: Distribution of Jacobian elements in Stable Diffusion 2.1 (log scale). Scatter plot of
diagonal and off-diagonal Jacobian magnitudes across timesteps. The off-diagonal elements remain
close to zero, while the diagonal elements are significantly larger, demonstrating strong diagonal
dominance of the Jacobian.

Figure 33: Distribution of Jacobian elements in DiT/XL-2 (log scale). Violin plot of diagonal
and off-diagonal Jacobian values across timesteps for the DiT/XL-2 [Peebles & Xie|(2023). Despite
its transformer structure and larger receptive field, the off-diagonal values remain close to zero,
showing an identity-like Jacobian similar to Stable Diffusion.

—_ = = e
S N sy

Constant Value
f=}
oo

0.6
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0 200 400 600 800 1000
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Figure 34: Visualization of constant values over timesteps. Visualization of the time-dependent

constant value \/—;% corresponding to Eq. [30| across different timesteps. The results numerically

demonstrate that for small timesteps, where the Jacobian deviates from the identity matrix, the
multiplied constant values are sufficiently close to zero.
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Why does the approximation enhance performance? The above analysis explains why the Ja-
cobian can be approximated by the identity matrix, but it does not address why this approximation
empirically improves optimization, yielding faster convergence and higher-quality results. Although
the Jacobian is “close enough” to identity, it is not perfectly identity, especially at small timesteps.
When full gradients are backpropagated through multiple denoising steps, these small off-diagonal
components accumulate across steps and induce optimization instability, similar to exploding and
vanishing gradients in recurrent networks.

To illustrate this effect, we perform a simple toy experiment in which we directly optimize an initial
Gaussian noise x7 so that its denoised output zy matches a given target image. Fig. [35shows the
MSE loss ||#0 — Zreet||? and the gradient norm during optimization. Using the full-step gradient
leads to unstable behavior: the loss fails to converge, and the gradient norm becomes large and
highly erratic. We also visualize the gradient norm ||0.L/0x||? at each denoising step (Fig.[36]top),
and observe that for some iterations the gradients become progressively larger as ¢ approaches 1,
clear evidence of gradient explosion.

By skipping the Jacobian 9el,/dx; at each step, MSD avoids this long-horizon accumulation and
yields a far more stable optimization process. As shown in Fig. 6] (bottom), the gradient norms
remain well-behaved and stable throughout optimization. This behavior aligns with prior findings
in score distillation sampling, and further demonstrates that gradient skipping acts as an effective
regularizer that prevents instability arising from multi-step backpropagation.

MSE Loss Comparison Gradient Norm Comparison

xe —— Full Gradient
—— Stop Grad on Network

—— Full Gradient
~—— Stop Grad on Network

10

MSE Loss
° ° °
= B ®
Gradient Norm
]

°

°
s

[ 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Iteration

Figure 35: Optimization instability of full-step gradients. We optimize the initial noise so that
the denoised output Z( matches a target image and plot the MSE loss (left) and gradient norm
(right) over iterations. The full-step gradient exhibits unstable dynamics, with the loss failing to
converge and the gradient norm becoming large and erratic. In contrast, the MSD approximation
maintains stable gradients and converges reliably, demonstrating that skipping the Jacobian d¢}, /O,
effectively prevents long-horizon instability.
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. . 2
Full step gradient norm ||"“"’;T"Tmse

951
901
851
801
751
701
651
601
551
501
451
401
351
301
251
201
151
101

51

Timesteps

Gradient Norm

0

500 1000
Iteration 107

Stop gradient norm ||"§$”2

Figure 36: Gradient explosion across denoising steps when using full-step gradients. We visual-
ize the gradient norm ||0L/0z||? at each denoising step during optimization. With full-step back-
propagation, the gradients become progressively larger as ¢ approaches 1, and in several iterations
the norm reaches values close to 1, indicating clear gradient explosion. In contrast, when apply-
ing MSD (gradient skipping), the gradients remain small and stable. This confirms that multi-step
Jacobian accumulation is the primary source of instability, and that skipping the Jacobian O¢}, /Ox;
effectively prevents this issue.
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C MORE ABLATION STUDIES

C.1 NOISE REFINING NETWORK

To effectively leverage pretrained knowledge, we attach LoRA layers to the original model when
training noise refining network. To evaluate the effectiveness of LoRA (Hu et al.,[2021), we conduct
an ablation by training the refining network using the same original Stable Diffusion 2.1 UNet
architecture, but from scratch. We use the filtered MS COCO dataset from both datasets and train
the models for 25K steps on two RTX 3090 GPUs, keeping all other experimental configurations
identical. As shown in Tab.|14|and Fig. the LoRA-based approach achieves faster convergence
and significantly lower FID at the same iteration, demonstrating its efficiency in training. These
results indicate that leveraging pretrained knowledge leads to superior performance compared to
training from scratch.

Model | FID

From scratch 37.87
Pretrained (Ours) | 13.74

Table 14: Quantitative comparison
with noise refining network using
pretrained UNet + LoRA and UNet

Figure 37: Qualitative comparison with noise refin- trained from scratch.

ing network (top) and UNet trained from scratch
(bottom).

Parameter FID (Heusel et al.,2017) | IS (Salimans et al.|[2016) T

5 13.74 30.80
10 13.36 32.81

# of steps

Table 15: Ablation study on the number of denoising steps.

C.2 NUMBER OF DENOISING STEPS

We analyze the impact of denoising steps by comparing N = 5 and N = 10, reporting FID (Heusel
et al.[|2017) and IS (Salimans et al.,2016)) in Tab. @ The results show improved performance with
more steps, but high step counts (N > 10) incur prohibitive backpropagation costs, highlighting the
need for MSD to mitigate computational overhead.
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D IMPLEMENTATION AND EXPERIMENTAL DETAILS

D.1 IMPLEMENTATION DETAILS

Initial noise Generated image
xp~N(0,1) Text prompt ¢ w/ Guidance x§{ide
x N’
O
—_— P _—
Guidance T2l Pipeline ﬂ\

Text prompt ¢

0 Distance d
residual
connection ¥
NoiseRefiner g4
v Text prompt ¢ A4
Stop X(%V

gradient £0(xe)
P— > 6 A—

Xt Xt-1

Backpropagation
Guidance-free noise Guidance-Free T2I Pipeline Generated image
X7 w/o Guidance x,

Figure 38: Training framework with annotations. We provide an annotated illustration of the
training framework to clarify the notation in the following discussion.

More details of our framework. Most experiments are conducted with text-to-image diffusion
models (Rombach et al.l [2022; [Podell et al., [2023)), so we provide implementation details for these
models here. Although our framework NoiseRefine can be generalized from pixel-level to latent-
level diffusion models, in our experiments we use MSE loss in latent space for d(z5"%, Z).
We provide our training framework in Fig. [38] It consists of three parts: Guidance T2I Pipeline
takes Gaussian noise x7 ~ A(0,I) and condition (text prompt) ¢ as inputs and generates an image
25" with guidance methods (Ho & Salimans, [2022; Ahn et al.l 2024} Hong et al., 2023} [Sadat
et al., 2024} Hongl, [2024; Karras et al., 2024). The noise refining network g4 refines Gaussian noise
7. Guidance-Free T2I Pipeline takes refined noise 1 = g¢(a;T) and condition (text prompt) ¢ and
generates an image £ without guidance. For Guidance T2I Pipeline, with the denoising network ey,
we can use the guided score €579 (x4, ¢) for CFG (Ho & Salimans, 2022) or €22 (2, c) for PAG (Ahn
et al.| 2024) in denoising process as below:

€g O (w1, ¢) = eg(wy, ¢) + wleg(we, ¢) — ep(m1)), (31)

€5’ (xe) = eg(m1) + s(eq(xe) — eo(x1)), (32)

where w and s denote the guidance scale of CFG (Ho & Salimans|, [2022) and PAG (Ahn et al.
2024])), and c is for the condition. Note that the perturbed score €y is from perturbing the forward
process of the denoising network €y (Ahn et al.,[2024). With the denoising step N’ = 20, we can get
the guided image z§"%. Our noise refining network refines Gaussian noise 7 with g, at timestep
t = T, which is from the reverse step of DDIM (Song et al.l 2020a)) in Eq. The output of
noise refining network g4 is denoted as 7 = g4 (x7) and becomes the input of Guidance-Free T2I

Pipeline. In this pipeline, £ is denoised into &y without guidance using /N denoising steps.

Architecture details. For noise refining network g4, we use Stable Diffusion 2.1 (Rombach et al.,
2022)) with LoRA (Hu et al., [2021) rank of 128, applied to all attention, convolutional, and feed-
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forward layers. We use DDIM (Song et al.l 2020a) scheduler with the same settings as the pre-
trained model. For noise refinement, we use an input timestep 7' = 999, and the default denoising
step IV is set to 10. In Stable Diffusion XL (Lin et al., [2024)), we use the same configs of Stable
Diffusion 2.1 except LoRA rank which is set to 256.

D.2 EXPERIMENTAL DETAILS

D.2.1 TRAINING SETUP

Note that our model requires only text prompts for training, eliminating the need for real images, as
we leverage self-generated images from the model we aim to train using guidance methods.

For Stable Diffusion 2.1 (Rombach et al., 2022)), we train our model on 20K MS COCO prompts,
30K Pick-a-Pic prompts, using CFG scale 7.0 and PAG scale 3.0 for all generated images.

For Stable Diffusion XL (Podell et al., [2023)), we train our model on 55K MS COCO prompts, 36K
Pick-a-Pic prompts, and 90K LAION prompts, using the same CFG and PAG scales as for Stable
Diffusion 2.1.

For SiT-XL/2 (Ma et al.| [2024), we train our model on 100 classes of ImageNet (Krizhevsky et al.,
2012)) (class 1 to class 100) using CFG scale 4.0. Total dataset consists of 100K images, 1K images
for each class. For dataset generation, we employ Euler sampler with 20 denoising steps.

For SD2.1 and SDXL, we generated images for all datasets with guidance and retained only the
top-/V samples ranked by AES (Schuhmann, [2022)) scores, where N denotes the reported dataset
size. For SiT-XL/2, no filtering was applied.

For the ablation study on the number of denoising steps, we primarily use SD2.1.

D.2.2 EVALUATION SETUP

The datasets used are described in Sec..1] For guided sampling, we use the same guidance scale
as in the training of the noise refining network across all models. For guidance-distilled sampling
with a distilled denoising network (Meng et al., 2023)), since no official implementation is available,
we follow Eq. 3 in their paper for reimplementation. The same dataset and guidance scale are used
for training the distilled model.

For all experiments using SiT-XL/2 except [A.13] we generate 50K samples using random initial
noise and the Euler sampler with 20 denoising steps.
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E ADDITIONAL RESULTS

E.1 ADDITIONAL QUALITATIVE RESULTS

We present our additional qualitative results of SD2.1 on Fig. {i1] [42] [43] [#4] and results of SDXL
on Fig. Results show that the performance of using refined noise by noise refining network is
comparable to that of using guidance on random Gaussian noise. All the results are selected from
images used in Tab.[2]

E.2 USER STUDY

Gaussian noise vs refined noise. 'We conducted a user study to evaluate prompt adherence and im-
age quality by comparing images generated from random Gaussian noise and our refined noise. The
images are generated using randomly sampled MS COCO validation prompts, as shown in Tab. [2]
The results are presented in Tab. [T6] The study demonstrates that our method outperformed the
baseline in all human evaluation criteria. A total of 26 participants anonymously evaluated 20 pairs
of images, each pair consisting of an image generated using initial Gaussian noise and our refined
noise from noise refining network. The percentage was calculated by dividing the total number of
selections for each option by the total number of responses, following the same methodology as in

Tab.

Participants were provided with the following instructions for each pair of images:

1. Which image has better overall quality? (left/right)
2. Which image more faithfully reflects the given prompt? (left/right)

Metric Gaussian Noise Refined Noise (Ours)
Image Quality 3.08% 96.92 %
Prompt Adherence 6.73% 93.27%

Table 16: User study on the image quality and prompt adherence of generated images.

Guided sampling vs refined noise. Tab. [I7|shows the results of user study, confirming noise re-
fining network’s comparable to results starting from Gaussian initial noise without guidance. 45
participants compared 30 image pairs generated with guidance and our method (refined noise with-
out guidance), using generated images for evaluation in Tab. 2] and evaluated visual appealing and
prompt alignment. The instructions for the survey are the same as the above.

Metric Gaussian Noise + Guided Sampling Refined Noise (Ours)
Image Quality 46.04% 53.96 %
Prompt Adherence 48.24% 51.76%

Table 17: User study on the image quality and prompt adherence of generated images.
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E.3 GENERALIZATION ON OTHER DOMAINS

Fig. 39| presents additional qualitative results across different domains, including anime and clay.
The prompts used for generation are provided in Tab. [T§]

Gaussiannoise Refined Noise ~ Gaussiannoise Refined Noise ~ Gaussiannoise Refined Noise ~ Gaussiannoise Refined Noise  Gaussannoise Refined Noise ~ Gaussiannoise  Refined Noise

Anime

Clay

Figure 39: Additional qualtitative results of generalization on other domains.

(masterpiece, best quality, ultra-detailed, best shadow), (detailed background,dark fantasy), (beauti-
ful detailed face), high contrast, (best illumination, an extremely delicate and beautiful), (cinematic
light), colorful, hyper detail, dramatic light, intricate details, (1 girl, solo,black hair, sharp face,low
twintails,red eyes)

(masterpiece,best quality), 1girl, long hair, red hair, solo, dress, red eyes, looking at viewer, long
sleeves, standing, building, white dress, gloves, hair ornament, black jacket, smile, floating hair,
dutch angle, closed mouth, looking away, outdoors

(masterpiece,best quality), 1girl, solo, black skirt, blue eyes, electric guitar, guitar, headphones,
holding, holding plectrum, instrument, long hair, music, one side up, pink hair, playing guiter,
pleated skirt, black shirt, indoors

(masterpiece, best quality, ultra detailed:1.3), perfect composition, anime, illustration 4k, (extremely
detailed, hyper detailed), raw, hdr, 8k textures, extreme detail, hight detailed skin texture, high
sharpness, 1girl, (detailed eyes:1.3), petite, on the street, in public, night street, night lights

(masterpiece, best quality, ultra detailed:1.3), A beautiful, anime-style female character with long
flowing hair, wearing a flowing summer dress, standing in a field of flowers at sunset, soft pastel
colors, detailed facial features

1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop
earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow
shirt, (waifu, anime, exceptional, best aesthetic, new, newest, best quality, masterpiece, extremely
detailed:1.2)

clayitization, A portrait of a black cat with piercing green eyes, Ultra-detailed, 3d, octane render,
intricate details

clayitization, a photo of a cheese burger, ultra detailed, 3d, octane render, intricate details

clayitization, colorful tropical bird perched on branch, ultra detailed, 3d render, smooth clay textures,
vibrant palette, 3d, octane render, soft lighting, realistic textures

clayitization, stylish pair of sneakers, detailed textures, 3d, vibrant colors, realistic clay appearance,
octane render

clayitization, classic red Vespa scooter, highly detailed, glossy clay finish, 3d model, studio lighting,
octane render

clayitization, a photo of the Eiffel Tower, ultra detailed, intricate architectural details, 3d, octane
render

Table 18: Example prompts used for domain generalization experiment (Fig .
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(ours) (ours)
Random noise Random noise Refined noise Random noise Random noise Refined noise
w/o guidance  w/ guidance w/o guidance w/o guidance ~ w/ guidance w/o guidance
goldfish cock
green lizard Jjunco, snowbird
sulphur-crested cockatoo goldfinch
great grey owl mud turtle
partridge lorikeet
toucan drake
tiger shark ostrich

Figure 40: Additional qualitative results on SiT-XL/2.
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(ours)
Random noise Random noise Refined noise
w/o guidance ~ w/ guidance  w/o guidance

“Two cars on the street.”

“A large motor vehicle carrying passengers by road, typically
one serving the public on a fixed route and for a fare.”

“A brightly painted temple with ornate structures and dramatic
lighting inspired by Mayan and Islamic architecture.”

)

“opal gun’

“The stainless steel refrigerator is being moved into the newly
constructed home.”

“An image of Malta, covered in Palm trees, highly detailed and
realistic”

>

“Some luggage sets in the living room ready to go.’

(ours)
Random noise Random noise Refined noise
w/o guidance ~ w/ guidance  w/o guidance

“a bedroom with a night stand near the bed”

“A woman in sunglasses and hat standing by plant.”

“A bathroom is shown with a toilet, sink and a mirror.”

“A close-up of grains and pastries on a table.”

s

“A small vase with a few flowers is in the snow.’

“Photo of a guy having with a chubby young
redhead, POV

“beautiful summer landscape, an ultrafine detailed painting, intricate
pasta waves, made of noodles, paper quilling, inspired by van Gogh”

Figure 41: Additional qualitative results on SD2.1.
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(ours) (ours)
Random noise Random noise Refined noise Random noise Random noise Refined noise
w/o guidance  w/ guidance  w/o guidance w/o guidance  w/ guidance  w/o guidance
“Traditional library with floor-to-ceiling bookcases” “A large hawk flying through a purple and orange sky.”
“Navy blue wall livingroom with dusty pink curtains” “a boy in a blue shirt is eating some food”
“far away camera shot of an abandoned pickup truck, “A blue plate topped with rice and stew.”

overgrown”

>

“A painting depicting a foothpath at Indian summer with an epic

¢ Y “A bench sitting on top of a sandy beach next to the ocean.’
evening sky at sunset and low thunder clouds.

“A watercolor portrait of a woman by Luke Rueda Studios and “a man that is on a surfboard on some water”
David Downton.”

“A painting depicting a snowy winter scene featuring a river, a

small house on a hill, and a dreamy cloudy sky.” An orange colored sandwich.

“A lighted birthday cake with chunks of walnuts.” “A yellow and black bus cruising through the rainforest.”

Figure 42: Additional qualitative results on SD2.1.
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(ours)
Random noise Random noise Refined noise
w/o guidance  w/ guidance  w/o guidance

“logo of a blue elephant, flat modern vector icon”

“Alight blue haired anime girl ocean themed anime is opon
antenna twintails”

“<pixel art> gray French bulldog”

“A silhouette of a dog looking at the stars”

“A snowy Chicago street during Christmas art by
Ludwig Fahrenkrog”

“Gothic cathedral in a stormy night”

“Photo of a black panther”

(ours)
Random noise Random noise Refined noise
w/o guidance  w/ guidance  w/o guidance

“A beautiful ancient Chinese chivalrous woman”

“A sail boat entering a majestic fjord landscape in winter”

“An oil painting of a bowl of fruit”

“portrait of sir borzoi dog wearing royal uniform
and crown”

“a low light photo of a city at night”

“Face shaped out of old rusty technology”

“An stylized entrance to a rocky cave”

Figure 43: Additional qualitative results on SD2.1.
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(ours)
Random noise Random noise Refined noise
w/o guidance ~ w/ guidance  w/o guidance

“A black vase on display with lights in the background.”

“A red fire hydrant on the side of a street.”

»

“A subway train next to the boarding platform.’

“A woman holding a plate with a slice of cake.”

1

“A large boat sitting in the middle of a body of water.”

>

“A bird perched on a branch by some leaves.’

“A building has a gold clock inside of it.”

(ours)
Random noise Random noise Refined noise
w/o guidance  w/ guidance = w/o guidance

“A feast of meat, potatos, and veggies on a plate”

“photograph of a man when he was much younger”

“A white sandy beach has a chair and straw umbrella.”

i

“A cute kitten hiding in something on a chair.’

“A grey motorcycle on dirt road next to a building.”

“A mirror image of a bathroom and a scenic view
from a window.”

“A white Volkswagen beetle parked on a lush grass field.”

Figure 44: Additional qualitative results on SD2.1.
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(ours)
Random noise Random noise Refined noise
w/o guidance  w/ guidance  w/o guidance

“A brown dog on a bed sitting under the covers”

“A bench in a a park with trees in the background”

“a mouse sits in front of a keyboard and monitor”

“A bottle and half a glass of dark liquid”

“A polar bear balances on a blue ball.”

“4 dog walking down the middle of a street next to a store lined sidewalk.”

“An Olympic skier who is racing down a mountain”

(ours)

Random noise Random noise Refined noise

w/o guidance ~ w/ guidance  w/o guidance

“A large dog sitting in the mud outside”

“A man smiling wearing a white shirt and bow tie”

“Open faced sandwich being held by someone at a table.”

“A tennis player in yellow shirt with striped shorts”

“4A woman in a kitchen preparing a sandwich with tomatoes.”

1

“A small sandwich sitting on a white china plate.’

“A gray cat sitting on top of a chair near a table”

Figure 45: Additional qualitative results on SDXL.
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F LLM USAGE DISCLOSURE

During the preparation of this paper, the authors made limited use of large language models (LLMs)
for polishing the writing, grammar refinement and LaTeX formatting. LLMs were not used for
generating research ideas, designing or conducting experiments, analyzing results, or formulating
conclusions. All scientific content and contributions are entirely the responsibility of the authors,
and any LLM-assisted text was carefully reviewed and revised before inclusion.
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