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Abstract

Existing KBQA approaches, despite achieving001
strong performance on i.i.d. test data, often002
struggle in generalizing to questions involv-003
ing unseen KB schema items. Prior ranking-004
based approaches have shown some success005
in generalization, but suffer from the coverage006
issue. We present RnG-KBQA, a Rank-and-007
Generate approach for KBQA, which reme-008
dies the coverage issue with a generation009
model while preserving a strong generaliza-010
tion capability. Our approach first uses a con-011
trastive ranker to rank a set of candidate logical012
forms obtained by searching over the knowl-013
edge graph. It then introduces a tailored gener-014
ation model conditioned on the question and015
the top-ranked candidates to compose the fi-016
nal logical form. We achieve new state-of-017
the-art results on GRAILQA and WEBQSP018
datasets. In particular, our method surpasses019
the prior state-of-the-art by a large margin on020
the GRAILQA leaderboard. In addition, RnG-021
KBQA outperforms all prior approaches on022
the popular WEBQSP benchmark, even in-023
cluding the ones that use the oracle entity link-024
ing. The experimental results demonstrate the025
effectiveness of the interplay between ranking026
and generation, which leads to the superior per-027
formance of our proposed approach across all028
settings with especially strong improvements029
in zero-shot generalization.1030

1 Introduction031

Modern knowledge bases (KB) are reliable sources032

of a huge amount of world knowledge but can be033

difficult to interact with since they are extremely034

large in scale and require specific query languages035

(e.g., Sparql) to access. Question Answering over036

Knowledge Base (KBQA) serves as a user-friendly037

way to query over KBs and has garnered increasing038

attention (Berant et al., 2013; Cai and Yates, 2013).039

Recent research has attempted to build systems040
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Figure 1: Overview of our rank-and-generate approach.
Given a question, we first rank logical form candidates
obtained by searching over the KB based on predefined
rules. Here, the ground truth logical form is not in the
top-ranked candidates as it is not covered by the rules.
We solve this problem using another generation step
that produces the correct logical form based on top-
ranked candidates. The final logical form is executed
over the KB to yield the answer.

achieving strong results on several public bench- 041

marks that contain i.i.d. train and test distribution 042

such as SIMPLEQ (Bordes et al., 2015) and WE- 043

BQSP (Yih et al., 2016). However, users often 044

want to ask questions involving unseen composi- 045

tions or KB schema items (see Figure 5 for exam- 046

ples), which still remains a challenge. Generation- 047

based approaches (e.g., a seq-to-seq parser) are not 048

effective enough to handle such practical gener- 049

alization scenarios due to the difficulty of gener- 050

ating unseen KB schema items. Ranking-based 051

approaches, which first generate a set of candidate 052

logical forms using predefined rules and then select 053

the best-scored one according to the question, have 054
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shown some success (Gu et al., 2021). However,055

it suffers from the coverage problem, because it is056

often impractical to exhaust all the rules to cover057

the desired logical form due to the scale of the KB.058

We propose RNG-KBQA, a new framework059

targeted at generalization problems in the task of060

KBQA. Our approach combines a ranker with a061

generator, which addresses the coverage issue in062

ranking-only based approaches while still benefit-063

ing from their generalization power. As shown in064

Figure 1, we first employ a ranker to select a set065

of related logical forms from a pool of candidate066

logical forms obtained by searching over the graph.067

The selected logical forms are not required to cover068

the correct one, but are semantically coherent and069

aligned with the underlying intents in the question.070

Next, we introduce a generator that consumes both071

the question and the top-k ranked candidates to072

compose the final logical form. The core idea of our073

approach is the interplay between the ranker and074

the generator: the ranker provides essential ingre-075

dients of KB schema items to the generator, which076

then further refines the top-candidates by comple-077

menting missing constructions or constraints, and078

hence allows covering a broader range of logical079

form space.080

We base both our ranker and generator on pre-081

trained language models for better generalization082

capability. Unlike prior systems which rank candi-083

dates using a grammar-based parser (Berant et al.,084

2013) or a seq-to-seq parser (Gu et al., 2021), our085

ranker is a BERT-based (Devlin et al., 2019) bi-086

encoder (taking as input question-candidate pair)087

trained to maximize the scores of ground truth logi-088

cal forms while minimizing the scores of incorrect089

candidates. Such training schema allows learning090

from the contrast between the candidates in the en-091

tire territory, whereas prior parsing-based ranker092

(Berant et al., 2013; Gu et al., 2021) only learns to093

encourage the likelihood of the ground truth logical094

forms. We further develop an iterative-bootstrap-095

based training curriculum for efficiently training096

the ranker to distinguish spurious candidates (Sec-097

tion 2.2). In addition, we extend the proposed logi-098

cal form ranker, keeping the architecture and logic099

the same, for the task of entity disambiguation,100

and show its effectiveness as a second-stage entity101

ranker. Our generator is a T5-based (Raffel et al.,102

2020) seq-to-seq model that fuses semantic and103

structural ingredients found in top-k candidates to104

compose the final logical form. To achieve this, we105

feed the generator with the question followed by a 106

linearized sequence of the top-k candidates, which 107

allows it to distill a refined logical form that will 108

fully reflect the question intent by complementing 109

the missing pieces or discarding the irrelevant parts 110

without having to learn the low-level dynamics. 111

We test RNG-KBQA on two datasets, 112

GRAILQA and WEBQSP, and compare against 113

an array of strong baselines. On GRAILQA, a 114

challenging dataset focused on generalization in 115

KBQA, our approach sets the new state-of-the-art 116

performance of 68.8 exact match 74.4 F1 score, 117

surpassing prior SOTA (58.1 exact match and 118

65.3 F1 score) by a large margin. On the popular 119

WEBQSP dataset, RNG-KBQA also outperforms 120

the best prior approach (QGG (Lan and Jiang, 121

2020)) and achieves a new SOTA performance 122

of 75.7 F1 score. The results demonstrate the 123

effectiveness of our approach across all settings 124

and especially in compositional generalization and 125

zero-shot generalization. 126

2 Generation Augmented KBQA 127

2.1 Preliminaries 128

A knowledge base collects knowledge data stored 129

in the form of subject-relation-object triple (s, r, o), 130

where s is an entity, r is a binary relation, and o can 131

be entities or literals (e.g., date time, integer values, 132

etc.). Let the question be x, our task is to obtain a 133

logical form y that can be executed over the knowl- 134

edge base to yield the final answer. Following 135

Gu et al. (2021), we use s-expressions to repre- 136

sent queries over knowledge base. S-expression 137

(examples in Figure 1) uses functions (e.g., JOIN) 138

operating on set-based semantics and eliminates 139

variable usages as in lambda DCS (Liang, 2013). 140

This makes s-expression a suitable representation 141

for the task of KBQA because it balances readabil- 142

ity and compactness (Gu et al., 2021). 143

Enumeration of Candidates Recall that our ap- 144

proach first uses a ranker model to score a list of 145

candidate logical forms C = {ci}mi=1 obtained via 146

enumeration. We’ll first introduce how to enumer- 147

ate the candidates before delving into the details of 148

our ranking and generation models. 149

We start from every entity detected in the ques- 150

tion and query the knowledge base for paths reach- 151

able within two hops. Next, we write down an 152

s-expression corresponding to each of the paths, 153

which constitutes a set of candidates. We note that 154
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Figure 2: The ranker that learns from the contrast be-
tween the ground truth and negative candidates.

we do not exhaust all the possible compositions155

when enumerating (e.g., we do not include com-156

parative operations and argmin/max operations),157

and hence does not guarantee to cover the target158

s-expression. A more comprehensive enumera-159

tion method is possible but will introduce a pro-160

hibitively large number (greater than 2,000,000 for161

some queries) of candidates. Therefore, it’s im-162

practical to cover every possible logical form when163

enumerating, and we seek to tackle this issue via164

our tailored generation model.165

2.2 Logical Form Ranking166

Our ranker model learns to score each candidate167

logical form by maximizing the similarity between168

question and ground truth logical form while min-169

imizing the similarities between the question and170

the negative logical forms (Figure 2). Specifically,171

given the question x and a logical form candidate172

c, we use a BERT-based encoder that takes as input173

the concatenation of the question and the logical174

form and outputs a logit representing the similarity175

between them formulated as follows:176

s(x, y) = LINEAR(BERTCLS([x; y]))177

where BERTCLS denotes the [CLS] representa-178

tion of the concatenated input; LINEAR is a projec-179

tion layer reducing the representation to a scalar180

similarity score. The ranker is then optimized to181

minimize the following loss function:182

Lranker = −
es(x,y)

es(x,y) +
∑

c∈C∧c6=y e
s(x,c)

(1)183

where the idea is to promote the ground truth184

logical form while penalizing the negative ones185

via a contrastive objective. In contrast, the ranker186

employed in past work (Gu et al., 2021), a seq-187

to-seq model, aims to directly map the question188

to target logical form, only leveraging supervision189

from the ground truth. Consequently, our ranker is190

more effective in distinguishing the correct logical191

forms from spurious ones (similar but not equal to192

the ground truth ones).193

what is ··· ; (JOIN (R 
recording.length) ··· ; 
(AND music.recording 
(JOIN ··· ; (AND music. 
album (JOIN artist ···

T5
(ARGMIN (AND music. 
recording (JOIN (R 
artist.track) ···

Figure 3: The generation model conditioned on ques-
tion and top-ranked candidates returned by the ranker.

Bootstrapping Negative Samples in Training 194

Due to the large number of candidates and lim- 195

ited GPU memory, it is impractical to feed all the 196

candidates c ∈ C as in Eq (1) when training the 197

ranker. Therefore, we need to sample a subset of 198

negatives logical forms C ′ ⊂ C at each batch. A 199

naive way for sampling negative logical forms is 200

to draw random samples. However, because the 201

number of candidates is often large compared to 202

the allowed size of negative samples in each batch, 203

it may not be possible to cover spurious logical 204

forms within the randomly selected samples. 205

We propose to sample negative logical forms by 206

bootstrapping, inspired by the negative sampling 207

methods used in Karpukhin et al. (2020). That is, 208

we first train the ranker using random samples for 209

several epochs to warm start it, and then choose 210

the spurious logical forms that are confusing to the 211

model as the negative samples for further training 212

the model. We find the ranker can benefit from this 213

advanced negative sampling strategy and perform 214

better compared to using random negative samples. 215

2.3 Target Logical Form Generation 216

Having a ranked list of candidates, we introduce a 217

generation model to compose the final logical form 218

conditioned on the question and the top-k logical 219

forms. Our generator is a transformer-based seq- 220

to-seq model (Vaswani et al., 2017) instantiated 221

from T5 ((Raffel et al., 2020)), as it demonstrates 222

strong performance in generation-related tasks. As 223

shown in Figure 3, we construct the inputs by con- 224

catenating the question and the top-k candidates 225

returned by the ranker separated by semi-colon 226

(i.e., [x; ct1 ; ...; ctk ]). We train the model to gener- 227

ate the ground truth logical form autoregressively 228

with cross-entropy objective using teacher forcing. 229

In the inference, we use beam-search to decode 230

top-k target logical forms. To construct the top-k 231

logical form candidates needed for training the gen- 232

erator, we first train the ranker, and then use the 233

rankings it produces on the training data. 234

Since the generation model can now leverage 235

both the question and KB schema information (con- 236

tained in the candidates), the context is much more 237
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Figure 4: Illustrative example of running entity disam-
biguation as ranking. A confusing entity (red) and the
correct entity (green) both match the surface form in
the question. To distinguish them, we train an entity
disambiguation model following the same architecture
as in logical form ranking but construct inputs by con-
catenating the question and relations.

specified as compared to only conditioning on the238

question. This enables our generator to leverage the239

training data more efficiently by focusing only on240

correcting or supplementing existing logical forms241

instead of learning both the generation rule and242

correctness of logical forms.243

Execution-Augmented Inference We use a244

vanilla T5 generation model without syntactic con-245

straints, which does not guarantee the syntactic cor-246

rectness nor executability of the produced logical247

forms. Therefore, we use an execution-augmented248

inference procedure, which is commonly used in249

prior semantic parsing related work (Devlin et al.,250

2017; Ye et al., 2020b). We first decode top-k logi-251

cal forms using beam search and then execute each252

logical form until we find one that yields a valid253

(non-empty) answer. In case that none of the top-254

k logical forms is valid, we return the top-ranked255

candidate obtained using the ranker as the final log-256

ical form, which is guaranteed to be executable.257

This inference schema can ensure finding one valid258

logical form for each problem. It is possible to259

incorporate a more complex mechanism to control260

the syntactic correctness in decoding (e.g., using261

grammar-based decoder (Rabinovich et al., 2017)262

or dynamical beam pruning techniques (Ye et al.,263

2020a)). We leave such extension aside since we264

find that executability of produced logical forms is265

not the bottleneck (see Section 3.3 in experiments).266

2.4 Extension: Entity Disambiguation as267

Ranking268

Our ranking model is mainly proposed for the task269

of ranking candidate logical forms. Here, we in-270

troduce a simple way to adapt our ranking model271

for the task of entity disambiguation. A common272

paradigm of finding KB entities referred in a ques-273

tion is to first detect the entity mentions with an 274

NER system and then run fuzzy matching based 275

on the surface forms. This paradigm has been em- 276

ployed in various methods (Yih et al., 2015; Sun 277

et al., 2019; Chen et al., 2021; Gu et al., 2021). 278

One problem with this paradigm lies in entity dis- 279

ambiguation: a mention usually matches surface 280

forms of more than one entities in the KB. 281

A common way to disambiguate the matched en- 282

tities is to choose the most popular one according 283

to the popularity score provided by FACC1 project 284

(Chen et al., 2021; Gu et al., 2021), which can 285

be imprecise in some cases. We show an exam- 286

ple in Figure 4. Consider the question “the music 287

video stronger was directed by whom?” taken from 288

GRAILQA, where the most popular matched entity 289

is “Stronger” ( m.02rhrjd, song by Kanye West)” 290

and the second is also “Stronger” (m.0mxqqt24, 291

music video by Britney Spears). The surface form 292

matching and popularity scores do not provide suf- 293

ficient information needed for disambiguation. 294

However, it is possible to leverage the relation 295

information linked with an entity to further help 296

assess if it matches a mention in the question. By 297

querying relations over KB, we see there is a re- 298

lation about mv director mv.directed_by linking 299

to m.0mxqqt24, but there are no such kind of rela- 300

tions connected with m.02rhrjd. We therefore cast 301

the disambiguation problem to an entity ranking 302

problem, and adapt the ranking model used before 303

to tackle this problem. Given a mention, we con- 304

catenate the question with the relations for each 305

entity candidate matching the mention. We reuse 306

the same model architecture and loss function as in 307

Section 2.2 to train another entity disambiguation 308

model to further improve the ranking of the target 309

entity. We apply our entity disambiguation model 310

on GRAILQA, and achieve substantial improve- 311

ments in terms of entity linking. 312

3 Experiments 313

We mainly test our approach on GRAILQA (Gu 314

et al., 2021), a challenging dataset focused on eval- 315

uating the generalization capabilities. We also ex- 316

periment on WEBQSP and compare against a num- 317

ber of prior approaches to demonstrate the general 318

applicability of our approach. 319

3.1 Experiment: GRAILQA 320

GRAILQA is the first dataset that evaluates the 321

zero-shot generalization. Specifically, GRAILQA 322
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Overall I.I.D. Compositional Zero-Shot

EM F1 EM F1 EM F1 EM F1

QGG (Lan and Jiang, 2020) − 36.7 − 40.5 − 33.0 − 36.6

Bert Transduction (Gu et al., 2021) 33.3 36.8 51.8 53.9 31.0 36.0 25.7 29.3
Bert Ranking (Gu et al., 2021) 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7

ArcaneQA (Anonymous) 57.9 64.9 76.5 79.5 56.4 63.5 50.0 58.8
ReTrack (Chen et al., 2021) 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5
S2QL (Anonymous) 57.5 66.2 65.1 72.9 54.7 64.7 55.1 63.6

RnG-KBQA (Ours) 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2
w/o Entity Disambiguation 61.4 67.4 78.0 81.8 55.0 63.2 56.7 63.0

Table 1: Exact match (EM) and F1 scores on the test split of GRAILQA. The numbers of other approaches are
taken from the leaderboard. RNG-KBQA substantially outperforms prior methods by a large margin.

Training Data

Compositional Generalization

Zero-Shot Generalization

(AND music.recording (JOIN recording.artist samuel_ramey))

(AND music.album (JOIN album.artist samuel_ramey))

(AND music.album (JOIN album.artist 
                 (JOIN (R recording.artist) holy_night)))

what are the music recordings by Samuel Ramey? 

what are the albums by Samuel Ramey? 

what are the albums by the artist who makes the recoding Holy Night? 

(AND tv.tv_song (JOIN composition.lyricist samuel_ramey))

what songs for tv did Samuel Ramey write lyrics for? 

Figure 5: Examples of compositional generalization to
new composition of KB schema items and zero-shot
generalization to unseen schema items (red).

contains 64,331 questions in total and carefully323

splits the data so as to evaluate three levels of gen-324

eralization in the task of KBQA, including i.i.d. set-325

ting, compositional generalization to unseen com-326

position, and zero-shot generalization to unseen327

KB schema (examples in Figure 5). The fraction328

of each setting in the test set is 25%, 25%, and329

50% , respectively. Aside from the generalization330

challenge, GRAILQA also presents additional dif-331

ficulty in terms of the large number of involved332

entities/relations, complex compositionality in the333

logical forms (up to 4 hops), and noisiness of the334

entities mentioned in questions (Gu et al., 2021).335

Implementation Detail We link an entity men-336

tion to an entity node in KB using our approach de-337

scribed in Section 2.4. We first use a BERT-NER338

systems provided by the authors of GRAILQA to339

detect mention spans in the question. For each men-340

tion span, we match the span with surface forms in341

FACC1 project (Gabrilovich et al., 2013), rank the342

matched entities using popularity score, and retain343

the top-5 entity candidates. Lastly, we use the dis-344

ambiguation model trained on GRAILQA to select345

only one entity for each mention. Our entity ambu-346

lation model is initiated from BERT-base-uncased347

model provided by huggingface library (Wolf et al., 348

2020), and finetuned for 3 epochs with a learning 349

rate of 1e-5 and a batch size of 8. 350

When training the ranker, we sample 96 neg- 351

ative candidates using the strategy described in 352

Section 2.2. Our ranker is finetuned from BERT- 353

base-uncased for 3 epochs using a learning rate of 354

1e-5 and a batch size of 8. We do bootstrapping 355

after every epoch. It is also noteworthy that we 356

perform teacher-forcing when training the ranker, 357

i.e., we use ground truth entity linking for training. 358

We base our generation model on T5-base (Raf- 359

fel et al., 2020). We use top-5 candidates returned 360

by the ranker and finetune for 10 epochs using a 361

learning rate of 3e-5 and a batch size of 8. 362

Metrics For GRAILQA, we use exact match 363

(EX) and F1 score (F1) as the metrics, all of which 364

are computed using official evaluation script. 365

Results Table 1 summarizes the results on 366

GRAILQA. The results of other approaches are 367

directly taken from the leaderboard.2 Overall, our 368

approach sets the new state-of-the-art performance 369

on GRAILQA dataset, achieving 68.8 EM and 74.4 370

F1. This exhibits a large margin over the other 371

approaches: our approach outperforms ReTrack 372

(Chen et al., 2021) by 10.7 EM and 8.2 F1. 373

Furthermore, RNG-KBQA performs generally 374

well for all three levels of generalization and is par- 375

ticularly strong in zero-shot setting. Our approach 376

is slightly better than ReTrack and substantially 377

better than all the other approaches in i.i.d. set- 378

ting and compositional setting. However, ReTrack 379

fails in generalizing to unseen KB Schema items 380

and only achieves poor performance in zero-shot 381

setting, whereas our approach is generalizable and 382

beats ReTrack with a margin of 16.1 F1. 383

2Accessed on 11/10/2021.
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F1 EM Hits@1

PullNet* (Sun et al., 2019) 62.8 − 67.8
GraftNet* (Sun et al., 2018) − − 68.1
Bert Ranking* (Gu et al., 2021) 67.0 − −
EmbedQA* (Saxena et al., 2020) − − 72.5
ReTrack* (Chen et al., 2021) 74.7 − 74.6

Topic Units (Lan et al., 2019) 67.9 − 68.2
UHop (Chen et al., 2019) 68.5 − −
NSM (Liang et al., 2017) 69.0 − −
ReTrack (Chen et al., 2021) 71.0 − 71.6
STAGG (Yih et al., 2015) 71.7 63.9 −
CBR (Das et al., 2021) 72.8 70.0 −
QGG (Lan and Jiang, 2020) 74.0 − −

RNG-KBQA (Ours) 75.6 71.1 −

Table 2: Results of RNG-KBQA and baselines on WE-
BQSP. * (approach in the top section) denotes using or-
acle entity linking annotations provided by the dataset.
Our approach achieves the new state-of-the-art perfor-
mance (75.6 F1) with a discernible margin over the per-
formance of best prior method (74.0 F1 obtained by
QGG). Our approach even outperforms a number of
prior work using oracle entity linking annotations.

To directly compare the effectiveness of our rank-384

and-generate framework against rank-only baseline385

(BERT Ranking), we also provide the performance386

of a variant of RNG-KBQA without the entity-387

disambiguation model. In this variant we directly388

use the entity linking results provided by the au-389

thors of Gu et al. (2021). Under the same entity390

linking performance, our ranking-and-generation391

framework is able to improve the performance by392

9.7 EM and 8.2 F1. Furthermore, even without the393

entity-disambiguation module, our model still sub-394

stantially outperforms all other approaches, even395

when some of them (e.g., ReTrack) use a better en-396

tity linking system (Chen et al., 2021). Please refer397

to the supplementary materials for more details on398

entity linking performance.399

3.2 Experiment: WEBQSP400

WEBQSP is a popular dataset which evaluates401

KBQA approaches in i.i.d. setting. It contains402

4,937 question in total and requires reasoning403

chains with up to 2 hops. Since there is no offi-404

cial development split, we randomly sample 200405

examples from the training set for validation.406

Implementation Detail For experiments on WE-407

BQSP, we use ELQ (Li et al., 2020) as the entity408

linker, which is trained on WEBQSP dataset to409

perform entity detection and entity linking, since410

it produces more precise entity linking results and411

hence leads to less number of candidate logical412

forms for each question. Because ELQ always links 413

a mention to only one entity, we do not need an 414

entity-disambiguation step for WEBQSP dataset. 415

Similarly, we initiate the logical form ranker us- 416

ing BERT-base-uncased, and the generator using 417

T5-base. We also sample 96 negative candidates 418

for each question, and feed the top-5 candidates to 419

the generation model. The ranker is trained for 10 420

epochs and we run bootstrapping every 2 epochs; 421

the generator is trained for 20 epochs. 422

Metrics F1 is used as the main evaluation metric. 423

In addition, for approaches that are able to select en- 424

tity sets as answers, we report the exact match (EM) 425

used in the official evaluation. For information- 426

retrieval based approaches that can only predict 427

a single entity, we report Hits@1 (if the predicted 428

entity is in the ground truth entity set), which is 429

considered as a loose approximation of EM. 430

Results For baseline approaches, we directly 431

take the results reported in corresponding original 432

paper. As shown in Table 1, RNG-KBQA achieves 433

75.6 F1, surpassing the prior state-of-the-art (QGG) 434

by 1.6. Our approach also achieves the best EM 435

score of 71.1, surpassing CBR (Das et al., 2021). 436

The performance of our approach obtained using 437

ELQ-predicted entity linking outperforms all the 438

prior methods, even if they are allowed to use ora- 439

cle entity linking annotations (denoted as * in the 440

top section). It is also noteworthy that both CBR 441

and QGG, the two methods achieving strong per- 442

formance closest to ours, use an entity linker with 443

equal or better performance compared to ours. In 444

particular, CBR also uses ELQ for entity linking. 445

QGG uses an entity linker achieving 85.2 entity 446

linking F1 (calculated using public available code) 447

which is slightly better than ours achieving 84.8 448

entity linking F1. To summarize, the results on 449

WEBQSP suggest that, in addition to outstanding 450

generalization capability, our approach is also as 451

strong in solving simpler questions in i.i.d. setting. 452

3.3 Analysis 453

Ablation Study We first compare the perfor- 454

mance of our full model against incomplete abla- 455

tions in Table 3. We derive a generation-only (Gen 456

Only) model from our base model by replacing the 457

trained ranker with a random ranker, which leads to 458

a performance drop of 27.5 and 5.7 on GRAILQA 459

and WEBQSP, respectively. The performance de- 460

terioration is especially sharp on GRAILQA as it 461

requires generalizing to unseen KB schema items, 462
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GRAILQA WEBQSP

Full Model 75.1 75.6

Gen Only (Rand Rank) 47.6 69.9

Rank Only 69.8 72.7
Rank Only (w/o Bootstrap) 68.6 71.3

Table 3: F1 scores on GRAILQA (dev set) and WE-
BQSP of three ablations, including a generation-only
variant (Gen Only, which uses randomly selected log-
ical form candidates), a ranking-only variant (Rank
Only), and a ranking-only variant without using boot-
strap training strategy (w/o Bootstrap). Removing ei-
ther component leads to performance deterioration.

Equal F1 
69.7

Gen Be1er 
4.7

Rank Be1er 
1.2

Zero F1 
24.4

Equal F1 
66.6

Gen Be1er 
8.9

Rank Be1er 
7.2

Zero F1 
17.3

Grail (Overall) WebQSP

Equal F1 
75.2

Gen Be1er 
9.4

Rank Be1er 
1.4

Zero F1 
13.9

Equal F1 
56.8

Gen Be1er 
7.5

Rank Be1er 
2.4

Zero F1 
33.2

Grail (I.I.D) Grail(Compositional)

Equal F1 
71.5

Gen Be1er 
1.4

Rank Be1er 
1.6

Zero F1 
25.3

Grail (Zero-Shot)

Figure 6: Comparison between the ranker’s top predic-
tions and the generator’s top predictions. Generation
model mostly keeps or improves the prediction while
occasionally introducing errors.

for which the generator typically needs to be based463

on a good set of candidates to be effective.464

To test the effects of our generation step, we465

compare the performance of a ranking-only variant466

(directly using the top-ranked candidate) against467

the performance of the full model. As shown in468

Table 3, the generation model is able to remedy469

some cases not addressable by the ranking model470

alone, which boosts the performance by 5.3 on471

GRAILQA and 2.9 on WEBQSP.472

We additionally evaluate the performance of a473

ranking model trained without bootstrapping strat-474

egy introduced in Section 2.2. The performance of475

this variant lags its counterpart by 1.2 and 1.4 on476

GRAILQA and WEBQSP, respectively. The boot-477

strapping strategy is indeed helpful for training the478

ranker to better distinguish spurious candidates.479

Comparing Outputs of Ranking Model and480

Generation Model We have demonstrated the481

benefit of adding a generation stage on top of the482

ranking step on previous result sections. Here, we483

present a more detailed comparison between the484

outputs of ranking model and generation model.485

Figure 6 presents the “comparison matrices” show-486

Generation Better Than Ranking
(a) Q what is the shortest recording by samuel ramey?

R (AND music.recording (JOIN
recording.artist ramey))

G (ARGMIN (AND music.recording
(JOIN recording.artist ramey))
recording.length)

(b) Q where did kevin love go to college?
R (JOIN education.institution (JOIN

person.education love))
G (AND (JOIN topic.notable_types

college) (JOIN edu.institution
(JOIN person.education love)))

Ranking Better Than Generation
(c) Q what song for tv or television did benny davis com-

pose?
R (AND tv.tv_song (JOIN

composition.lyricist davis))
G (AND tv.tv_song (JOIN

composition.song (JOIN
composition.composer davis)))

(d) Q what team does heskey play for?
R (JOIN sports_team_roster.team

(JOIN pro_athlete.teams heskey))
G (JOIN sports_team_roster.team (AND

(JOIN sports_team_roster.from 2015)
(JOIN pro_athlete.teams heskey)))

Figure 7: Examples of outputs from the generator (G)
and ranker (R). A generation step is able to compensate
some missing operators not supported in the enumera-
tion (a), or patch some implicit clue (b). However, gen-
erator does introduce errors if it produces another pre-
diction when there is inherent ambiguity in the question
and the top-ranked one is indeed correct (c). Generator
also adds unnecessary constraint sometimes (d).

ing the fractions of questions where ◦ top left: the 487

top ranking prediction and top generation predic- 488

tion achieves a equal nonzero F1, ◦ top right: the 489

top generation prediction is better, ◦ bottom left: 490

the top ranking prediction is better, ◦ bottom right: 491

they both fail (achieving a 0 F1). 492

The generator retains the ranking predictions 493

without any modifications for most of the time. For 494

4.7% and 8.9% of the questions from GRAILQA 495

and WEBQSP, respectively, the generator is able 496

to fix the top-ranked candidates and improves the 497

performance. Although generator can make mis- 498

takes in non-negligible fraction of examples on 499

WEBQSP, it is mostly caused by introducing false 500

constraints (e.g., Figure 7 (d)). Thanks to our 501

execution-guided inference procedure, we can still 502

turn back to ranker-predicted results when the gen- 503

erator makes mistakes, which allows tolerating gen- 504

eration errors to some extent. 505

We also show the break down by types of gener- 506

alization on GRAILQA (bottom row in Figure 6). 507

Generation stage is more helpful in i.i.d. and com- 508

positional setting, but less effective in zero-shot 509
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GRAILQA WEBQSP
EXEC VALID EXEC VALID

Top-1 99.7 88.1 98.7 91.1
Top-3 99.7 89.4 99.5 94.5
Top-5 99.7 89.8 99.5 94.6
Top-10 99.7 90.4 99.5 95.4

Table 4: The chances of finding an executable (EXEC)
and a valid (VALID) logical form among the top-k gen-
erated. logical forms.

setting, as it involves unseen relations that are usu-510

ally hard to generate.511

Executability We use executability to further512

measure the quality of generated outputs. Table 4513

shows executable rate (producing an executable514

logical forms) and valid rate (producing a logical515

form that yields non-empty answer) among the top-516

k decoded list. Nearly all the top-1 logical forms517

are executable. This suggests that the generation518

model can indeed produce high-quality predictions519

in terms of syntactic correctness and consistency520

with KB. As the beam size increases, more valid521

logical forms can be found in the top-k list, which522

our inference procedure can benefit from.523

Output Examples of Ranking Model and Gen-524

eration Model For more intuitive understand-525

ing of how the generator works, we attach sev-526

eral concrete examples (Figure 7). As suggested527

by example (a), the generation model can rem-528

edy some missing operations (ARGMIN) not sup-529

ported when enumerating. It can also patch the530

top-ranked candidate with implicit constraints: the531

(JOIN topic.notable_types college) in (b) is532

not explicitly stated, and our NER system fails to533

recognize college as an entity.534

As in example (c), the generation model makes535

a worse prediction sometimes because it prefers536

another prediction in the top-ranked list due to in-537

herent ambiguity in the question. It can also fail538

when falsely adding a constraint which results in539

empty answer (d).540

4 Related Work541

KBQA is a promising technique for users to effi-542

ciently query over large KB, which has been exten-543

sively studied over the last decade. Past work has544

collected a series of datasets (Yih et al., 2016; Bor-545

des et al., 2015; Zhang et al., 2018; Su et al., 2016;546

Gu et al., 2021) as well as proposed a diversity of547

approaches for this task.548

One line of KBQA approaches first constructs a 549

query-specific subgraph with information retrieved 550

from the KB and then rank entity nodes to select 551

top entities as the answer (Sun et al., 2018, 2019; 552

Saxena et al., 2020; Cohen et al., 2020; Shi et al., 553

2021). The subgraph can either be retrieved in 554

one-shot using heuristic rules (Sun et al., 2018), or 555

iteratively built using learned models (Sun et al., 556

2019; Shi et al., 2021; Cohen et al., 2020; Sax- 557

ena et al., 2020). Later, a neural model operating 558

over subgraph is employed to determine the answer 559

nodes (Sun et al., 2018, 2019; Shi et al., 2021). 560

Such information retrieval based approaches are 561

usually less interpretable as they do not produce 562

the inference path reaching the answer, whereas 563

our approach is more transparent since we are able 564

to produce logical forms. 565

More closely related to our approach, another 566

line answers a question by parsing it into an ex- 567

ecutable logical form in various representations, 568

including lambda-DCS (Liang, 2013; Berant et al., 569

2013), sparql query (Das et al., 2021), graph query 570

(Yih et al., 2015; Su et al., 2016; Lan and Jiang, 571

2020), and s-expression (Gu et al., 2021). Past 572

work has attempted to generate logical forms us- 573

ing grammar-based parsera (Berant et al., 2013) or 574

seq-to-seq parsers (Zhang et al., 2019). There has 575

also been an alternative way that first enumerates 576

a list of logical form candidates and then choose 577

one that best matches the intents in the question 578

(Lan and Jiang, 2020; Luo et al., 2018; Yih et al., 579

2015; Yavuz et al., 2016, 2017; Reddy et al., 2017; 580

Sun et al., 2020). Our approach differs in that we 581

employ a generation stage to remedy the coverage 582

issue which these approaches often suffer from. 583

5 Conclusion 584

We have presented RNG-KBQA for question an- 585

swering over knowledge base. RNG-KBQA con- 586

sists of a ranking step and a generation step. Our 587

ranker trained with iterative bootstrapping strategy 588

can better distinguish correct logical forms from 589

spurious ones than prior seq-to-seq ranker. Our gen- 590

erator can further remedy uncovered operations or 591

implicitly mentioned constraints in the top-ranked 592

logical forms. The experimental results on two 593

datasets, GRAILQA and WEBQSP, suggest the 594

strong performance of our approach: RNG-KBQA 595

achieves new state-of-the-art performance on both 596

datasets, and particularly outperforms prior meth- 597

ods in generalization setting by a large margin. 598
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Linking F1 KBQA F1

Bert Ranking (Gu et al., 2021) 72.2 58.0
ReTrack (Chen et al., 2021) 77.4 65.3

RnG-KBQA (Ours) 79.6 74.4
w/o Entity Disambiguation 72.2 67.4

Table 5: The entity linking F1 (on dev set) and
the corresponding final F1 scores (on leaderboard) on
GRAILQA of various methods.

A Details of Entity Linking Performance813

Table 5 shows the entity linking performance and814

KBQA performance on GRAILQA of various meth-815

ods. Compared to the popularity-based baseline816

(Bert Ranking), Our entity disambiguation model817

is effective and successfully improves the entity818

linking F1 by 7.4, which boosts the final KBQA819

F1 score by 7.0. Our entity linking model is also820

better than the Bootleg approach (Orr et al., 2021)821

used in ReTrack (Chen et al., 2021).822

Furthermore, our method without the entity dis-823

ambiguation modules outperforms Bert Ranking824

with a substantially large margin (11.4 F1 score).825

Our method even beats ReTrack when it is built826

upon a much better entity linking model. The re-827

sults suggest the strong effectiveness of our rank-828

and-generate framework.829
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