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Abstract: Humans can perform parkour by traversing obstacles in a highly dynamic
fashion requiring precise eye-muscle coordination and movement. Getting robots
to do the same task requires overcoming similar challenges. Classically, this is
done by independently engineering perception, actuation, and control systems
to very low tolerances. This restricts them to tightly controlled settings such as
a predetermined obstacle course in labs. In contrast, humans are able to learn
parkour through practice without significantly changing their underlying biology.
In this paper, we take a similar approach to developing robot parkour on a small
low-cost robot with imprecise actuation and a single front-facing depth camera
for perception which is low-frequency, jittery, and prone to artifacts. We show
how a single neural net policy operating directly from a camera image, trained in
simulation with large-scale RL, can overcome imprecise sensing and actuation to
output highly precise control behavior end-to-end. We show our robot can perform
a high jump on obstacles 2x its height, long jump across gaps 2x its length, do a
handstand and run across tilted ramps, and generalize to novel obstacle courses
with different physical properties.

1 Method
We wish to train a single neural network that goes directly from raw depth and onboard sensing to
joint angle commands. To train adaptive motor policies, recent approaches use two-phase student
teacher training [1, 2, 3, 4]. Later works [5, 6] introduce regularized online adaptation (ROA) to
collapse this into a single phase. To train the vision backbone, a similar teacher-student framework
is employed [7, 8, 9] where a teacher trained with privileged scandots information is distilled to a
student with access to depth. In this paper, we use ROA for adaptation and two-phase training for the
vision backbone but introduce key modifications for the challenging task of extreme parkour.
First, since parkour requires diverse behaviors to traverse different obstacles it is challenging to
engineer reward functions specific to each. We present a simple, unified reward formulation from
which diverse behaviors emerge automatically and are perfectly adapted to the terrain geometry.
Second, during parkour the robot needs to be able to choose its own direction as opposed to following
human-specified ones. For instance, when jumping across tilted ramps, it needs to jump on the first
ramp at a very specific angle and then change directions immediately which is impossible for a human
to provide. Instead, we provide directions in phase 1 using suitably placed waypoints and in phase 2
we train a network to predict these oracle heading directions from depth information.

1.1 Unified Reward for Extreme Parkour
The rewards used in [7] do not transfer directly to the parkour case. The robot cannot follow arbitrary
direction commands and instead must have the freedom to choose the optimal direction. Instead of
randomly sampling directions, we compute direction using waypoints placed on the terrain as

d̂w =
p−x
∥p−x∥

(1)

where p is the next waypoint location and x is robot location in the world frame. The velocity tracking
reward is then computed as

rtracking = min(⟨v, d̂w⟩,vcmd) (2)
where v ∈ R2 is the robot’s current velocity in world frame and vcmd ∈ R is the desired speed. Note
that [7] tracks velocity in the base frame but world frame is used. This is done to prevent the robot
from exploiting the reward and learning the unintended behavior of turning around the obstacle.
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While the above reward is sufficient for diverse parkour behavior, for challenging obstacles the robot
tends to step close to the edge to minimize energy usage. This behavior is risky and does not transfer
well to real settings. We therefore add a term to penalize foot contacts near terrain edges.

rclearance =−
4

∑
i=0

ci ·M[pi] (3)

ci is 1 if ith foot touches the ground. M is a boolean function which is 1 iff the point pi lies within
5cm of an edge. pi is the foot position for each leg.
The rewards defined above typically lead to a gait that uses all four legs. However, a defining feature
of parkour is walking in different styles that are aesthetically pleasing but may not be biomechanically
optimal. To explore this diversity, we introduce a term to track a desired forward vector using the
same inner product design principle, which can be controlled by the operator at test time.

rstylized =W ·
[
0.5 · ⟨v̂ f wd , ĉ⟩+0.5

]2 (4)

where v̂ f wd is the unit vector pointing forward along the robot’s body, ĉ is also a unit vector indicating
the desired direction and W is a binary number to switch the reward on/off. In our case, we train the
robot to do a handstand and choose ĉ = [0,0,−1]T . W is sampled randomly in {0,1} at training and
controlled via remote at deployment. We also use the additional regularization terms from [6].

1.2 Reinforcement Learning from Scandots (Phase 1)
We use the above rewards to learn a policy using model-free RL [10] in simulation. This policy
takes as input, the proprioception x, scandots m, target heading d̂, walking flag W and commanded
speed vcmd. We use regularized online adaptation (ROA) [5] to train an adaptation module to estimate
environment properties. We create a set of tilted ramps, gaps, hurdles and high step terrains (Fig. ??),
and arrange them in increasing difficulty as in [7]. To aid exploration, robots are first initialized in
easy levels. They are promoted to harder ones if they traverse more than half the length, and demoted
to an easier one if they travel less than half the expected distance vcmdT (T is episode length).

1.3 Distilling Direction and Exteroception (Phase 2)
The phase 1 policy relies on two pieces of information not directly available on the real robot. First,
exteroceptive information is only available in the form of depth images from a front-facing camera
instead of scandots. Second, there is no expert to specify waypoints and target directions, these must
be inferred from the visible terrain geometry. We use supervised learning to obtain a deployable policy
which automatically estimates these quantities. For exteroception, similar to the RMA architecture
in [7] we replace the scandots input to the base policy with a convnet-GRU pipeline that accepts
depth. This network is trained using DAgger [11], with ground truth actions from the phase 1 policy.
We use student predicted motor commands to step the environment. We initialize the actor network
with a copy from phase 1 to minimize the drift when we directly step the environment with student
actions. However for predicted heading, the depth encoding network is not pre-trained. Directly using
predicted heading as observation could result in catastrophic distribution drift leading to incorrect
action labels from the teacher. To overcome this issue, we propose to use a mixture of teacher and
student (MTS). Concretely, the heading command the student observes

obsθ =

{
θ pred, if |θ pred − d̂w|< 0.6
d̂w, otherwise

where θ pred and d̂w are the desired yaw angle from prediction and oracle, respectively. obsθ is the
yaw angle the policy observes.
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