
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STAGEWISE DEVELOPMENT IN TRANSFORMERS AND
THE GEOMETRY OF THE LOSS LANDSCAPE

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning involves navigating a high-dimensional parameter space guided
by the loss landscape. In the process, complex computational structures form
and re-form inside the neural network, leading to shifts in input–output behavior.
It is a priority for the science of deep learning to uncover principles governing
the development of neural network structure and behavior. Drawing from the
framework of singular learning theory, we propose that model development is
governed by the local geometry of the loss landscape. We investigate this link by
monitoring the geometry of the loss landscape throughout training for transformers
trained as language models or for a synthetic in-context regression task. We divide
training into “developmental stages” marking discrete shifts in loss landscape
geometry. We then confirm that these stages coincide with significant changes in
the internal computational structure and the input–output behavior of our models.
Our findings provide new insights into transformer development and underscore
the potential of a geometric perspective for understanding modern deep learning.

1 INTRODUCTION

In modern deep learning, a striking phenomenon is the event of sudden shifts in a model’s internal
computational structure and associated changes in generalization behavior (e.g., Wei et al., 2022;
Olsson et al., 2022; McGrath et al., 2022). As large models become more deeply integrated into
real-world applications, understanding this phenomenon is a priority for the science of deep learning.

While the scale and importance of this phenomenon is new, the idea that neural network learning
proceeds in discrete developmental stages goes back decades (Raijmakers et al., 1996). In the case
of deep linear networks, we know that training proceeds through stages in which the model learns
progressively higher-rank approximations of the data distribution (Baldi and Hornik, 1989; Rogers
and McClelland, 2004; Saxe et al., 2019). Unfortunately, it is not clear how this perspective on
stagewise development can be generalized to large nonlinear models such as transformers which
exhibit more complex internal computational structure and are trained on more complex datasets.

We propose that the key to understanding stagewise development is the geometry of the loss landscape.
This perspective on neural network development is motivated by Singular Learning Theory (SLT;
Watanabe, 2009). SLT proves that, for Bayesian neural networks, the posterior develops in discrete
developmental stages in a so-called singular learning process governed by the local geometry of the
model likelihood (Watanabe, 2009; Chen et al., 2023). While there are many differences between
Bayesian deep learning and modern neural network training, we believe that the link between local
geometry and stagewise development is fundamental to learning.

In this paper, we contribute a thorough empirical investigation into the relationship between loss
landscape geometry and stagewise development. In particular, we train transformers in two distinct
learning settings, and we demonstrate changes in their loss landscape geometry can be associated with
changes in their internal computational structure and input–output behavior. This finding provides
evidence that loss landscape geometry is closely linked to neural network development in modern
deep learning.
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Stage LM1 LM2 LM3 LM4 LM5

End t 900 6.5k 8.5k 17k 50k
∆ℓ̂ −2.33 −1.22 −0.18 −0.40 −0.34

∆λ̂ +26.4 +22.5 −1.57 +8.62 +1.77

(a) Two-layer attention-only language transformer.

Stage LR1 LR2 LR3 LR4 LR5

End t 1k 40k 126k 320k 500k
∆ℓ̂ −0.32 −2.21 −0.07 −0.05 −0.029

∆λ̂ +21.4 +149 −12.3 −44.1 +3.56

(b) In-context linear regression transformer.

Figure 1: We train transformer models on both (a) natural language data and (b) synthetic in-context
linear regression data. In addition to test loss (top row), we track loss landscape geometry as quantified
by the Local Learning Coefficient (LLC) (middle row, see Section 3). Critical points in the LLC
curve mark boundaries between distinct developmental stages (ranges of training time) (bottom row,
indicated with orange hues for increasing LLC or blue for decreasing LLC, see Section 4). We show
in Sections 5 and 6 that these stages coincide with the formation of certain internal structures or
changes in input–output behavior. These stage divisions are specific to these training runs, but we
show in Appendix B.1 that similar divisions arise when training with different seeds.

In more detail, we propose the following geometry-based stage identification methodology:

1. Transformer training (Section 2): We train transformers in two learning settings, namely
language modeling, a transformer with around 3M parameters modeling a subset of the
Pile (Gao et al., 2020; Xie et al., 2023), and in-context linear regression, a transformer with
around 50k parameters modeling synthetic regression data following Garg et al. (2022).

2. Local geometry tracking (Section 3): We quantify the local geometry of the loss landscape
at frequent checkpoints by estimating the Local Learning Coefficient (LLC; Lau et al., 2024),
a measure of local geometric complexity derived from SLT (Watanabe, 2009).

3. Geometry-based stage division (Section 4): Motivated by the singular learning process in
Bayesian inference (Watanabe, 2009; Chen et al., 2023), we search for critical points in the
LLC curve across training time and use these as boundaries to divide training into stages.

4. Stage validation (Sections 5 and 6): To show that these divisions are meaningful, we track
shifts in each model’s internal computational structure and input–output behavior across
checkpoints, quantified using various setting-specific metrics.

Following this methodology reveals that each transformer’s training can be clearly divided into
several developmental stages (see Figure 1). Moreover, we find that these divisions are meaningful in
that the stages coincide with significant, interpretable shifts in the internal computational structure
and input–output behavior of the models (Sections 5 and 6).

These results have several implications, discussed further in Section 8. Both our methodology for
stage identification as well as the specific stages we identify for these transformers contribute to
the growing literature on understanding transformer behavior, structure, and training dynamics.
Furthermore, we find several stages in which the loss landscape geometry becomes increasingly
degenerate, indicating the model becoming simpler—a phenomenon not predicted by prior models of
saddle-to-saddle dynamics. Finally, the fact that simply monitoring the local geometry of the loss
landscape reveals meaningful developmental stages for modern transformer models in two distinct
learning settings points to a fundamental link between local geometry and development, and the
crucial role geometry has the potential to play in advancing our understanding of deep learning.
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2 TRAINING TRANSFORMERS IN TWO SETTINGS

We study transformers trained in two different learning settings, namely language modeling and
in-context linear regression. These settings have been the subject of recent work on the emergence of
In-Context Learning (ICL), a compelling example of a sudden shift in a model’s internal computational
structure in modern deep learning (Olsson et al., 2022).

In this section, we describe both settings and introduce their data distributions and loss functions.
Common to both settings is a transformer model denoted fw with parameters w, which takes as input
a sequence of tokens, also called a context. We describe specific architecture details and training
hyperparameters in Appendices D.1 and D.2.

Language modeling. Elhage et al. (2021) and Olsson et al. (2022) observed that two-layer attention-
only transformers (transformers without MLP layers) form interesting internal computational struc-
tures supporting ICL, including induction heads. In order to compare with the behavioral and
structural analysis of these prior works we adopt the same architecture.1

We consider the standard task of next-token prediction for sequences of tokens taken from a subset of
the Pile (Gao et al., 2020; Xie et al., 2023). We denote the input context, a sequence of tokens tk, by
SK = (t1, . . . , tK) where K is the context length. We denote by S≤k the sub-sequence (t1, . . . , tk)
of the context SK . Our data is a collection of length-K contexts, {Si

K}ni=1; the superscript i indicates
the i-th sample in a total of n such samples. For 1 ≤ i ≤ n, the notation Si

≤k should be understood
as the sub-sequence of the i-th context, Si

K .

Given a context Si
≤k, the transformer model fw outputs a vector of logits fw(S

i
≤k) such that

softmax(fw(S
i
≤k)) is a probability distribution over all tokens (we denote by softmax(fw(S

i
≤k))[t]

the probability of token t). The per-token empirical loss for language modeling is then the average
cross-entropy between this distribution and the true next token at each index k ∈ {1, . . . ,K − 1},

ℓn,k(w) = − 1

n

n∑
i=1

log
(
softmax(fw(S

i
≤k))[t

i
k+1]

)
. (1)

The associated empirical loss is ℓn(w) = 1
K−1

∑K−1
k=1 ℓn,k(w), with the test loss ℓ̂ defined analo-

gously on a held-out set of examples. The corresponding population loss ℓ(w) is defined by taking
the expectation with respect to the true distribution of contexts (see also Appendix A.4).

In-context linear regression. Following the framework of Garg et al. (2022), a number of recent
works have explored ICL in the setting of learning simple function classes, such as linear functions.
This setting is of interest because we understand theoretically optimal ICL, and because simple
transformers are capable of good ICL performance in practice.

We give a standard presentation of transformers trained for in-context linear regression. A task is a vec-
tor t ∈ RD. Given a task t, we generate xi ∈ RD, yi ∈ R iid for i = 1, . . . ,K according to the joint
distribution q(x, y|t) = q(y|x, t)q(x), resulting in the context SK = (x1, y1, . . . , xK−1, yK−1, xK)
with label yK . Note that the xi’s and yi’s are yet to be tokenized in this notation (see Appendix
D.2.2). A sub-sequence of SK is denoted S≤k as above with S≤k = (x1, y1, . . . , xk) with label yk.
We study the setting with task distribution q(t) = N (0, ID), input distribution q(x) = N (0, ID),
and output distribution q(y|x, t) = N (tTx, σ2).

Consider a set of samples {(ti, Si
K , yiK)}ni=1 which consists of n iid samples drawn as described

above. Upon running a context through the transformer, we obtain a prediction ŷik = fw(S
i
≤k) for

each sub-sequence Si
≤k, which leads to the per-token empirical loss for in-context linear regression,

ℓn,k(w) =
1

n

n∑
i=1

(ŷik − yik)
2, (2)

for 1 ≤ k ≤ K. The associated empirical loss is ℓn(w) = 1
K

∑K
k=1 ℓn,k(w). The in-context linear

regression test loss and population loss are defined analogously.
1We also consider one-layer attention-only transformers in Appendix B.5. We don’t study transformers with

MLP layers in this setting, though we do use MLP layers in the in-context linear regression setting.
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3 QUANTIFYING GEOMETRY VIA THE LOCAL LEARNING COEFFICIENT

We track the evolution of degeneracy in the local geometry of the loss landscape throughout training
by estimating the Local Learning Coefficient (LLC; Watanabe, 2009; Lau et al., 2024) at model
checkpoints. In this section we review the LLC and the estimation procedure of Lau et al. (2024).

The Local Learning Coefficient (LLC). Given a local minimum w∗ of the population loss ℓ, the
LLC of w∗, denoted λ(w∗), is a positive rational number measuring the amount of degeneracy in the
geometry of ℓ near w∗ (Watanabe, 2009; Lau et al., 2024). Intuitively, the geometry is more degenerate
(lower LLC) at a parameter w∗ if there are more ways in which w can be varied near w∗ such that
ℓ(w) remains equal to ℓ(w∗). More formally, the LLC of a local minimum w∗ of the population loss
ℓ (a negative log likelihood) can be defined based on the asymptotics of the volume V (ϵ) of the set
of nearby parameters with loss less than ℓ(w∗) + ϵ. As ϵ → 0 this volume scales asymptotically
in Θ

(
ϵλ(w

∗) log(1/ϵ)m(w∗)−1
)

where λ(w∗) is the LLC and m(w∗) is another geometric quantity
called the local multiplicity. We refer readers to Figure 2 for a conceptual illustration, Appendix A.1
for additional discussion, and Lau et al. (2024) for full formal treatment.

Local learning coefficient

Figure 2: Increasingly degenerate population loss landscapes for a two-dimensional parameter space.
The Local Learning Coefficient (LLC) can be defined as an asymptotic volume scaling exponent—the
order at which the parameter space volume, within a given neighborhood and with a given maximum
loss, shrinks as the maximum loss threshold is reduced to that of the local minimum (in these
examples, the local multiplicity is 1). See Appendix A.1 for more details.

Estimating the LLC. Lau et al. (2024) introduced an estimator for the LLC based on stochastic-
gradient Langevin dynamics (SGLD; Welling and Teh, 2011), which we use in our experiments. Let
w∗ be a local minimum of the population loss ℓ. The LLC estimate λ̂(w∗) is

λ̂(w∗) = nβ
[
Eβ
w|w∗,γ [ℓn(w)]− ℓn(w

∗)
]
, (3)

where Eβ
w|w∗,γ denotes the expectation with respect to the Gibbs posterior

p(w;w∗, β, γ) ∝ exp
{
−nβℓn(w)−

γ

2
||w − w∗||22

}
with inverse temperature β (controlling the contribution of the empirical loss landscape) and lo-
calization strength γ (controlling proximity to w∗). Intuitively, the more degenerate the geometry,
the more ways there are to vary w near w∗ without changing the loss, the easier it is for a sampler
exploring the Gibbs posterior to find points of low loss, and, in turn, the lower λ̂(w∗). Appendix A.2
discusses technical SGLD details, Appendix D.3 outlines our hyperparameter tuning procedure, and
Appendices D.1.4 and D.2.4 document the hyperparameters used in our experiments.

Limitations in LLC estimation. Strictly speaking, the LLC is defined only at local minima for loss
functions arising as negative log likelihoods. By using the estimator at arbitrary transformer training
checkpoints with a loss function based on overlapping contexts, we stray beyond these assumptions.
Nevertheless, consistent with the findings of Chen et al. (2023), the estimator appears to produce
reliable results throughout training in practice (see Appendices A.3 and A.4 for further discussion).
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4 THE SINGULAR LEARNING PROCESS AND STAGEWISE DEVELOPMENT

We use critical points (that is, plateaus, where the first derivative vanishes) in the LLC curve to define
stage boundaries that divide training into developmental stages. This approach to stage identification
is motivated by the singular learning process in Bayesian inference. In this section we review the
singular learning process and outline our stage identification approach in more detail.

The singular learning process. Watanabe’s free energy formula (Watanabe, 2018, Theorem 11),
generalized to a local setting by Chen et al. (2023), gives an asymptotic expansion in the number of
samples n of the Bayesian free energy Fn of some neighborhood W ∗ surrounding a local minimum
of ℓ, w∗ ∈ W ∗, in terms of the empirical loss ℓn, the LLC λ, and the local multiplicity m:

Fn(W
∗) = nℓn(w

∗) + λ(w∗) log n− (m(w∗)− 1) log log n+Op(1). (4)
The free energy of a neighborhood is related to the integral of the Bayesian posterior on the neigh-
borhood by a negative logarithm, so the lower the free energy the more likely the neighborhood is
according to Bayes’ rule (the prior contributes only in the sub-leading terms as long as it is positive).

The coefficients of the linear and logarithmic terms are the empirical loss (a negative log likelihood)
and the LLC, respectively. This creates a trade-off between accuracy (ℓn) and degeneracy (λ) that
changes as n increases. At certain critical dataset sizes the neighborhood having the lowest free
energy may rapidly change, causing the Bayesian posterior to suddenly “jump” from concentrating
around one local minima to another (illustrated in Figure 3). The sequence of discrete posterior jumps
in Bayesian inference is referred to as the singular learning process (Watanabe, 2009, §7.6).

preferred preferred

Figure 3: Conceptual illustration of a discrete “jump” in the Bayesian posterior as the number of
samples increases. Watanabe’s free energy formula sets up a trade-off between the linear term (with
coefficient ℓn, the loss) and the logarithmic term (with coefficient λ, the LLC). Consider two local
minima w∗

1 , w
∗
2 with neighborhoods W ∗

1 ,W
∗
2 . As the number of samples n increases, if w∗

2 has lower
loss and higher LLC than w∗

1 , its neighborhood W ∗
2 may suddenly achieve lower free energy than

W ∗
1 , causing the Bayesian posterior to rapidly shift from to concentrating in W ∗

1 to W ∗
2 .

LLC plateaus separate developmental stages. The connection between the singular learning
process in Bayesian inference and stagewise development in deep learning is not understood in
general, but has been studied in small autoencoders by Chen et al. (2023). Chen et al. (2023)
showed that in these models both Bayesian inference and stochastic gradient descent undergo sudden
transitions between various encoding schemes, reflected as sudden changes in the estimated LLC, as
predicted by Watanabe’s free energy formula.

This perspective suggests that changes in the local geometry of the population loss, as measured by the
LLC, reflect qualitative changes in the network parameter. However, in larger models, we expect these
changes to be more gradual. Accordingly, instead of phase transitions, we speak of developmental
stages separated by stage boundaries at which the posterior is stably concentrated around a given
local minima. What remains is that plateaus in the estimated LLC curve indicate boundaries between
distinct qualitative changes in the network parameter. This motivates our approach of using such
plateaus to divide training into developmental stages.

In our experiments, we identify plateaus in the estimated LLC over checkpoints as follows. We first
lightly smooth the LLC curve with a Gaussian process (to facilitate stable numerical differentiation).
We then numerically differentiate the smoothed curve with respect to log training time. We identify
plateaus as approximate zeros of this derivative, namely local minima of the absolute value of the
derivative that fall below a small threshold. Appendix A.5 discusses this procedure in more detail.
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(a) The language transformer learns bigram statistics
in LM1 (top). At the start of LM2, the positional em-
bedding suddenly becomes useful (middle), enabling
behavioral changes such as the learning of common
n-grams (bottom).

(b) Induction circuit formation begins with previous-
token heads (LM3, top), followed by induction heads
(LM4, middle), leading to a drop in ICL score (LM4,
bottom). The hth attention head in layer l is indexed as
l : h. Top and middle: green lines indicate scores for
all other heads.

Figure 4: Stagewise development in small language models.

5 RESULTS FOR LANGUAGE MODELING

Plateaus in LLC estimates (Figure 1a) reveal five developmental stages over the training of our
language transformers. We associate these stages with the development of bigrams (LM1), n-grams
(LM2), previous-token heads (LM3), and induction heads (LM4). There may be other interesting
developmental changes; we do not claim this list is exhaustive. We did not, for example, discover
significant changes in stage LM5.

It was previously known that small attention-only transformer language models learn bigrams (0-layer
models), skip-trigrams (1-layer models), and induction circuits (2-layer models) (Olsson et al., 2022).
This represents a progression of internal structure in the final trained transformer, as a function of
increasing depth. An original contribution of the present paper is to clearly identify the following
progression of developmental stages over training in this small language model:

Bigrams → n-grams → Previous-token heads → Induction heads.

In this section, we present the details for a particular seed, see Appendix B.1 for the other seeds.

5.1 STAGE LM1 (0–900 STEPS)

Behavioral changes. The model learns bigram statistics, which is optimal for single-token prediction.
Figure 4a (top) shows that the average cross entropy between logits and empirical bigram frequencies
(see Appendix B.3.1) is minimized at the LM1–LM2 boundary, with a value only .3 nats above the
entropy of the empirical bigram distribution.

5.2 STAGE LM2 (900–6.5K STEPS)

Behavioral changes. A natural next step after bigrams are n-grams, token sequences of length n. We
define an n-gram score as the ratio of final-position token loss on (1) a baseline set of samples from a
validation set truncated to n tokens and (2) a fixed set of common n-grams (see Appendix B.3.2). We
see a large improvement in n-gram score for n = 3, 4 in Figure 4a (bottom), rising to several times
the baseline ratio (1.0). Although this is one natural next step for the learning process, we do not rule
out other possible developmental changes for this stage, such as skip-trigrams.
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Figure 5: Samples are shown with tokens highlighted to indicate changes in logits during a given
range. Red is improved performance (higher logit output for the true next token) and blue is worse.
Sample (a): improvement in bigrams (LM1) such as “te/ll, ab/out, des/ire, mot/ion, eng/aged, strugg/le,
etc." Sample (b): improvement in common n-grams (LM2) such as “L/in/ux, P/y/th/on, h/on/or/able,
S/up/reme, dat/ab/ase, f/ram/ew/ork." Sample (c): development of in-context learning via induction
circuits (LM3, LM4), visible in the improved predictions in the word “D/urs/ley" after the first time it
appears in the context, as initially observed by (Olsson et al., 2022).

Structural changes. The positional embedding is necessary for learning n-grams, and, as expected,
the model becomes dependent on the positional embedding during LM2. This is apparent in compar-
ing the test loss with and without the positional embedding zero-ablated in Figure 4a (middle)—the
curves are indistinguishable at first but diverge at the LM1–LM2 boundary (see Appendix B.4.1). We
also see a rise in previous-token attention among second layer attention heads in the background of
Figure 4b (top), which we also suspect plays a role with n-grams.

Interestingly, even before the heads that eventually become induction heads develop their characteris-
tic attention patterns in stages LM3 and LM4, they begin to compose (that is, read and write from the
same residual stream subspace) near the start of stage LM2 (see Figure B.5 and Appendix B.4.2).
This suggests that the foundations of the induction circuit model are laid well in advance of any
measurable change in model outputs or attention activations.

5.3 STAGE LM3 (6.5K–8.5K STEPS)

Structural changes. The first half of the induction circuit (Elhage et al., 2021) begins to form in this
stage. Figure 4b (top) shows that for the previous-token heads that will later participate in the circuit
(highlighted in blue), the fraction these heads attend to the immediately preceding token begins to
increase during this stage (see Appendix B.4.3). During this stage the LLC decreases, suggesting an
increase in degeneracy and decrease in model complexity, perhaps related to the interaction between
heads. It would be interesting to study this further via mechanistic interpretability.

5.4 STAGE LM4 (8.5K–17K STEPS)

Behavioral changes. The model learns to perform ICL as studied by Olsson et al. (2022) (Figure 4b
bottom).

Structural changes. The second half of the induction circuits, second-layer induction heads, begin
to develop. Given a sequence [A][B] . . . [A], the prefix-matching score of Olsson et al. (2022)
measures attention to [B] from the latter [A] (see Appendix B.4.4). Figure 4b (middle) shows that the
prefix-matching score increases for the two heads that become induction heads (highlighted in blue).

5.5 VISUALIZING BEHAVIORAL CHANGES

In Figure 5, we visualize changes in the model’s input-output behavior by comparing model predic-
tions before and after developmental stages and highlighting tokens with the greatest differences.

7
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(a) Top: During LR1, the model learns to predict
with the task prior, xk 7→ ŷk = 0. Bottom: ICL
emerges during LR2. In LR3, the model becomes
worse at ICL on OOD inputs xk ∼ N (0, gID).

(b) Top: During LR3 and LR4, layer normaliza-
tion weights “collapse,” possibly contributing to
an LLC decrease. Bottom: Hessian-based statistics
reveal only one stage boundary (Appendix C.2.2).

Figure 6: Stagewise development in linear regression transformers.

6 RESULTS FOR LINEAR REGRESSION

In the linear regression setting, plateaus in the LLC estimate (Figure 1b) reveal five developmental
stages, corresponding to learning the task prior (LR1), acquiring in-context learning (LR2), and
“over-fitting” to the input distribution (LR3/LR4). We present the stage analysis for one seed, see
Appendix B.1 for the other seeds.

6.1 STAGE LR1 (0–1K STEPS)

Behavioral changes. Similar to bigrams in the language model setting, the model learns the optimal
context-independent algorithm, which is to predict using the average task t̄, which is zero for our
regression setup. Figure 6a shows that the average square prediction for all tokens E[∥ŷk∥2] decreases
during LR1, reaching a minimum of 0.1 (smaller than the target noise σ2 = 0.125) slightly after the
end of LR1.

6.2 STAGE LR2 (1K–40K STEPS)

Behavioral changes. The model acquires in-context learning during this stage (Figure 6a bottom,
with input gain g = 1). This parallels stage LM4 in the the language model setting.

Structural changes. The token and positional embedding begin to “collapse” towards the end
of this stage, effectively losing singular values and aligning with the same activation subspace
(Appendix C.4.1). At the same time, several attention heads form distinct and consistent patterns
(Appendix C.4.5).

6.3 STAGES LR3 & LR4 (40K–126K & 126K–320K STEPS)

Behavioral changes. The model begins to “overfit” to the input distribution: performance continues
to improve on typical samples, but deteriorates on extreme samples for which the norm of the inputs
xk is larger than encountered in during training (Figure 6a with input gain g ̸= 1).

Structural changes. A large fraction of the layer normalization weights rapidly go to zero in this
stage (Figure 6b and Figure C.6). We term this layer normalization collapse. The phenomenon is
most pronounced in the unembedding layer normalization, where it occurs in tandem with a similar
collapse in the weights of the unembedding matrix. This results in the model learning to read its
prediction y from a handful of privileged dimensions of the residual stream. Since this means that
the network outputs become insensitive to changes in many of the parameters, we conjecture that
this explains part of the striking decrease in estimated LLC over these stages (see Appendix C.4.3).
Stage LR4 differs from LR3 in the layer normalization collapse expanding from the unembedding to
earlier layer norms, particularly the layer normalization before the first attention block. This affects a
smaller fraction of weights than the unembedding collapse (Appendix C.4.4).
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7 RELATED WORK

Loss landscape geometry in deep learning. Given the central role played by the loss landscape
in deep learning it is unsurprising that there have been many attempts to study its geometry. One
approach is to visualize low-dimensional slices of the loss landscape (Erhan et al., 2010; Goodfellow
et al., 2014; Lipton, 2016; Li et al., 2018; Notsawo et al., 2024). Unfortunately, a random slice
is with high probability a quadratic form associated to nonzero eigenvalues of the Hessian and is
thus biased against geometric features that we know are important, such as degeneracy. Antognini
and Sohl-Dickstein (2018) have emphasized the difficulty of probing the loss landscape of neural
networks with dimensionality reduction tools.

Standard methods of quantifying the geometry of the loss landscape, such as by studying the Hessian
itself, also fail to quantify important aspects of degeneracy. For example, the Hessian trace or
maximum eigenvalues quantify the curvature of a critical point but ignore its degenerate dimensions.
In Figure 6b and Appendix C.2.2 we show that these metrics are unable to detect most of the stage
boundaries detected by the LLC in our in-context linear regression setting. The Hessian rank accounts
for degenerate directions but fails to distinguish between directions by the order of their degeneracy.
In contrast, the LLC is a quantitative measure of loss landscape geometry that directly accounts for
different kinds of degeneracy (see Appendix A.1).

Stagewise development and geometry in nonlinear dynamics and developmental biology. Neu-
ral network training is a stochastic dynamical system, in which the governing potential (the population
loss) encodes the structure of the data distribution along with the constraints of the network archi-
tecture. It is well-understood in nonlinear dynamics that the local geometry of a potential can give
rise to stagewise development of structure in the system (Waddington, 1957; Thom, 1988, see also
Franceschelli, 2010). This connection between geometry and stagewise development has been ob-
served in biological systems at significant scale and in the presence of stochasticity (Freedman et al.,
2023). We have emphasized changes in geometry over a stage whereas in developmental biology
the focus, in the mathematical framework of bifurcation theory, is more on the singular geometry at
stage boundaries (Rand et al., 2021; MacArthur, 2022; Sáez et al., 2022).

“Developmental stages” versus “phase transitions.” Many works on emergent phenomena use
the term “phase transition” to label a rapid change in model structure or behavior. Our developmental
stages can also be modeled as phase transitions (between phases inhabited by the model at stage
boundaries). We adopt the terminology from biology to avoid confusion, since in some cases our
developmental stages occur over a large number of training steps, whereas the term “phase transition”
usually connotes a rapid change. However, we note that phase transitions need not be rapid in time:
from a mathematical point of view (Gilmore, 1981; Chen et al., 2023), a phase transition is a shift in
the configuration of a system (or a distribution over such configurations) from the neighborhood of
one critical point of a potential to that of another, occurring rapidly as a function of some control
variable. The control variable may be time, but it need not be. In developmental biology, there are
carefully modeled phase transitions that take place over days in real time, but rapidly with respect to
an inferred developmental time (Freedman et al., 2023).

8 DISCUSSION

In this paper, we have contributed a detailed examination of the development of transformer models
in two distinct learning settings. We quantified the changing degeneracy of the geometry of the
population loss throughout transformer training by estimating the local learning coefficient (LLC).
Based on an analogy introduced by Chen et al. (2023) between deep learning and the singular
learning process, we divided these training runs into developmental stages at critical points of the
LLC curve. We also monitored the internal computational structure and input–output behavior of our
transformers throughout training, as quantified through a range of setting-specific metrics. We found
an approximate correspondence between developmental stages identified based on changes in loss
landscape degeneracy and significant structural and behavioral changes taking place in each model.
In this section, we discuss several implications of these findings.
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Towards a geometric understanding of deep learning. Our main finding is an approximate
correspondence between developmental stages identified via loss landscape geometry and significant
structural and behavioral changes identified via setting-specific analyses. This correspondence is
evidence that the development of our transformers is closely linked to the geometry of the loss
landscape, underscoring the potential of loss landscape geometry, and particularly its degeneracy as
quantified by the LLC, as a crucial lens through which to study the development of deep learning
models. While we have illustrated this correspondence in two distinct learning settings, including
language modeling with a nontrivial transformer architecture, it remains necessary for future work to
verify this link for larger-scale models across a more diverse range of emergent phenomena.

Developmental interpretability. We have shown that a geometry-based stage identification method-
ology can reveal meaningful changes in our transformers. We note that our analysis is not exhaustive.
Indeed, we expect that in general only certain “macroscopic” changes, such as the emergence of
in-context learning, will be delineated by plateaus in the estimated LLC. Building on our approach,
Wang et al. (2024) have shown promising results by measuring the LLC with respect to certain
network components and with different data distributions, providing a refined picture of model
development. We are optimistic that further work in this direction will lead to geometry-based tools
that can offer insights into the development of larger models.

Monitoring model development through loss landscape geometry offers an alternative to monitoring
progress measures such as those derived by Barak et al. (2022) or developed using mechanistic
insights from similar models by Nanda et al. (2023). Both approaches can reveal developments
not visible in the loss curve. Monitoring loss landscape geometry is setting-agnostic and able to
detect developments before having mechanistically understood the end result. Of course, once a
development is detected through a change in geometry, it remains to interpret what has changed.

Cases studies in transformer development. The specific developments we observe in each setting
contribute to the growing empirical literature on the emergence of in-context learning in transformers.
We replicate the emergence of induction heads in two-layer attention-only transformer language
models (Elhage et al., 2021; Olsson et al., 2022). Moreover, we show that before induction heads
form our transformer adopts simpler strategies, following a progression akin to that found by Olsson
et al. (2022) for fully-developed models with increasing depth, or that found by Edelman et al. (2024)
within the development of a single transformer in a Markovian sequence modeling setting.

For in-context linear regression, we see that before in-context learning emerges, the model predicts
all outputs as roughly zero (the optimal context-independent prediction). Moreover, while the
transformer can partially adapt to out-of-distribution regression tasks when in-context learning first
emerges, this capability deteriorates in later stages. This deterioration is possibly an artifact of the
“forgetting” phenomenon studied by Panwar et al. (2024).

Development and model complexity. While we have introduced the LLC as a measure of geometric
degeneracy, it can also be understood as a measure of model complexity (cf. Appendix A.1). It is quite
natural that certain changes in a model’s internal computational structure would show up as a change
in complexity. For example, Chen et al. (2024) showed that the emergence of a certain structure in a
transformer coincided with a spike in two model complexity measures, namely the model’s Fisher
information and the intrinsic dimension (Facco et al., 2017) of the model’s embeddings.

A noteworthy aspect of our experiments are stages in which the LLC decreases, corresponding to a
simplification of the internal computational structure of the model. As an empirical phenomenon, such
model simplification has precedent, for instance with Chen et al. (2024) and the recent literature on
grokking (Power et al., 2022; Nanda et al., 2023; Notsawo et al., 2024). In our case, the mechanistic
nature of the simplification is not yet clear, with the collapse of layer normalization, embedding, and
attention patterns arising as candidates in the in-context linear regression setting.

This phenomenon is noteworthy because it is currently not accounted for by theories of neural network
development. In the theory of saddle-to-saddle dynamics, deep linear networks learn progressively
more complex approximations of the data (Saxe et al., 2019). The singular learning process as
outlined in Section 4 also describes transitions for which the LLC increases, though decreasing the
LLC while holding the loss constant would be another way to decrease the free energy according to
equation (4). Providing a theoretical account of these developmental stages is an open problem.
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REPRODUCIBILITY STATEMENT

Detailed descriptions of our experimental setups, including model architectures, training proce-
dures, and hyperparameters, are provided in Appendix D. For the language modeling experiments,
specifics can be found in Appendix D.1, including model architecture (Appendix D.1.1), tokenization
(Appendix D.1.2), and training details (Appendix D.1.3). For the in-context linear regression experi-
ments, corresponding details are in Appendix D.2, covering model architecture (Appendix D.2.1),
tokenization (Appendix D.2.2), and training procedures (Appendix D.2.3).

Our LLC estimation procedure is thoroughly documented in Appendix D.3, which provides a step-
by-step guide for calibrating LLC estimates in novel settings. This includes discussions on varying
temperature (Appendix D.3.1), seeding random noise (Appendix D.3.2), and calibrating key hyperpa-
rameters (Appendix D.3.3). Final hyperparameter values for the language modeling experiments and
linear regression experiments are detailed in Appendices D.1.4 and D.2.4, respectively.

The metrics used for behavioral and structural analyses are detailed in Appendices B and C for
language models and regression transformers, respectively. These sections provide precise definitions
and implementation details for each metric.

To facilitate reproduction of our analyses, we have made our codebase available. The anonymized
repository containing additional figures and code can be accessed at the URL provided in Appendix E.
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Appendix
Appendix A reviews the learning coefficient, providing some simple toy examples contrasting the
learning coefficient and Hessian-based measures. This section also discusses various additional
details involved in SGLD-based LLC estimation.

Appendix B and Appendix C examine the developmental stages of language and linear regression
in more detail and explain the various metrics we use to track geometric, behavioral, and structural
development.

Appendix D covers experimental details, such as model architecture, training procedure, and hy-
perparameters for LLC estimation. We end this section with a worked through treatment of the
calibrations involved in applying LLC estimation to regression transformers to serve as a reference
(Appendix D.3).

Appendix E contains a link to additional figures and the codebase used to run the experiments in this
paper.

A THE LOCAL LEARNING COEFFICIENT (LLC)

A.1 INTERPRETATIONS AND EXAMPLES OF THE LLC

In Section 3, we introduced the LLC as a quantification of geometric degeneracy. In this section,
we discuss an additional perspectives on the LLC as a count of the “effective” dimensionality of a
parameter, and we give additional examples of the LLC. We refer the reader to Watanabe (2009) and
Lau et al. (2024) for more discussion.

The LLC has some similarity to an effective parameter count. If the population loss ℓ looks like a
quadratic form near w∗ then λ(w∗) = d

2 is half the number of parameters, which we can think of as
d contributions of 1

2 from every independent quadratic direction. If there are only d− 1 independent
quadratic directions, and one coordinate wi such that small variations in wi near w∗

i do not change
the model relative to the truth (this dimension is “unused”) then λ(w∗) = d−1

2 .

The situation becomes more intricate when certain dimensions are degenerate but not completely
unused, varying to quartic or higher order near the parameter (rather than being quadratic or flat).
While every unused coordinate reduces the LLC by 1

2 , changing the dependency on a coordinate
from quadratic (w2

i ) to quartic (w4
i ) (increasing its degeneracy while still “using” it) reduces the

contribution to the LLC from 1
2 to 1

4 .

As a source of intuition, we provide several examples of exact LLCs:

• ℓ(w1, w2, w3) = aw2
1 + bw2

2 + cw2
3 with a, b, c > 0. This function is nondegenerate, and

λ(0, 0, 0) = 1
2 + 1

2 + 1
2 = 3

2 . This is independent of a, b, c. That is, the LLC λ does not
measure curvature. For this reason, it is better to avoid an intuition that centers on “basin
broadness” since this tends to suggest that lowering a, b, c should affect the LLC.

• ℓ(w1, w2, w3) = w2
1 + w2

2 + 0 in R3 is degenerate, but its level sets are still submanifolds
and λ(0, 0, 0) = 1

2 + 1
2 . In this case the variable w3 is unused, and so does not contribute to

the LLC.
• ℓ(w1, w2, w3) = w2

1 + w4
2 + w4

3 is degenerate and its level sets are, for our purposes, not
submanifolds. The singular function germ (ℓ, 0) is an object of algebraic geometry, and the
appropriate mathematical object is not a manifold or a variety but a scheme. The quartic
terms contribute 1

4 to the LLC, so that λ(0, 0, 0) = 1
2 + 1

4 + 1
4 = 1. The higher the power

of a variable, the greater the degeneracy and the lower the LLC.

Figure 2 offers several additional examples, from left to right:

• A quadratic potential ℓ1(w1, w2) = w2
1 + w2

2 , for which the LLC is maximal in two
dimensions, λ1(0, 0) = d/2 = 1.

• A quartic potential ℓ2(w1, w2) = w4
1 + w4

2 , for which the LLC is λ2(0, 0) = 1/2.
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• An even more degenerate potential ℓ3(w1, w2) = w2
1w

4
2 , for which λ3(0, 0) = 1/4. We note

that Hessian-derived metrics cannot distinguish between this geometry and the preceding
quartic geometry.

• A qualitatively distinct potential ℓ4(w1, w2) = (w1 − 1)2(w2
1 +w2

2)
4 from Lau et al. (2024)

with the same LLC at the origin, λ4(0, 0) = 1/4.

While nondegenerate functions can be locally written as quadratic forms by the Morse Lemma (and
are thus qualitatively similar to the approximation obtained from their Hessians), there is no simple
equivalent for degenerate functions, such as the population losses of deep neural networks.

A.2 ESTIMATING LLCS WITH SGLD

We follow Lau et al. (2024) in using SGLD to estimate the expectation value of the loss in the
estimator of the LLC. For a given choice of weights w∗ we sample C independent chains with TSGLD

steps per chain. Each chain c is a sequence of weights {w(c)
τ }TSGLD

τ=1 . From these samples, we estimate
the expectation Eβ

w|w∗,γ [O(w)] of an observable O by

1

CTSGLD

C∑
c=1

TSGLD∑
τ=1

O(w(c)
τ ), (5)

with an optional burn-in period. Dropping the chain index c, each sample in a chain is generated
according to:

wτ+1 = wτ +∆wτ , (6)
w1 = w∗, (7)

where the step ∆wτ comes from an SGLD update

∆wτ =
ϵ

2

(
βn∇ℓ(τ)m (wτ ) +

γ
2 (wτ − w∗)

)
+N (0, ϵ) . (8)

In each step τ we sample a mini-batch of size m and the associated empirical loss, denoted ℓ
(τ)
m , is

used to compute the gradient in the SGLD update. We note that LLC estimator defined in (3) uses
the expectation Eβ [ℓn(w)] which in the current notation means we should take O(w) to be ℓn(w).
For computational efficiency we follow Lau et al. (2024) in recycling the mini-batch losses ℓm(w

(c)
τ )

computed during the SGLD process. That is, we take O = ℓ
(τ)
m rather than O = ℓn.

More detailed results for language and regression are provided in Appendix B.2 and Appendix C.2,
respectively. Appendix D.3 provides a walk-through for the LLC calibration process.

A.3 LLC ESTIMATES AWAY FROM LOCAL MINIMA

Our methodology for detecting stages is to apply LLC estimation to compute λ̂(w∗) at neural network
parameters w∗ = wt across training. In the typical case these parameters will not be local minima of
the population loss, violating the theoretical conditions under which the LLC is defined.

It is not surprising that the estimator appears to work if w∗ is approximately a local minima. (Lau et al.,
2024) validated their estimator at both parameters constructed to be local minima of the population
loss and also at parameters found through training with stochastic gradient descent (possibly not
local minima of the empirical loss, let alone the population loss). They showed that in both cases the
estimator recovers the true learning coefficient associated with the global minimum of the population
loss. On the other hand, if w∗ is far from any local minima, it is a priori quite surprising that the
SGLD-based estimation procedure works at all, as in this situation one might expect the chains to
explore directions in which the loss decreases.

Nevertheless, Chen et al. (2023) found that, empirically, LLC estimation away from local minima
appears to give sensible results in practice. In our case, with sufficient localization we see stable
estimates throughout training.

Theoretically accounting for this phenomenon is an interesting open problem. Perhaps there is a
notion of stably evolving equilibrium in the setting of neural network training, echoing some of the
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Figure A.1: Loss-based (left) and likelihood-based (right) LLC estimation yield identically ordered
LLC estimates. With the exception of final checkpoint’s LLC estimate (which is larger for the
loss-based estimate), the values are close to identical. These plots display LLC traces, which show
the LLC estimate as a function of SGLD steps. This is a useful tool for calibrating LLC estimation
(Appendix D.3).

ideas of Waddington (1957), such that the LLC estimation procedure is effectively giving us the local
learning coefficient of a different potential to the population loss—a potential for which the current
parameter actually is at a critical point. We leave addressing this question to future work.

A.4 LOG LIKELIHOOD-BASED LOSS

In the main body, we apply the LLC to empirical loss functions that do not arise as the log likelihood
of independent random variables, due to the repeated use of dependent sub-sequences. Here we
explain that it is possible to define a proper negative log likelihood over independent observations for
the linear regression setting: similar observations can be made in the language modeling setting.

Let Π(k) be a probability distribution over the context length k. Ideally, the transformer would be
trained to make predictions yk given a context of length k where k is sampled from Π. With the given
distribution over contexts this leads to a negative log likelihood of the form

L(w) =
∑
k

pkL[k](w) (9)

where pk is the probability of sampling k from Π and

L[k](w) =

∫
q(Sk, yk|t, k)q(t)

[
fw(Sk)− yk

]2
dSk dyk dt (10)

using the notation of Section 2 so Sk = (x1, y1, . . . , xk−1, yk−1, xk) is a context of length k. It
is straightforward to check that this negative log likelihood L agrees with the population loss ℓ
associated to the empirical loss defined in Section 2. However the empirical quantities Ln(w) and
ℓn(w) defined for a set of samples of size n are not the same.

Since we use the empirical loss ℓn in our calculation of the estimated LLC, whereas the foundational
theory of SLT is written in terms of the empirical negative log likelihood Ln, it is natural to wonder
how much of a difference this makes in practice. Figure A.1 depicts LLC traces (Appendix D.3) for a
highlighted number of checkpoints using either a likelihood-based estimate (with variable sequence
length) or loss-based estimate (with fixed sequence length). The relative orderings of complexities
does not change, and even the values of the LLC estimates do not make much of a difference, except
at the final checkpoint, which has a higher value for the sub-sequence-based estimate.

A.5 STAGE DISCOVERY

To identify stage boundaries, we look for plateaus in the LLC: checkpoints at which the slope of λ̂(wt)
over t vanishes. To mitigate noise in the LLC estimates, we first fit a Gaussian process with some
smoothing to the LLC-over-time curve. Then we numerically calculate the slope of this Gaussian
process with respect to log t. The logarithm corrects for the fact that the learning coefficient, like the
loss, changes less as training progresses. We identify stage boundaries by looking for checkpoints at
which this estimated slope equals zero. The results of this procedure are depicted in Figure B.2 for
language and Figure C.1 for linear regression.
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At a local minima or maxima of the estimated LLC curve identifying a plateau from this estimated
slope is straightforward, since the derivative crosses the x-axis. However at a saddle point, the slope
may not exactly reach zero, so we have to specify a “tolerance” for the absolute value of the derivative,
below which we treat the boundary as an effective plateau.

In this case, we additionally require that the plateau be at a local minimum of the absolute first
derivative. Otherwise, we may identify several adjacent points as all constituting a stage boundary.

To summarize, identifying stage boundaries is sensitive to the following choices: the intervals between
checkpoints, the amount of smoothing, whether to differentiate with respect to t or log t, and the
choice of tolerance. However, once a given choice of these hyperparameters is fixed, stages can be
automatically identified, without further human judgment.

B DEVELOPMENTAL ANALYSIS OF LANGUAGE MODELS

In this section, we present further evidence on the geometric (Appendix B.2), behavioral (Ap-
pendix B.3), and structural (Appendix B.4) development of the language model over the course of
training. In addition, we present results for a 1-layer attention-only model (Appendix B.5).

B.1 UNIVERSALITY

Figure B.1a shows loss and LLC curves for five seeds (differing in model initialization and batch
schedule). In each seed, LLC estimation reveals stage LM1–LM4. In three of the five seeds, stage
LM5 is subdivided into two additional stages.

B.2 GEOMETRIC DEVELOPMENT

Figure B.2 displays the test loss and LLC curves from Figure 1a in addition to the weight norm over
time and associated slopes. Stage boundaries coincide with where the slope of the local learning
coefficient crosses zero, that is, where there is a plateau in the LLC.

B.3 BEHAVIORAL DEVELOPMENT

B.3.1 BIGRAM SCORE

We empirically estimate the conditional bigram distribution by counting instances of bigrams over
the training data. From this, we obtain the conditional distribution q̃(t′|t), the likelihood that a token
t′ follows t. The bigram score BS

k at index k of an input context S is the cross entropy between the
model’s predictions p(tk+1|tk) at that position and the empirical bigram distribution,
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(a) Two-layer attention-only language transformers.
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(b) In-context linear regression transformers.

Figure B.1: Figure 1a and Figure 1b for multiple seeds. In both settings, LLC reveals a consistent
set of stages across five seeds. Late-training behavior shows more variance across seeds (see
Appendix B.1 and Appendix C.1).
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Figure B.2: A more detailed version of Figure 1a for two-layer language models. Top: Loss, LLC,
and weight norm, along with an overlaid Gaussian process fit to these curves (red dotted lines).
Bottom: Associated slopes, both numerically estimated finite differences (transparent blue) and of
the Gaussian process (red dotted lined). Note that stage LM5 may be subdivided into further stages
(Appendix A.5). However, the noise in LLC estimates late in training is high, so we do not draw any
conclusions from this.

BS
k = −

dvocab∑
i=1

q̃(t
(i)
k+1|tk) log p(t

(i)
k+1|tk), (11)

where the t
(i)
k+1 range over the possible second tokens from the tokenizer vocabulary. From this we

obtain the average bigram score

B̄ =
1

n

n∑
i=1

BSi

ki
, (12)

where we take fixed random sequences of ki and Si for 1 ≤ i ≤ n = 5, 000, which is displayed over
training in Figure 4a. This is compared against the best-achievable bigram score, which is the bigram
distribution entropy itself, averaged over the validation set.

B.3.2 n-GRAM SCORES

In stage LM2 we consider n-grams, which are sequences of n consecutive tokens, meaning 2-grams
and bigrams are the same. Specifically, we consider common n-grams, which is defined heuristically
by comparing our 5,000 vocab size tokenizer with the full GPT-2 tokenizer. We use the GPT-2
tokenizer as our heuristic because its vocabulary is constructed iteratively by merging the most
frequent pairs of tokens.

We first tokenize the tokens in the full GPT-2 vocabulary to get a list of 50,257 n-grams for various n.
The first 5,000 such n-grams are all 1-grams, after which 2-grams begin appearing, then 3-grams,
4-grams, and so on (where 2-grams and 3-grams may still continue to appear later in the vocabulary).
We then define the set of common n-grams as the first 1,000 n-grams that appear in this list for a
fixed n, n ≥ 2.

If we track the performance on n-grams and see it improve, we may ask whether this is simply a
function of the model learning to use more context in general, rather than specifically improving
on the set of n-grams being tracked. We measure performance against this baseline by defining an
n-gram score. For a fixed n, we obtain the average loss ℓngram of the model on predicting the final
tokens of our set of 1,000 n-grams and also obtain the average loss ℓntest of the model on a validation
set at position n of each validation sequence. The n-gram score is then defined to be ℓntest/ℓ

n
gram.
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Figure B.3: The model learns to start using the positional encoding in LM2, when the performance
starts to worsen when ablating the positional encoding. In both plots, earlier token positions are
colored more purple, while later token positions are more yellow, and the overall mean loss is colored
in red. Both sets of per-token losses are shown in both graphs for ease of comparison. Left: original
test loss is emphasized. Right: test loss with the positional embedding ablated is emphasized.

B.3.3 IN-CONTEXT LEARNING SCORE

The in-context learning score is a behavioral measure of the relative performance of a model later in
a sequence versus earlier in the sequence. We follow a similar construction as Olsson et al. (2022),
where we take the loss at the 500th token minus the loss at the 50th token, so that a more negative
score indicates better performance later in the sequence. This is then averaged over a 100k-row
validation dataset. The performance of the language model over the course of training can be seen at
the bottom of Figure 4b.

B.4 STRUCTURAL DEVELOPMENT

B.4.1 POSITIONAL EMBEDDING

In Figure B.3, we measure the effect of the positional embedding on model performance by comparing
the model’s performance at particular context positions on a validation set over the course of training
against performance on the same validation set but with the positional embedding zero-ablated. The
full context length is 1024, and we measure test loss at positions 1, 2, 3, 5, 10, 20, 30, 50, 100, 200,
300, 500, and 1000. In the transition from stage LM1 to LM2, the model begins using the learnable
positional embedding to improve performance. The difference between test loss with and without the
positional ablation is negligible at all measured positions until the LM1–LM2 boundary.

Structurally, we might predict that the positional embeddings should organize themselves in a
particular way: in order to understand relative positions, adjacent positions should be embedded close
to each other, and far-away positions should be embedded far apart.

In Figure B.4, we examine the development of the positional embedding itself over time from two
angles. The first is to take the embeddings of each position in the context and to run PCA on those
embeddings. The result is that as training progresses, the positional embedding PCAs gradually
resolve into Lissajous curves, suggesting that the positional embeddings might look like a random
walk (Antognini and Sohl-Dickstein, 2018; Shinn, 2023). However, if we look to the explained
variance, we see that it grows very large for PC1, reaching 94.2% at training step 6400. This is much
higher than we would expect for Brownian motion, where we expect to see about 61% explained
variance in PC1 (Antognini and Sohl-Dickstein, 2018).

The second perspective we use is to look at how the magnitudes of positional embeddings over the
context length develop. In this case, we observe that the magnitudes seem to have a fairly regular
structure. In conjunction with the PCAs and explained variance, we might infer that the positional
embeddings look approximately like a (possibly curved) line in dmodel = 256 dimensional space. A
positional embedding organized in this way would make it easier for an attention head to attend to
multiple recent tokens, which is necessary if a single head is to learn n-grams.
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Figure B.4: Columns progress through training time at training steps 0, 400, 800, 1600, 3200, and
6400. The first three rows are plots of the first three principle components of PCA on the positional
embedding weights, while the fourth row shows the explained variance for each of the principal
components. The fifth row plots the magnitude of the embedding of each position in the context
length of 1024.
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Figure B.5: The K-composition scores (Elhage et al., 2021) between first and second layer attention
heads. The hth attention head in layer l is indexed by l : h. The attention heads that eventually
become previous token heads are h = 2, 5 in layer 1 (subplot rows 2 and 3), and the attention heads
that eventually become induction heads are h = 7, 8 in layer 2 (subplot columns 2 and 3). The
attention heads 1 : 1 and 2 : 1 are included for comparison. The induction heads 2 : 7 and 2 : 8 begin
K-composing with first layer heads near the start of stage LM2. They continue to compose with
the previous token heads in stages LM3 and LM4 (highlighted in green) while their K-composition
scores drop with other attention heads in layer 1 in later stages.

B.4.2 COMPOSITION SCORES

Let Wh
Q,W

h
K ,Wh

V be the query, key, and value weights of attention head h respectively. There are
three types of composition between attention heads in transformer models in Elhage et al. (2021):

• Q-Composition: the query matrix Wh
Q of an attention head reads in a subspace affected by a

previous head

• K-Composition: the key matrix Wh
K of an attention head reads in a subspace affected by a

previous head

• V-Composition: the value matrix Wh
V of an attention head reads in a subspace affected by a

previous head

If Wh
O is the output matrix of an attention head, then Wh

QK = Wh T
Q Wh

K and Wh
OV = Wh

OW
h
V . The

composition scores are

||MWh1
OV ||F /(||M ||F ||Wh1

OV ||F ) (13)

Where M = Wh2 T
QK , M = Wh2

QK , and M = Wh2

OV for Q-, K-, and V-Composition respectively. See
Figure B.5 for K-composition scores over time between attention heads in the induction circuits.
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B.4.3 PREVIOUS-TOKEN MATCHING SCORE

The previous-token matching score is a structural measure of induction head attention. It is the
attention score given to [A] by an attention head at [B] in the sequence . . . [A][B] (i.e., how much the
head attends to the immediately preceding token).

We compute this score using a synthetic data generating process, generating 10k fixed random
sequences with length between 16 and 64. The first token is a special “beginning of string" token,
and the remaining tokens are uniformly randomly sampled from other tokens in the vocabulary.

For each sample in this synthetic dataset, we measure the attention score that an attention head gives
to the previous token when at the last token in the sequence. These scores are averaged across the
dataset to produce the previous-token matching score for that attention head at a given checkpoint.
The progression of previous-token matching scores over time can be seen in Figure 4b.

B.4.4 PREFIX MATCHING SCORE

The prefix matching score from Olsson et al. (2022) is defined similarly to the previous-token
matching score. Given a sequence [A][B] . . . [A], the prefix matching score of a particular attention
head is how much the attention head attends back to the first instance of [A] when at the second
instance of [A].

We compute this score using a synthetic data-generating process. We first generate 10k fixed random
sequences of length 128. The first token is always a special “beginning of string" token and the [A]
and [B] tokens are selected and placed randomly. One [A] token is placed in the first half of the
sequence, the other is placed in the second half, and the [B] token is placed directly after the first [A]
token. The remaining tokens are randomly sampled from the tokenizer vocabulary, excluding the [A],
[B], and beginning of string tokens.

For each sample in this synthetic dataset, we measure the attention score that each attention head
assigns to the earlier instance of [A] from the latter instance of [A]. These scores are averaged across
the dataset to produce the prefix matching score for that attention head at a given checkpoint. The
progression of prefix matching scores over time can be seen in Figure 4b.

B.5 ONE-LAYER MODEL RESULTS

We also trained and ran some experiments on a one-layer language model (see Appendix D.1.1 for
details). We aggregate results for the one-layer language model here, mirroring the experiments for
the two-layer language model where possible. The early development of the one-layer model has
many parallels with the two-layer model. At a single stage boundary, just as it occurs in the two-layer
model, the one-layer model minimizes its bigram score (see Appendix B.3.1), begins utilizing the
positional embedding to noticeably improve performance (see Appendix B.4.1), and starts making
sudden improvements to the same n-gram scores (see Appendix B.3.2). Remarkably this occurs at
the same checkpoint as in the 2-layer model (at 900 training steps).

One key difference, however, is that this occurs at the second stage boundary as discerned by the
plateaus of the LLC estimation. We did not closely investigate why the LLC estimation appears to
drop between steps 400 and 900 in this model. As a result though, we do observe an interesting
qualitative similarity to the drop in LLC in stage LM3 of the two-layer model, that this drop precedes
a noticeable bump in the loss function.
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Figure B.6: We train a one-layer transformer model in the language setting to compare with the
two-layer model. The development of certain behavioral and structural metrics over time closely
mirrors the development of the same metrics in the early stages of the two-layer language model. Top:
test loss and LLC estimations over time for the one-layer attention-only transformer, compare with
Figure 1a. Bottom: bigram score, test loss with positional embedding ablated, and n-gram scores for
the one-layer attention-only transformer, compare with Figure 4a.

Figure B.7: A more detailed version of Figure B.6 for the one-layer language model. Top: Loss,
LLC, and weight norm, along with an overlaid Gaussian process fit to these curves (red dotted lines).
Bottom: Associated slopes, both numerically estimated finite differences (transparent blue) and of the
Gaussian process (red dotted lined).
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C DEVELOPMENTAL ANALYSIS OF REGRESSION TRANSFORMERS

In this section, we present further evidence on the geometric (Appendix C.2), behavioral (Ap-
pendix C.3), and structural (Appendix C.4) development of the transformer in the setting of in-context
linear regression. In particular, we contrast the use of LLC with Hessian-derived statistics in Ap-
pendix C.2.2.

C.1 UNIVERSALITY

Figure B.1b shows loss and LLC curves for five unique seeds (differing in model initialization and
batch schedule). In each seed, LLC estimation reveals stages LR1–LR5. There is remarkably little
variance across different seeds.

C.2 GEOMETRIC DEVELOPMENT

C.2.1 LLC

Figure C.1 displays the test loss and LLC curves from Figure 1b in addition to the weight norm over
time, and numerically estimated slopes associated to these three metrics. As in the case of language
models, we identify stage boundaries by looking for plateaus in the local learning coefficient. Unlike
the language models, here the boundaries LR1–LR2 and LR2–LR3 are clearly visible in the loss.

C.2.2 HESSIANS

Figure 6b shows the curvature-based notion of flatness captured by the Hessian (in contrast to the
degeneracy-based notion of flatness captured by the LLC). To estimate the trace and maximum
eigenvalues shown in this figure, we use the PyHessian library (Yao et al., 2020) over a batch of
m = 1024 samples.

Crucially, we observe that these Hessian-derived metrics (henceforth, “curvature”) and the LLC
are not consistently correlated. During the first part of LR2, the LLC and the curvature are jointly
increasing. Starting at around t = 20k, while the LLC is still increasing, the curvature starts
decreasing. In the first part of LR3, both metrics decrease in tandem, but as of around t = 120k, the
curvature turns around and starts increasing.

Figure C.1: A more detailed version of Figure 1b for linear regression. Top: Loss, LLC, and
weight norm, along with an overlaid Gaussian process fit to these curves (red dotted lines). Bottom:
Associated slopes, both numerically estimated finite differences (transparent blue) and of the Gaussian
process (red dotted lined). Top middle: Error bars displaying the standard deviation over the 10
SGLD chains are displayed in the background. Note that large error bars across chains are to be
expected. Between different SGLD estimations, the variance is much lower. For example, averaged
over training, the standard deviation over different seeds is only 4.2.
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Figure C.2: Learning the task prior is universal across models trained on very different data
distributions. Each line represents a model trained on a data distribution with a different number of
M distinct tasks (“task diversity” in Raventós et al. (2023)). In addition to taking a finite M , the
models depicted here differ from the other models considered in this paper in that the former were
trained with a maximum learning rate of 0.01, and the models (inadvertently) lack an output matrix
after the multi-head attention layer.

The Hessian fails to detect three of the four stage boundaries. Since these Hessian-based metrics
are dominated by the largest eigenvalues — the directions of maximum curvature — they fail to
observe the finer-grained measures of degeneracy that dominate the LLC. Moreover, we observe that
LLC estimation is more scalable (empirically, it seems to be roughly linear in parameter count) than
estimating the full Hessian (which is quadratic).

C.3 BEHAVIORAL DEVELOPMENT

C.3.1 TASK PRIOR SCORE

In addition to training models on a data distribution in which tasks t are generated on-the-fly, we
examine the setting of Raventós et al. (2023), in which a finite set of M tasks is generated ahead of
time, and training samples involve randomly selected tasks from this set.

Figure C.2 depicts (a) the mean square distance between the model’s predictions and the zero
prediction in addition to (b) the mean square distance between the model’s predictions and the “task
prior” prediction, using the component-wise averaged t over the set of tasks encountered during
training. For all models, the minimum distance to the task prior prediction is lower than the minimum
distance to the zero prediction. Hence, we call stage LR1 “learning the task prior” rather than simply
learning the zero prediction.

C.3.2 ICL

We consider two variants of the ICL score: ICL1:D, and ICLD:K .

If the noise term σ2 equals zero and both tasks t and inputs xk are normalized (i.e., t ∈ SD−1),
then D − 1 observations of input-output pairs are enough to precisely identify t. Therefore, ICL1:D

measures how successful the model is at initially locating the task. The fact that the tasks and inputs
are not normalized changes this only slightly: the task will still sit near SD−1 within a shell of
vanishing thickness as D → ∞.

Once localized, ICLD:K measures how successfully the model refines its internal estimate of t with
additional examples, which it can use to reduce the error due to noise.

In terms of implementation, it’s not necessary for the model to internally make a distinction between
locating and refining its estimate of the task. For example, ridge regression makes no distinction.
Still, we find it useful for reasoning about the progression of the model. In particular, we note that
early in stage LR2, while the model begins to develop ICL for early tokens, it becomes worse at
ICL over tokens late in the context. Later, at around 23k steps, ICLD:K stabilizes, while ICL1:D

continues improving over the entire training run.
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Figure C.3: ICL scores for the linear regression model. Right: ICL scores between inputs 1 and 4
and inputs 4 and 8 over time. We see that ICL emerges during the first half of LR2. Left: Highlighted
ICL score curves from the end of LR1 to halfway through LR2. Note that when the model first starts
improving on early tokens, it temporarily becomes worse at predicting later tokens. Note also that the
model ceases to become better at later tokens as of the second half of LR2, whereas ICL on early
tokens continues to improve throughout training.

C.3.3 OOD GENERALIZATION

To further investigate behavior in stages LR2 and LR3, we probe the model on data sampled from
different distributions than encountered during training.2 We evaluate behavior on two families of
perturbations: “OOD inputs” xk, sampled according to a different scale

xk ∼ N (0, gID), (14)

for some gain parameter g, and “OOD tasks”

t ∼ N (0, gID). (15)

Note that these inputs and tasks are not out-of-distribution in the sense of coming from a distribution
with a different support than the training distribution. However, the samples drawn from these
“extreme” distributions are exponentially suppressed by the original training distribution.

Between t = 1k and t = 4k the model’s outputs rapidly diminish in scale for out-of-distribution
samples, both for g > 1 and g < 1, especially for out-of-distribution inputs. While the model
is moving away from predicting with the task prior for in-distribution samples, it moves closer to
predicting with the task prior for-in-distribution samples.

Between t = 4k and t = 23k, the model recovers on moderately out-of-distribution inputs g < 101.5

with performance remaining close to constant beyond this range. Past this stage, performance
improves constantly for out-of-distribution tasks.

For out-of-distribution inputs, performance eventually worsens for some ranges of g. Between
t = 23k and t = 80k the model further approaches the task prior prediction for extreme out-of-
distribution inputs g > 101.5 . Subsequently, between t = 75k and t = 130k the model moves
away from the task prior prediction for extreme inputs, and performance deteriorates for inputs with
g > 100.5. As of LR5, performance is roughly constant.

C.4 STRUCTURAL DEVELOPMENT

C.4.1 EMBEDDING

The embedding matrix WE is a linear transformation from RD+1 → Rdembed . Plotting the D + 1
singular values of this matrix, we notice that the embedding partially loses one of its components
starting at the end of LR2 (Figure C.5a).

The input “tokens” xk span a D-dimensional subspace of the D + 1-dimensional “token space.” The
target tokens yk span an orthogonal 1-dimensional subspace. The collapse of one of the embedding

2Cf. Raventós et al. (2023) evaluating models trained on a set of discrete tasks on the “true” distribution
consisting of novel tasks.
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Figure C.4: Performance on extreme inputs over time may reveal additional substages in LR2 and in
LR3. Left: The model first becomes better, then worsens at ICL on inputs sampled from N (0, gID)
for large g. Right: The model continues to improve on ICL at tasks sampled from N (0, gID). Top:
Normalized loss (divided by g2) over time for OOD inputs and tasks. Bottom: Average |ŷ| over time
for OOD inputs and tasks.

matrix’s singular values means that the model learns to redundantly encode the inputs and targets
in the same D-dimensional subspace of the space of residual stream activations. The almost order
of magnitude separation in the magnitudes of the square singular value means that the D + 1-th
component of the token embedding explains only 2.9% of the variance in activations of the residual
stream immediately after the embedding, whereas the dominant components explain roughly 24%
each.

Contributions to degeneracy. Given a linear transformation T1 : RD1 → RD2 followed by another
linear transformation T2 : RD2 → RD3 , reducing the rank of T1 from r to r′ < r renders D3(r − r′)
components of the second transformation irrelevant. This would mean a decrease in the learning
coefficient of D3(r − r′)/2 (a decrease in the effective dimensionality of d leads to a decrease in
the LLC of d/23). In the actual model, we don’t see an exact decrease in the rank, and a layer
normalization sits between the linear transformation of the embedding and the linear transformations
of each transformer block and unembedding. It is unclear what the precise relation between structure
and geometry is in this case (Appendix C.4.6). Still, suggestively, the onset of embedding collapse
coincides with a decrease in the rate of increase of λ̂(wt).

C.4.2 POSITIONAL ENCODING

The positional encoding goes through a similar collapse to the unembedding starting during the
second part of LR2 and continuing into LR3 (Figure C.5b). Additionally, throughout these stages,
the subspace spanned by the embedding becomes more aligned with the subspace spanned by the
positional encoding (Figure C.5c).

Contributions to degeneracy. For the same reason as with the token embedding, a decrease
in the dimensionality of the subspace occupied by activations reduces the effective number of
dimensions and thus the learning coefficient. This occurs both as the positional encoding’s effective

3Note that this is not the only possible way for the LLC to decrease. Changing the local loss landscape from
quadratic to quartic or some higher power would also lower the LLC, by a fractional amount.
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Figure C.5: Left: The embedding partially “collapses” during the second half of LR2. At the start
of stage LR2, the minimum singular values explains only 3% of the variance in residual stream
activations due to the sample. By the end of training, it explains half that. Middle: The positional
encoding goes through a similar shift during LR3 (that begins earlier during LR2). Right: The cosine
similarity between the 5 rows of Wembed and the projection of those rows onto the subspace spanned
by Wunembed shows that the model learns to write to the same write tokens and positional information
to the same subspace.

dimensionality decreases (vanishing singular values, Figure C.5b) and as the token embedding
subspace and positional embedding subspace align (increasing cosine similarity, Figure C.5b).

C.4.3 UNEMBEDDING COLLAPSE

The unembedding block consists of a layer normalization layer LN(z) followed by a linear transfor-
mation WUz + bU and finally a projection πy to extract the y-component. Given the 64-dimensional
vector of activations z in the residual stream right before the unembedding (for a specific token), the
full unembedding operation is:

πy

[
WU

(
z − E[z]√
V[z] + ϵ

⊙ γ + β

)
+ bU

]
where ⊙ denotes element-wise multiplication of two vectors and γ, β are the layer normalization
weights and biases respectively.

Effective unembedding weights and biases. Moving terms around, we can represent this as(
(WU )[0,:] ⊙ γ

)( z − E[z]√
V[z] + ϵ

)
+
(
(WU )[0,:]β

)
+ (bU )[0]

where we order the outputs so that the y-token corresponds to the 0th row. Because we are reading
out a single y component, we can express the unembedding transformation in terms of “effective"
unembedding weights and biases

W̃U = (WU )[0,:] ⊙ γ,

b̃U =
(
(WU )[0,:]β

)
+ (bU )[0].

Unembedding weights over time. In Figure C.6, we plot (γ, β), ((WU )[0,:], (bU )[0]), and (W̃U , b̃U )
as a function of training steps, along with the mean weight over time. These are 64- and 1-dimensional
vectors, so we can display the entire set of components. During stage LR3 the majority of weights
β and WU “collapse” to zero. Additionally, the layer normalization biases temporarily experience
a large increase in variance before returning to small values. Despite this, the mean of the linear
weights, layer normalization biases, and effective weights remains remarkably constant and close to
zero throughout the entire process.

Contributions to degeneracy. Suppose that D of the layer normalization weights have vanished,
say γi = 0 for 1 ≤ i ≤ D. Then the corresponding columns of WU only contribute to the
unembedding via their product (WU )[:,1:D]β[1:D] with the first D rows of β. This creates a typical
form of degeneracy studied in SLT and found, for example, in deep linear networks, where we can
change the weights to (WU )[:,1:D]A,A−1β[1:D] for any invertible D×D matrix A without changing
the function computed by the network. If in addition the βi vanish for 1 ≤ i ≤ D then the entries of
(WU )[:,1:D] are completely unconstrained, creating further degeneracy.
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Figure C.6: Unembedding weights over time for the RT1 transformer undergo a “collapse” that
begins towards the end of LR2. When these weights reach zero in LR3 and LR4, it may contribute to
the observed decrease in the LLC. Top: Weights over time. The outlier in the positive direction is the
weight for the y-token output. Bottom: Biases over time. Left: Unembedding layer normalization
weights over time. Middle: Unembedding linear weights over time (restricted to y-subspace). Right:
Effective unembedding weights over time (obtained by element-wise multiplication of preceding
columns, and focusing on the bias for only the y-token.

Figure C.7: Layer norm weights over time. Top: After LR3, the layer normalization collapse
expands from the unembedding to earlier layers, most notably in the first pre-attention layer norm.
This occurs without explicit regularization and may contribute to the concurrent decrease in LLC.
Bottom: During layer normalization collapse, the variance of layer normalization biases increases
drastically while the mean of the biases remains relatively constant. Inset: Plotting the fraction
of weights or biases whose magnitude is less than 0.1 over time reveals that the collapse is more
measured for intermediate layer norms: weights shrink to small values but not extremely close to
zero as in the unembedding and first attention layer.

C.4.4 LAYER NORMALIZATION COLLAPSE

The “collapse” in layer normalization weights is not unique to the unembedding. As depicted in
Figure C.7, this behavior occurs in all layer norms except for the second MLP. The biases also remain
centered close to zero even as the variance in biases grows much larger. Unlike in the unembedding,
these layers begin to change earlier (starting halfway through LR2).

What is most striking about the layer normalization collapse is that it occurs without any explicit
regularization (neither weight decay nor dropout). As such, it demonstrates a clear example of implicit
regularization, i.e., inductive biases in the optimizer or model that favor simpler solutions.

Contributions to degeneracy. In the previous section, we describe how layer norm collapse in
the unembedding is linked to an increase in degeneracy because it ensures that parameters in the
subsequent linear layer become irrelevant. The same is true for layer norm which precedes the
attention and MLP blocks.
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C.4.5 ATTENTION COLLAPSE

Over the course of training, we observe that some attention heads learn to attend solely (soft attention
becomes hard attention) and consistently to certain positions (the attention pattern becomes content-
independent). We call this phenomenon attention collapse in parallel with the other observed forms
of collapse. Not only does this potentially contribute to a decrease in the LLC, but it also makes
the attention heads identifiable: we find a self-attention head, previous-attention heads, previous-x-
attention heads, and previous-y-attention heads.

x-attention vs. y-attention. For convenience we separate each attention head in two: one part for
the x-tokens, and the other for the y-tokens.

Attention entropy score. To quantify attention hardness, we use the attention entropy score (Ghader
and Monz, 2017; Vig and Belinkov, 2019). Given the attention pattern α

(b,h)
k,k′ for how much token

k in head h in block b attends back to token k′, its attention entropy score H
(b,h)
k is the Shannon

entropy over preceding indices k′ < k,

H
(b,h)
k = −

∑
k′≤k

α
(b,h)
k,k′ log2 α

(b,h)
k,k′ . (16)

From this, we compute the normalized entropy Ĥ
(b,k)
k , which divides the attention entropy by the

maximum entropy for the given context length,

Ĥ
(b,h)
k =

H
(b,h)
k

log2(k)
. (17)

This accounts for the entropy being calculated over different numbers of tokens and is displayed in
Figure C.8. Notably, the identified stages line up closely to stages of these attention entropy curves.

Constant attention. Accomplishing constant attention requires the presence of biases in the query
and key transformations, or if there is no bias (as is the case for the models we investigated),
requires attending to the positional embedding. With the Shortformer-style positional encoding
used for the language models (Appendix D.1.1), this is straightforward: the positional information
is injected directly into the key and weight matrices. With the linear regression models, where
the positional embedding is added to the residual stream activations, this is less straightforward:
achieving constant attention requires separating residual stream activations into orthogonal positional-
and input-dependent subspaces, then reading from the former with the query and key weight matrices.

Attention variability score. To quantify how constant the attention pattern is, we use measure
attention variability (Vig and Belinkov, 2019),

V
(b,h)
k =

∑n
i=1

∑
k′≤k

∣∣∣α(b,h)
k,k′ (S

(i)
K )− ᾱ

(b,h)
k,k′

∣∣∣
2n
∑

k′≤k ᾱ
(b,h)
k,k′

, (18)

where the division by 2 ensures the variability lies in the range [0, 1]. This is displayed in Figure C.9.
These reveal that though attention hardness and variability are independent axes of differentiation,
empirically, we observe that hard attention is correlated with low variability.

Self-attention score. Self-attention is measured by the average amount a token k attends to itself,
α
(b,h)
k,k .

Previous-token attention score. Previous-token attention is measured the same as in the language
model setting (Appendix B.4) with one difference: we compute the previous-token score not over a
synthetic dataset but over a validation batch.

x-attention score. The total amount attended to inputs xk, that is α(b,h)
k,x =

∑K
k′=1 α

(b,h)
k,2k .
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Figure C.8: Attention hardening as measured by the normalized attention entropy score (Ap-
pendix C.4.5). Block 1 heads 1y/3y and block 2 head 1y harden over training. In combination with
the fact that these attention heads become less variable (Figure C.9), this may contribute to a decrease
in the LLC (discussed in Appendix C.4.5) The x-components of the attention heads remain much
softer over the entire training run.
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Figure C.9: Attention variability over time. The heads that develop hard attention in Figure C.8
(block 1 heads 1y, 3y, and 4y) also become less variable over time.
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Figure C.10: Collection of attention heads identified by their consistent and recognizable attention
patterns. Left to right: previous-xs head, previous-token head, previous-ys head, previous-ys head

y-attention score. Defined analogously α
(b,h)
k,x =

∑K
k′=1 α

(b,h)
k,2k+1.

Classifying attention heads. Several attention heads are easy to identify by virtue of being both
concentrated and consistent. These are depicted in Figure C.10 and include: (B1H3y) previous-
token heads (also present in the language model case), (B1H1y) previous-x, and (B1H4x, B2H1y)
previous-y heads. Other training runs also include self-attention heads.

Contributions to degeneracy. Suppose an attention head h in block b has the following constant
attention pattern (after the softmax) A(b,h) =

∑
i δl(i) i. That is, for each token i, that attention head

attends solely to a single earlier token l(i) ≤ i and no others. Restricting to single-head attention (the
argument generalizes straightforwardly), the final contribution of this attention head to the residual
stream is the following (Phuong and Hutter, 2022):

O = WO · (V ·A) (19)

where A ∈ Rℓz × Rℓx is the attention pattern, V ∈ Rdout × Rℓz is the value matrix, and WO ∈
Rdz × Rℓz is the matrix of residual stream activations, and V ∈ Rdout × Rℓz is the value matrix.
The result of this operation is subsequently multiplied by the output matrix and then added back
into the residual stream. Plugging in the hard and constant attention pattern, writing out the matrix
multiplication, and filling in the definition of A we get

Oij =
∑
k

(WO)ikVkl(j)δl(j)j . (20)

For each column in A, the hard attention picks out a single element of V at column l(j) for each
row k. Now suppose that there is a token l′ that receives no attention from any position j. That is,
there exists no j such that l′ = l(j). Then, there is a column l′ in V which does not contribute to the
result of V ·A, and, in turn, a column l′ in WO, which does not contribute to the output of the head.
As discussed for the embedding and layer norm, this decrease in effective dimensionality leads to a
decrease in the learning coefficient.

Note that this argument does not hold for all hard and constant attention patterns. It holds solely
for attention patterns that consistently ignore some earlier token across all positions, such as the
previous-x and previous-y heads, but not the self-attention and previous-token heads. As discussed in
Appendix C.4.6, it remains unclear what exactly the threshold for “ignoring” a token should be before
it contributes to degeneracy and whether any of the heads we examine actually meet this threshold.

C.4.6 DEGENERACY AND DEVELOPMENT

In the previous subsections, we provide a set of theoretical arguments for how (un)embedding
collapse (Appendix C.4.1), layer normalization collapse (Appendix C.4.4), and attention collapse
(Appendix C.4.5) can lead to an increase in degeneracy, even while leaving the implemented function
unchanged.

The free energy formula tells us that, for two different solutions (sets of weights) with the same loss,
the Bayesian posterior will asymptotically prefer the model that has the lower learning coefficient
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(i.e., higher degeneracy). This suggests that these different forms of collapse may be driven by a bias
towards higher degeneracy, as captured in the free energy formula.

Actually establishing a causal link between increasing degeneracy and structure development is
beyond the scope of this paper. For one, the theoretical arguments hinge on the collapse being
complete, that is, the components that go to zero must become exactly zero in the limit, where we
take the number of samples to compute the loss to infinity. In practice, we expect there to be some
threshold ϵ below which we can treat weights as effectively zero. Second, even if these explanations
are correct, we do not know that they account for all of the empirically observed decrease in the
LLC during these stages. There may be other drivers we missed. Finally, establishing a causal link
requires theoretical progress in relating the Bayesian learning process to the SGD learning process.
The arguments are suggestive, but currently only a source of intuition for how structure and geometry
can be related, and a starting point for future research.

D EXPERIMENTAL DETAILS

D.1 LANGUAGE MODELS

D.1.1 MODEL

The language model architectures we consider are one- and two-layer attention-only transformers.
They have a context length of 1024, a residual stream dimension of dmodel = 256, H = 8 attention
heads per layer, and include layer normalization layers. We also used a learnable Shortformer
positional embedding (Press et al., 2021). The resulting models have a total of d = 3, 091, 336
parameters for L = 1 and d = 3, 355, 016 parameters for L = 2. We used an implementation
provided by TransformerLens (Nanda and Bloom, 2022).

D.1.2 TOKENIZATION

For tokenization, we used a truncated variant of the GPT-2 tokenizer that cut the original vocabulary of
50,000 tokens down to 5,000 (Eldan and Li, 2023) to reduce the size of the model. We think this may
contribute to the prominence of the the plateau at the end of LM1: the frequency of bigram statistics
depends on your choice of tokens, and a larger tokenizer leads to bigrams that are individually much
less frequent.

D.1.3 TRAINING

The models are trained on a single epoch over 50, 000 steps on ∼5 billion tokens using a resampled
subset of the Pile (Gao et al., 2020; Xie et al., 2023) using a batch size of 100. A snapshot was saved
every 10 steps for a total of 5000 checkpoints, though a majority of analysis used checkpoints every
100 steps. The training time was around 6 GPU hours per model on an A100. Additional seeds were
trained on v4 TPUs at around 1.5 TPU hours per model.

Training was conducted on the first 10 million lines of the DSIR-filtered Pile (Xie et al., 2023;
Gao et al., 2020) but did not exhaust all 10 million lines. The model was subject to weight decay
regularization, without the application of dropout. We did not employ a learning rate scheduler
throughout the training process.
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Component 1-Layer 2-Layer
Token Embedding Weights 1, 280, 000
Positional Embedding Weights 262, 144
Layer 1 Layer Norm Weights 256
Layer 1 Layer Norm Bias 256
Layer 1 Attention Query Weights 65, 536
Layer 1 Attention Key Weights 65, 536
Layer 1 Attention Value Weights 65, 536
Layer 1 Attention Output Weights 65, 536
Layer 1 Attention Query Bias 256
Layer 1 Attention Key Bias 256
Layer 1 Attention Value Bias 256
Layer 1 Attention Output Bias 256
Layer 2 Layer Norm Weights N/A 256
Layer 2 Layer Norm Bias N/A 256
Layer 2 Attention Query Weights N/A 65, 536
Layer 2 Attention Key Weights N/A 65, 536
Layer 2 Attention Value Weights N/A 65, 536
Layer 2 Attention Output Weights N/A 65, 536
Layer 2 Attention Query Bias N/A 256
Layer 2 Attention Key Bias N/A 256
Layer 2 Attention Value Bias N/A 256
Layer 2 Attention Output Bias N/A 256
Final Layer Norm Weights 256
Final Layer Norm Bias 256
Unembedding Weights 1, 280, 000
Unembedding Bias 5, 000

Figure D.1: Attention-only transformers with Shortformer position-infused attention and pre-layer
norm. The one-layer model has a total of 3,091,336 trainable parameters, while the two-layer model
has 3,355,016.

Table 1: Summary of Hyperparameters and Their Values for Both Language Model

Hyperparameter Category Description/Notes Value
n Data # of training samples 5, 000, 000
T Data # of training steps 50, 000
Ntest Data # of test samples 512
Tokenizer Type Data Type of Tokenizer Truncated GPT-2 Tokenizer
D Data Vocabulary size 5,000
K Data Context size 1,024
L Model # of layers in the model 2
H Model # of heads per layer 8
dmlp Model MLP hidden layer size N/A
dembed Model Embedding size 256
dhead Model Head size 32
seed Model Model initialization 1
m Training Batch Size 100
Optimizer Type Optimizer Type of optimizer AdamW
η Optimizer Learning rate 0.001
λwd Optimizer Weight Decay 0.05
β1,2 Optimizer Betas (0.9, 0.999)
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D.1.4 LLC ESTIMATION

For LLC estimation, we use SGLD to sample 20 independent chains with 200 steps per chain and
1 sample per step, at a temperature β = 1/ log(m), where m = 100 is the size of the batch (the
maximum size that would fit in memory). For the one-layer model, we used ϵ = 0.003, γ = 300, and
for the two-layer model we used ϵ = 0.001, γ = 100. Estimating the local learning coefficient across
all checkpoints took around 200 GPU hours for the two-layer model on a single A100 and around
125 GPU hours for the one-layer model. For additional runs of the two-layer model, we ran fewer
chains, bringing the time down to about 2 TPU hours per training run.

We sampled a separate set of 1 million lines (lines 10m-11m) from the DSIR filtered Pile, denoted as
Dsgld. The first 100,000 lines from this SGLD set (lines 10m-10.1m) were used as a validation set.
The sampling of batches for SGLD mirrored the approach taken during the primary training phase.
Each SGLD estimation pass was seeded analogously, so, at different checkpoints, the SGLD chains
encounter the same selection of batches and injected Gaussian noise.

Table 2: Hyperparameters for Estimating the Local Learning Coefficient for Language Models.

Hyperparameter Category Description/Notes 1-Layer 2-Layer
C Sampler # of chains 20

TSGLD Sampler # of SGLD steps / chain 200
ϵ SGLD Step size 0.003 0.001

γ̃ = ϵγ/2 SGLD Localization strength 300 200

β̃ = ϵβ/2n SGLD Inverse temperature 0.0000217147
m SGLD (Default: β∗ = 1

logn ) 100
The size of each SGLD batch

µ Data Dataset size for gradient minibatches 13m

D.2 REGRESSION TRANSFORMERS

D.2.1 MODEL

In the following L refers to the number of layers (blocks) in the Transformer, H is the number of
heads in each layer, D is the dimension of inputs x ∈ RD and K is the number of (x, y) pairs
provided to the Transformer in-context.

The architecture is a pre-layer-norm decoder-only transformer modeled after NanoGPT (Karpathy,
2022; see also Phuong and Hutter, 2022) with a learnable positional embedding. For the models
discussed in the main body, we consider L = 2, H = 4 transformers (with d = 51, 717 parameters),
i.e., two transformer blocks with four attention heads each.

D.2.2 TOKENIZATION

To run contexts SK through the above model requires an initial encoding or “tokenization step” and
final “projection step.” The context is encoded as a sequence of “tokens” Tk as follows:

Tk =


 0

x1

 ,


y1
0
...
0

 , · · ·

 0

xk

 ,


yk
0
...
0


 .

Through the main text, we write fw(Sk) for fw(Tk). Note that this tokenization includes the final
yk token even though this receives no training signal. For this reason, we omit this token from the
attention entropy and variability plots (Figures C.8 and C.9).

The transformer outputs a series of tokens of the same shape as Tk. To read out the ŷk predictions,
we read out the first component of every other token, i.e.,
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Component # of Parameters
Token Embedding Weight 320
Positional Embedding Weight 1, 024
Layer 1 Layer Norm Weight 2 64
Layer 1 Layer Norm Bias 1 64
Layer 1 Attention Weights 12, 288
Layer 1 Attention Output Weights 4, 096
Layer 1 Layer Norm Weight 1 64
Layer 1 Layer Norm Bias 2 64
Layer 1 Feed-Forward MLP Weight 4, 096
Layer 1 Feed-Forward MLP Bias 64
Layer 1 Feed-Forward Output Weight 4, 096
Layer 1 Feed-Forward Output Bias 64
Layer 2 Layer Norm Weight 1 64
Layer 2 Layer Norm Bias 1 64
Layer 2 Attention Weights 12, 288
Layer 2 Attention Output Weights 4, 096
Layer 2 Layer Norm Weight 2 64
Layer 2 Layer Norm Bias 2 64
Layer 2 Feed-Forward MLP Weight 4, 096
Layer 2 Feed-Forward MLP Bias 64
Layer 2 Feed-Forward Output Weight 4, 096
Layer 2 Feed-Forward Output Bias 64
Unembedding Layer Norm Weight 1 64
Unembedding Layer Norm Bias 1 64
Unembedding Weight 2 320
Unembedding Bias 2 5

Figure D.2: Transformer parameters in the linear regression setting. The model has two trans-
former blocks for a total of 51, 717 trainable parameters.

πY : R2K × RD+1 → RK (21)((
ŷ1
...

)
,

(
.
...

)
, · · · ,

(
ŷk
...

))
7→ (ŷ1, . . . , yk). (22)

D.2.3 TRAINING

We train from a single seed for each choice of architecture and optimizer hyperparameters using
minibatch stochastic gradient descent. We train without explicit regularization and use the Adam
optimizer (Kingma and Ba, 2014). The training runs take 1 to 5 TPU-hours on TPUs provided by
Google Research. Models are trained from the same initialization and on the data vectors within each
batch (but for different sets of tasks and task orderings).

Models are trained on a single epoch: each of the T = 500, 000 batches consists of a new set of
sequences with batch size 256. For the LLC estimates, we save 190 checkpoints: 100 are linearly
spaced over the training run, and the remaining 90 are logarithmically spaced. We perform local
learning coefficient estimation and other analyses on these checkpoints.
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Table 3: Summary of Hyperparameters and Their Default Values

Hyperparameter Category Description/Notes Default Values
n Data # of training samples 128,000,000
B Data Batch size during training 256
T Data # of training steps 500k
Ntest Data # of eval samples 2048
D Data Dimensions of linear regression task (Task

size)
4

K Data Maximum in-context examples 8
σ2 Data Variance of noise in data generation 0.125
L Model # of layers in the model 2
H Model # of attention heads per layer 4
dmlp Model Size of the hidden layer in MLP 64
dembed Model Embedding size 64
seed Misc Training run seeds {0, 1, 2, 3, 4}
Optimizer Type Optimizer Type of optimizer Adam
η Optimizer Maximum learning rate 0.003
λwd Optimizer Weight Decay 0
β1,2 Optimizer Betas (0.9, 0.999)
Scheduler Type Scheduler Type of learning rate scheduler OneCycleLR
Strategy Scheduler Strategy for annealing the learning rate Linear
% start Scheduler Percentage of the cycle when learning rate

is increasing
0.5

D.2.4 LLC ESTIMATION

For local learning coefficient estimation, we generate a fixed dataset of 220 samples. Using SGLD, we
sample 10 independent chains with 5,000 steps per chain, of which the first 1,000 are discarded as a
burn-in, after which we draw observations once per step, at a temperature ϵβ/2n = 0.01, ϵ = 0.0003,
and ϵγ/2 = 0.01, over batches of size m = 1024. Local learning coefficient estimation takes up to
72 CPU-hours per training run.

Table 4: LLC estimation hyperparameters. A summary of the hyperparameters involved in
estimating the local learning coefficient and the default values we use.

Hyperparameter Category Description/Notes Default Values
C Sampler # of chains 10

TSGLD Sampler # of SGLD steps / chain 5, 000
ϵ SGLD Step size 0.0003

γ̃ = ϵγ/2 SGLD Localization strength 0.01

β̃ = ϵβ/2n SGLD Inverse temperature 0.01
(Default: β∗ = 1

logn )
m SGLD The size of each SGLD batch 210

µ Data Dataset size for gradient minibatches 220

D.3 SGLD-BASED LLC ESTIMATION

This section walks through some of the hyperparameter choices and sweeps involved in calibrating
LLC estimates. We provide it as a reference for others seeking to adjust LLC estimation to novel
settings.
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Figure D.3: Past some threshold, the choice of validation set size from which SGLD batches
are sampled has little effect on learning coefficient estimates. Estimation hyperparameters are
C = 8, TSGLD = 2, 000,m = 210, ϵ = 0.0003, γ̃ = 0.01, β̃ = 0.01. Loss is evaluated over gradient
minibatches at a representative selection of checkpoints. LLCs quickly converge to a constant value
as the size increases.
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Figure D.4: The size of SGLD minibatches has a negligible effect on LLC estimates (at least among
the batch sizes considered). Top: Loss is evaluated on the same minibatch as the SGLD gradients.
Bottom: Loss is evaluated on a newly sampled minibatch from the SGLD gradients (of the same size).
Estimation hyperparameters are C = 8, TSGLD = 2, 000, µ = 220.
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Figure D.5: Consistently seeding SGLD estimates at each checkpoint smooths out the resulting
LLC-over-time curve. Except towards the end of training (this is plotted over a log time axis), the
difference is barely noticeable. Variable seeds yield a noisier set of estimates.

D.3.1 VARYING THE TEMPERATURE

In Lau et al. (2024), the inverse temperature β is set to a fixed “optimal” value β∗ = 1/ log n, where
n is the number of training samples. In practice, we find that it can be advantageous to sample at a
higher temperature.

Since β always shows up in a product with n (in (8) for the SGLD step and in (3) for the local
learning coefficient), we can view the inverse temperature as a multiplier that adjusts the effective
size of your dataset. In a Bayesian setting, β = 2 would mean updating twice on each of the samples
in your dataset.

The problem with the default choice of β∗ is that as we increase n we have to decrease the SGLD step
size ϵ to prevent the update from becoming ill-conditioned, and this eventually causes the gradient
term to suppress the noise term. This, in turn, leads to requiring larger batches to suppress the gradient
noise and requiring longer chains to sufficiently explore the local posterior (Appendix D.3.3).

Instead of nβ = n/ log n, we perform LLC estimation at nβ = m/ logm, where m is the SGLD
batch size.

D.3.2 SEEDING THE RANDOM NOISE

To smooth out the λ̂t curves, we reset the random seed before LLC estimation run at each checkpoint.
This means the sequence of injected Gaussian noise is the same for LLC estimation runs at different
checkpoints. Additionally, if the batch size is held constant, the batch schedule will also be constant
across different estimation runs. Figure D.5 shows that this does not affect the overall shape of the
learning coefficient curves; it simply smooths it out.

D.3.3 CALIBRATING ϵ, β , AND γ

As a rule of thumb, ϵ should be large enough that the λ̂ estimate converges within the TSGLD steps of
each chain but not too large that you run into issues with numerical stability and divergent estimates.
Subject to this constraint, γ should be as small as possible to encourage exploration without enabling
the chains to “escape” to nearby better optima, and β should be as large as possible (but no greater
than 1/ log n).

To determine the optimal SGLD hyperparameters, we perform a grid sweep over a reparametrization
of the SGLD steps in terms of β̃, γ̃, ε:

∆wt = β̃∇ℓ(τ)m + γ̃(w∗ − wt) +N (0, ε),

where β̃ = εβn/2, γ̃ = εγ/2.

The results of this hyperparameter sweep are illustrated in Figure D.6 for final checkpoints. Separately
(not pictured), we check the resulting hyperparameters for a subset of earlier checkpoints. This is
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Figure D.6: Results of grid sweep over SGLD hyperparameters for model 0 at t = 500k.

(a) Numerical instability (b) Non-convergence

(c) Negative estimates

Figure D.7: Failure modes of SGLD estimation. Top left: the gradient term is too large, leading to
issues with numerical instability and exploding λ̂ estimates. Top right: ϵ is too small, leading to λ̂ not
converging within each chain. Bottom: the localization term is too small, which allows the chain to
escape to better optima.

needed since, for example, a well-behaved set of hyperparameters at the end of training may lead to
failures like divergent estimates (Figure D.7) earlier in training when the geometry is more complex
and thus the chains less stable.

D.3.4 LLC TRACES

As a useful diagnostic when calibrating the local learning coefficient estimates, we propose an online
variant for learning coefficient estimation. When overlaid on top of individual-chain LLC traces, this
helps reveal common failure modes like divergent estimates, non-converged estimates, and escapes
(Figure D.7). These traces display the running estimate of λ̂ as a function of the number of steps
taken in a chain (with the estimate averaged across independent chains).
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Define λ̂τ (w0), the local learning coefficient at w0 after τ time-steps for a single SGLD chain as
follows (Lau et al., 2024):

λ̂τ (w0) = nβ

(
1

T

T∑
t=1

ℓn(wτ )− ℓn(w0)

)
.

Moving terms around, we get,

λ̂τ (w0) =
n

log n

(
1

τ

τ∑
τ ′=1

ℓn(wτ ′)− ℓn(w0)

)
(23)

= nβ

(
τ − 1

τ

(
1

τ − 1

τ−1∑
τ ′=1

ℓn(w
′
τ )− ℓn(w0) + ℓn(w0)

)
+

1

τ
ℓn(wτ )− ℓn(w0)

)
(24)

=
τ − 1

τ
λ̂τ−1(w0) + nβ

(
1

τ
ℓn(wτ ) +

(
τ − 1

τ
− 1

)
ℓn(w0)

)
(25)

=
1

τ

(
(τ − 1)λ̂τ−1(w0) + nβ (ℓn(wτ )− ℓn(w0))

)
, (26)

where
λ̂0(w0) = 0.

This can be easily extended to an online estimate over chains by averaging the update
nβ (ℓn(wτ )− ℓn(w0)) over multiple chains.

E ADDITIONAL FIGURES AND CODE

For additional figures and code, see the anonymized repository located at
https://anonymous.4open.science/r/icl-0C47.
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