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Abstract

Childhood trauma initiates complex psychiatric trajectories, but predictive mod-
eling is hampered by data scarcity. We ask if a conditional Transformer-based
Sequential Variational Autoencoder (SVAE) can learn patient embeddings from
longitudinal surveys to improve Post-traumatic Stress Disorder (PTSD) prediction
and reveal clinical drivers of model performance. Our framework uses a conditional
SVAE to generate synthetic patient trajectories, addressing class imbalance. In
our experiments, combining real and synthetic data increased the identification
of true positive PTSD cases by 82% over a real-data-only baseline, achieving
a top F1-score of 0.683. Ablation studies confirm that architectural choices like
"free bits" are essential for generating effective augmentation data. Finally, by
stratifying SHAP explanations by outcome (True Positives, False Positives, False
Negatives, and True Negatives), we transform interpretability into a diagnostic
tool, revealing how the model’s reasoning differs between correct and incorrect
predictions. This allows for targeted clinical insights, such as identifying when the
model over-weights hopelessness signals, making predictions more transparent and
clinically actionable.

1 Introduction

Childhood trauma, encompassing a range of adverse childhood experiences (ACEs), represents a
profound public health crisis with enduring consequences for mental health [13]. The prevalence
of such experiences is alarmingly high; a large-scale survey by the World Mental Health (WMH)
Initiative found that nearly 40% of adults reported at least one ACE [20]. Studies focusing on
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psychiatric populations reveal even higher rates, with a childhood trauma prevalence as high as
85% [24]. The etiological link between these early adversities and the subsequent development of
psychiatric disorders is unequivocally established. Victims of childhood abuse exhibit staggering
rates of subsequent psychopathology, with studies indicating that as many as 80% develop depression
and over 50% suffer from anxiety [24, 36]. This connection is not limited to mood and anxiety
disorders; childhood trauma is a significant risk factor for a wide spectrum of conditions, including
PTSD, psychosis, personality disorders, and substance use disorders [20, 53]. This work addresses the
following research question: Can a conditional Transformer-SVAE trained on dense, longitudinal
Clinical and Social Determinants of Health (SDoH) surveys learn patient-level trajectory
embeddings that (i) improve PTSD trajectory prediction under small-N/class-imbalance and
(ii) reveal outcome-specific drivers of model success and failure? If effective, this approach would
(a) increase identification of at-risk youth trajectories (more true positives with stable precision),
and (b) provide visit- and instrument-level explanations that clinicians can act on (e.g., when
hopelessness signals are over-weighted versus attenuated by protective factors).

However, a simple correlational link fails to capture the full complexity of trauma’s impact. Early life
adversity does not merely increase the probability of a future diagnosis; it fundamentally alters the
developmental trajectory of psychopathology [13]. The experience of trauma can shape the age
of onset, clinical severity, symptom presentation, and long-term course of mental illness [13]. This
evidence reframes the central scientific challenge: it is not sufficient to predict a static diagnostic
outcome. Rather, the goal must be to model the entire pathological process—the dynamic, evolving
trajectory of mental health or illness as it unfolds over an individual’s life course. This perspective
necessitates a shift from conventional cross-sectional analysis towards sophisticated longitudinal
modeling capable of capturing the nuances of disease progression over time [19, 37]. Compounding
this challenge is the growing recognition that non-clinical factors, or SDoH, are powerful drivers
of these trajectories. Recent large-scale analyses have demonstrated that multidimensional SDoH
profiles—encompassing economic, social, and environmental factors—are strongly correlated with
mental health outcomes such as suicide rates, with distinct regional and demographic patterns [51].
This evidence underscores the necessity of integrating comprehensive SDoH data into any predictive
framework aiming for clinical and social relevance [51, 54]. Furthermore, analogous research in
adolescent mental health has shown that the trajectory of risk factors, such as addictive screen use, is
more predictive of adverse outcomes than static, single-time-point measurements, reinforcing the
imperative to adopt a longitudinal perspective [50].

This imperative to model dynamic, SDoH-informed trajectories is met with a formidable data-
methodology chasm. The requisite longitudinal datasets, while rich in temporal detail, are often
characterized by high dimensionality, privacy constraints, and, most critically, small sample sizes,
particularly for vulnerable populations and specific diagnoses like PTSD [27]. This data reality is in
direct conflict with the requirements of the deep learning models best suited for the task. Architectures
like the Transformer have shown unparalleled success in capturing long-range dependencies in
sequential data, making them state-of-the-art for analyzing clinical time series [49, 27, 39]. However,
these models are notoriously data-intensive, and their effectiveness is often hampered by the very
data scarcity they are meant to address [8]. This fundamental mismatch necessitates a new approach,
where generative data augmentation emerges as a critical and enabling methodology for bridging this
gap [26, 34].

To address these challenges, this paper introduces a comprehensive framework for modeling and
interpreting psychiatric trajectories using a longitudinal dataset of pediatric patients exposed to trauma.
Our contribution is threefold. First, we develop a Conditional Transformer-based Sequential
Variational Autoencoder specifically designed to learn holistic, dynamic embeddings from dense,
multi-visit patient records. This architecture provides the foundation for a principled latent-space data
augmentation strategy that generates realistic, synthetic patient trajectories to mitigate data scarcity
and class imbalance [22, 45, 3]. Second, we incorporate key methodological enhancements to ensure
the robustness of the generative model, including the "free bits" technique to prevent posterior
collapse—a common failure mode in VAEs—and thereby promote the learning of meaningful latent
representations [21, 17, 15, 12, 18]. Third, we introduce a novel outcome-specific explainability
analysis using SHAP (SHapley Additive exPlanations). Moving beyond standard global feature
importance, we systematically dissect the model’s reasoning by comparing feature contributions
across correct (True Positive) and incorrect (False Negative) predictions. This granular analysis
transforms interpretability from a simple validation exercise into a powerful diagnostic tool for
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discovering the clinical drivers of model success and failure, paving the way for more trustworthy
and clinically actionable predictive systems in computational psychiatry [30, 32, 5].

The contributions of this framework directly map to clinical decision-making. By improving the
identification of true positive cases through generative augmentation, our model can support earlier
escalation of care for at-risk youth. Furthermore, the outcome-specific explanations provide a
powerful diagnostic tool. For instance, when the SHAP analysis flags that high-potency items from
the Concise Health Risk Tracking (CHRT) scale are spurious drivers of a False Positive prediction, it
prompts a clinician to perform a more targeted assessment, preventing potential alarm fatigue. Finally,
by identifying robust predictive signals from SDoH factors, this work provides quantitative evidence
to guide the allocation of resources and inform public health policy.

2 Related Work

2.1 Longitudinal Trajectory Modeling in Psychiatry

Modeling the progression of psychiatric illness over time has historically relied on statistical methods
such as linear mixed-effects models [37]. While valuable for identifying population-level trends,
these methods often struggle with the high dimensionality, non-linearity, and complex interactions
present in modern clinical datasets. The advent of deep learning introduced more powerful alterna-
tives, with Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks
becoming standard choices for analyzing sequential health data [28]. More recently, Transformer-
based architectures, with their self-attention mechanism, have demonstrated superior performance in
capturing long-range dependencies within longitudinal data, including Electronic Health Records
(EHRs), establishing them as the state-of-the-art for tasks like disease progression modeling and risk
prediction [27, 39, 40]. Research in PTSD prediction specifically has begun to leverage machine
learning, with systematic reviews indicating a prevalence of tree-based models and highlighting a
critical need for more robust deep learning applications and rigorous external validation [2]. Other
emerging approaches include the use of functional brain imaging to predict symptom trajectories [7]
and graph induction models to infer potential causal pathways to illness from longitudinal data [37].
Our work contributes to this area by employing a Transformer-based architecture within a generative
framework, specifically tailored to the dense, fixed-interval survey data common in structured clinical
research.

2.2 Generative Models for Synthetic Health Data

Data scarcity, class imbalance, and privacy regulations are significant barriers in medical research
[35, 26]. Deep generative models have emerged as a powerful solution for creating high-fidelity
synthetic health data to address these challenges [34]. Generative Adversarial Networks (GANs),
such as MedGAN, have been used to generate realistic patient records, but are often plagued by
training instability [4]. Variational Autoencoders (VAEs) offer a more stable, probabilistic alternative
that learns a well-structured latent space, making them particularly suitable for controlled data
augmentation via sampling and interpolation [22, 45, 3]. A critical distinction in longitudinal
modeling is the nature of the input data. Many state-of-the-art sequential VAEs for healthcare, such as
IVP-VAE [38] or Shi-VAE [6], are designed for sparse, irregularly-sampled event sequences typical
of EHR billing or lab data. These models excel at handling irregular timestamps and high degrees of
missingness. In contrast, our work focuses on a different but equally important data modality: dense,
fixed-interval sequences, where each visit yields a complete, high-dimensional vector of features from
comprehensive surveys. For this data structure, a Sequence-to-Sequence (Seq2Seq) VAE architecture
is more appropriate, as it is designed to learn a holistic representation of an entire sequence of dense
vectors, a task for which event-based models are ill-suited.

2.3 Advanced Topics in Variational Autoencoders

One challenge in training VAEs is "posterior collapse" or "KL vanishing," where the model learns to
ignore the latent variable z, causing the KL divergence term in the loss function to approach zero
and rendering the generative process ineffective [10]. To combat this, several techniques have been
developed. KL annealing, which gradually increases the weight of the KL term during training, is a
common strategy [15]. A more targeted approach is the "free bits" technique, which modifies the KL
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loss to ensure that each dimension of the latent space is forced to encode at least a minimum amount
of information [21, 17]. By framing the use of "free bits" not as a minor implementation detail but
as a necessary component for learning robust representations, our work aligns with best practices
for stable VAE training [12, 18]. Furthermore, our model architecture is conditional. Conditional
VAEs (CVAEs) extend the VAE framework by incorporating auxiliary information into the generative
process, allowing for more controlled and targeted data synthesis [42]. In clinical contexts, CVAEs
have been used to generate data conditioned on specific patient attributes or diagnostic labels,
providing a powerful mechanism for generating class-balanced datasets or exploring counterfactual
scenarios [31, 55].

2.4 Interpretability in Clinical Machine Learning

The adoption of complex "black box" models in high-stakes clinical environments is contingent upon
their interpretability [11, 29, 14]. Explainable AI (XAI) methods are therefore critical for building
trust, validating models, and enabling clinical utility. SHAP (SHapley Additive exPlanations), a
game-theoretic approach that provides a unified framework for explaining the output of any machine
learning model, has become a gold standard in the field [30]. Its application in healthcare has been
shown to provide clinically relevant insights by attributing predictions to specific input features
[32, 5]. However, the vast majority of current XAI applications in medicine and psychiatry focus
on generating global feature importance plots as a means of model validation—confirming that
the model has learned "sensible" patterns that align with existing clinical knowledge [52, 19, 53].
While this is a necessary first step, it fails to explain why a model might be systematically failing
for certain patients or how its reasoning process differs between correct and incorrect predictions.
A significant gap therefore exists in the application of XAI for the purpose of model diagnostics
and granular error analysis in a clinical setting. Our work directly addresses this gap by introducing
an outcome-specific SHAP analysis that stratifies explanations by prediction outcome (e.g., True
Positive vs. False Negative). This approach reframes interpretability as a discovery tool, enabling a
deeper understanding of the model’s decision boundaries and failure modes.

3 Methodology

This study employed a systematic machine learning pipeline to develop and evaluate models for
predicting the multi-visit trajectory of Post-Traumatic Stress Disorder (PTSD) in a pediatric cohort.
The methodology is centered on learning a holistic representation of patient trajectories using a
conditional SVAE, leveraging this model for data augmentation, and training downstream classifiers
for both prediction and granular, outcome-specific interpretation. The high-level overview of the
modeling is represented on diagram 1 and an overview of the specific conditional SVAE modeling is
represented on diagram 2.

3.1 Data Source and Cohort

Data were sourced from the Texas Childhood Trauma Research Network (TX-CTRN), a longitudinal
study assessing trauma, diagnostic criteria, and Social Determinants of Health (SDoH) across multiple
visits (baseline, 1 month, 6 months, 1 year, 18 months and 2 year visits), collected through a suite of
validated surveys and clinician-administered interviews.

Key instruments used in this study captured three domains: (1) Diagnosis and Symptom Severity,
using tools like the MINI-KID for diagnosis, the CAPS-CA-5 for PTSD symptoms, and the PHQ-A
for depression; (2) Trauma Exposure, documented with the TESI-C; and (3) Social Determinants
of Health (SDoH), assessed with questionnaires covering demographics, social bonds, and cultural
identity. A complete list of all instruments is available in Appendix.

3.2 Data Preprocessing and Feature Selection

The raw dataset, comprising multi-visit records for approximately 3,700 participants, underwent
a multi-stage preprocessing pipeline to ensure data quality, handle the longitudinal structure, and
construct a robust feature set for modeling.
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First, initial data cleaning involved removing unscheduled events and standardizing null value
representations (e.g., ’999’). A key step to address the longitudinal format was the replication of
time-invariant data; surveys administered only at baseline, such as demographics and trauma history
(e.g., TESI-C), were forward-filled to all subsequent visits for each patient. The dataset was then
refined through an automated filtering process that included: removing columns with near-zero
variance or high proportions (>99%) of missing values; harmonizing columns with numerical suffixes
(e.g., ’col.1’) or different languages (e.g., ’col_sp’); and de-duplicating patient visit records to resolve
multiple entries for a single event by selecting the most complete record.

Next, the feature set was transformed for machine learning compatibility. Remaining missing numeri-
cal values were imputed with zero, and a one-hot encoding scheme was applied to all low-cardinality
categorical and numeric features, converting them into a binary format. Concurrently, diagnostic
label columns (e.g., from MINI-KID and CAPS instruments) were separated from the features and
binarized, with text-based entries (’Checked’, ’Yes’) converted to a ‘1/0‘ format. Discrepancies in
diagnoses from multiple raters were reconciled by taking the maximum value, thereby creating a
single, definitive label for each diagnosis per visit.

Finally, a rigorous feature selection protocol was executed to derive the most predictive and parsimo-
nious feature set. To prevent data leakage, the cohort was first partitioned into training (80%) and test
(20%) sets using a strict patient-level split, ensuring all records for any given patient belonged to only
one set [48]. An empirical, performance-based selection process was then conducted exclusively on
the training data. A RandomForestClassifier was used to rank all features by Gini importance.
We then systematically evaluated the performance of this classifier on several feature subsets using
5-fold grouped cross-validation to respect the data’s patient-visit structure. The analysis revealed a
clear performance peak; the classifier achieved its maximum cross-validated ROC-AUC using the
top-ranked features that accounted for just 35% of the total cumulative Gini importance for the Clini-
cal + SDoH data and 25% for the SDoH only data, accordingly to Figures 3 and 4. Including features
beyond this point was found to be detrimental, indicating that this subset captured the strongest
predictive signals while excluding features that introduced more noise than useful information.

3.3 Longitudinal Data Structuring and Splitting

To prepare the data for sequential modeling, records for each patient were grouped and ordered by
visit date, creating a three-dimensional data structure of (patients × visits × features). To handle
variable visit attendance and attrition, all patient sequences were padded to a uniform length of six
visits (baseline, 1 month, 6 months, 1 year, 18 months and 2 years), with missing visits imputed
using a Last Observation Carried Forward (LOCF) strategy. A binary mask was concurrently created
to distinguish real from imputed data points. To ensure a robust and unbiased evaluation, a single,
globally held-out test set was created via a stratified, patient-level split (80% train, 20% test) before
any model training commenced. Stratification was performed based on a summary label representing
each patient’s overall PTSD trajectory (the MINI-KID diagnosis label), guaranteeing that the test set
was both entirely unseen during training and representative of the cohort’s diagnostic distribution.

3.4 The Conditional SVAE Framework for Trajectory Modeling

We employed a Conditional Sequential Variational Autoencoder (SVAE) as a powerful non-linear
feature extractor for entire patient trajectories. The model is trained on a multi-task objective to
simultaneously reconstruct the input trajectory X and predict a corresponding binary label y. This is
achieved by minimizing a composite loss function that extends the standard Evidence Lower Bound
(ELBO) [22]. The loss is defined as:

L(θ, ϕ;X, y) = wreconLrecon + wpredLpred + wKLDKL(qϕ(z|X)∥p(z)) (1)

where Lrecon is the reconstruction loss (Mean Squared Error), Lpred is the prediction loss for the label
(Binary Cross-Entropy), and the final term is the Kullback-Leibler (KL) divergence, which regularizes
the latent space. The terms wrecon, wpred, and wKL are scalar weights for each component. The KL
divergence encourages the approximate posterior qϕ(z|X), learned from the data, to match a prior
distribution p(z), typically a standard normal N (0, I).

Our architecture consists of a Transformer-based encoder that maps a patient’s multi-visit sequence
X into the parameters of the approximate posterior (µ, logσ2), and a Transformer-based decoder
that reconstructs the sequence X from a sample z ∼ qϕ(z|X). In this methodology, conditionality
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is implemented by embedding the ground-truth training labels (in our case the MINI-KID multi-
diagnosis labels) and feeding them directly into the decoder alongside the latent vector z. The
encoder, however, generates z using only the input features src, without ever seeing the labels.
This design is sound for feature reconstruction (p(x|z, y)) but introduces data leakage if that same
decoder is also asked to predict the labels it just received as input. Crucially, when this architecture
is used in a two-stage process where the trained encoder first generates z from src and a separate
classifier then predicts y from z—there is no data leakage. This is because the feature-generation
step (encode(src)) is completely isolated from the labels, and this process benefits from the CVAE’s
ability to force z into a more disentangled and powerful representation of intra-class variation, which
can improve the performance of the final classifier. This allows the generative process to be guided
by specific patient characteristics and diagnoses, a technique well-established in the CVAE literature
[42, 31, 55].

To ensure stable training and prevent posterior collapse, we implemented two key techniques.
First, KL annealing gradually increases the weight of the KL divergence term (wKL) during
training [10]. Second, we employ a "free bits" threshold λ, which modifies the KL term to
max(λ,DKL(qϕ(z|X)∥p(z))), forcing the entire latent vector to encode a minimum amount of
information and promoting the learning of richer representations [21, 17].

3.5 Latent Space Augmentation and Trajectory Prediction

Using the trained SVAE, we addressed data scarcity and class imbalance via class-conditional latent
space augmentation. All real training trajectories were encoded into their latent vectors z∗real. These
vectors were then separated by their PTSD summary label (positive vs. negative), and a multivariate
Gaussian distribution (N (µ∗

pos,Σ
∗
pos) and N (µ∗

neg,Σ
∗
neg)) was fitted to each class. New latent vectors

were generated by sampling from these learned distributions and then passed through the trained
decoder to generate complete, high-fidelity synthetic patient trajectories of the desired class. A suite
of classifiers, including XGBoost and feed-forward neural networks, were then trained on the dynamic
embeddings (z) from the combined (real + synthetic) dataset to predict the 6-visit PTSD diagnostic
trajectory. The standard threshold of 0.5 was used for classification decision. Hyperparameters for all
models were systematically tuned using Optuna, an automated optimization framework, to maximize
PR-AUC [1, 33, 25]. Detailed hyperparameter search ranges are provided in the Appendix.

3.6 Outcome-Specific Interpretability Pipeline

To move beyond model validation and toward clinical discovery, we implemented an end-to-end,
outcome-specific explainability pipeline using shap.KernelExplainer to analyze the composite
model, which chains the SVAE encoder with the final classifier [30]. This approach calculates SHAP
values that trace a prediction for a specific visit back to the importance of each of the original features
from any prior or concurrent visit in the patient’s history. Critically, this analysis was stratified by
the prediction outcome. SHAP values were aggregated and analyzed separately for four distinct
groups: True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).
This stratification allows for a direct comparison of the features driving correct predictions versus
those contributing to model errors, providing a granular view of the model’s reasoning process and
potential biases [32, 5].

4 Results

4.1 Predictive Performance with Generative Data Augmentation

Our experimental pipeline was replicated for two distinct feature subsets: one containing only SDoH
features, and another containing all features from the TX-CTRN dataset. When restricted to SDoH
features, the models demonstrated a clear benefit from data augmentation. As shown in Table 1,
the Real Only scenario established a strong baseline, with XGBoost achieving the best F1-score of
0.660. The Synthetic Only scenario served as a crucial validation, with the XGBoost model reaching
an F1-score of 0.622, confirming the VAE’s ability to generate data with a valid predictive signal.
The primary finding is in the Combined scenario, where the RandomForest model achieved the
overall highest F1-score of 0.671. This improvement was driven by a substantial 41% increase in the
model’s true positive count for PTSD cases (from 164 to 232) compared to the Real Only baseline.
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The inclusion of rich clinical survey data significantly elevated the performance of all models. The
detailed results in Table 2 show that the Real Only XGBoost model set a higher baseline with
an F1-score of 0.671. The quality of the generative model in this richer feature space was also
strong; classifiers trained on Synthetic Only data were highly competitive, with the Transformer
model reaching an F1-score of 0.603. Once again, the benefit of augmentation was confirmed in the
Combined scenario. The XGBoost model again achieved the top performance with an F1-score of
0.683, driven by a dramatic 82% increase in correctly identified PTSD cases (TP rose from 177 to
322).

Table 1: Detailed Model Performance (Visit-Level) for PTSD Prediction using SDoH Features Only.

Training Scenario Model ROC-AUC PR-AUC F1-Score
Real Only XGBoost 0.798 0.463 0.660

RandomForest 0.800 0.469 0.628
FFN 0.752 0.409 0.558
LSTM 0.743 0.417 0.569
Transformer 0.747 0.407 0.537

Synthetic Only XGBoost 0.767 0.411 0.622
RandomForest 0.765 0.416 0.612
FFN 0.751 0.418 0.571
LSTM 0.752 0.425 0.595
Transformer 0.758 0.435 0.605

Combined XGBoost 0.791 0.465 0.671
RandomForest 0.786 0.461 0.671
FFN 0.759 0.427 0.568
LSTM 0.753 0.431 0.590
Transformer 0.758 0.435 0.622

Table 2: Detailed Model Performance (Visit-Level) using the Full Feature Set (SDoH + Clinical).

Training Scenario Model ROC-AUC PR-AUC F1-Score
Real Only XGBoost 0.817 0.503 0.671

RandomForest 0.821 0.504 0.664
FFN 0.831 0.510 0.632
LSTM 0.830 0.512 0.659
Transformer 0.808 0.476 0.654

Synthetic Only XGBoost 0.786 0.409 0.600
RandomForest 0.790 0.423 0.602
FFN 0.787 0.424 0.562
LSTM 0.790 0.430 0.564
Transformer 0.789 0.434 0.603

Combined XGBoost 0.819 0.476 0.683
RandomForest 0.816 0.472 0.674
FFN 0.792 0.424 0.631
LSTM 0.797 0.439 0.564
Transformer 0.797 0.429 0.612

4.2 Ablation Study of "Free Bits" in Augmentation

To empirically validate our methodological choices, we conducted ablation studies quantifying the
impact of key architectural components. The results reveal a nuanced but critical role for the "free
bits" technique.

When evaluating the quality of synthetic data in isolation, the model trained without free bits held a
slight edge, achieving a best PR-AUC of 0.441 compared to 0.434 from the full model. However, this
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was reversed in the more practical data augmentation scenario. When synthetic data was combined
with real data, the classifier trained on data from the "free bits" model was clearly superior, achieving
a best PR-AUC of 0.476 compared to 0.456 from the non-free-bits model.

Most critically, this improvement in PR-AUC translated to a substantial clinical benefit. The classifier
augmented with "free bits" data correctly identified 322 TPs cases, a dramatic increase over the
287 cases found by the model augmented with non-free-bits data. This shows that while "free bits"
might not produce the highest-fidelity data in isolation, it is essential for generating complementary
synthetic samples that lead to a more robust and clinically effective final model. The benefit of the
conditional architecture was also confirmed, as the unconditional SVAE performed worse than the
full model across all metrics (Table 3).

Table 3: Ablation Study of SVAE Components. PR-AUC is reported for the best classifier in the
Combined scenario.

Model Configuration SVAE Val. Loss PR-AUC (SDoH) PR-AUC (Full)
Full Model (Conditional + Free Bits) 1.523 0.465 0.476
SVAE - No Free Bits 0.476 0.456 0.456
SVAE - Unconditional — 0.369 0.361

4.3 Privacy Evaluation: Distance to Closest Record

To assess the privacy-preserving qualities of the generated synthetic data, we employ the Distance
to Closest Record (DCR) metric [23, 16]. This evaluation is crucial to ensure that the synthetic
trajectories are not mere copies of the original data, thereby mitigating re-identification risks.

The DCR score is calculated by first transforming each real and synthetic patient trajectory into
a fixed-length feature vector using the SVAE’s learned encoder (z). For each synthetic trajectory,
we then compute the Euclidean distance to every trajectory in the real training set and identify the
minimum distance. The DCR is reported as the average of these minimum distances across all
synthetic samples, with results shown in Table 4. The distance between the real training and test sets
is included as a baseline to represent natural data variation.

Table 4: Distance to Closest Record (DCR) Scores. Lower scores indicate higher similarity to the
real training data distribution.

Model Configuration Feature Set DCR (Synthetic vs. Train) Baseline DCR (Test vs. Train)
Full Model (with Free Bits) SDoH Only 0.01275 0.00734
Full Model (with Free Bits) Clinical + SDoH 0.01181 0.00798

SVAE - No Free Bits Clinical + SDoH 0.03302 0.02733

As shown in the table, the synthetic data generated by our Full Model has a DCR score that is
remarkably close to the baseline (the natural distance between the real test and train sets). This
indicates that the SVAE is generating high-fidelity samples that follow the true data distribution
without merely replicating it.

Crucially, these results reinforce the findings from our ablation study. The model trained without
"free bits" yields a significantly higher DCR (0.03302), suggesting it produces samples that are
less faithful to the original data distribution. This aligns with its poorer performance in the data aug-
mentation scenario and empirically confirms that the "free bits" technique is essential for generating
higher-quality, more effective synthetic data.

4.4 Outcome-Specific Explainability via SHAP Analysis

To dissect the models’ decision-making, we conducted an outcome-specific SHAP analysis. The top
20 mean SHAP values for each outcome for the best model overall (XGB) are presented on Figures 6,
8, 7 and 5.
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In the models trained on the complete dataset, features from the Concise Health Risk Tracking-Self
Report (CHRT-16) and the Patient Health Questionnaire for Adolescents (PHQ-A) were the
most influential. For TP, the models correctly identified at-risk individuals by keying on expressions
of hopelessness and functional impairment. The top-ranked features were consistently items like
chrt_3 (“It seems as if I can do nothing right”) and phqa_11 (related to difficulty in work, home, or
social life).

Critically, the analysis of FPs revealed that the models were most often misled by the same instruments.
Incorrect high-risk predictions were frequently driven by chrt_7 (“I wish my suffering could just
all be over”) and other high-severity responses on the PHQ-A. This indicates a model vulnerability
where expressions of significant distress are treated as definitive markers of risk, even when the full
clinical picture may not support that conclusion. For FNs, the models failed to act on weaker but
important signals, often from PHQ-A items related to anhedonia (phq_2) and low self-worth (phq_6),
suggesting these features alone were insufficient to overcome the prediction threshold.

The models trained exclusively on the SDoH feature set adapted by identifying new proxies for risk
from a different set of instruments. For TPs, the leading predictors were now items related to anxiety
from the Screen for Child Anxiety Related Disorders (SCARED), such as scared_child_21
(“I worry about things working out for me”), and items from the PHQ-A concerning concentration
(phq_7). The error patterns in this context shifted significantly. The leading drivers for False Pos-
itives were now features related to generalized anxiety and panic symptoms from the SCARED
questionnaire (e.g., scared_child_24, “I get really frightened for no reason at all”). This demon-
strates that when more direct clinical markers are unavailable, models may incorrectly interpret high
anxiety as sufficient evidence of risk for the specific outcome being predicted, even if the two are not
directly correlated in a given patient.

5 Discussion and Conclusion

This study introduces and validates a comprehensive framework demonstrating how to build trust-
worthy and effective models for psychiatric trajectory prediction by coupling generative model
enhancements with outcome-specific interpretability. Our contributions are threefold. First, our
generative approach of combining real and synthetic data measurably improves prediction, increasing
the number of correctly identified PTSD cases by a dramatic 82% in the full feature set compared to
the real-only baseline without collapsing precision. The strong performance of classifiers trained on
synthetic data alone validates that our SVAE captured the complex, underlying distribution of the
real data. Second, our ablation studies empirically justify key architectural choices, showing that
techniques like "free bits" generate more complementary synthetic samples, which in turn improves
downstream PR-AUC when mixed with real data. Third, our outcome-specific explainability analysis
moves XAI from a simple validation exercise to a powerful diagnostic tool for error analysis. By
stratifying SHAP values, we identified precisely why the model fails, such as its over-reliance on high-
potency items from the CHRT and PHQ-A questionnaires for False Positives and its under-weighting
of anhedonia signals for FNs.

A key insight is the double-edged nature of dominant predictors from certain clinical instruments.
The models’ reliance on high-potency items from instruments measuring hopelessness (CHRT-16)
and depression (PHQ-A) is logical and effective for identifying TPs. However, the consistent
appearance of the same features as top drivers for False Positives highlights a critical failure in
contextual reasoning. This suggests the models employ a heuristic—“expressed hopelessness equals
imminent risk”—without adequately weighing other protective or nuanced factors present in the data.
This has significant clinical implications, as it could lead to alarm fatigue or the misinterpretation
of a patient’s existential distress if not reviewed carefully by a human expert. Furthermore, the
analysis of the SDOH-only models uncovers the models’ strategy of proxy-based reasoning. When
primary depressive and hopelessness signals are less prominent, the models pivot to concepts of
anxiety, as measured by the SCARED instrument, as a stand-in for clinical risk. This is a powerful
demonstration of the models’ ability to find signals in data that might be considered secondary in a
traditional clinical assessment. However, this strategy also introduces a distinct bias: the tendency to
conflate generalized anxiety with the specific psychiatric outcome. This suggests a risk of penalizing
patients for traits or symptoms of anxiety, which, while indicative of suffering, may not map directly
to the predicted risk. This distinction is vital for building fair and clinically useful predictive tools
that understand the multifaceted nature of psychiatric symptoms.
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A Appendix

A.1 Clinical Instruments and Surveys

The data for this study were collected from a comprehensive suite of validated clinical instruments
and surveys. Table 5 lists the key instruments used to capture psychiatric diagnoses, symptom severity,
trauma exposure, and Social Determinants of Health (SDoH).

Table 5: Key Clinical Instruments and Surveys Used for Data Collection.

Domain Instrument Name Citation

Diagnosis & Symptom
Severity

Mini-International Neuropsychiatric Interview for Children
and Adolescents (MINI-KID)

[41]

Clinician-Administered PTSD Scale for DSM-5 –
Child/Adolescent Version (CAPS-CA-5)

[47]

Patient Health Questionnaire for Adolescents (PHQ-A) [43]
Screen for Child Anxiety Related Disorders (SCARED-C) [9]
Concise Health Risk Tracking Scale (CHRT) [44]

Trauma Exposure Traumatic Events Screening Inventory–Child Version (TESI-
C)

[46]

Social Determinants of
Health (SDoH)

Personal & Family History Questionnaire N/A
Inventory of Parent and Peer Attachment–Revised (IPPA-R) N/A
Ethnic Identity Scale-Brief (EIS-B) N/A

A.2 Hyperparameter Search Ranges

Table 6 details the search spaces used for hyperparameter optimization with Optuna for both the
Conditional Transformer SVAE and the downstream classifiers. The optimization was performed
by maximizing the Area Under the Precision-Recall Curve (PR-AUC) on a validation set for the
classifiers, and minimizing validation loss for the SVAE.
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Table 6: Hyperparameter Search Ranges for Optuna Studies.

Model Hyperparameter Range Distribution/Type

Conditional SVAE

Latent Dimension {64, 128} Categorical
Transformer dmodel {128, 256} Categorical
Encoder Layers [2, 4] Integer
Decoder Layers [1, 3] Integer
Attention Heads {2, 4, 8} Categorical
Learning Rate [10−5, 10−3] Log-Uniform

XGBoost

Num. Estimators [200, 1000] Integer (Step 100)
Learning Rate [10−3, 10−1] Log-Uniform
Max Depth [3, 10] Integer
Subsample [0.6, 1.0] Uniform
Colsample by Tree [0.6, 1.0] Uniform

FFN

Learning Rate [10−5, 10−3] Log-Uniform
Batch Size {32, 64, 128} Categorical
Dropout Rate [0.1, 0.5] Uniform
Early Stopping Patience [10, 30] Integer
Hidden Size {128, 256} Categorical
Num. Layers [2, 4] Integer

LSTM

Learning Rate [10−5, 10−3] Log-Uniform
Batch Size {32, 64, 128} Categorical
Dropout Rate [0.1, 0.5] Uniform
Early Stopping Patience [10, 30] Integer
Hidden Size {64, 128} Categorical
Num. Layers [1, 3] Integer

Transformer

Learning Rate [10−5, 10−3] Log-Uniform
Batch Size {32, 64, 128} Categorical
Dropout Rate [0.1, 0.5] Uniform
Early Stopping Patience [10, 30] Integer
dmodel {64, 128} Categorical
Attention Heads (nhead) {2, 4} Categorical
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B Supplementary Figures

B.1 Modeling Pipeline

Figures 1 and 2 illustrate the overall machine learning pipeline and the specific four-stage research
methodology employed in this study, respectively.

Figure 1: Preprocessing and Machine Learning Pipeline. This figure illustrates the comprehensive
workflow, from initial data acquisition to final analysis. Key stages include data cleaning, transfor-
mation, filtering, VAE-based augmentation, model training, hyperparameter tuning, evaluation, and
interpretation.
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Figure 2: The Four-Stage Research Methodology. Stage 1 involves preparing raw data through
feature selection and sequencing. In Stage 2, a specialized SVAE is trained for a target diagnosis and
subsequently used to generate an augmented set of latent vectors. In Stage 3, a suite of classifiers
is trained and evaluated on this augmented data. Finally, Stage 4 provides model interpretation via
SHAP.
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B.2 Performance-Based Feature Selection

Figures 3 and 4 show the results of the performance-based feature selection process. Cross-validated
ROC-AUC is plotted against the number of features (ranked by Gini importance), empirically
identifying the optimal feature set size where performance peaks before declining due to noise.

Figure 3: Optimal feature set analysis for the combined Clinical+SDoH dataset. Performance peaks
at 197 features, which captures 35% of the cumulative Gini importance and achieves a cross-validated
ROC-AUC of 0.866.

Figure 4: Optimal feature set analysis for the SDoH-only dataset. Performance peaks with just 75
features (25% of cumulative Gini importance), reaching a cross-validated ROC-AUC of 0.829.
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B.3 Outcome-Specific SHAP Explanations

The following figures 5, 6, 7 and 8 present the outcome-specific SHAP analysis for the best-performing
XGBoost model. By stratifying explanations, we can compare the feature contributions for correct
predictions (TPs, TNs) versus incorrect predictions (FPs, FNs), revealing the drivers of model success
and failure.

C Reproducibility

Training on an 10-cores 16GB RAM Mac M4 with parallelization and/or GPU cores enabled were
possible takes around 2 hrs to run the preprocessing pipeline, 4 hrs to run the full modeling pipeline
for each scenario (SDoH only, SDoH + Clinical, with and without free-bits, with and without
Conditionality) and the SHAP values generation code takes around 6 hrs to run, also for each scenario.
The code will be made public and open source on GitHub for the camera-ready version.

The dataset used can be requested, upon completion of the Human Subjects - Social Behavioral
Researchers course, and obtaining the IRB approval from one of the members of the TX-CTRN.

The full codebase used on this research can be accessed on the link
https://github.com/matglima/S2SVAE_SynthData

D Limitations

While this study presents a robust framework for psychiatric trajectory modeling, we acknowledge
several limitations that provide important directions for future work.

Generalizability. The training and evaluation data were sourced from a single, comprehensive
research network (TX-CTRN). Although this ensured high data quality and consistency, the learned
predictive patterns and feature importances may not generalize perfectly to different demographic
populations or healthcare systems with varying data collection protocols. Future work should aim to
validate this framework on more diverse, multi-site datasets to establish its broader applicability.

Imputation Strategy. To handle patient attrition and missed visits, we employed a Last Observation
Carried Forward (LOCF) strategy. While practical and effective, LOCF assumes a static state between
observed visits, which may not fully capture the dynamic nature of symptom progression. Exploring
more sophisticated imputation techniques, such as those based on Gaussian processes or learned by
the model itself, could further enhance the fidelity of the patient trajectories.

Privacy Evaluation. Our work focused on demonstrating the fidelity and utility of the synthetic data,
evidenced by the strong performance of the downstream classifiers. However, we did not conduct a
formal, quantitative evaluation of the privacy-preserving properties of the generated data. For real-
world clinical deployment, ensuring that synthetic data does not leak sensitive patient information
is critical. Future iterations should incorporate formal privacy assessments, such as calculating
the Distance to Closest Record (DCR) or testing resilience against Membership Inference Attacks
(MIAs), to provide a complete Fidelity-Utility-Privacy analysis.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Conclusion

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Methodology and Conclusion

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Results and Discussions
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [No]
Justification: Code will be released after double-blind review
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: Code will be released after double-blind review, but data access depends on
IRB approval

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Methodology

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Methodology and Discussions

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Reproducibility on appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The Code of Ethics was respected and followed for this research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Introduction and Conclusion

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No pretrained models will be released, only the code

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The license will be added on the code repo

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The necessary code will be released on the Github repository of this research.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: The guidelines are not included on the paper, but are included on the TX-CTRN
guidelines, and must be reviewed prior to data access.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The TX-CTRN study is supervised and was approved by UT Austin’s IRB.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not core methods of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 5: Top 20 features for True Positive (TP) predictions.

Figure 6: Top 20 features for False Negative (FN) predictions.
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Figure 7: Top 20 features for True Negative (TN) predictions.

Figure 8: Top 20 features for False Positive (FP) predictions.
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