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ABSTRACT

Visual recognition tasks are often limited to dealing with a small subset of classes
simply because the labels for the remaining classes are unavailable. We are inter-
ested in identifying novel concepts in a dataset through the representation learn-
ing based on both labeled and unlabeled examples, and extending the horizon of
recognition to both known and novel classes. To address this challenging task, we
propose a combinatorial learning approach, which naturally clusters the examples
in unseen classes using the compositional knowledge given by multiple supervised
meta-classifiers on heterogeneous label spaces. The representations given by the
combinatorial embedding are made more robust by consistency regularization.
We also introduce a metric learning strategy to estimate pairwise pseudo-labels
for improving the representations of unlabeled examples, which preserves seman-
tic relations across known and novel classes effectively. The proposed algorithm
discovers novel concepts via a joint optimization of enhancing the discrimitive-
ness of unseen classes as well as learning the representations of known classes
generalizable to novel ones. Our extensive experiments demonstrate remarkable
performance gains by the proposed approach in multiple image retrieval and novel
class discovery benchmarks.

1 INTRODUCTION

Despite the remarkable success of machine learning fueled by deep neural networks, the existing
frameworks still have critical limitations in an open-world setting, where some categories are not
defined a-priori and the labels for some classes are missing. Although there have been a growing
number of works that identify new classes in unlabeled data given a set of labeled examples (Hsu
et al., 2018; 2019; Chi et al., 2021; Brbić et al., 2020; Han et al., 2019; 2020), they often assume that
all the unlabeled examples belong to unseen classes and/or the number of novel classes is known in
advance, which make their problem settings unrealistic.

To address the limitation, this paper introduces an algorithm applicable to a more realistic setting.
We aim to discover and learn the representations of unseen categories without any prior information
or supervision about novel classes, in a natural setting that unlabeled data may contain examples in
both seen and unseen classes. This task requires the model to be able to effectively identify unseen
classes while preserving the information of previously seen classes.

We propose a representation learning approach based on the combinatorial classification (Seo et al.,
2019), where the examples in unseen categories are identified by the composition of multiple meta-
classifiers. Figure 1 illustrates the main concept of our combinatorial embedding framework, which
forms partitions for novel classes via a combination of multiple classifiers for the meta-classes made
of several known classes. The images in the same meta-class potentially have common attributes that
are helpful for knowledge transfer to novel classes. The learned representations via combinatorial
embedding become even stronger by consistency regularization, and more accurate representations
of novel classes are obtained by transductive metric learning based on pairwise similarity.

The main contributions of our work are summarized as follows.

• We propose a novel combinatorial learning framework, which embeds the examples in
both seen and novel classes effectively by the composition of the knowledge learned from
multiple heterogeneous meta-classifiers.
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Seen classes:

(a) One meta-class set

Seen classes:

(b) Two meta-class sets

Seen classes: Novel classes:

(c) Three meta-class sets

Figure 1: Simple illustration of decision boundaries (black solid lines) given by combinatorial clas-
sification with three seen classes, where three binary meta-classifiers are added one-by-one from
(a) to (c). Unlike the standard classifier that creates decision boundaries for seen classes only, the
combinatorial classification generates partitions using multiple coarse-grained classifiers, which are
useful to discover novel classes.

• We introduce a contrastive learning approach to enhance the representations given by com-
binatorial embedding. We also present a transductive metric learning method based on
pairwise pseudo-label estimation to learn the features of unlabeled data within the seman-
tic structure identified by labeled ones.

• We demonstrate the outstanding performance of our model in the presence of novel classes
through extensive evaluation on image retrieval and novel class discovery benchmarks.

2 RELATED WORK

This section first introduces recent approaches dealing with novel classes, which are roughly cat-
egorized into two groups: detection or rejection of unseen classes in test sets, and representation
learning for classification and retrieval with unseen classes. Later in this section, we also discuss
several related methods to the proposed algorithm in terms of methodology.

2.1 LEARNING IN OPEN-SET SETTING

Departing from the closed world, a number of works recently consider the open-set setting, where
novel classes appear during testing (Scheirer et al., 2012; Geng et al., 2020; Scheirer et al., 2014;
Schölkopf et al., 2001; Bendale & Boult, 2016; Yoshihashi et al., 2019; Vareto et al., 2017; Júnior
et al., 2017; Dan & Kevin, 2017). Early researches mainly focus on detecting out-of-distribution
examples by learning binary classifiers (Scheirer et al., 2012; Schölkopf et al., 2001; Vareto et al.,
2017; Dan & Kevin, 2017), or classifying the knowns while rejecting the unknowns (Scheirer et al.,
2014; Bendale & Boult, 2016; Yoshihashi et al., 2019; Júnior et al., 2017). However, these ap-
proaches have significant challenges in distinguishing semantics between unseen classes; although
some methods sidestep the issue by assigning rejected instances to new categories (Bendale & Boult,
2015; Shu et al., 2020; 2018), they require human intervention to annotate the rejected examples and
consequently suffer from weak scalability.

To mitigate such limitations, transfer learning approaches have been proposed to model semantics
between unseen classes. Using the representations learned from labeled data, the methods in this
category perform clustering with unlabeled examples based on similarity prediction models (Hsu
et al., 2018; 2019), ranking statistics (Han et al., 2020), and modified deep embedded clustering (Han
et al., 2019) to capture their similarity and discrepancy. However, these approaches have two critical
limitations. First, the problem setting is unrealistic because they assume that all unlabeled examples
belong to unseen classes, and the number of novel classes is known in advance. Second, their
main goal is to learn the representations of novel classes, which results in information loss about
seen classes. On the contrary, we aim to discover novel categories without prior knowledge about
unlabeled examples and learn the representations of all categories jointly, where unlabeled data may
contain examples in both seen and unseen classes.

On the other hand, several hashing techniques (Zhang & Peng, 2017; Yan et al., 2017; Jin et al.,
2020; Jang & Cho, 2020) learn approximate embeddings for image retrieval with both labeled and
unlabeled data, which is generalizable to the examples in unseen classes. These methods focus on
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reducing quantization distortion in hash function by either entropy minimization (Zhang & Peng,
2017; Jang & Cho, 2020) or consistency regularization (Yan et al., 2017; Jin et al., 2020).

2.2 COMBINATORIAL LEARNING

Combinatorial learning framework reconstructs the solution space by the composition of the solu-
tions from multiple heterogeneous tasks and there are several related approaches in this regard. Seo
et al. (2018) formulates the image geolocalization problem as a classification task by combining mul-
tiple coarse-grained classifiers to reduce data deficiency and poor prediction granularity. A similar
concept has been employed to learn noise-resistant classifiers (Seo et al., 2019) or recognize out-of-
distribution examples (Vareto et al., 2017). Xuan et al. (2018) concatenate multiple representations
learned on multiple class sets for metric learning.

Product quantization (Jegou et al., 2010; Ge et al., 2013), which is also related to combinatorial
learning, constructs a large number of quantized regions given by a combination of subspace en-
codings to improve the performance of hash functions in an unsupervised manner. This approach
is extended to learning quantization tables using image labels in (Jang & Cho, 2020; Klein & Wolf,
2019; Yu et al., 2018). However, they do not provide direct supervision for quantization and attempt
to optimize the representation via the final classification loss, making the learned model suboptimal.

While all of these approaches are not studied in the presence of unlabeled examples during training
except (Jang & Cho, 2020), the proposed algorithm leverages the composition of output representa-
tions for capturing the semantics of unlabeled data, which belong to either known or novel classes.
Also, contrary to (Jang & Cho, 2020; Klein & Wolf, 2019; Yu et al., 2018), the proposed combinato-
rial embedding learns the representation with explicit supervision in the form of diverse meta-class
labels and obtains a better embedding model for novel classes.

3 PROPOSED METHOD

Suppose that we have a labeled dataset Dl = {(xi, yi)}Nli=1, where xi ∈ Rd denotes an example and
yi ∈ Cl = {c1, . . . , cK} is its class label, and an unlabeled dataset Du = {(xi)}Nui=1 for training.
Let Cl and Cu be the ground-truth class sets of the labeled and unlabeled data, respectively, where
Cl ∩ Cu 6= ∅ and Cl 6= Cu. We denote the novel class set by Cn = Cu\Cl. Our goal is to learn an
unified model that is effective to represent novel classes as well as known ones by taking advantage
of semantic relations across the two kinds of classes.

To this end, we propose a supervised combinatorial embedding approach followed by an unsuper-
vised metric learning technique. For combinatorial embedding, we first construct multiple hetero-
geneous meta-class sets, each of which is obtained from different partitions of the base classes. We
then obtain the combinatorial embedding vector of a base class by concatenating meta-class em-
beddings learned from the classifiers on the individual meta-class sets. Along with two supervised
objectives on meta-class sets and base class set, we employ consistency regularization for robust
combinatorial embeddings and transductive metric learning based on pairwise similarity for cluster-
ing the examples in both seen and unseen classes.

3.1 PRELIMINARY: COMBINATORIAL CLASSIFICATION

Before discussing the proposed framework, we first review combinatorial classification introduced
in Seo et al. (2019). The main idea of the combinatorial classification is to construct a fine-grained
classifier through a combination of multiple heterogeneous coarse-grained classifiers. Formally,
given M coarse-grained classifiers f1, f2, . . . , fM , defined over meta-class sets, we obtain a fine-
grained combinatorial classifier f ≡ f1 × f2 × · · · × fM , which is given by

f1 : x ∈ Rd → y ∈ C1 = {c11, . . . , c1K1
}

...
fM : x ∈ Rd → y ∈ CM = {cM1 , . . . , cMKM }

=⇒ f : x ∈ Rd → y ∈ C1 × · · · × CM . (1)

The original paper (Seo et al., 2019) employs this idea to reduce label noise in datasets and learn
noise-resistant classifiers. This paper adopts this concept to discover novel classes in datasets and
learn their representations together with known ones.
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3.2 COMBINATORIAL EMBEDDING

Combinatorial embedding is a framework to learn a general representation, which embeds known
and novel classes in a discriminative way using combinatorial classification.

We first construct M distinct partitions, denoted by Cm (m = 1, . . . ,M ). Each partition is referred
to as a meta-class set, which has Km(� K) meta-classes, i.e., Cm = {cm1 , . . . , cmKm}, and each
meta-class is typically constructed by a union of multiple base classes. Let an input image x ∈ Rd
be mapped to a vector z ∈ Rd1 by a feature extractor fθ(·), i.e., z = fθ(x). The feature vector z
is converted to M distinct vectors, z1, . . . , zM (zm ∈ Rd2 ), which are feature vectors for learning
with meta-classifiers for individual meta-class sets, by applying M linear transform functions.

Unlike the combinatorial classification that estimates a class-conditional distribution, we estimate
the embedding of each base class by the combination of multiple meta-class embeddings. Specifi-
cally, we construct M embedding heads with weight matrix Θ = {Θ1, · · · ,ΘM} (Θm ∈ Rd2×Km ),
and each head consists of meta-class representations for Cm, denoted by Θm =

[
θm1 , · · · , θmKm

]
(θmk ∈ Rd2 ).

The combinatorial embedding vector of a base class is obtained by a concatenation of the meta-class
embeddings, which is formally given by π =

[
Φ(z1,Θ1), · · · ,Φ(zM ,ΘM )

]
∈ Rd2M . Note that

Φ(·, ·) performs soft-assignments to individual meta-classes to enable backpropagation as

Φ(zm,Θm) =

Km∑
i=1

exp (λ(zm · θmi ))∑Km
j=1 exp

(
λ(zm · θmj )

)θmi , (2)

where λ denotes a scaling factor. Feature vectors and embedding weights are `2-normalized before
inner product to use cosine similarity as the distance metric. Note that the proposed embedding func-
tion enables us to analyze characteristics of unlabeled samples using their embedded vectors. For
instance, examples in novel classes may share some meta-class labels with those of known classes
while also having unique ones, which results in distinct feature vectors from the representations for
the seen classes.

Using all the labeled examples, for which meta-class labels are also available, we propose the fol-
lowing two criteria to learn the discriminative representations.

Supervision on meta-class sets Our model learns the representations based on the meta-class
labels using the normalized softmax loss (Zhai & Wu, 2019), which encourages a feature vector
zm to be close to the prototype of the ground-truth meta-class and located far away from the other
meta-class prototypes. In detail, denoting by θm+ and θm− the prototype of the ground-truth and
non-ground-truth meta-class, respectively, the supervised objective on a meta-class set is defined as

Lmeta = −
M∑
m=1

log

(
exp

(
zm · θm+ /σ

)∑
θi−∈Θm exp

(
zi · θi−/σ

)), (3)

where each feature vector and prototype are `2-normalized before applying the softmax function to
optimize with the cosine similarity, and σ denotes a temperature. Note that the meta-class embed-
ding naturally introduces the inter-class relations into the model and leads better generalization for
novel classes since the model learns the shared information from meta-class representations based
on the examples in the multiple constituent base classes.

Supervision on base class set In addition to the meta-class level supervision, we also take ad-
vantage of the base class labels to preserve inter-class relations between known classes. To be
specific, we train our model to the end that the combinatorial embedding vector π gets closer to the
corresponding combinatorial ground-truth, yπ =

[
Θ1[c1], . . . ,ΘM [cM ]

]
, which is obtained by the

concatenation of the ground-truth meta-class prototypes. As in the meta-class set case, let yπ+ be the
prototype of the ground-truth class label, and yπ− be the other prototypes. The supervised objective
on the base class set is given by

Lbase = − log

(
exp

(
π · yπ+/σ

)∑
yπ−∈C

exp
(
π · yπ−/σ

)), (4)

where π and {yπ+, yπ−} are also `2-normalized and σ is a temperature parameter.
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3.3 COMBINATORIAL EMBEDDING WITH CONTRASTIVE LEARNING

To robustify the representations obtained by combinatorial embedding in the presence of novel
classes, we perform the consistency regularization using both labeled and unlabeled examples.
Among existing contrastive learning approaches (Chen et al., 2020; He et al., 2020; Chen & He,
2021), we adopt the SimSiam network (Chen & He, 2021) due to its simplicity and efficiency.

Let we get two combinatorial embeddings πi and π′i from the two randomly augmented views of an
image x. A prediction MLP head (Grill et al., 2020), denoted as h, transforms the one to maximize
the cosine similarity with respect to the other as

Lcons (h(π), π′) =
1

nl + nu

nl+nu∑
i

− h(πi)

‖h(πi)‖2
· π′i
‖π′i‖2

, (5)

where nl and nu are labeled and unlabeled examples in a batch, respectively, and ‖ · ‖2 denotes
`2-norm. Following Chen & He (2021), we do not backpropagate towards π′i.

This loss function makes the examples in both seen and unseen classes transformation-invariant.
Furthermore, it encourages the unseen class examples to be embedded on the proper locations in the
joint embedding space, which improves the reliability of the pairwise pseudo-label estimation to be
discussed in the next subsection.

3.4 TRANSDUCTIVE METRIC LEARNING VIA PAIRWISE SIMILARITIES

We identify the semantics of unlabeled data in the context of labeled ones using pairwise similarities
given by metric learning with the estimated pseudo-labels. Since the class labels inDu are unknown,
we provide the relational supervision for the input feature vector pairs, (πi, πj), to learn the joint
representations of labeled and unlabeled examples; the samples with similar features belong to the
same class and have positive labels, i.e., ỹi,j = 1, while the dissimilar ones have negative ones, i.e.,
ỹi,j = 0. The question is how to estimate the pairwise pseudo-labels, ỹi,j , for training.

To obtain the pairwise pseudo-ground-truths, ỹi,j , we compute the similarities of combinatorial
embedding vectors between each unlabeled example and the rest of images in a batch as follows:

ỹi,j = I
(

s
(
πi, πj

)
≥ τ

)
, (6)

where I(·) denotes an indicator function and s(·, ·) indicates an arbitrary similarity metric. Since un-
labeled examples in the known classes are expected to be embedded properly and the novel classes
are also embedded in the combinatorial feature space, the pseudo-label estimation based on equa-
tion 6 is sufficiently reliable in practice with a reasonable choice of the threshold, τ .

Once the pairwise labels are identified, we employ a metric learning strategy, which has been used
for labeled data in (Jang & Cho, 2020), to learn the representations of novel class examples with
respect to the knowns. The objective function is the following average cross-entropy loss:

Lpair =
1

nu

nu∑
i=1

LCE (si, ỹi,∗) , (7)

where si = [(zi · π1), . . . , (zi · πnl+nu)] and ỹi,∗ = {0, 1}nu+nl denote a cosine similarity vector
and a pairwise pseudo-label vector between the ith unlabeled feature vector and all combinatorial
feature vectors in a batch. Since ỹi,∗ may not be a one-hot vector, we normalize the pseudo-ground-
truth vector before applying the loss function. This loss function facilitates clustering novel class
examples based on the similarities while maintaining the representations of the known classes given
by equation 3 and equation 4.

3.5 LOSS

The total loss is give by a weighted sum of four objective functions:
L = Lmeta + Lbase + αLcons + βLpair, (8)

where α and β control the relative importance of the individual terms. The proposed framework
performs a supervised classification, a self-supervised contrastive learning, and unsupervised metric
learning jointly. The learned representations based on the proposed loss function should be effective
for the examples in both known and novel classes.
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Table 1: The mean Average Precision (mAP) for the different number of bits on CIFAR-10 and
NUS-WIDE. The best mAP scores are in bold. GPQ with asterisk (*) is the result obtained by our
reproduction from the TensorFlow implementation provided by the original authors.

Supervision Method CIFAR-10 NUS-WIDE
12 bits 24 bits 48 bits 12 bits 24 bits 48 bits

Unsupervised
OPQ (Ge et al., 2013) 0.107 0.119 0.138 0.341 0.358 0.373

LOPQ (Kalantidis & Avrithis, 2014) 0.134 0.127 0.124 0.416 0.386 0.379
ITQ (Gong et al., 2012) 0.157 0.165 0.201 0.488 0.493 0.503

Supervised
SDH (Shen et al., 2015) 0.185 0.193 0.213 0.471 0.490 0.507
CNNH (Xia et al., 2014) 0.210 0.225 0.231 0.445 0.463 0.477
NINH (Lai et al., 2015) 0.241 0.249 0.272 0.484 0.483 0.487

Supervised +
Unlabeled data

SSDH (Zhang & Peng, 2017) 0.285 0.291 0.325 0.510 0.533 0.551
SSGAH (Wang et al., 2018) 0.309 0.323 0.339 0.539 0.553 0.579
GPQ* (Jang & Cho, 2020) 0.274 0.290 0.313 0.598 0.609 0.615

SSAH (Jin et al., 2020) 0.338 0.370 0.379 0.569 0.571 0.596
CombEmb (ours) 0.670 0.731 0.750 0.704 0.724 0.727

Table 2: mAP scores on CIFAR-100 and CUB-200 datasets with different number of bits.

Method CIFAR-100 CUB-200
24 bits 48 bits 72 bits 24 bits 48 bits 72 bits

GPQ (Jang & Cho, 2020) 0.108 0.120 0.108 0.163 0.170 0.159
CombEmb (ours) 0.144 0.186 0.209 0.263 0.296 0.286

3.6 IMAGE RETRIEVAL

The proposed approach based on combinatorial embedding (CombEmb) is evaluated in the image
retrieval task, and we discuss asymmetric search algorithm for the image retrieval briefly.

Let zq and zb be the feature vectors of a query image xq and a database image xb, respectively.
The proposed model, which is based on M partitions with Km meta-classes per partition, requires∑M
m=1 log2(Km) bits for storage to reconstruct the approximate representation of the database im-

age xb by π̄b =
[
Θ1[c1

z1b
], . . . ,ΘM [cM

zMb
]
]
, where cmzm ∈ Cm denotes the matching meta-class of zib.

The distance between input query image and database image for asymmetric search is computed by
the combination of the representations given by M partitions, which is given by

M∑
m=1

dist(zmq , π̄
m
b ). (9)

where dist(·, ·) denotes the cosine distance function and π̄mb means the matching meta class repre-
sentation of the mth partition.

3.7 DISCUSSION

The proposed algorithm provides a unique formulation for the representation learning of novel
classes, which is given by the combination of meta-classifiers learned with the examples in known
labels. The use of coarse-grained classifiers is helpful to capture common attributes across known
and unknown classes, and the embeddings of the examples in novel classes are learned effectively
by the combination of the multiple coarse-grained classifiers.

Our formulation is related to the concept of product quantization (Ge et al., 2013; Jegou et al., 2010)
as discussed earlier. However, product quantization is originally proposed for unsupervised hashing,
which simply maximizes the variance of data in subspace and enhances retrieval performance. Its
extensions to supervised learning are limited to handling known classes only (Klein & Wolf, 2019)
or fail to exploit the label information effectively for unseen class discovery (Jang & Cho, 2020).

4 EXPERIMENTS

This section presents the experimental results and the characteristics of the proposed approach in
the application of image retrieval given a database containing both known and novel classes.
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Figure 2: Precision-Recall curves on the three tested datasets with various bit-lengths.
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Figure 3: Precision@100 curves on the three tested datasets with various bit-lengths.

4.1 IMAGE RETRIEVAL OF NOVEL CLASSES

Datasets and baselines We conduct experiments on four popular image retrieval benchmarks,
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), NUS-WIDE (Chua et al.,
2009), and CUB-200 (Welinder et al., 2010). For NUS-WIDE, we use the images associated with
the 21 most frequent concepts, following (Liu et al., 2011). To simulate open-set environment in
the datasets, we split the classes into two subsets—known (75%) and novel (25%) classes, which is
identical to the protocol in (Sablayrolles et al., 2017). Specifically, 7, 15, 75, and 150 known classes
are included in the labeled training datasets of CIFAR-10, NUS-WIDE, CIFAR-100, and CUB-200
respectively. Note that a training dataset contains unlabeled data, which may belong to either known
or novel classes. For retrieval, the database contains the examples in both known and novel classes
while the query set is composed of the ones in novel classes.

We compare our method, referred to as combinatorial embedding (CombEmb), with several image
retrieval techniques based on hashing, which include OPQ (Ge et al., 2013), LOPQ (Kalantidis
& Avrithis, 2014), ITQ (Gong et al., 2012). We also compare three supervised hashing methods:
CNNH (Xia et al., 2014), NINH (Lai et al., 2015) and SDH (Shen et al., 2015), and four supervised
hashing methods with additional unlabeled data: SSDH (Zhang & Peng, 2017), SSGAH (Wang
et al., 2018), GPQ (Jang & Cho, 2020), SSAH (Jin et al., 2020).

Evaluation protocol Image retrieval performance is measured by the mean Average Precision
(mAP). Since all compared methods are based on hashing, their capacities are expressed by bit-
lengths; the capacity of CombEmb can be computed easily using the number of meta-classifiers and
the number of meta-classes. We test four different bit-lengths (12, 24, 32, 48), and final results are
given by the average of 4 different random splits.

Implementation details We develop our algorithm using Pytorch (Paszke et al., 2019). The
backbone models are fine-tuned by AdamW (Loshchilov & Hutter, 2019) with weight decay fac-
tor 1 × 10−4. For constituent classifiers, the number of meta-classes in each meta-class set (Km)
are fixed to 4, which are generated by the k-means clustering (k = Km) of the seen class signatures,
which are obtained by subspace projections of the fine-tuned weight vectors corresponding to the
original classes in the classification layer. The number of meta-classifiers, M , is adjusted to match
the bit-length of compared methods, and the dimensionality d2 of zm is set to 12.

Evaluation on benchmark datasets We first present the performance of the proposed approach,
CombEmb, on CIFAR-10 and NUS-WIDE, in comparison to existing hashing-based methods. Ta-
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Table 3: mAP scores on CIFAR-10 and CIFAR-100 datasets when we use the one half of classes as
seen and the other half as novel. Our results on all datasets are averaged over 4 different class splits.

Method CIFAR-10 CIFAR-100
12 bits 24 bits 48 bits 24 bits 48 bits 72 bits

GPQ (Jang & Cho, 2020) 0.245 0.245 0.261 0.100 0.095 0.099
CombEmb (ours) 0.413 0.489 0.512 0.148 0.177 0.197

Table 4: Performance of different pairwise pseudo-labeling methods on CIFAR-10 and NUS-WIDE.

Method CIFAR-10 NUS-WIDE
12 bits 24 bits 48 bits 12 bits 24 bits 48 bits

k-means (MacQueen, 1967) 0.647 0.643 0.580 0.648 0.650 0.670
RankStats (Han et al., 2020) 0.592 0.485 0.488 0.675 0.651 0.684

CombEmb (ours) 0.670 0.732 0.750 0.704 0.724 0.727

ble 1 shows mAPs of all algorithms for four different bit-lengths for the representation of an instance,
where the results of GPQ are from the reproduction on our data splits. CombEmb achieves the state-
of-the-art performance in all cases on both datasets by significant margins. This is partly because,
unlike previous hasing-based approaches which suffer from limited usage of unlabeled data other
than quantization error reduction or consistency regularization, our models learn discriminative rep-
resentations of unlabeled examples in novel classes by utilizing their inter-class relationships with
labeled data through the combination of diverse meta-classifiers. In addition, the proposed metric
learning technique further improves our embedding network via pseudo-labeling of pairwise simi-
larities for unlabeled examples. The larger number of bits is effective for capturing the semantics
in input images and achieving better performances in general. Figure 2 and 3 demonstrates more
comprehensive results of CombEmb for image retrieval. Note that the area under the precision-recall
curve corresponds to the mAP score.

We also apply our approach to more challenging datasets, CIFAR-100 and CUB-200, which contain
fewer examples per class and potentially have troubles learning inter-class relations between seen
and unseen classes. Table 2 presents that CombEmb outperforms GPQ consistently although the
overall accuracies of both algorithms are lower than those on CIFAR-10 and NUS-WIDE. On the
other hand, Table 3 shows that the proposed approach consistently outperforms GPQ with a fewer
seen classes (50%) on CIFAR-10 and CIFAR-100. Note that the number of meta-classes in each
meta-class set (Km) for CIFAR-10 is set to 2 in this experiment.

Analysis on pairwise label estimation To understand the effectiveness of the pairwise labeling
method proposed in equation 6, we compare it with the following two baselines: 1) using k-means
clustering on the feature vectors to assign labels of unlabeled data points (k-means), and 2) adopting
rank statistics (Han et al., 2020) between feature vectors before combinatorial embedding to estimate
pairwise labels (RankStats). For the first baseline, we assume that the number of clusters is known
and equal to the exact number of classes appearing in training. Table 4 implies that our pairwise
label estimation strategy based on combinatorial embeddings outperforms other baselines.

Analysis of loss functions Table 5 demonstrates the contribution of individual loss terms in the
experiment on CIFAR-10. Each of the four loss terms, especially the pairwise loss, turns out to be
effective for improving accuracy consistently (except 12 bit-length case). Also, the consistency loss
together with the pairwise loss is helpful to obtain the desirable tendency in accuracy with respect to
bit-lengths. Overall, the consistency loss and the pairwise loss play complementary roles to achieve
outstanding performance of our model.

Results with fewer labeled data Table 6 presents the performance on CIFAR-10 when 30% and
10% of the examples in the seen classes are labeled. Although the overall accuracy is degraded due
to lack of supervision compared to the main experiment, the proposed algorithm outperforms GPQ
by large margins regardless of bit-lengths.

4.2 NOVEL CLASS DISCOVERY

To further validate the effectiveness of the proposed approach, we also compare with the state-of-
the-art approaches for novel class discovery, including DTC (Han et al., 2019) and RankStats (Han
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Table 5: Accuracy of the proposed approach with different combination of the loss terms.

Lmeta Lbase Lpair Lcons
CIFAR-10

12 bits 24 bits 48 bits
X 0.255 0.257 0.257
X X 0.254 0.268 0.257
X X 0.704 0.646 0.528
X X X 0.725 0.670 0.532
X X X 0.606 0.658 0.628
X X X X 0.670 0.731 0.750

Table 6: mAP scores on CIFAR-10 with fewer labeled examples. We use 7 classes as seen classes.

Method 30% Labeled 10% Labeled
12 bits 24 bits 48 bits 12 bits 24 bits 48 bits

GPQ (Jang & Cho, 2020) 0.217 0.207 0.223 0.177 0.190 0.191
CombEmb (ours) 0.463 0.607 0.713 0.227 0.254 0.378

Table 7: Comparison with novel class discovery methods on CIFAR-10, CIFAR-100, and Tiny-
ImageNet in terms of three evaluation metrics including ACC, NMI, and ARI.

Dataset Method ACC NMI ARI
Seen Unseen Total Seen Unseen Total Seen Unseen Total

CIFAR-10
DTC (Han et al., 2019) 51.5 57.5 42.3 48.9 24.7 44.2 34.5 24.2 27.9

RankStats (Han et al., 2020) 72.8 83.6 66.1 73.6 49.6 68.6 62.4 33.2 51.7
CombEmb (ours) 90.0 89.0 88.2 78.8 64.7 78.3 80.5 76.8 77.3

CIFAR-100
DTC (Han et al., 2019) 19.7 21.3 16.2 39.4 35.3 36.6 5.6 7.7 4.0

RankStats (Han et al., 2020) 49.0 27.8 40.4 62.9 47.1 57.2 32.3 17.5 23.5
CombEmb (ours) 71.9 42.9 61.4 73.7 61.5 68.3 56.4 35.6 44.8

Tiny-
ImageNet

DTC (Han et al., 2019) 16.7 14.5 14.7 34.4 32.7 32.2 7.2 7.7 5.7
RankStats (Han et al., 2020) 35.9 21.4 30.9 57.7 49.7 54.0 19.9 12.0 14.9

CombEmb (ours) 49.1 23.2 38.7 60.5 50.5 55.8 28.7 13.8 20.8

et al., 2020), on CIFAR-10, CIFAR-100, and Tiny-ImageNet. This experiment adopts the same class
split ratios of seen and unseen classes with image retrieval; the first 7, 75, and 150 classes in the
three datasets are selected as seen classes and the half of their examples are labeled. For DTC and
RankStat, we assume that the number of unseen classes is known and fine-tune the pretrained back-
bone model using the images in the seen classes before training with unlabeled data. We evaluate
the performance using clustering accuracy (ACC), Normalized Mutual Information (NMI), and Ad-
justed Rand Index (ARI) using the predicted cluster indices. To report ACC, we solve the optimal
assignment problem using Hungarian algorithm (Kuhn, 1955).

Table 7 presents the clustering performance of the learned representations by all the compared meth-
ods on CIFAR-10, CIFAR-100, and Tiny-ImageNet. CombEmb outperforms DTC and RankStat by
significantly large margins for both seen classes and novel classes on all the datasets. Note that,
unlike DTC and RankStats, we do not use any prior knowledge about the number of unseen classes.
The results show that CombEmb learns effective representations for clustering in the presence of
unseen classes in training datasets, which leads to the state-of-the-art performance in the novel class
discovery task. We also provide t-SNE visualization of representations learned by CombEmb and
discussion in comparison to DTC and RankStats in Appendix C.

5 CONCLUSION

This paper presents a novel representation learning approach, where only a subset of training exam-
ples are labeled while unlabeled examples may contain both known and novel classes. To address
this problem, we proposed a combinatorial learning framework, which identifies and localizes the
examples in unseen classes using the composition of the outputs from multiple coarse-grained clas-
sifiers on heterogeneous meta-class spaces. Our approach further strengthens the robustness of the
representations through consistency regularization. We also utilized inter-class relations between
seen classes for modeling the semantic structure with unseen classes and introduced a transductive
metric learning strategy to estimate pairwise pseudo-labels for embedding unlabeled examples more
effectively. The extensive experiments on the standard benchmarks for image retrieval and novel
class discovery demonstrate the effectiveness of the proposed algorithm, and the various ablative
studies show the robustness of our approach.
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Reproducibility statement We provided implementation and evaluation details in Section 4.1 for
image retrieval and Section 4.2 for novel class discovery. We submitted and will release the source
code to facilitate the reproduction of our results.
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A EVOLUTION OF THE REPRESENTATION DURING TRAINING

Figure 4 illustrates the evolution of the learned representations of unlabeled data on CIFAR-10
using t-SNE (Van der Maaten & Hinton, 2008). Although the examples in different classes are
mixed in the feature space at the beginning, they become more distinct from each other as training
progresses, showing that our model effectively discovers novel categories without labels and learns
their meaningful embeddings.

(a) Initial (b) Epoch-10 (c) Epoch-100

Figure 4: t-SNE visualization of the evolution of unlabeled data representations when we train the
proposed model on CIFAR-10 with 7 seen classes and 3 novel classes.

B VISUALIZATION OF EMBEDDING FOR IMAGE RETRIEVAL

Figure 5 visualizes the embeddings learned by GPQ (Jang & Cho, 2020), k-means, and the proposed
method on CIFAR-10. According to the figure, GPQ fails to learn the distinct representation of
novel classes; it tends to align the embedding of novel classes to that of the closest seen classes.
The pseudo-labeling method given by k-means clustering with the oracle k also has troubles in
learning the discriminative representation of the examples. To the contrary, we can observe that
the proposed approach learns the representations, effectively discriminating both known and novel
classes, through supervised combinatorial classification followed by unsupervised metric learning.

(a) GPQ (b) k-means (c) CombEmb (ours)

Figure 5: t-SNE visualization of CIFAR-10 using VGG, learned by GPQ, k-means and the proposed
method. Visualization is based on 7 seen classes and 3 novel classes on CIFAR-10. Colors represent
their ground-truth labels. Note that the proposed method embeds known and novel classes in a
more discriminative way than other baselines. t-SNE hyperparameters are consistent in all three
visualizations.
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C VISUALIZATION OF EMBEDDING FOR NOVEL CLASS DISCOVERY

Figure 6 visualizes the embeddings learned by DTC Han et al. (2019), RankStats Han et al. (2020),
and the proposed method on CIFAR-10. According to the figure, both DTC and RankStats have
troubles in learning the discriminative representation between examples in seen classes and those
in novel classes. In contrast, the proposed method embeds known and novel classes in a more
discriminative way through supervised combinatorial classification followed by unsupervised metric
learning.

(a) DTC (b) RankStats (c) CombEmb (ours)

Figure 6: t-SNE visualization of CIFAR-10 using VGG, learned by DTC, Rankstats and the pro-
posed method. Visualization is based on 7 seen classes and 3 novel classes on CIFAR-10. Colors
represent their ground-truth labels. t-SNE hyperparameters are consistent in all three visualizations.
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