

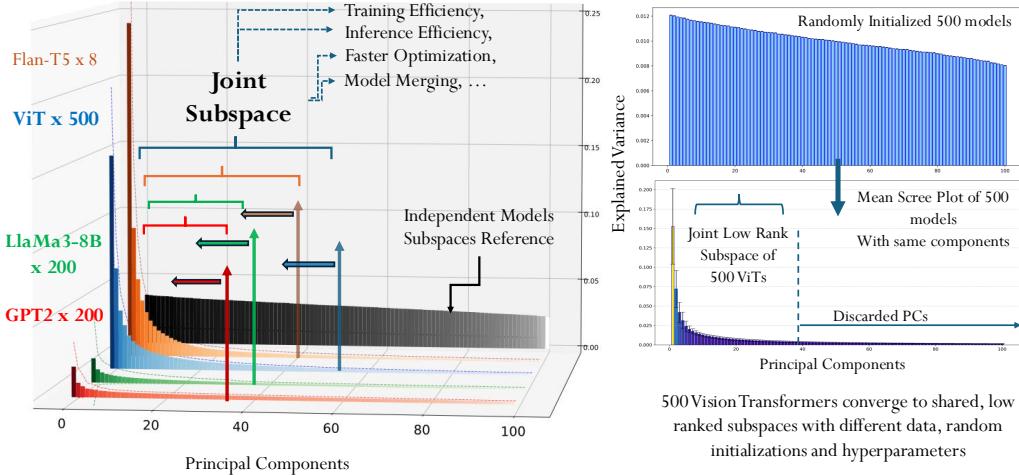
DO NEURAL NETWORKS LEARN SIMILAR SUBSPACES? AN EMPIRICAL EXPLORATION OF JOINT PARAMETRIC SUBSPACES IN DEEP NEURAL NETWORKS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 We show that deep neural networks trained across diverse tasks exhibit remarkably
 014 similar low-dimensional parametric subspaces. We provide the first large-scale
 015 empirical evidence that demonstrates that neural networks systematically con-
 016 verge to shared spectral subspaces regardless of initialization, task, or domain.
 017 Through mode-wise spectral analysis of over 1100 models - including 500 Mistral-
 018 7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models - we identify
 019 universal subspaces capturing majority variance in just a few principal directions.
 020 By applying spectral decomposition techniques to the weight matrices of various
 021 architectures trained on a wide range of tasks and datasets, we identify sparse, joint
 022 subspaces that are consistently exploited, within shared architectures across diverse
 023 tasks and datasets. Our findings offer new insights into the intrinsic organization of
 024 information within deep networks and raise important questions about the possi-
 025 bility of discovering these universal subspaces without the need for extensive data
 026 and computational resources. Furthermore, this inherent structure has significant
 027 implications for model reusability, multi-task learning, model merging, and the
 028 development of training and inference-efficient algorithms, potentially reducing
 029 the carbon footprint of large-scale neural models.



045 **Figure 1: Deep Networks Converge to Shared, Low-Rank (Universal) Subspaces.** Across distinct archi-
 046 tectures and modalities, neural networks systematically learn to operate within remarkably similar low-dimensional
 047 parameter subspaces. **Left:** Principal component analysis of 200 GPT2, 500 Vision Transformers, 50 LLaMA-
 048 8B, and 8 Flan-T5 models reveals consistent sharp spectral decay - strong evidence that a small number of weight
 049 directions capture dominant variance despite vast differences in training data, objectives, and initialization. The
 050 black baseline (independent subspaces reference) represents the naive expectation that models would learn
 051 distinct directions; our empirical findings contradict this. **Right:** Strikingly, 500 randomly initialized ViT
 052 models converge to a common low-rank subspace, demonstrating this is a fundamental neural network property.
 053 This emergent structure unlocks powerful applications: parameter-efficient adaptation, efficient model merging,
 compressed storage, and accelerated training and inference. Further discussion in Section A.

054
055
056
057

1 INTRODUCTION

058 We show that backpropagated neural networks trained on a variety of datasets - which could be
 059 disjoint and unrelated - diverse hyper-parameter settings, initializations and regularization methods,
 060 often learn an architecture-specific, layer-wise similar, low-rank joint subspaces (we refer to this
 061 as the **Universal Subspace**). We provide the first large-scale empirical analysis - across a diverse
 062 set of models - that neural networks tend to converge to these joint subspaces, largely independent
 063 of their initialization or the specific data used for training. Our study encompasses different model
 064 architectures trained on a variety of datasets, sometimes with different loss functions and tasks.
 065 Our spectral subspace analysis of the weights of all these models (Figure 1) suggests that although
 066 individual tasks appear to induce distinct subspaces, individually, they are all part of an unusually
 067 low-ranked joint subspace. Our work extends the scientific community's understanding of what
 068 neural networks learn. This universality could explain several puzzling neural properties: why
 069 overparameterized models with millions more parameters than training samples still generalize;
 070 how different initializations converge to similar representations; and why techniques like weight
 071 sharing and parameter-efficient fine-tuning succeed across architectures. If networks indeed learn
 072 within shared subspaces, this would provide a supporting explanation for implicit regularization,
 073 transferability, and the effectiveness of sparse training methods, while also opening up avenues for
 074 applications like efficient merging, new optimization techniques, faster and more efficient learning
 075 and inference.

076 Several works have hinted at phenomena consistent with our joint (universal) subspace hypothesis.
 077 For example, Neural Tangent Kernel (NTK) theory demonstrates that, in the infinite-width limit,
 078 the training dynamics of deep networks are governed by a kernel that is largely invariant to task
 079 specifics (Jacot et al., 2018). Similarly, research in mechanistic interpretability's own universality
 080 hypothesis (Olah et al., 2020; Chughtai et al., 2023) has uncovered recurring circuits and patterns
 081 within some layers of toy or vision networks, lending indirect support to the universality hypothesis.
 082 Other works, including the lottery ticket hypothesis (Frankle & Carbin, 2019) and studies on mode
 083 connectivity (Garipov et al., 2018), provide further evidence for the existence of reusable, low-
 084 dimensional representations in neural networks. Notably, Krizhevsky et al. (2012) observed that
 085 the first layer of convolutional networks tends to learn Gabor-like filters across various vision tasks.
 Recent studies by (Guth & Ménard, 2024; Guth et al., 2024) have also shown initial evidence of
 recurring eigenvectors for some layers of convolutional neural networks trained on natural images.

086 In our analysis, we present compelling empirical evidence for the existence of universal subspaces
 087 within LoRA adapters across different modalities and tasks. We initially focus on LoRA adapters due
 088 to their ease of training and the ability to collect a large number of adapters for diverse tasks, models,
 089 and datasets, which enables robust evaluation of our hypothesis. E.g., we demonstrate the emergence
 090 of a universal subspace across approximately 500 LoRA adapters for the Mistral-7B (Jiang et al.,
 091 2023) model. We further extend our investigation to the full weight space, where we observe similar
 092 universality, extracting sparse, low-rank universal subspaces from about 500 Vision Transformer
 093 models and 50 LLaMA3-8B models, each trained on different datasets and initializations.

094 Although the underlying causes and broader implications of this universal property remain an open
 095 area of investigation, even an initial understanding of parameter subspace universality has pro-
 096 found implications for neural network efficiency and interpretability. Shared subspaces could enable:
 097 (1) massive model compression by storing only subspace coefficients rather than full weights; (2)
 098 rapid adaptation to new tasks within learned subspaces; (3) theoretical insights into generalization
 099 bounds and optimization landscapes; and (4) environmental benefits through reduced computational
 100 requirements for training and inference.

101 The remainder of this paper is organized as follows. We first define the problem set up formally in
 102 Section 2 followed by listing of essential properties and conditions with corresponding empirical
 103 justifications. Section 3.3.1 proposes the method to adapt to new tasks leveraging the shared
 104 approximate universal subspace. Section 3.1 explains our analysis methodology and Section 3.2
 105 presents the comprehensive empirical evidence of the Universal subspaces. Section 4 briefly discusses
 106 the analysis providing useful insights and answers the fundamental questions raised in the introduction.
 107 We discuss related work in appendix A.1 and discuss limitations and scope for future work in Section
 5. Our primary contributions include

- 108 • We empirically demonstrate the existence of a lower-dimensional shared universal subspace
109 in backpropagated neural networks, and also provide relevant theoretical analysis.
- 110 • Illustrate the approach to learning an approximate low-dimensional shared subspace using
111 the available set of tasks. Propose conditions for convergence of this learned subspace to the
112 true universal shared subspace.
- 113 • Reuse the learned shared subspace to efficiently adapt to new unseen tasks with significantly
114 fewer of trainable parameters. Our experiments across a wide variety of large pretrained
115 models across various architectures and data modalities extensively verify and validate our
116 hypothesis and theoretical findings.

118 2 NOTATIONS, DEFINITIONS AND THEORETICAL ANALYSIS

120 Our theoretical analysis models predictors as elements of a Hilbert space, for example a reproducing
121 kernel Hilbert space (RKHS), while our experiments are conducted with practical large-scale models
122 such as transformers and LoRA-based variants. Modeling predictors in a Hilbert space (kernel)
123 framework is standard when analyzing aspects such as generalization and inductive bias of modern
124 deep architectures, and has been widely used to approximate or interpret the behavior of large neural
125 networks in practice (Ortiz-Jimenez et al., 2023; Wei et al., 2019; Chen & Xu, 2021; Belfer et al.,
126 2024; Bietti et al., 2019). We aim to understand whether the shared structure across tasks can be
127 consistently recovered from data as number of tasks increase. Specifically, each task has an associated
128 ground-truth predictor f_t^* , and we are interested in the covariance (second-moment) operator \mathcal{S} that
129 captures the common subspace spanned by these predictors. Since in practice we only observe finite
130 samples per task and learn approximate predictors \hat{f}_t , two sources of error arise: (i) variability due
131 to having finitely many tasks, and (ii) estimation noise within each task. Our goal is to establish
132 conditions under which the empirical operators built from \hat{f}_t concentrate around \mathcal{S} , and to show that
133 the learned top- k subspace converges to the true one, with convergence rates that separately reflect
134 the number of tasks and the accuracy of per-task learning.

135 **Setup.** Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a separable Hilbert space with norm $\|\cdot\| = \|\cdot\|_{\mathcal{H}}$. For $a, b \in \mathcal{H}$, the
136 rank-one operator $a \otimes b : \mathcal{H} \rightarrow \mathcal{H}$ is $(a \otimes b)g = \langle b, g \rangle a$; in particular $\|a \otimes b\|_{\text{op}} = \|a\| \|b\|$. Tasks
137 $t = \{1, 2, 3, \dots, T\}$ are drawn i.i.d. from distribution \mathcal{T} and each task dataset $S_t = \{(x_{t,i}, y_{t,i})\}_{i=1}^{n_t}$
138 with n_t samples is drawn independently from D_t . Let $f_t^* \in \mathcal{H}$ denote the (unknown) ground-truth
139 predictor for task t and $\hat{f}_t \in \mathcal{H}$ be the learned predictor for the task.

140 **Definition 2.1** (Task second-moment operator). The *population*, *true empirical*, and *learned empirical*
141 task second-moment operators are respectively,

$$143 \quad \mathcal{S} := \mathbb{E}_{t \sim \mathcal{T}} [f_t^* \otimes f_t^*], \quad \hat{\mathcal{S}} := \frac{1}{T} \sum_{t=1}^T f_t^* \otimes f_t^*, \quad \tilde{\mathcal{S}} := \frac{1}{T} \sum_{t=1}^T \hat{f}_t \otimes \hat{f}_t.$$

146 where $\mathcal{S}, \hat{\mathcal{S}}, \tilde{\mathcal{S}}$ are self-adjoint and positive semi-definite such that $\text{tr}(\mathcal{S}) < \infty$. Its top- k eigenspace
147 \mathcal{H}_k^* is the population rank- k *shared subspace* of tasks.

148 *Remark 2.2.* We work with the second-moment operator (rather than centered covariance), so the top
149 eigenspace may include the mean direction of $\{f_t^*\}_{t \sim \mathcal{T}}$.

150 Let $\lambda_1 \geq \lambda_2 \geq \dots$ be the eigenvalues of \mathcal{S} with orthonormal eigenvectors $\{\phi_i\}_{i \geq 1}$. Write $P_k =$
151 $\sum_{i=1}^k \phi_i \otimes \phi_i$ for the projector onto the population top- k subspace $\mathcal{H}_k^* = \text{span}\{\phi_1, \dots, \phi_k\}$, and
152 let \tilde{P}_k be the projector onto the top- k eigenspace of $\tilde{\mathcal{S}}$ (the learned shared subspace). Define the
153 eigengap $\gamma_k := \lambda_k - \lambda_{k+1} > 0$.

154 **Assumption 2.3** (Realizability, bounded second moment and effective rank). *For a constant $B > 0$
155 and for all tasks, $f_t^* \in \mathcal{H}$ almost surely, $\|f_t^*\| \leq B$ a.s., $\mathbb{E}_{t \sim \mathcal{T}} \|f_t^*\|^2 = \text{tr}(\mathcal{S}) < \infty$. In addition, \mathcal{S}
156 has bounded effective rank, $\frac{\text{tr}(\mathcal{S})}{\|\mathcal{S}\|_{\text{op}}} \leq \kappa$*

157 *Assumption 2.3 ensures that all ground-truth predictors are bounded and have finite second moment,
158 so the population covariance operator \mathcal{S} is well-defined. The bounded effective rank condition
159 further guarantees that the shared structure of the tasks is not arbitrarily infinite-dimensional, making
160 subspace recovery feasible.*

162 **Assumption 2.4** (Per-task estimation accuracy in \mathcal{H}). For any $\delta_t \in (0, 1)$ with probability at least
 163 $1 - \delta_t$ over the draw of S_t ,

$$165 \quad \|\hat{f}_t - f_t^*\| \leq \eta_t, \text{ ...where } \eta_t = \mathcal{R}_{n_t, D_t}(\mathcal{H}) + \sqrt{\frac{\ln(1/\delta_t)}{2n_t}}$$

168 Here $\mathcal{R}_{n_t, D_t}(\mathcal{H})$ represents Rademacher complexity of the solutions within Hilbert space \mathcal{H} over
 169 n_t samples drawn i.i.d. from D_t . This form is satisfied, for example, by strongly convex regularized
 170 ERM in an RKHS (e.g., kernel ridge regression or NTK ridge), under bounded kernel norm and
 171 sub-Gaussian response noise (Bartlett & Mendelson, 2003).

172 Assumption 2.4 requires that each task predictor \hat{f}_t is learned accurately from its finite dataset. In
 173 other words, \hat{f}_t is close to the true f_t^* in \mathcal{H} -norm with high probability, at a rate governed by sample
 174 size and complexity of the hypothesis space.

175 **Theorem 2.5** (Two-level convergence to the shared subspace). Assume 2.3–2.4. Let c_1, c_2 be any
 176 absolute constants. For any $\delta \in (0, 1)$, choose $\delta_t = \delta/(2T)$ and set $\delta_T = \delta/2$. With probability at
 177 least $1 - \delta$ (over tasks and all per-task samples),

$$179 \quad \|\tilde{\mathcal{S}} - \mathcal{S}\|_{\text{op}} \leq c_1 B^2 \sqrt{\frac{\log(c_2/\delta)}{T}} + (2B\bar{\eta} + \bar{\eta}^2) \quad (1)$$

182 If moreover $\gamma_k > 0$, then

$$183 \quad \|\tilde{P}_k - P_k\|_{\text{op}} \leq \frac{2}{\gamma_k} \left(c_1 B^2 \sqrt{\frac{\log(c_2/\delta)}{T}} + (2B\bar{\eta} + \bar{\eta}^2) \right). \quad (2)$$

186 where $\bar{\eta} = \frac{1}{T} \sum_{t=1}^T \eta_t$, $\bar{\eta}^2 = \frac{1}{T} \sum_{t=1}^T \eta_t^2$ and η_t is defined same as in assumption 2.4

188 Proof of Theorem 2.5 can be found in appendix Section A.2. The Theorem 2.5 shows that the
 189 empirical second-moment operator built from the learned predictors converges to the true operator \mathcal{S} ,
 190 and the learned top- k subspace \hat{P}_k converges to the true subspace P_k . The rates capture two sources of
 191 error: averaging across tasks (scaling with $1/\sqrt{T}$) and per-task estimation errors (through $\bar{\eta}$ and $\bar{\eta}^2$).
 192 A larger eigengap γ_k makes the subspace recovery more stable. In practice, we obtain the eigenvectors
 193 of $\tilde{\mathcal{S}}$ using HOSVD (Higher-Order Singular Value Decomposition) of the concatenated weight matrix
 194 \mathcal{X} highlighted in Section 3. Motivated by our theoretical analysis, we try to approximate $\hat{\mathcal{S}}$ for a set
 195 of tasks by extracting principal directions from as many trained models as possible.

197 3 ANALYSIS

199 3.1 ANALYSIS METHODOLOGY

201 Since there is no current method that enables us to compare subspaces of models with different
 202 architectures, we focus on large number of models trained on the same architecture. To this end,
 203 we perform analysis using Low rank adapters (Hu et al., 2021) (LoRA) as well as classical weights
 204 of transformer and CNN (Convolutional Neural Network) architectures. For all our experiments,
 205 unless stated otherwise, we perform Order 1-2 HOSVD only, to ensure that our methodology works
 206 even in the simplest case. Algorithm 1 provides the algorithm we implement. Refer to Section B for
 207 discussion regarding secondary subspace and how to choose the number of top components.

209 3.2 RESULTS FROM JOINT SUBSPACES’ ANALYSIS

211 We present empirical results using method shown in Section 3.1, extracting our layer wise universal
 212 subspace approximations using thousands of publicly available models for most of our experiments.
 213 This choice allows us to have no training costs whatsoever, for extracting the universal subspace.
 214 Spectral analysis relies on efficient spectral decomposition libraries, and can even be run on CPUs.
 215 We run all our analysis and experiments on one Nvidia A5000 GPU. The presented large scale
 empirical results forms the crux of our work and provide strong evidence for the presence of such

216 **Algorithm 1** Truncated Zero-Centered Higher-Order SVD (HOSVD)
217

218 **Require:** A high-order tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times \dots \times I_N}$ constructed by stacking N rank- r_n task matrices
219 along mode n , where $1 \leq r_n \leq I_n$ and $n \in [1, N]$.
220 **Ensure:** Mean tensor μ ; factor matrices $U^{(n)} \in \mathbb{R}^{I_n \times \hat{r}_n}$ (orthonormal columns), where \hat{r}_n is
221 chosen as the smallest number of left singular vectors whose cumulative explained variance
222 is at least τ ; and the truncated core tensor $\mathcal{S} \in \mathbb{R}^{\hat{r}_1 \times \dots \times \hat{r}_N}$. Reconstruction is given by $\hat{\mathcal{X}} =$
223 $\mu + \mathcal{S} \times_1 U^{(1)} \dots \times_N U^{(N)}$, where \times_n denotes mode- n tensor–matrix multiplication.
224 1: **Zero-centering:** $\mu \leftarrow \text{mean}(\mathcal{X})$ ▷ elementwise mean over all entries
225 2: $\mathcal{X}_c \leftarrow \mathcal{X} - \mu$ ▷ broadcast μ to the shape of \mathcal{X}
226 3: **for** $n = 1$ **to** N **do**
227 4: $X_{(n)} \leftarrow \text{unfold}(\mathcal{X}_c, n)$ ▷ mode- n matricization; $X_{(n)} \in \mathbb{R}^{I_n \times \prod_{m \neq n} I_m}$
228 5: Compute thin SVD: $X_{(n)} = \tilde{U}^{(n)} \Sigma^{(n)} \tilde{V}^{(n)\top}$
229 6: $U^{(n)} \leftarrow \tilde{U}^{(n)}(:, 1:\hat{r}_n)$ ▷ keep first \hat{r}_n left singular vectors (variance $\geq \tau$)
230 7: **end for**
231 8: **Truncated core:** $\mathcal{S} \leftarrow \mathcal{X}_c \times_1 U^{(1)\top} \times_2 U^{(2)\top} \dots \times_N U^{(N)\top}$
232 9: **return** $\mu, \{U^{(n)}\}_{n=1}^N, \mathcal{S}$ ▷ Optionally compute $\hat{\mathcal{X}} = \mu + \mathcal{S} \times_1 U^{(1)} \dots \times_N U^{(N)}$

233
234
235 low ranked joint subspaces across a wide range of task, architecture and modalities. In summary,
236 we present a total of **eight** set of analysis and applications, including tasks like image classification,
237 natural language understanding, text to image generation, model merging, etc for different model
238 architectures and modalities.

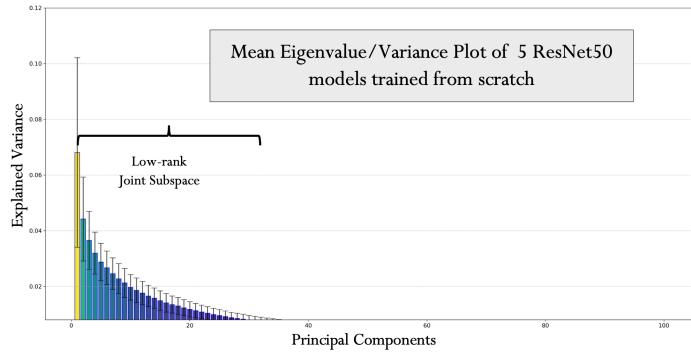
239 3.2.1 LOWER-RANK JOINT SUBSPACES IN CNNs, LORA AND FINETUNED MODELS

240 In smaller and conventional ar-
241 chitectures such as CNNs, evi-
242 dence for universal structure has
243 been more limited but suggestive.
244 Early work observed that the first
245 convolutional layer often learns
246 Gabor-like filters across diverse
247 vision tasks (Krizhevsky et al.,
248 2012). More recently, works
249 report recurring eigenvectors in
250 certain CNN layers trained on
251 natural images (Guth et al., 2024;
252 Guth & Ménard, 2024).

253 We extend these observations
254 and examine whether a shared
255 low-rank joint subspace emerges
256 across tasks. Specifically, we
257 train ResNet-50 models from ran-
258 dom initialization for image clas-
259 sification on five disjoint datasets
260 (CIFAR-10, CIFAR-100, Im-
261 ageNet, Oxford-IIIT Pets, and Eu-
262 roSAT), ensuring no overlap in
263 samples. While our theoretical
264 analysis indicates that a small
265 number of models may lead to
266 an under-approximation of the
267 joint universal subspace, training
268 CNNs from scratch at scale con-
269 strains the number of models we
can include in this study.

(a) Comparison of model performance across datasets.

Method	ImageNet	EuroSat	CIFAR-10	CIFAR-100	Oxford Pets	Avg
ResNet50	80.86	98.96	97.35	83.82	93.48	90.89
Universal R50	77.89	98.83	95.89	81.49	83.81	87.58

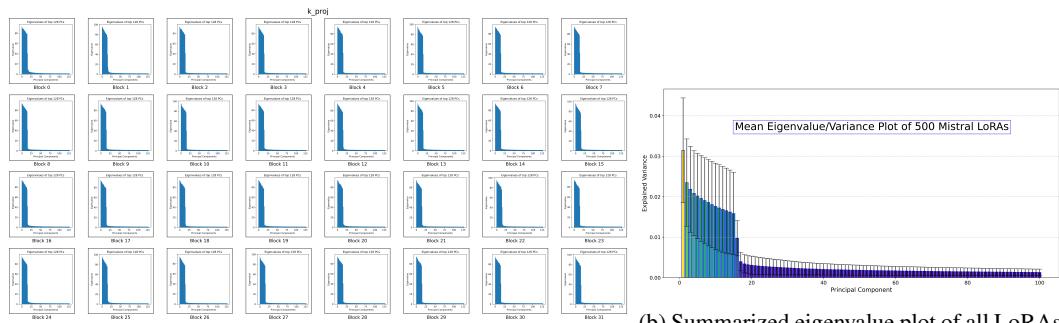


(b) Summarized (averaged for all layers) eigenvalue plot of all model weights corresponding to all 31 layers of 5 ResNet50 models. Mean refers to the fact that it has been averaged for all layers for conciseness. The vertical axis is Explained Variance (for *all* models) and X axis indicated Principal Components. We will follow this setup throughout the paper. We also refer to the low-ranked shared subspace as 'Universal' subspace and may refer to a specific model consisting of extracted basis as the 'Universal variant'.

Figure 2: **Proving existence of universal subspaces in CNNs.** Decomposing 5 ResNet50 models trained on different tasks shows the emergence of a low rank, universal subspace where the majority of the information is present in only 16 (or fewer) distinct subspace directions for all layers of the network.

270 Despite these limitations, Figure 2b reports the average explained variance across all layers of ResNet-
 271 50 and reveals a distinct, shared low-rank structure spanning these disjoint tasks. Moreover, even
 272 when the estimated universal subspace is relatively coarse, projecting to this subspace to obtain a
 273 low-rank ResNet-50 (thereby reducing parameters) preserves competitive performance relative to full
 274 fine-tuning, further supporting the presence and utility of a joint subspace (2a).
 275

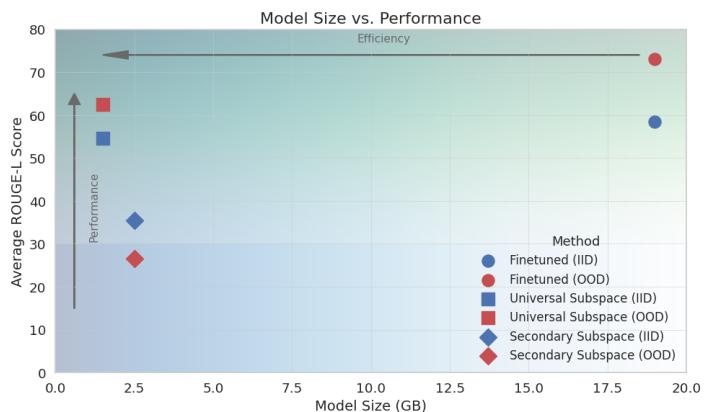
276 In order to conduct a more real-world experiment, we choose to run the subspace analysis for
 277 LoRA Hu et al. (2021) models simply because they are available in abundance in public domain.
 278 Given LoRA models distinctly capture task specific directions as they show weak alignment with
 279 the original weights Hu et al. (2021), they form a good main model parameter alternative to run our
 280 subspace analysis and verify whether this holds true. We spectrally decompose (Section 3.1) LoRA’s
 281 submatrices individually, each concatenated across all the available finetuned LoRAs and choose top
 282 k spectral basis. This setup allows us to truly stress test the Universal Subspace.
 283



284 (a) Eigenvalue/Variance plot for Orthogonal Spectral Components
 285 corresponding to all 31 layers of all 500 Mis-
 286 tral-7B models
 287
 288 (b) Summarized eigenvalue plot of all LoRAs
 289 corresponding to all 31 layers of all 500 Mis-
 290 tral 7B models
 291
 292

293
 294 Figure 3: **Proving existence of universal subspaces in deep networks.** Decomposing 500 sets of
 295 LoRAs trained on different tasks using the Mistral-7B model shows the emergence of a low rank,
 296 universal subspace where the majority of the information is present in only 16 (or less) distinct
 297 subspace directions for all layers of the network. Plots of other layers are present in the Section B.1.
 298
 299

300 We first study **500 LoRA**
 301 **models** trained on distinct
 302 Natural Instructions (Wang
 303 et al., 2022) using Mistral-
 304 7B-Instruct-v0.2 (Jiang
 305 et al., 2023) as the
 306 base (Brüel-Gabrielsson
 307 et al., 2024). Each LoRA
 308 has at least rank 16. Fig-
 309 ure 3 shows that the top
 310 spectral components cap-
 311 ture most of the variance
 312 in each layer, indicating a
 313 low-rank structure shared
 314 across tasks. Figure 3a
 315 visualizes the eigenvalue
 316 decay per layer, while Figure 3b
 317 summarizes the pattern across all layers and models.



320 Figure 4: Lots of LoRAs Model Size vs Performance plot.
 321
 322

323 To test subspace expressiveness, we reconstruct LoRA weights for both seen (IID) and unseen (OOD)
 324 tasks by projecting them into the universal subspace. As shown in Figure 4, the reconstructed models
 325 retain high performance in both cases. In contrast, projection into the residual *Secondary Subspace*
 326 leads to a sharp performance drop, underscoring the importance of the principal subspace. Our method
 327 is also **19× more memory-efficient**, as it eliminates the need to store all 500 LoRAs.
 328

329 We extend our analysis to **text-to-image generation** using Stable Diffusion-XL (Podell et al., 2023).
 330 A universal subspace is extracted from publicly available LoRAs on HuggingFace (von Platen et al.,

222). When projecting individual LoRAs into this subspace, the resulting generations preserve 223 visual quality and style (Figure 5). CLIP-based evaluations (Table 1) show that the universal subspace 224 even outperforms individual LoRAs in some cases, possibly due to denoising effects previously 225 observed in (Sharma et al., 2023).

Table 1: CLIP scores (higher is better) of images generated using SDXL.

Method	Style 1	Style 2	Style 3	Style 4	Style 5	Style 6	Style 7	Style 8	Style 9	Style 10	Avg
LoRA	21.95	15.59	22.18	18.84	16.65	17.99	24.66	17.47	22.07	19.93	19.73
Universal SDXL LoRA	21.96	16.07	22.07	18.79	16.68	17.99	24.66	17.56	22.46	20.09	19.83

Figure 5: Text-to-Image Generation Results for Individual models vs. our Universal Subspace model. We notice no visual reduction in style quality despite significant reduction in total model size.

In order to test the ability of condensing many models into a single universal subspace, we compare our method with SOTA model merging/combination methods in Table 2. We compare our universal subspace inspired combination approach against six state-of-the-art, gradient-free baselines: RegMean (Jin et al., 2023), Task Arithmetic (TA) (Ilharco et al., 2023), TIES (Yadav et al., 2023), DARE-TIES (Yu et al., 2024), KnOTS-TIES, and KnOTS-DARE-TIES (Stoica et al., 2025). RegMean aligns task-specific updates by solving a layer-wise linear regression problem, requiring transformation matrices for each model. TA merges models by linearly combining parameters, but relies on tuning scaling coefficients on a validation set for optimal performance. TIES extends TA with magnitude-based pruning and sign conflict resolution, introducing additional hyperparameters such as pruning thresholds, while DARE-TIES combines random Bernoulli pruning with TIES’ sign resolution, also requiring tuning of pruning probability. KnOTS-TIES and KnOTS-DARE-TIES further apply SVD-based subspace alignment before merging, but still inherit the need for coefficient or pruning hyperparameter selection. In contrast, our universal subspace method, analytically computes the merging coefficients based solely on the geometry of a shared, low-rank universal subspace identified across models, requiring no iterative tuning or validation data—although optional finetuning is possible if data is available. Furthermore, because our subspace is intrinsically low-rank, the merged model contains significantly fewer parameters than any individual models, offering both computational efficiency and theoretical alignment guarantees not present in the baselines. Empirically, our approach achieves higher average accuracy (see Table 2), while reducing parameter count, thus enabling scalable and robust model merging without heuristic pruning or validation overhead. We note that we did not optimize our merging process and better results nearing finetuned performance may be achieved.

In summary, these four experiments provide strong empirical support for our universal subspace hypothesis and demonstrate its practical advantages in terms of memory efficiency, model merging, model reusability, and scalable deployment across diverse tasks and modalities.

3.3 LOW RANK SHARED UNIVERSAL SUBSPACES IN CLASSICAL WEIGHTS

While aforementioned experiments on CNNs trained from scratch, and LoRAs provide strong evidence for the presence of the joint subspace, we further rigorously test on large scale finetuned models (500 pretrained ViT, 50 LLaMA3-8B models, 177 GPT-2 and Flan-T5).

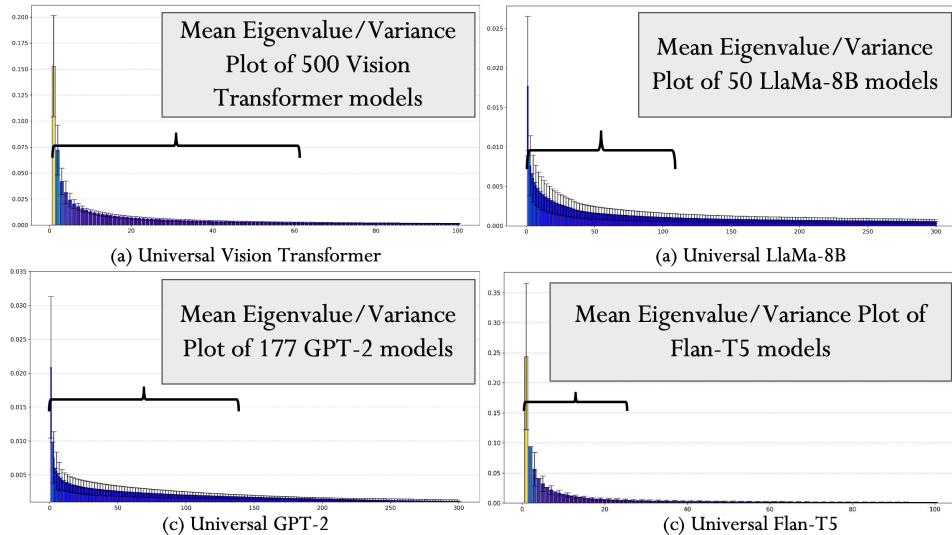
First, we collect ~ 500 pretrained Vision Transformer (ViT) models from HuggingFace, spanning diverse domains - medical imaging, satellite data, and synthetic - and

Table 3: Image Classification Accuracy

Method	IID	OOD
Full Training	94.4 ± 1.7	91.3 ± 2.1
Universal ViT	94.1 ± 2.0	87.8 ± 1.5

378
 379
 380
 381
 382 Table 2: Per-task results for eight ViT-B/32 models, each finetuned with LoRA on a different image classification
 383 dataset. "Finetuned" indicates the accuracy of each model on its respective training dataset. For each merging
 384 baseline, we report the normalized accuracy on every task, as well as the average across all tasks.
 385
 386

382 Method	383 Datasets								384 Avg
	385 Cars	386 DTD	387 EuroSAT	388 GTSRB	389 MNIST	390 RESISC45	391 SUN397	392 SVHN	
Per-Task Absolute Accuracies (%)									
Finetuned	74.0	58.3	99.0	92.7	99.3	88.4	64.5	96.2	84.1
Per-Task Accuracies of Combined Models Normalized Against Finetuned Models (%)									
RegMean	80.2	71.3	37.9	47.3	43.1	70.5	99.3	43.0	60.9
TA	82.0	73.6	48.8	42.1	53.1	71.5	97.5	41.2	63.7
TIES	82.4	72.8	50.8	39.0	50.3	70.9	99.4	40.5	63.7
DARE-TIES	81.4	74.5	50.8	39.2	55.0	70.7	96.7	40.4	63.7
KnOTS-TIES	82.7	73.7	49.3	48.9	70.9	95.5	53.8	68.0	68.0
KnOTS-DARE-TIES	81.8	75.9	50.7	40.3	53.2	70.2	97.9	41.0	63.9
Ours	88.1	82.3	65.9	61.3	88.3	98.1	98.5	85.1	83.5



411
 412 **Figure 6: Universal Subspaces in Classical Weights.** Spectral decomposition of weight matrices from (a)
 413 ~500 Vision Transformers (b) 50 LLaMa-8B models (c) 177 GPT-2 models (d) GLUE Flan-T5 models - each
 414 trained independently across diverse tasks, datasets, and configurations - reveals a consistent low-rank structure:
 415 most variance is captured by the top few spectral basis. This suggests that, despite significant variation in training
 416 conditions, the learned weights consistently align along a shared low-dimensional subspace. For visualization
 417 clarity, only a fraction of the basis are shown; extended plots are provided in the Section B.2.

418 trained with varying losses, optimizers, and initializations. These models are used as-is, without
 419 curation or access to training data, to reflect real-world variability. See Section B.2 for details.
 420 Following our method (Section 3.1), we spectrally decompose all layers (excluding first and last) and
 421 observe, in Figure 6, that the majority of variance is captured by the top few spectral components,
 422 revealing a highly compressible, shared subspace across layers. Only the top 100 components are
 423 visualized for clarity.

424 To evaluate universal generalization, we project five held-out ViT models onto this 16-dim subspace
 425 and measure classification accuracy. As shown in Table 3, performance remains robust, indicating
 426 that a shared low-rank subspace spans a wide range of ViT model configurations and domains.

427 A major outcome of this experiment is that we can replace these 500 ViT models with a single
 428 Universal Subspace model. Ignoring the task-variable first and last layer (weight matrices vary due to
 429 different number of categories and input size and formats), we observe a requirement of **100× less**
 430 **memory**, and these savings are prone to increase as the number of trained models increases. We note
 431 that we are, to the best of our knowledge, the first work, to be able to *merge* 500 (and theoretically

more) Vision Transformer into a single universal subspace model. This result implies that hundreds of ViTs can be represented using a single subspace model - excluding task-specific layers - yielding up to **100× memory reduction**. To our knowledge, this is the first demonstration of merging over 500 ViTs into a single universal representation.

We further extend this analysis to 50 finetuned LLaMA3-8B models, 177 GPT-2 models, and Flan-T5 models (trained on GLUE Wang et al. (2019) datasets) again sourced from HuggingFace without filtering. As shown in Figure 6, a small number of directions capture dominant structure across models spanning diverse and distinct datasets and tasks. More details are provided in the Section B.2. This is, to our knowledge, the first instance of compressing such a large and diverse collection of foundation models into a unified subspace, highlighting its potential for large-scale model reuse and environmental efficiency.

3.3.1 FINDING UNIVERSAL SUBSPACES AND APPLYING THEM TO FUTURE TASKS

In this section, the low-rank shared subspaces estimated from a set of available tasks are leveraged to adapt to new, previously unseen tasks. While we do not make theoretical guarantees about reuse on unseen tasks, our experiments show that the approximate shared subspace is empirically reusable across a wide range of practical settings. Concretely, we reuse the shared principal directions and learn only their task-specific coefficients for the new task. Learning these low-rank coefficients is substantially cheaper than optimizing full-rank weights of size, reducing both computation and memory. The resulting trainable parameter counts are reported in Table 5. We find our universal subspace models can have significant impact on the carbon footprint issues of large AI models by making the training, inference and scaling of these models efficient and cheap. As shown in the previous section, we can effectively recycle and replace available pretrained models with a universal subspace model with every individual being represented by a sparse set of coefficients. In this section, we show a set of experiments where we utilize the universal subspaces to learn new tasks by freezing the components and simply learning the coefficients using gradient descent. We find that since we are only learning the coefficients, it drastically cuts down the number of parameters required to train the new models. Further, since these coefficients are simply linear scaling values, the optimization is smoother and faster.

Table 4: Performance on the GLUE Benchmark.

Method	Speedup	CoLA	MRPC	RTE	QNLI	SST-2	STS-B	Avg
LoRA	1×	59.56	86.76	77.61	92.53	94.72	90.81	83.67
Universal order-2	2×	61.82	87.25	77.62	92.71	94.15	90.48	84.01
HOOI (order-2)	2×	61.96	87.55	77.50	92.83	94.45	90.40	84.12
Universal order-3	1.8×	62.06	86.52	75.81	92.98	94.26	90.39	83.67

We present two experiments - Image Classification using ViT-base and Natural Language Understanding using GLUE benchmark Wang et al. (2019) with RoBERTa-base model. Both involve creating a universal subspace using publicly available LoRA adapters. Details are provided in the Section C. For the GLUE benchmark, we follow the same setup as (Kopitzko et al., 2023) considering the 6 tasks - CoLA, MRPC, SST-2, QNLI, RTE and STS-B while omitting the time-intensive MNLI and QQP tasks. We initialize our universal subspace using a leave-one-out-setup, where the subspace is calculated using components of all but one LoRA adapter for which the coefficients are learned. For image classification, we utilize publicly available ViT LoRAs to extract our universal subspaces taking care that the data any of these pretrained LoRAs have not seen the data we will be training our coefficients on. Table 5 and Table 4 show that our universal subspace enables significantly more

Table 5: Image Classification with Vision Transformer.

# Training Params	CIFAR100	Food101	Flowers102	CIFAR10	Pets
Full Training	86M	92.8	90.7	98.82	99.0
Universal ViT	10K	90.1	89.1	90.1	96.7

efficient and effective learning since only compact coefficients are trained. The storage required to

486 save all these models is also drastically reduced. The ViT models require 150 GB and LLaMA models
 487 require 1.6TB of memory in total. Our universal subspace reduces that memory requirement by more
 488 than **100 \times** .
 489

490 **4 DISCUSSION**
 491

492 This work provides, to the best of our knowledge, the first large-scale, cross-domain analysis showing
 493 that neural networks trained across diverse tasks, modalities, initializations, and hyperparameters
 494 consistently exhibit an architecture-specific shared low-rank universal subspace at the layer level.
 495 Concretely, by performing layer-wise spectral decompositions and retaining only the leading principal
 496 directions, an accurate approximation of these universal subspaces can be extracted. Empirically, this
 497 behavior emerges broadly: in fully finetuned models and LoRA-based adapters, in models trained
 498 from scratch, in both generative and discriminative settings, and in multimodal configurations. More-
 499 over, the approximated subspaces generalize to out-of-distribution tasks, where projecting models
 500 and learning only a small set of coefficients suffices to recover strong performance. This enables
 501 adapting to new tasks without retraining or storing full weights, and supports robust multi-task
 502 learning, scalable fine-tuning, and principled model merging within a single unifying framework.
 503

504 The practical implications are substantial. By learning only lightweight coefficients for shared layer-
 505 wise principal directions, large models can be extended with dramatically reduced computational and
 506 memory overhead. This lowers deployment costs while enabling more accessible AI development
 507 and data-free model merging. These results suggest a path toward scalable model reuse grounded in a
 508 simple geometric principle: most task variation lies in a shared, low-dimensional subspace.

509 **Why do these universal subspaces emerge?** Neural networks may exhibit spectral bias toward
 510 low-frequency functions, potentially creating polynomial eigenvalue decay that concentrates learning
 511 dynamics in a small number of dominant directions. Modern architectures also impose strong
 512 inductive biases - convolutional structures might favor local patterns, attention mechanisms could
 513 prioritize relational reasoning - that may constrain parameter variations to similar subspaces across
 514 tasks. The ubiquity of gradient-based optimization, with its inherent preference for smooth solutions,
 515 could further channel different learning trajectories toward shared geometric structures. If true, this
 516 would suggest that the universal subspace captures fundamental computational patterns that transcend
 517 specific tasks - potentially explaining why transfer learning works and why diverse problems often
 518 benefit from similar architectural modifications. However, the precise mechanisms remain an open
 519 question, making our empirical investigation all the more important to understand this surprising
 520 regularity in neural network learning.

521 **5 LIMITATIONS AND FUTURE WORK**
 522

523 Although we provide conclusive results towards the existence and utility of universal shared subspaces,
 524 the current analysis has scope for future research, such as limited interpretability of the shared
 525 subspace and the corresponding directions. While it is a critical area of research, it is extremely
 526 cumbersome to demonstrate interpretability of the principal directions for each layer of the network.
 527 To the best of our knowledge we are not aware of any other literature that performs such an in-
 528 depth analysis of the weight space of large models across diverse tasks, data modalities and model
 529 architectures. The current approach to approximating a universal subspace relies on pretrained task-
 530 specific models (predictors) for tasks, which may not be readily available for new tasks. An interesting
 531 direction for future research would be to explore model independent methods for learning a universal
 532 shared subspace, potentially derived directly from data. Furthermore, the conditions proposed in
 533 Ortiz-Jimenez et al. (2023) for enabling task arithmetic rely on localized eigenfunctions which are not
 534 conducive to learning a shared universal subspace. As a result, performing task arithmetic within the
 535 current framework of a shared universal subspace is non-trivial and warrants further investigation.

536 **REFERENCES**
 537

538 Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: risk bounds and
 539 structural results. *J. Mach. Learn. Res.*, 3(null):463–482, March 2003. ISSN 1532-4435.

540 Yuval Belfer, Amnon Geifman, Meirav Galun, and Ronen Basri. Spectral analysis of the neural
 541 tangent kernel for deep residual networks. *Journal of Machine Learning Research*, 25(184):1–49,
 542 2024. URL <http://jmlr.org/papers/v25/22-0597.html>.

543

544 Alberto Bietti, Grégoire Mialon, Dexiong Chen, and Julien Mairal. A kernel perspective for regular-
 545 izing deep neural networks, 2019. URL <https://arxiv.org/abs/1810.00363>.

546 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
 547 nents with random forests. In *European Conference on Computer Vision*, 2014.

548

549 Rickard Brüel-Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald,
 550 Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of lora adapters
 551 with little overhead, 2024. URL <https://arxiv.org/abs/2407.00066>.

552 Lin Chen and Sheng Xu. Deep neural tangent kernel and laplace kernel have the same {rkhs}. In
 553 *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=vK9WrZ0QYQ>.

554

555 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
 556 and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, October 2017. ISSN 1558-2256.
 557 doi: 10.1109/jproc.2017.2675998. URL <http://dx.doi.org/10.1109/JPROC.2017.2675998>.

558

559 Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineer-
 560 ing how networks learn group operations, 2023. URL <https://arxiv.org/abs/2302.03025>.

561

562

563 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
 564 scribing textures in the wild, 2013. URL <https://arxiv.org/abs/1311.3618>.

565

566 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
 567 networks. In *International Conference on Learning Representations (ICLR)*, 2019.

568

569 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson.
 570 Loss surfaces, mode connectivity, and fast ensembling of dnns. In *Advances in Neural Information
 571 Processing Systems*, volume 31, pp. 8789–8798, 2018.

572

573 Matan Gavish and David L. Donoho. The optimal hard threshold for singular values is $4/\sqrt{3}$, 2014.
 574 URL <https://arxiv.org/abs/1305.5870>.

575

576 Florentin Guth and Brice Ménard. On the universality of neural encodings in cnns, 2024. URL
 577 <https://arxiv.org/abs/2409.19460>.

578

579 Florentin Guth, Brice Ménard, Gaspar Rochette, and Stéphane Mallat. A rainbow in deep network
 580 black boxes. *Journal of Machine Learning Research*, 25(350):1–59, 2024. URL <http://jmlr.org/papers/v25/23-1573.html>.

581

582 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 583 and deep learning benchmark for land use and land cover classification, 2019. URL <https://arxiv.org/abs/1709.00029>.

584

585 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 586 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint
 587 arXiv:2106.09685*, 2021.

588

589 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
 590 and Ali Farhadi. Editing models with task arithmetic. In *The Eleventh International Confer-
 591 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=6t0Kwf8-jrj>.

592

593 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-
 594 alization in neural networks. In *Advances in Neural Information Processing Systems*, volume 31,
 595 2018.

594 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 595 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 596 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 597 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

598

599 Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
 600 by merging weights of language models. In *The Eleventh International Conference on Learning
 601 Representations*, 2023. URL <https://openreview.net/forum?id=FCnohuR6AnM>.

602

603 Prakhar Kaushik, Ankit Vaidya, Shravan Chaudhari, and Alan Yuille. Eigenlorax: Recycling
 604 adapters to find principal subspaces for resource-efficient adaptation and inference, 2025. URL
 605 <https://arxiv.org/abs/2502.04700>.

606

607 Vladimir Koltchinskii and Karim Lounici. Concentration inequalities and moment bounds for sample
 608 covariance operators, 2014. URL <https://arxiv.org/abs/1405.2468>.

609

610 Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. VeRA: Vector-based Random Matrix
 611 Adaptation. October 2023. URL <https://openreview.net/forum?id=NjNfLdxr3A>.

612

613 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 614 categorization. In *4th International IEEE Workshop on 3D Representation and Recognition
 (3dRR-13)*, Sydney, Australia, 2013.

615

616 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
 617 research). 2009. URL <http://www.cs.toronto.edu/~kriz/cifar.html>.

618

619 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
 620 convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
 621 berger (eds.), *Advances in Neural Information Processing Systems*, volume 25. Curran Asso-
 622 ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

623

624 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]*.
 Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.

625

626 Wei Ma and Jun Lu. An equivalence of fully connected layer and convolutional layer, 2017. URL
<https://arxiv.org/abs/1712.01252>.

627

628 Charles Martin, Tongsu Peng, and Michael Mahoney. Predicting trends in the quality of state-of-the-
 629 art neural networks without access to training or testing data. *Nature Communications*, 12:4122,
 07 2021. doi: 10.1038/s41467-021-24025-8.

630

631 Stanislav Minsker. On some extensions of bernstein's inequality for self-adjoint operators, 2017.
 632 URL <https://arxiv.org/abs/1112.5448>.

633

634 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
 635 digits in natural images with unsupervised feature learning. In *NIPS Workshop on Deep Learning
 636 and Unsupervised Feature Learning 2011*, 2011. URL http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf.

637

638 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 639 of classes. In *Indian Conference on Computer Vision, Graphics and Image Processing*, Dec 2008.

640

641 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 642 Zoom in: An introduction to circuits. *Distill*, 2020. doi: 10.23915/distill.00024.001.
<https://distill.pub/2020/circuits/zoom-in>.

643

644 Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
 645 space: Improved editing of pre-trained models. In *Thirty-seventh Conference on Neural Information
 646 Processing Systems*, 2023. URL <https://openreview.net/forum?id=0A9f2jZDGW>.

647

Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *IEEE
 Conference on Computer Vision and Pattern Recognition*, 2012.

648 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 649 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 650 synthesis, 2023. URL <https://arxiv.org/abs/2307.01952>.

651

652 Konstantin Sch"urholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile
 653 weight space learning. In *Proceedings of the 41st International Conference on Machine Learning*
 654 (*ICML*). PMLR, 2024.

655 Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning
 656 in Language Models with Layer-Selective Rank Reduction, December 2023. URL <http://arxiv.org/abs/2312.13558> [cs].

657

658 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German Traffic Sign
 659 Recognition Benchmark: A multi-class classification competition. In *IEEE International Joint*
 660 *Conference on Neural Networks*, pp. 1453–1460, 2011.

661

662 George Stoica, Pratik Ramesh, Boglarka Ecsedi, Leshem Choshen, and Judy Hoffman. Model
 663 merging with SVD to tie the knots. In *The Thirteenth International Conference on Learning*
 664 *Representations*, 2025. URL <https://openreview.net/forum?id=67X93aZHII>.

665

666 Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
 667 Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas
 668 Wolf. Diffusers: State-of-the-art diffusion models. <https://github.com/huggingface/diffusers>, 2022.

669

670 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
 671 A multi-task benchmark and analysis platform for natural language understanding, 2019. URL
 672 <https://arxiv.org/abs/1804.07461>.

673

674 Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
 675 Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
 676 Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
 677 Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir
 678 Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pukit Verma, Ravsehaj Singh Puri,
 679 Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta
 680 Patro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generalization via declarative
 681 instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
 682 *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp.
 683 5085–5109, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
 684 Linguistics. doi: 10.18653/v1/2022.emnlp-main.340. URL <https://aclanthology.org/2022.emnlp-main.340/>.

685

686 Colin Wei, Jason D. Lee, Qiang Liu, and Tengyu Ma. *Regularization matters: generalization and*
 687 *optimization of neural nets v.s. their induced kernel*. Curran Associates Inc., Red Hook, NY, USA,
 688 2019.

689

690 J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene
 691 recognition from abbey to zoo. In *2010 IEEE Computer Society Conference on Computer Vision*
 692 *and Pattern Recognition*, pp. 3485–3492, June 2010. doi: 10.1109/CVPR.2010.5539970.

693

694 Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
 695 Resolving interference when merging models. In *Thirty-seventh Conference on Neural Information*
 696 *Processing Systems*, 2023. URL <https://openreview.net/forum?id=xtaX3WyCj1>.

697

698 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
 699 Absorbing abilities from homologous models as a free lunch. In *ICML*, 2024. URL <https://openreview.net/forum?id=fq0NaiU8Ex>.

700

701

Table 6: Notation reference.

Notation	Description
\mathcal{H}	Separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$, norm $\ \cdot \ $.
$a \otimes b$	Rank-one operator $g \mapsto \langle b, g \rangle a$, $\ a \otimes b\ _{\text{op}} = \ a\ \ b\ $.
T	Number of tasks.
\mathcal{T}	Distribution over tasks.
D_t	Data distribution for task t .
$S_t = \{(x_{t,i}, y_{t,i})\}_{i=1}^{n_t}$	Dataset of size n_t for task t .
$f_t^* \in \mathcal{H}$	Ground-truth predictor for task t .
$\hat{f}_t \in \mathcal{H}$	Learned predictor for task t .
B	Uniform bound: $\ f_t^*\ \leq B$ almost surely.
$\mathcal{R}_{n_t, D_t}(\mathcal{H})$	Per-task estimation error rate (e.g. $\tilde{O}(1/\sqrt{n_t})$).
η_t	Per-task error: $\eta_t := \mathcal{R}_{n_t, D_t}(\mathcal{H}) + \sqrt{\frac{\ln(2T/\delta)}{2n_t}}$.
$\bar{\eta}$	Average error: $\frac{1}{T} \sum_{t=1}^T \eta_t$.
η_t^2	Average squared error: $\frac{1}{T} \sum_{t=1}^T \eta_t^2$.
\mathcal{S}	Population operator: $\mathcal{S} = \mathbb{E}_{t \sim \mathcal{T}}[f_t^* \otimes f_t^*]$.
$\hat{\mathcal{S}}$	Empirical operator (true predictors): $\frac{1}{T} \sum_{t=1}^T f_t^* \otimes f_t^*$.
$\tilde{\mathcal{S}}$	Empirical operator (learned predictors): $\frac{1}{T} \sum_{t=1}^T \hat{f}_t \otimes \hat{f}_t$.
$\lambda_1 \geq \lambda_2 \geq \dots$	Eigenvalues of \mathcal{S} .
ϕ_i	Orthonormal eigenvectors of \mathcal{S} .
P_k	Projector onto top- k eigenspace of \mathcal{S} .
\tilde{P}_k	Projector onto top- k eigenspace of $\tilde{\mathcal{S}}$.
γ_k	Eigengap: $\gamma_k := \lambda_k - \lambda_{k+1} > 0$.
$\ A\ _{\text{op}}$	Operator (spectral) norm.
$\ A\ _{HS}$	Hilbert–Schmidt norm.
$r(V)$	Intrinsic/Effective rank: $\text{tr}(V)/\ V\ _{\text{op}}$.
X_t	Centered operator: $X_t := f_t^* \otimes f_t^* - \mathcal{S}$.
V	Variance operator: $V := \sum_{t=1}^T \mathbb{E}[X_t^2]$.
$\delta, \delta_t, \delta_T$	Failure probabilities (global, per-task, across-task).

A APPENDIX

A.1 RELATED WORK

Several lines of prior research support the core intuition behind our universal subspace hypothesis, though they do not provide a unified, scalable framework for identifying and leveraging such subspaces across architectures, tasks, and modalities. The Neural Tangent Kernel framework reinforces this idea, demonstrating that, in the infinite-width regime, training dynamics are governed by a kernel largely invariant to task specifics, implying the presence of common functional subspaces. (Jacot et al., 2018). This result implies that training is implicitly constrained to a shared function space, suggesting the existence of low-dimensional structures that generalize across tasks. Complementing this, works in mechanistic interpretability has uncovered modular and recurring patterns that consistently re-emerge in independently trained models (Olah et al., 2020; Chughtai et al., 2023), supporting the notion of structural universality in network representations.

Empirical studies further strengthen this perspective. The lottery ticket hypothesis (Frankle & Carbin, 2019) demonstrates that overparameterized networks contain sparse subnetworks capable of matching full-model performance, implying that task-relevant information resides in a small, structured subset of weights. Similarly, mode connectivity studies (Garipov et al., 2018) reveal that seemingly isolated optima in parameter space are often connected by low-loss paths, suggesting that task solutions lie on a shared manifold. In convolutional models, Krizhevsky et al. (Krizhevsky et al., 2012) famously observed that early layers consistently learn Gabor-like filters, indicating a universal inductive bias in early representations. More recent works (Guth et al., 2024; Guth & Ménard, 2024) extends this

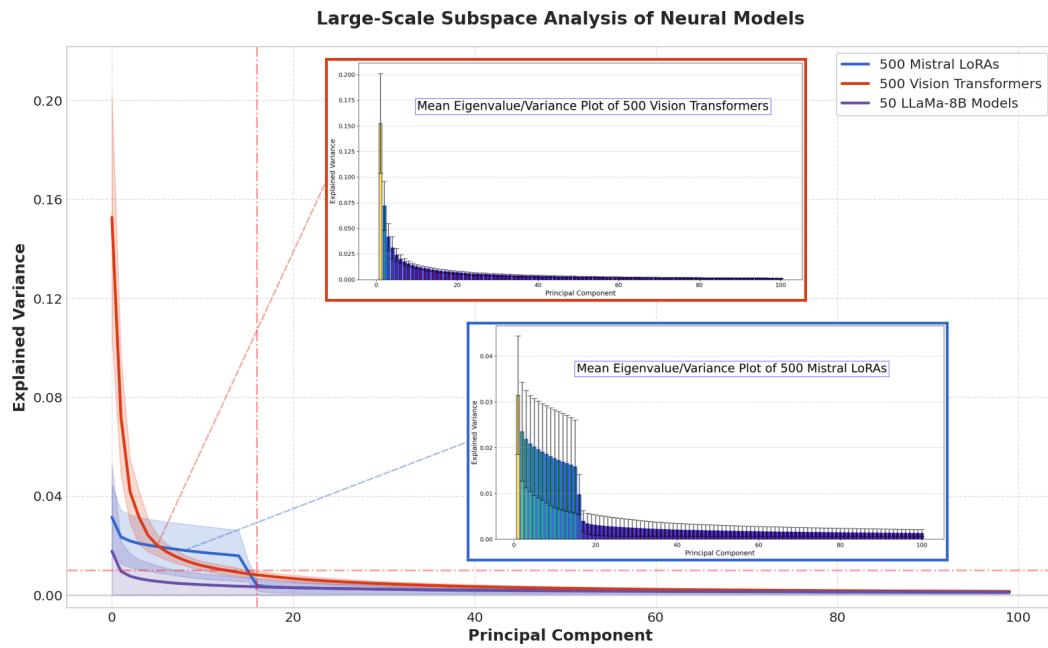


Figure 7: **Empirical Evidence for (Universal) Joint Weight Subspaces.** This figure illustrates the existence of joint low-dimensional subspaces across models trained on diverse tasks. We plot the average explained variance of the top few principal components of weight matrices from 500 Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models. Despite differences in modality, data, and training objective, all models exhibit rapid spectral decay - indicating that a small number of directions dominate across layers and settings. This consistent structure provides strong evidence for the presence of joint/universal subspaces, supporting our hypothesis that deep networks systematically reuse a common representational basis. Often, this shared subspace can be seen distinctly. The presence of the subspace has significant implications for deep learning. Not only can large number of models be compressed into a single, lighter Universal model with difference represented as lightweight coefficients, training on future tasks simply becomes tuning those coefficients. Since the basis are fixed, training becomes simpler and quicker. However, this convergence to similar subspace raises few important questions - is it possible to recover the "true" Universal Subspace without learning with huge amounts of data? Is this lack of diversity a bottleneck from current family of deep models?

observation to deeper layers, showing that certain eigenvectors of trained convolutional layers recur across networks trained on different datasets.

While these studies are suggestive of shared structures in neural representations or parameters, they remain limited in their focus, application and analysis. Our work fills this critical gap by presenting a principled and empirically validated method for discovering and utilizing universal parametric subspaces that span across architectures, tasks, and modalities. By conducting large-scale spectral analyses of over large number of diverse architectures, models and tasks, we demonstrate that a small number of principal directions consistently capture the majority of task-relevant variation. We then operationalize these findings by developing a practical framework for reusing these subspaces for parameter-efficient finetuning, task adaptation, and model merging, achieving competitive performance while dramatically reducing memory and compute requirements.

A.2 THEORETICAL ANALYSIS

We apply a standard generalization bound over the squared error between the task function and its projection onto the shared subspace:

$$\ell(f_t, x) = \|f_t(x) - f_{t,k}(x)\|^2$$

To justify the application of PAC-style bounds, we verify that this loss is bounded. We assume that each task predictor f_t lies in a Reproducing Kernel Hilbert Space (RKHS) with norm bounded by B , i.e., $\|f_t\|_{\mathcal{H}} \leq B$, and that the projection $f_{t,k}$ onto the learned shared subspace $\hat{\mathcal{H}}_k$ also satisfies $\|f_{t,k}\|_{\mathcal{H}} \leq B$.

Using the reproducing property and assuming a kernel bound $\kappa^2 = \sup_{x \in \mathcal{X}} \|\phi(x)\|^2$, we have for any x :

$$\|f_t(x)\| \leq \kappa B \quad \text{and} \quad \|f_{t,k}(x)\| \leq \kappa B$$

Thus, the pointwise squared loss is bounded as:

$$\|f_t(x) - f_{t,k}(x)\|^2 \leq (\|f_t(x)\| + \|f_{t,k}(x)\|)^2 \leq (2\kappa B)^2 = 4\kappa^2 B^2$$

Therefore, the loss function is bounded in $[0, 4\kappa^2 B^2]$, satisfying the conditions required for PAC-style generalization bounds to hold.

Lemma A.1 (Matrix Bernstein for self-adjoint operators). *There exist absolute constants $C > 0$ such that, for any $\delta_T \in (0, 1)$, we have with probability at least $1 - \delta_T$,*

$$\|\hat{\mathcal{S}} - \mathcal{S}\|_{\text{op}} \leq C B^2 \left[\sqrt{\frac{\ln(c/\delta_T)}{T}} + \frac{\ln(c/\delta_T)}{T} \right]$$

Proof. Operator Bernstein (intrinsic form).

Let X_1, \dots, X_T be independent, mean-zero, self-adjoint, bounded operators on a separable Hilbert space. Suppose

$$\|X_t\|_{\text{op}} \leq L \quad \text{a.s. for all } t.$$

Then from (Minsker, 2017; Koltchinskii & Lounici, 2014) there exist absolute constants $C, c > 0$ such that for every $\delta \in (0, 1)$,

$$\left\| \frac{1}{T} \sum_{t=1}^T X_t \right\|_{\text{op}} \leq C \left[\sqrt{\frac{\left\| \sum_{t=1}^T \mathbb{E}[X_t^2] \right\|_{\text{op}}}{T^2} \ln \left(\frac{c \left(1 + \frac{\text{tr}(\sum_{t=1}^T \mathbb{E}[X_t^2])}{\left\| \sum_{t=1}^T \mathbb{E}[X_t^2] \right\|_{\text{op}}} \right)}{\delta_T} \right)} + \frac{L}{T} \ln \left(\frac{c \left(1 + \frac{\text{tr}(\sum_{t=1}^T \mathbb{E}[X_t^2])}{\left\| \sum_{t=1}^T \mathbb{E}[X_t^2] \right\|_{\text{op}}} \right)}{\delta_T} \right) \right]$$

with probability at least $1 - \delta_T$.

Application to $X_t = f_t^* \otimes f_t^* - \mathcal{S}$ with $\|f_t^*\| \leq B$ a.s.

We have

$$\|X_t\|_{\text{op}} \leq \|f_t^*\|^2 + \|\mathcal{S}\|_{\text{op}} \leq B^2 + \mathbb{E}\|f_t^*\|^2 \leq 2B^2.$$

so $L \leq 2B^2$. Moreover, for $X_t = f_t^* \otimes f_t^* - \mathcal{S}$ we have

$$\mathbb{E}[X_t^2] \preceq 2B^2 \mathcal{S}.$$

Hence

$$\left\| \sum_{t=1}^T \mathbb{E}[X_t^2] \right\|_{\text{op}} \leq 2TB^2 \|\mathcal{S}\|_{\text{op}}, \quad \text{tr} \left(\sum_{t=1}^T \mathbb{E}[X_t^2] \right) \leq 2TB^2 \text{tr}(\mathcal{S}).$$

By assumption 2.3,

$$\frac{\text{tr}(\sum_{t=1}^T \mathbb{E}[X_t^2])}{\left\| \sum_{t=1}^T \mathbb{E}[X_t^2] \right\|_{\text{op}}} \leq \frac{\text{tr}(\mathcal{S})}{\|\mathcal{S}\|_{\text{op}}} \leq \kappa.$$

Therefore the intrinsic logarithmic factor in Bernstein reduces to

$$\ln \left(\frac{c(1 + \kappa)}{\delta_T} \right),$$

and since κ is a fixed constant, $1 + \kappa$ can be absorbed into c .

864 Plugging into Bernstein gives
 865

$$866 \|\hat{\mathcal{S}} - \mathcal{S}\|_{\text{op}} \leq C \left[\sqrt{\frac{2B^2 \|\mathcal{S}\|_{\text{op}} \ln(c/\delta_T)}{T}} + \frac{2B^2 \ln(c/\delta_T)}{T} \right],$$

868 with probability at least $1 - \delta_T$.
 869

□

871 **Lemma A.2** (Davis–Kahan, sin- Θ). *Let $\gamma_k > 0$. Then*
 872

$$873 \|\tilde{P}_k - P_k\|_{\text{op}} \leq \frac{2}{\gamma_k} \|\tilde{\mathcal{S}} - \mathcal{S}\|_{\text{op}}.$$

875 using definition of γ_k from definition 2.1.

876 **Theorem A.3** (Restating Two-level convergence to the shared subspace theorem). *Assume 2.3–2.4.
 877 Let c_1, c_2 be any absolute constants. For any $\delta \in (0, 1)$, choose $\delta_t = \delta/(2T)$ and set $\delta_T = \delta/2$. With
 878 probability at least $1 - \delta$ (over tasks and all per-task samples),*

$$879 \|\tilde{\mathcal{S}} - \mathcal{S}\|_{\text{op}} \leq c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + (2B\bar{\eta} + \bar{\eta}^2) \quad (3)$$

881 If moreover $\gamma_k > 0$, then

$$883 \|\tilde{P}_k - P_k\|_{\text{op}} \leq \frac{2}{\gamma_k} \left(c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + (2B\bar{\eta} + \bar{\eta}^2) \right). \quad (4)$$

885 where $\bar{\eta} = \frac{1}{T} \sum_{t=1}^T \eta_t$, $\bar{\eta}^2 = \frac{1}{T} \sum_{t=1}^T \eta_t^2$ and η_t is defined same as in assumption 2.4

887 *Proof of Theorem 2.5. (i) Triangle split.* $\|\tilde{\mathcal{S}} - \mathcal{S}\|_{\text{op}} \leq \|\tilde{\mathcal{S}} - \hat{\mathcal{S}}\|_{\text{op}} + \|\hat{\mathcal{S}} - \mathcal{S}\|_{\text{op}}$.

889 **(ii) Within-task term.** We know that,

$$891 \|\hat{f}_t \otimes \hat{f}_t - f_t^* \otimes f_t^*\|_{\text{op}} \leq \|\hat{f}_t - f_t^*\| (\|\hat{f}_t\| + \|f_t^*\|) \\ 892 \leq \|\hat{f}_t - f_t^*\| (\|\hat{f}_t\| + \|f_t^*\|) \\ 893 \leq \eta_t (2B + \eta_t) \quad (\text{since } \|\hat{f}_t\| \leq \|f_t^*\| + \|\hat{f}_t - f_t^*\| \leq B + \eta_t) \\ 894 = 2B\eta_t + \eta_t^2.$$

897 Averaging and using the triangle inequality for operator norms,

$$899 \|\tilde{\mathcal{S}} - \hat{\mathcal{S}}\|_{\text{op}} \leq 2B\bar{\eta} + \bar{\eta}^2$$

902 This holds on the event $\bigcap_{t=1}^T \{\|\hat{f}_t - f_t^*\| \leq \eta_t\}$, whose probability is at least $1 - \sum_t \delta_t = 1 - \delta/2$.

904 **(iii) Across-task term.** Let $X_t := f_t^* \otimes f_t^* - \mathbb{E}[f^* \otimes f^*]$. Then X_t are independent, mean-zero,
 905 self-adjoint, and $\|X_t\|_{\text{op}} \leq \|f_t^*\|^2 + \|\mathcal{S}\|_{\text{op}} \leq 2B^2$. Lemma A.1 (with $R \asymp B^2$) yields

$$907 \|\hat{\mathcal{S}} - \mathcal{S}\|_{\text{op}} \leq c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} \\ 908 \\ 909 \|\tilde{\mathcal{S}} - \mathcal{S}\|_{\text{op}} \leq c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + 2B \left(\sum_{t=1}^T \mathcal{R}_{n_t, D_t}(\mathcal{H}) + \sqrt{\frac{\ln(2T/\delta)}{2n_t}} \right) + \left(\sum_{t=1}^T \mathcal{R}_{n_t, D_t}^2(\mathcal{H}) + \frac{\ln(2T/\delta)}{2n_t} \right) \\ 910 \\ 911 \\ 912 \\ 913 \\ 914 \\ 915 \\ 916 \\ 917$$

$$\leq c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + O \left(\sum_{t=1}^T \mathcal{R}_{n_t, D_t}^2(\mathcal{H}) + \frac{\ln(2T/\delta)}{2n_t} \right)$$

with probability at least $1 - \delta_T = 1 - \delta/2$.

(iv) Union bound and Davis–Kahan. Combining (ii)–(iii) with a union bound gives equation 1.
 Lemma A.2 then implies equation 2. □

918 **Definition A.4** (Population projection risk). For a k -dimensional subspace $\mathcal{H}_k^* \subset \mathcal{H}$, define
 919

$$920 \quad \mathcal{R}(\mathcal{H}_k^*) := \mathbb{E}_{t \sim \tau} \|f_t^* - P_{\mathcal{H}_k^*} f_t^*\|^2.$$

921 **Corollary A.5** (Excess projection risk of the learned subspace). *Under the event of Theorem 2.5,*
 922

$$923 \quad \mathcal{R}(\tilde{\mathcal{H}}_k) \leq \sum_{i>k} \lambda_i + \frac{2 \operatorname{tr}(S)}{\gamma_k} \left(c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + 2B\bar{\eta} + \bar{\eta}^2 \right).$$

926 *Proof.* Optimality of P_k gives $\mathcal{R}(\mathcal{H}_k^*) = \sum_{i>k} \mu_i$. Moreover,
 927

$$928 \quad \mathcal{R}(\tilde{\mathcal{H}}_k) - \mathcal{R}(\mathcal{H}_k^*) = \mathbb{E} \left\langle f_t^*, (P_k - \tilde{P}_k) f_t^* \right\rangle \leq \left\| \tilde{P}_k - P_k \right\|_{\text{op}} \mathbb{E} \|f_t^*\|^2 = \operatorname{tr}(S) \left\| \tilde{P}_k - P_k \right\|_{\text{op}}.$$

931 Apply equation 2. □

932 **Remark A.6** (Where Rademacher complexity enters). Assumption 2.4 is instantiated by your learning
 933 procedure. For strongly-convex ERM (e.g., kernel ridge), a standard Rademacher-based excess-risk
 934 bound together with curvature yields an $\eta_t = \eta_t(n_t, \delta_t)$ that vanishes with n_t . Plugging these η_t into
 935 $\bar{\eta}$ and $\bar{\eta}^2$ makes the rate explicit.
 936

937 B UNIVERSAL SUBSPACE ANALYSIS

939 Similar methodology is followed for subspace analysis for both LoRA and classical weight models.
 940 In fact, LoRA analysis' results can be theoretically extended to classical weights, as LoRA weights
 941 can be construed to be simple translations from a mean weight matrix. However, in order to solidify
 942 our universal subspace hypothesis, we conduct extensive experiments for both types of models. LoRA
 943 is chosen because of the recent spurt in the availability of LoRA models trained on diverse kinds
 944 of datasets and models. **We do this universal subspace analysis on all weight parameters in every**
 945 **neural network layer except the first (or few initial) and last neural network layer. This is because**
 946 **these layers may differ across models due to differences in input shapes and types, loss functions,**
 947 **and the tasks being trained.** We also focus our analysis on linear/fully-connected and matrix weights,
 948 as the analysis done on these are straightforward and the results observed can be trivially extended to
 949 other types of neural parameters (Ma & Lu, 2017).
 950

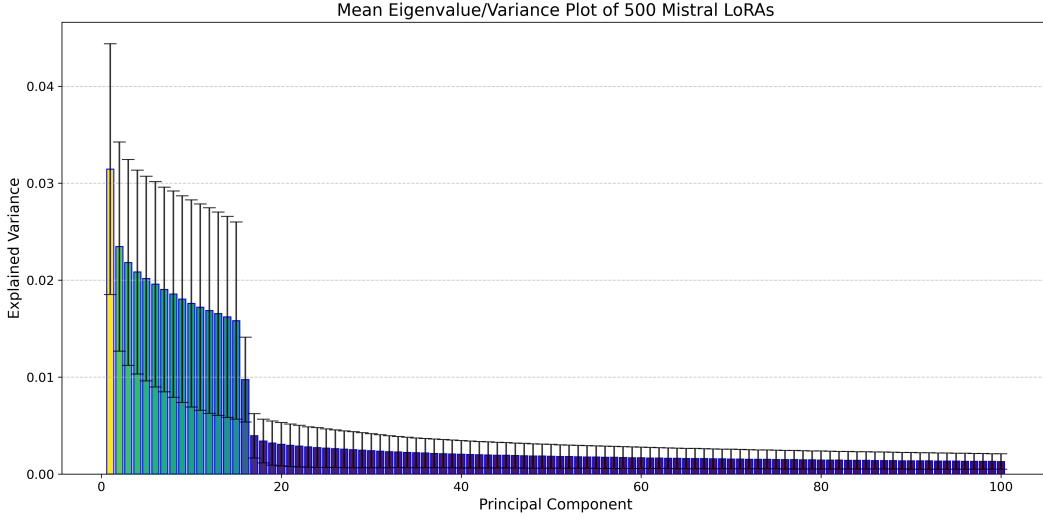
951 **Secondary Subspace** refers to the residual subspace that remains after removing the top k principal
 952 directions associated with the low-rank universal subspace. This subspace is orthogonal to the universal
 953 subspace and serves as a control for evaluating the uniqueness and effectiveness of the learned
 954 shared subspace. To make computation tractable when the residual subspace is high-dimensional,
 955 we focus on the top components beyond rank k , as computing a full SVD is often impractical. This
 956 approximation is justified, since the lower components typically capture noise, which has been shown
 957 to degrade performance (Sharma et al., 2023).
 958

959 **How to choose top k components?** As shown in all eigenvalue (scree) plots, a trivial way to choose
 960 is a simple visual inspection, since we can see a discontinuity in the spectral analysis. Another way is
 961 to define a threshold on the explained variance, all components whose explained variance is close
 962 to zero <.01 are considered secondary subspace, and can be discarded. A more structured way is to
 963 define an optimal singular value threshold for the HOSVD, as found by previous works (Gavish &
 964 Donoho, 2014).
 965

966 B.1 LOWER RANK SHARED UNIVERSAL SUBSPACES WITHIN LOW RANK ADAPTATION (LoRA) 967 MODELS

968 Spectral Decomposition is employed to extract the top k principal directions for each of the LoRA
 969 matrices B and A , which are concatenated across all available models. Subsequently, the top k
 970 principal directions are selected to define the low-rank subspace shared among the LoRA matrices.
 971 This process is conducted separately for each layer of the model to derive a low-rank approximated
 972 shared subspace for every individual layer. In practice, for every layer, the rank vectors of all available

972 LoRA matrices are extracted and concatenated into a single matrix. This matrix is then normalized by
 973 subtracting the feature-wise mean from each vector, after which principal directions are extracted. The
 974 mode-1(order-1) variant of our method is mathematically equivalent to Principal Component Analysis
 975 (PCA), hence we can use `torch.pca_lowrank` or `sklearn.decomposition.PCA` to ex-
 976 tract the principal directions. The data matrix corresponding to a specific layer for 500 LoRA models
 977 is structured as $500r \times d$, where r denotes the rank of each LoRA and d specifies the dimension of
 978 each rank vector. The same calculation can be applied to the \mathbf{B} matrix instead of individually to \mathbf{B}
 979 and \mathbf{A} , thereby increasing the computational cost of the Spectral Decomposition without affecting the
 980 outcome.



999 Figure 8: Spectral analysis of the Mistral-7B-Instruct-v0.2 model: Aggregated eigenvalue (scree)
 1000 plot across 500 LoRA models and all layers. The plot demonstrates that the majority of the variance
 1001 is consistently captured by the top 16 principal directions, indicating the presence of a shared low-
 1002 dimensional universal subspace.

1003
 1004 **Universal Mistral-7B/Lots of LoRAs experiment details** In our first experimental analysis, we
 1005 use 500 LoRA models trained on distinct Natural Instructions (Wang et al., 2022) using Mistral-
 1006 7B-Instruct-v0.2 (Jiang et al., 2023) as the base (Brüel-Gabrielsson et al., 2024). Please refer to
 1007 Brüel-Gabrielsson et al. (2024) for more details on how the LoRA models were trained.

1008 Table 7: Models from HuggingFace for the Universal Mistral LoRA. Models in blue indicate the
 1009 OOD models and the ones in red are the IID models used for evaluation.

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task391	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task290
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task442	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1598
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task039	
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task076	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task627
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task664	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task819
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1631	
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task190	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1391
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1342	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task620
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task769	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1448
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task247	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task513
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task875	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task515
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1534	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1551
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task583	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1431
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task270	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1487
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task679	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task456
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task385	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1607
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task278	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task022
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task210	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task137
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task574	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task629
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1378	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1194
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1529	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task453
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task102	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task460
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1204	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1384
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1572	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task699
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1722	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task580

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task228	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task209
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task128	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task710
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1322	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task163
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task178	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task089
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task700	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1581
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task927	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task101
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task123	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1321
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task550	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task129
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task393	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1214
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task277	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1447
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task324	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task455
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task725	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task365
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1316	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1199
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task717	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task245
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task874	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task925
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task380	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1712
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1504	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task619
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task590	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1186
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task736	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task069
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task377	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task181
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task859	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task144
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task632	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task641
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task064	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task630
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1154	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task390
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1188	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task625
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task607	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task495
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1189	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task398
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task108	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1347
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1541	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task202
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1723	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1669
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1089	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1584
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task081	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task329
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task691	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task588
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1593	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task724
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task149	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1449
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1313	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1453
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task905	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task704
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task585	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1209
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task249	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1386
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1400	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task751
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1332	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task674
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task379	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task243
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1318	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task428
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task488	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task705
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task698	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1601
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task861	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1510
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task077	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task509
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task734	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task720
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1210	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task284
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task584	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task105
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task330	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task923
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task319	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task400
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task246	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task726
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1568	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1442
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1640	Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task280

Figure 9 presents the aggregated results across all layers, with error bars representing the standard deviation. For reference, the eigenvalue (scree) plot from Figure 3b is also reproduced in Figure 9. This plot depicts the proportion of variance explained by each principal component, computed across all weight matrices and layers from 500 independently trained Mistral models. The concentration of variance within the top k components reveals the presence of a consistent low-dimensional subspace, offering strong empirical support for the universal subspace hypothesis.

The individual plots provide spectral analysis results for the key, query, and value matrices from all 32 layers of all 500 Mistral models. For clarity, only the top 128 principal directions are visualized, representing a subset of the full component basis. This truncation mitigates the visual distortion caused by the long tail of near-zero eigenvalues beyond the universal subspace, which would otherwise dominate the graph without contributing meaningful information.

To test subspace expressiveness, we reconstruct LoRA weights for both 5 seen (IID) and unseen (OOD) tasks by projecting them into the universal subspace. As shown in Figure 4, the reconstructed models retain high performance in both cases. In contrast, projection into the residual *Secondary Subspace* leads to a sharp performance drop, underscoring the importance of the principal subspace. Our method is also 19 \times more memory efficient, as it eliminates the need to store all 500 LoRAs.

Table 8: Models from HuggingFace used for the Universal Stable Diffusion-XL subspace extraction

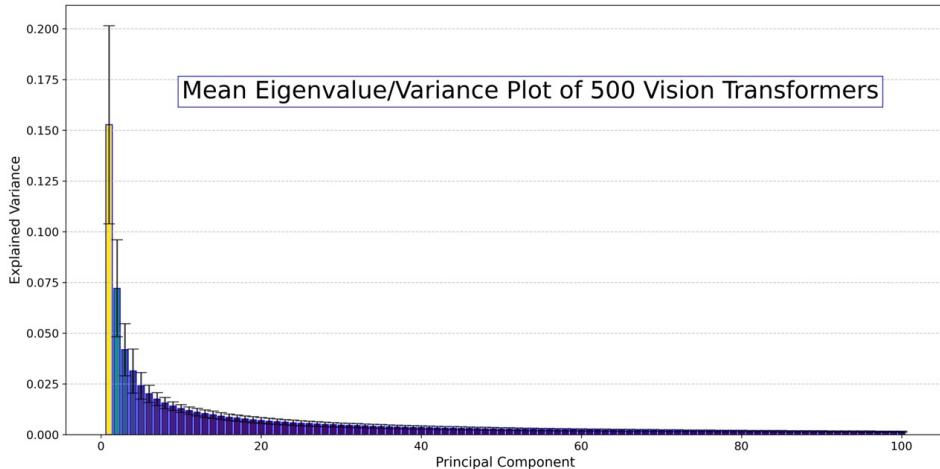
1188	aphone-mucha-style	directors-coen-brothers-style	larry-carlson-style	rene-magritte-style
1189	beeple-mike-winkelmann-style	director-sergei-eisenstein-style	lascaux	richard-corben-style
1190	character-design	director-sofia-coppola-style	laurel-burch-style	richard-dadd-style
1191	director-christopher-nolan-style	director-terrence-malick-style	lawrence-alma-tadema-style	richard-hescox-style
1192	director-lars-von-trier-style	director-tim-burton-style	leonid-afrimov-style	richard-scarry-style
1193	director-ridley-scott-style	director-wes-anderson-style	leonora-carrington-style	robert-adams-style
1194	director-stanley-kubrick-style	director-wong-kar-wai-style	levitating-cube	robert-crumb-style
1195	director-zhang-yimou-style	director-yorgos-lanthimos-style	liam-wong-style	robert-rauschenberg-style
1196	olafur-eliasson-style	dixit-card-generator	lotte-reiniger-style	rodney-matthews-style
1197	origami	dressed-animals	louis-comfort-tiffany-style	roger-ballen-style
1198	simone-martini-style	dripping-art	louis-cornin-style	roger-deakins-style
1199	studio-ghibli-style	edward-gorey-style	lucas-cranach-style	romare-bearden-style
1200	ukiyo-e-art	elizabeth-gadd-style	luc-schuiten-style	ryoji-ikeda-style
1201	wu-quanzhong-style	erik-johansson-style	lyonel-feininger-style	sacha-goldberger-style
1202	1987-action-figure-playset-packaging	erik-madigan-heck-style	made-of-iridescent-foil	salomon-van-ruysdael-style
1203	aardman-animations-style	euan-uglow-style	makoto-shinkai-style	sam-spratt-style
1204	akos-major-style	felipe-pantone-style	marc-silvestri-style	sandy-skoglund-style
1205	albumen-print	filip-hodas-style	marianna-rothen-style	santiago-caruso-style
1206	alec-soth-style	folk-art	maria-sibylla-merian-style	shaun-tan-style
1207	alejandro-jodorowsky-style	gabriel-pacheco-style	mark-catesby-style	shepard-fairey-style
1208	alessandro-gottardo-style	gemma-correll-style	mark-ryden-style	sidney-nolan-style
1209	alex-andreev-style	george-condo-style	martin-whatson-style	simon-stalenhag-style
1210	alex-gross-style	gilbert-garcin-style	mary-cassatt-style	skottie-young-style
1211	alfred-augustus-glendening-style	gregory-crewson-style	maurice-de-vlaminck-style	sofonisba-anguissola-style
1212	alex-pardee-style	gustave-dore-style	maurice-prendergast-style	sophie-gengembre-anderson-style
1213	alternate-realities	hasui-kawase-style	maxfield-parrish-style	stained-glass-portrait
1214	ando-fuchs-style	hiroshi-nagai-style	maxime-mauffra-style	stanley-donwood-style
1215	andre-derain-style	infrared-photos	mike-mignola-style	stephan-martiniere-style
1216	andrei-tarkovsky-style	isometric-cutaway	mikhail-vrubel-style	stephen-gammell-style
1217	andrew-wyeth-style	ivan-bilibin-style	moebius-jean-giraud-style	stop-motion-animation
1218	angus-mckie-style	james-c-christensen-style	movie-poster	surreal-collage
1219	anna-maria-garthwaite-style	james-jean-style	moving-meditations	surreal-harmony
1220	atey-ghaiian-style	james-r-eads-style	nadav-kander-style	surreal-plate
1221	audrey-kawasaki-style	james-turrell-style	natalia-goncharova-style	syd-mead-style
1222	avant-garde-fashion	jan-brueghel-style	n-c-wyeth-style	synthwave-t-shirt
1223	banky-style	jan-svankmajer-style	needlepoint	teamlab-style
1224	bas-relief	jan-van-eyck-style	neon-night	terry-gilliam-style
1225	century-botanical-illustration	jan-van-goyen-style	nicolas-poussin-style	thomas-cole-style
1226	christopher-balaskas-style	j-c-leyendecker-style	noah-bradley-style	thomas-kinkade-style
1227	christopher-ryan-mckenney-style	jean-baptiste-camille-corot-style	ohara-koson-style	thomas-moran-style
1228	clay-animation	jean-baptiste-monge-style	okuda-san-miguel-style	thomas-schaller-style
1229	color-palette	jean-baptiste-simeon-chardin-style	olly-moss-style	tim-walker-style
1230	craig-mullins-style	jean-metzinger-style	op-art	tintoretto-style
1231	crocheted	jean-michel-basquiat-style	parallel-dimensions	todd-hido-style
1232	daniel-arsham-style	jessie-willcox-smith-style	pascal-campion-style	tove-jansson-style
1233	dark-fantasy	jim-mahfood-style	paul-gustav-fischer-style	tracie-grimwood-style
1234	dave-mckean-style	john-albert-bauer-style	paul-laffoley-style	vasily-vereschagin-style
1235	diorama	john-berkey-style	paul-signac-style	vertical-landscapes
1236	director-agnes-varda-style	john-blanche-style	peter-doi-style	victor-brauner-style
1237	death-stranding	john-constable-style	peter-paul-rubens-style	victor-moscoso-style
1238	director-akira-kurosawa-style	john-everett-millais-style	philippe-druillet-style	video-installation
1239	director-andrei-zvyagintsev-style	john-harris-style	photographer-eleena-helfrecht-style	vintage-postage-stamps
1240	director-bong-joon-ho-style	john-james-audubon-style	photographer-flora-borsi-style	weegee-style
1241	director-darren-aronofsky-style	john-kenn-mortensen-style	photographer-maren-klemp-style	wendy-froud-style
1242	director-david-fincher-style	john-martin-style	photographer-martin-kimbell-style	will-eisner-style
1243	director-david-lynch-style	john-singer-sargent-style	photographer-reuben-wu-style	willem-haenraets-style
1244	cute-animals	john-singleton-copley-style	pierre-auguste-renoir-style	willem-van-aelst-style
1245	ben-aronson-style	john-william-waterhouse-style	pierre-bonnard-style	william-langson-lathrop-style
1246	director-emir-kusturica-style	joseph-wright-of-derby-style	pieter-claesz-style	william-mctaggart-style
1247	director-gaspar-noe-style	josh-agle-style	punk-collage	william-merritt-chase-style
1248	director-jean-pierre-junet-style	josh-kirby-style	quentin-blake-style	winslow-homer-style
1249	director-krzysztof-kieslowski-style	jules-bastien-lepage-style	raimonds-staprans-style	worthington-whittredge-style
1250	director-martin-scorsese-style	kate-greenaway-style	ralph-bakshi-style	yaacov-agam-style
1251	director-nicolas-winding-refn-style	kay-nielsen-style	ralph-steadman-style	yoh-nagao-style
1252	director-park-chan-wook-style	kilian-eng-style	randolph-caldecott-style	yves-klein-style
1253	director-pedro-almodovar-style	kirigami	ray-caesar-style	zanele-muholi-style
1254	director-quentin-tarantino-style	konstantin-korovin-style	remedios-varo-style	

Figure 9: Layerwise Eigenvalue Plots of 500 Mistral-7B-Instruct-v0.2 models. Each layer has 3 sets of parameters - k_{proj} , q_{proj} , v_{proj}

1296 **Universal SDXL experiment details** Our second experiment involves the complex and multimodal
 1297 task of Text-to-Image generation using the Stable Diffusion-XL model Podell et al. (2023). We
 1298 extract our low rank universal subspace from publicly available LoRA models on HuggingFace
 1299 repository von Platen et al. (2022) - Table 8 lists all the SDXL models that we used to extract the
 1300 Universal Subspace. As can be seen in Table 8, the models range wildly in styles on which they were
 1301 finetuned. The fact that all these diverse models can be represented by a single low rank universal
 1302 subspace model strongly verifies our hypothesis. We use top 16 components and 30 denoising steps.
 1303 For each experiment model shown in Table 1 and Figure 5, that LoRA model is reconstructed using
 1304 a universal subspace created using rest of the available LoRA adapters, essentially confirming the
 1305 generalization capability of this subspace.

1306 We then use this single SDXL universal subspace to generate images with similar styles to evaluate
 1307 whether this subspace is capable of doing so, by projecting randomly chosen LoRA models into this
 1308 subspace. Figure 5 shows that our universal subspace matches the visual quality and style nuances of
 1309 individual LoRAs, resulting in significant memory savings. Table 1 shows quantitative results for
 1310 our Universal subspace in terms of CLIP scores, where interestingly we can see that our Universal
 1311 Subspace outperforms the individual LoRA models. This improvement may be attributed to our
 1312 Universal SDXL removing noise from the subspace - a phenomenon previously observed by Sharma
 1313 et al. (2023). The styles used in Table 1, which are in Table 8 are (from Style 1 to Style 10) Ukiyo-e
 1314 Style, Todd Hido Style, Olly Moss Style, Needlepoint Style, Studio Ghibli Style, Surreal Harmony
 1315 Style, Dressed Animal Style, Lascaux Cave Art Style, Kirigami Style, Yaacov Agam Style.
 1316

B.2 LOW RANK SHARED UNIVERSAL SUBSPACES IN CLASSICAL WEIGHTS



1334 Figure 10: Spectral analysis of the Vision Transformer (ViT-base-patch16-224) model: Aggregated
 1335 eigenvalue (scree) plot across 500 ViT models and all layers. The plot demonstrates that the majority
 1336 of the variance is consistently captured by the top 16 principal directions, indicating the presence of a
 1337 shared low-dimensional universal subspace.
 1338

1339 In order to further solidify the evidence for our universal subspace hypothesis, we show that this
 1340 universality does extend beyond adapter models to conventional weights. We do not focus on
 1341 convolutional weight parameters as they can simply be equated with fully connected layers (Ma & Lu,
 1342 2017), and have been shown, in limited scope, to match Gabor-like filters (Krizhevsky et al., 2012).
 1343 Therefore, our analysis trivially extends to these kinds of parameters as well. However, there are a
 1344 few practical differences between the low rank adapter and classical weight subspace analysis. The
 1345 classical weight subspace analysis is more computationally expensive relative to the LoRA one due
 1346 to high dimensionality of the parameters, but in effect, same. Additionally, the number of sufficiently
 1347 well trained models is understandably fewer than LoRA models. Further, there is also higher variance
 1348 in terms of model quality in the classical weights as it is harder to optimize these models as compared
 1349 to LoRA which often are optimized from a good initialization point (the pretrained base model). An
 outcome of this is that the universal subspace approximation that we obtain from the publicly

1350 available pretrained models are noisier than their LoRA counterparts. Inspite of this, our universal
 1351 subspace hypothesis remains validated.
 1352

1353 To further support our universal subspace hypothesis, we extend our analysis beyond adapter models
 1354 to standard full-rank weights. We exclude convolutional parameters from explicit consideration, as
 1355 they are functionally equivalent to fully connected layers under certain conditions (Ma & Lu, 2017),
 1356 and their learned representations (e.g., Gabor-like filters) have been studied, in limited scope, in prior
 1357 work (Krizhevsky et al., 2012). Consequently, our analysis generalizes naturally to convolutional
 1358 weights as well.
 1359

1360 There are, however, practical differences between the subspace analysis of full-rank model weights
 1361 and that of low-rank adapters. First, analyzing conventional weight matrices is significantly more
 1362 computationally intensive because of their higher dimensionality. Second, the availability of a large
 1363 number of independently and sufficiently well-trained models is more limited compared to LoRA
 1364 models. Third, the classical weight models exhibit greater variance in model quality, since they must
 1365 be trained from scratch, often without the benefit of a well-optimized initialization, unlike LoRA
 1366 which builds upon a strong pretrained base.
 1367

1368 As a result, the subspaces estimated from classical weights tend to be noisier, and the universality
 1369 signal is less pronounced. Despite these challenges, we still observe consistent structure in the leading
 1370 components, lending further empirical support to the universal subspace hypothesis.
 1371

1372 **Universal ViT-base-patch16-224 experiment details** We collect ~ 500 pretrained ViT models
 1373 from HuggingFace, shown in Table 9, spanning very diverse domains — many of which would
 1374 be considered orthogonal to one another in terms of domain generalization. These models have
 1375 been trained with varying losses, optimizers, and initializations. These models were used as-is,
 1376 without curation or access to training data, to reflect real-world variability. Figure 10 shows the
 1377 summarized scree plot for all relevant layers of ViT (sans first and last layers due to differences in
 1378 shape and tasks) for all ~ 500 ViT models showing that the majority of variance is captured by the
 1379 top 16 principal directions, revealing a highly compressible, shared subspace across layers. Only
 1380 the top 100 components are visualized for clarity, although the available subspace is significantly
 1381 larger, underlying the sparsity of this universal subspace. We observe this for layerwise analysis in
 1382 Figure 11 as well. For the experimental results presented in Table 3, we randomly choose 4-5 IID
 1383 and 4-5 OOD models from Table 9 for which evaluation dataset is available, and reconstruct these
 1384 model weights by projecting them into our 16 component universal subspace. For the OOD case, we
 1385 ensure that the models being evaluated are not present in the subset used for creating the universal
 1386 subspace approximation. As seen from the results, our extremely sparse subspace model performs
 1387 competitively compared to the fully trained versions. It is likely that with more careful choice of
 1388 principal directions per layer would allow for at par or even better performance.
 1389

1390 Table 9: Finetuned Models from HuggingFace used for the Universal Vision Transformer subspace
 1391 extraction (vit-base-patch16-224)
 1392

0.50-200Train-100Test-vit-base	2025-01-21-16-13-04-vit-base-patch16-224
2025-02-05-14-22-36-vit-base-patch16-224	21BAI1229
Accomodation_room_classification	adam_ViT-B-p16-224-1e-4-batch_16_epoch_4_classes_24
age_face_detection_base	AlvisionGuard-v2
alea	amns
AnimeCharacterClassifierMark1	autotrain-48ci8-roib9
autotrain-80qr6-image0807-20	autotrain-ap-pass-fail-v1
autotrain-g2g80-iwcfm	autotrain-google-vit-13epoch
autotrain-ht4es-gbvtm	autotrain-image-classifier-cats-and-dogs
autotrain-phnku0-076h9	autotrain-80sds-erede
autotrain-test-image-classification	autotrain-vit-base-patch16-224-fog-or-smog-classification
beauty-ornot	beer-classifier
bg-classif	bigger-chord-finetuned
brain-tumor-44	ButterflyClasifModel
camera-type	Caracam
cards-vit-base-patch16-224-finetuned-v1	carmodel
cats123	cats-dogs-2024
cats-dogs-classification	CheXpert-ViT-U-MultiClass
CheXpert-ViT-U-SelfTrained	chord-final-model
chord_ViT-finetuned	cifar10-lt
city_multiclass_classification	clasificador_masas
corals_binary_classification	custom
detect_meme	dog-breeds-classification
dog-cat-demo-20240815	dog-cats-model
dummy_classification_model	dvm-cars-vit-first-5k
ecg-image-multilabel-classification	emotion
EmotionAgeModel	emotion_model
emotion-recognition	emotion_recognition

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

emotion_recognition_results	emotion-vit
face_age_detection_base_v2	face_age_detection_base_v3_weighted
final-run	finetune-cats
fine-tuned	finetuned-amazon
fine-tuned-augmented	finetuned-bin
finetuned-cifar10	finetuned-indian-food
fine-tuned-model	finetuned_model
Fine-Tuned_Model	Fine-Tuned_Model2
Fine-Tuned_Model3	Fine-Tuned_Model3_Transfer_learning
finetune-vit-base-patch16-224	finetune_vit_base_patch16_224_1epoch
Flowers	food
food-101-finetuned-model	Freshness-Fruit_Veggies
frost-vision-v2-google_vit-base-patch16-224	frost-vision-v2-google_vit-base-patch16-224-v2024-11-09
frost-vision-v2-google_vit-base-patch16-224-v2024-11-11	frost-vision-v2-google_vit-base-patch16-224-v2024-11-14
fruit_classification	fruits-360-16-7
ft_stable_diffusion	gender
giecom-vit-model-classification-waste	google-vit-base-patch16-224-batch32-lr0.0005-standford-dogs
google-vit-base-patch16-224-batch32-lr0.005-standford-dogs	google-vit-base-patch16-224-batch32-lr5e-05-standford-dogs
google-vit-base-patch16-224-batch64-lr0.005-standford-dogs	google-vit-base-patch16-224-OrganicAndInorganicWaste-classification
google-vit-base-patch16-224-Waste-O-I-classification	hf_vit_format_hap_pretrained_256_128
Human-Action-Recognition-VIT-Base-patch16-224	human-actions
image-classification	image_classification
image_strawberry-peach_classifier	isa-vit_model
lixg_food_model001	Maggi-Parle-G_Classifier
mammals_multiclass_classification	MemeDetector
model	Model
model-vit-base-finetuned	MRI_vit
my_chest_xray_model	myclass
my_classification	MyPetModel
out	outputs
PagesClassificationModel	physiotherapy-E2
plant_disease_detection-beans	pokemon_classification
pokemon_model	pokemon-vit
recaptcha	recycled_waste_classification
results	rmsprop_VitB-p16-224-2e-4-batch_16_epoch_4_classes_24
rmsprop_VitB-p16-224-2e-4-batch_16_epoch_4_classes_24	road-conditions
rose_recognition	rotated2
Ruster	S1_M1_R1_vit_42498800
S1_M1_R1_vit_42509509	S1_M1_R1_Vit_42616100
S1_M1_R2_vit_42498972	S1_M1_R2_ViT_42618476
S1_M1_R3_vit_42499444	S1_M1_R3_ViT_42618486
S2_M1_R1_vit_42499480	S2_M1_R1_ViT_42618522
S2_M1_R2_vit_42499499	S2_M1_R2_ViT_42618530
S2_M1_R3_vit_42499514	S2_M1_R3_ViT_42618549
S5_M1_fold1_vit_42499955	S5_M1_fold1_ViT_42618571
S5_M1_fold2_vit_42499968	S5_M1_fold2_ViT_42618583
S5_M1_fold3_vit_42499983	S5_M1_fold3_ViT_42618589
S5_M1_fold4_vit_42499997	S5_M1_fold4_ViT_42618593
S5_M1_fold5_vit_42500027	S5_M1_fold5_ViT_42621111
Screenshots_detection_to_classification	sign-lan-model
square_run_32_batch	square_run_age_gender
square_run_first_vote_full_pic_50	square_run_first_vote_full_pic_50_age_gender
square_run_first_vote_full_pic_75	square_run_first_vote_full_pic_75_age_gender
square_run_second_vote	square_run_second_vote_full_pic_50
square_run_second_vote_full_pic_50_age_gender	square_run_second_vote_full_pic_75
square_run_second_vote_full_pic_75_age_gender	square_run_second_vote_full_pic_age_gender
square_run_second_vote_full_pic_stratified	square_run_square_run_first_vote_full_pic_25
square_run_square_run_first_vote_full_pic_25_age	square_run_square_run_first_vote_full_pic_25_age_gender
square_run_square_run_first_vote_full_pic_25_age_gender_double_ch	square_run_square_run_second_vote_full_pic_25
square_run_square_run_second_vote_full_pic_25_age_gender	square_run_with_16_batch_size
square_run_with_actual_16_batch_size	stool-condition-classification
swaddling-classifier	swin-tiny-patch4-window7-224-finetuned-eurosat-kornia
tarread	telidermai
test-cifar-10	traffic-levels-image-classification
Train-Augmentation-vit-base	trainer_output
Train-Test-Augmentation-V3D-vit-base	UL_base_classification
UL_bedroom_classification	UL_exterior_classification
UL_interior_classification	vehicle_multiclass_classification
ViT_ASVspoof_DF	vit-augmentation
vit-b16-plant_village	vit_base
vit-base-1e-4-15ep	vit-base-1e-4-20ep
vit-base-1e-4-randaug	vit-base-1stGen-Pokemon-Images
vit-base-25ep	vit-Base-30VN
vit-base-3e-5-randaug	vit-base-5e-4
vit-base-add-2-decay	vit-base-augment
vit-base-batch-32	vit-base-beans
vit-base-brain-mri	vit-base-cat_or_dog
vit-base-change-arg	vit-base-cocoa
ViT-Base-Document-Classifier	vit-base-fashion
vit-base-finetuned-cephalometric	vit-base-food101
vit-base-fruits-360	vit-base-hate-meme
vit-base-nationality	vit-base-org-plot
vit-base-oxford-brain-tumor	vit-base-oxford-brain-tumor_try_stuff
vit-base-oxford-brain-tumor_x-ray	vit-base-oxford-iiit-pets
vit-base-oxford-pets-krasuluk	vit-base-patch16-224

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

vit-base-patch16-224-13_model	vit-base-patch16-224-30-vit
vit-base-patch16-224-9models	vit-base-patch16-224-abhi1-finetuned
vit-base-patch16-224_augmented-v2_fft	vit-base-patch16-224_augmented-v2_t1
vit-base-patch16-224-blur_vs_clean	vit-base-patch16-224-brand
vit-base-patch16-224-classifier	vit-base-patch16-224-clothes-filter
vit-base-patch16-224-cl-v1	vit-base-patch16-224-crochets-clothes-classification
vit-base-patch16-224-Diastar	vit-base-patch16-224-Diastarallclasses
vit-base-patch16-224-dmae-va-U	vit-base-patch16-224-dmae-va-U5-100-iN
vit-base-patch16-224-dmae-va-U5-10-45-5e-05	vit-base-patch16-224-dmae-va-U5-20-45-5e-05
vit-base-patch16-224-dmae-va-U5-40-45-5e-05	vit-base-patch16-224-dmae-va-U5-42B
vit-base-patch16-224-dmae-va-U5-42C	vit-base-patch16-224-dmae-va-U5-42D
vit-base-patch16-224-ethos	vit-base-patch16-224-ethos-25
vit-base-patch16-224-ethos-8	vit-base-patch16-224-ethos-data
vit-base-patch16-224-ethosreaddata	vit-base-patch16-224-fatigue
vit-base-patch16-224-finalterm	vit-base-patch16-224-finetuned
vit-base-patch16-224-finetuned-barkley	vit-base-patch16-224-finetuned-brain-tumor-classification
vit-base-patch16-224-finetuned-Brain-Tumor-Classification	vit-base-patch16-224-finetuned-cassava-leaf-disease
vit-base-patch16-224-finetuned-cedar	vit-base-patch16-224-finetuned-cifar10
vit-base-patch16-224-finetuned-combinedSpiders	vit-base-patch16-224-finetuned-context-classifier
vit-base-patch16-224-finetuned-covid_ct_set_full	vit-base-patch16-224-finetuned-covid_ct_set_resumed
vit-base-patch16-224-finetuned-crochets-clothes	vit-base-patch16-224-finetuned-dangerousSpiders
vit-base-patch16-224-finetuned-eurosat	vit-base-patch16-224-finetuned-feature-maps-v3
vit-base-patch16-224-finetuned-feature-map-v2	vit-base-patch16-224-finetuned-fibre
vit-base-patch16-224-finetuned-flower	vit-base-patch16-224-finetuned-flower-classify
vit-base-patch16-224-finetuned-flowers	vit-base-patch16-224-finetuned-food101
vit-base-patch16-224-finetuned-food102	vit-base-patch16-224-finetuned-foveated-features
vit-base-patch16-224-finetuned-foveated-features-v2	vit-base-patch16-224-finetuned-galaxy10-decals
vit-base-patch16-224-finetuned-hateful-meme-structured	vit-base-patch16-224-finetuned-hateful-meme-structured-balanced
vit-base-patch16-224-finetuned-imagegpt	vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarMask
vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarMask-new-parameter	vit-base-patch16-224-finetuned-landscape-test
vit-base-patch16-224-finetuned-lora-oxford-pets	vit-base-patch16-224-finetuned-masked-hateful-meme-structured
vit-base-patch16-224-finetuned-noh	vit-base-patch16-224-finetuned-original-images
vit-base-patch16-224-finetuned-pneumonia-detection	vit-base-patch16-224-finetuned-polyterrasse
vit-base-patch16-224-finetuned-skin	vit_base_patch16_224-finetuned-SkinDisease
vit-base-patch16-224-finetuned-teeth_dataset	vit-base-patch16-224-finetuned-trash-classifications-albumentations
vit-base-patch16-224-finetuned-turquoise	vit-base-patch16-224-finetuned-Visual-Emotional
vit-base-patch16-224-finetuned-vit	vit-base-patch16-224-finetune_test
vit-base-patch16-224-food101-16-7	vit-base-patch16-224-food101-24-12
vit-base-patch16-224-for_evaluation	vit-base-patch16-224-fruits-360-16-7
vit-base-patch16-224-high-vit	vit-base-patch16-224-jvadamludi2
vit-base-patch16-224-masaratti	vit-base-patch16-224-mascotas
vit-base-patch16-224-mascotas-DA	vit-base-patch16-224-MSC-dmae
vit-base-patch16-224-newly-trained	vit-base-patch16-224-oxford-pets-classification
vit-base-patch16-224-perros-y-gatos	vit-base-patch16-224-pure-VIT
vit-base-patch16-224-R1-10	vit-base-patch16-224-R1-40
vit-base-patch16-224-Rado_5	vit-base-patch16-224_rice-disease-02
vit-base-patch16-224_rice-leaf-disease-augmented_fft	vit-base-patch16-224_rice-leaf-disease-augmented_tl
vit-base-patch16-224_rice-leaf-disease-augmented-v4_fft	vit-base-patch16-224_rice-leaf-disease-augmented-v4_tl
vit-base-patch16-224_rice-leaf-disease-augmented-v4_v5_fft	vit-base-patch16-224_rice-leaf-disease-augmented-v4_v5_pft
vit-base-patch16-224-rotated-dungeons-v101	vit-base-patch16-224-rotated-dungeons-v103
vit-base-patch16-224-RU2-10	vit-base-patch16-224-RU2-40
vit-base-patch16-224-RU3-10	vit-base-patch16-224-RU3-40
vit-base-patch16-224-RU4-10	vit-base-patch16-224-RU4-40
vit-base-patch16-224-RU5-10	vit-base-patch16-224-RU5-10-8
vit-base-patch16-224-RU5-40	vit-base-patch16-224-RU9-24
vit-base-patch16-224-RX1-24	vit-base-patch16-224-RX2-12
vit-base-patch16-224-RXL1-24	vit-base-patch16-224-type
vit-base-patch16-224-U6-10	vit-base-patch16-224-U7-10
vit-base-patch16-224-U8-10	vit-base-patch16-224-U8-10b
vit-base-patch16-224-U8-10c	vit-base-patch16-224-U8-40
vit-base-patch16-224-U8-40b	vit-base-patch16-224-U8-40c
vit-base-patch16-224-U8-40d	vit-base-patch16-224-ve-b-U10-12
vit-base-patch16-224-ve-b-U10-24	vit-base-patch16-224-ve-b-U10-40
vit-base-patch16-224-ve-U10-12	vit-base-patch16-224-ve-U10-24
vit-base-patch16-224-ve-U11-12	vit-base-patch16-224-ve-U11-b-24
vit-base-patch16-224-ve-U11-b-40	vit-base-patch16-224-ve-U11-b-80
vit-base-patch16-224-ve-U12-b-24	vit-base-patch16-224-ve-U12-b-80
vit-base-patch16-224-ve-U13-b-120	vit-base-patch16-224-ve-U13-b-24
vit-base-patch16-224-ve-U13-b-80	vit-base-patch16-224-ve-U13b-80R
vit-base-patch16-224-ve-U13b-80RX	vit-base-patch16-224-ve-U13b-80RX1
vit-base-patch16-224-ve-U13b-80RX3	vit-base-patch16-224-ve-U13b-R
vit-base-patch16-224-ve-U14-b-24	vit-base-patch16-224-ve-U15-b-80
vit-base-patch16-224-ve-U16-b-80	vit-base-patch16-224-ve-Ub
vit-base-patch16-224-vit	vit-base-patch16-224-vit-base-patch16-224-vit-base-patch16-224-dogORnot
vit-base-pets	vit-base-PICAI
vit-base-seed-1e-4	vit-base-seed-3e-4
vit-base-travel-document-classification	vit-base-v1-eval-epoch-maxgrad-decay-cosine
vit-beans-classifier	vit-beta1-0.85
vit-beta1-0.88	vit-beta1-0.95
vit-beta2-0.99	vit-beta2-0.995
vit-beta2-0.9995	vit-bird

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

ViT_bloodmnist	ViT_bloodmnist_std_0
ViT_bloodmnist_std_15	ViT_bloodmnist_std_30
ViT_bloodmnist_std_45	ViT_bloodmnist_std_60
ViT_breastmnist	ViT_breastmnist_std_0
ViT_breastmnist_std_15	ViT_breastmnist_std_30
ViT_breastmnist_std_45	ViT_breastmnist_std_60
VIT-cats-vs-dogs	vit-cifar10-fine-tuned
vit-class-weight	vit-cxr4
vit-demo	ViT_dog_food
vit-dropout-0.2	vit-dropout-0.3
vit-dropout-0.4	vit-dropout-0.5
vit-ds-processed	vit-emotion-model
vit-epsilon-1e-7	vit-epsilon-1e-9
vit-epsilon-5e-9	vit-face-project-piyush
vit-fine-tune-classification-cats-vs-dogs	vit-finetuned-1
vit-food-classification-chrisis2	vit-geometric-shapes-base
vit-google-model-30-classes	vit_google_vehicle_classification_model
vit-historical-page	vit_Liveness_detection_v1.0
vit-lr-0.0001	vit-lr-0.001
vit-lr-0.01	vit-lr-cosine-restarts
vit-lr-cosine-warm-restarts	vit-lr-cosine-warmup
vit-lr-exponential	vit-lr-inverse-sqrt
vit-lr-linear	vit-lr-poly
vit-lr-reduce-plateau	vit-lr-step
vit-mae-base-finetuned-eurosat	vit-molecul
vit-ori-dataset-exp	vit-plant-classification
vit-plantnet300k	vit-plants
vit-real-fake-classification-v1	vit-real-fake-classification-v2
vit-real-fake-classification-v3	vit-real-fake-classification-v4
vit-skin-demo-v1	vit-skin-demo-v2
vit-skin-demo-v3	vit-skin-demo-v4
vit-skin-demo-v5	vit-spam
vit-sports-cls	vit-transfer-learning
vit_transformer_eye_disease	vit_tumor_classifier
vit-vit	vit-vit-base-patch16-224-finetuned-chest-xray
vit-weight-decay-1e-2	vit-weight-decay-1e-3
vit-weight-decay-1e-4	vit-weight-decay-1e-5
wmc_v2_vit_base_wm811k_cls_contra_learning_0916	wmc_v2_vit_base_wm811k_cls_contra_learning_0916_9cls
wmc-wmk811-v0-vit-special_map_det_0917	WS800_ViT_42895082
WS800_ViT_42895082	xraynewww
yet-another-amber-mines	zdravJEM_CV_BERT

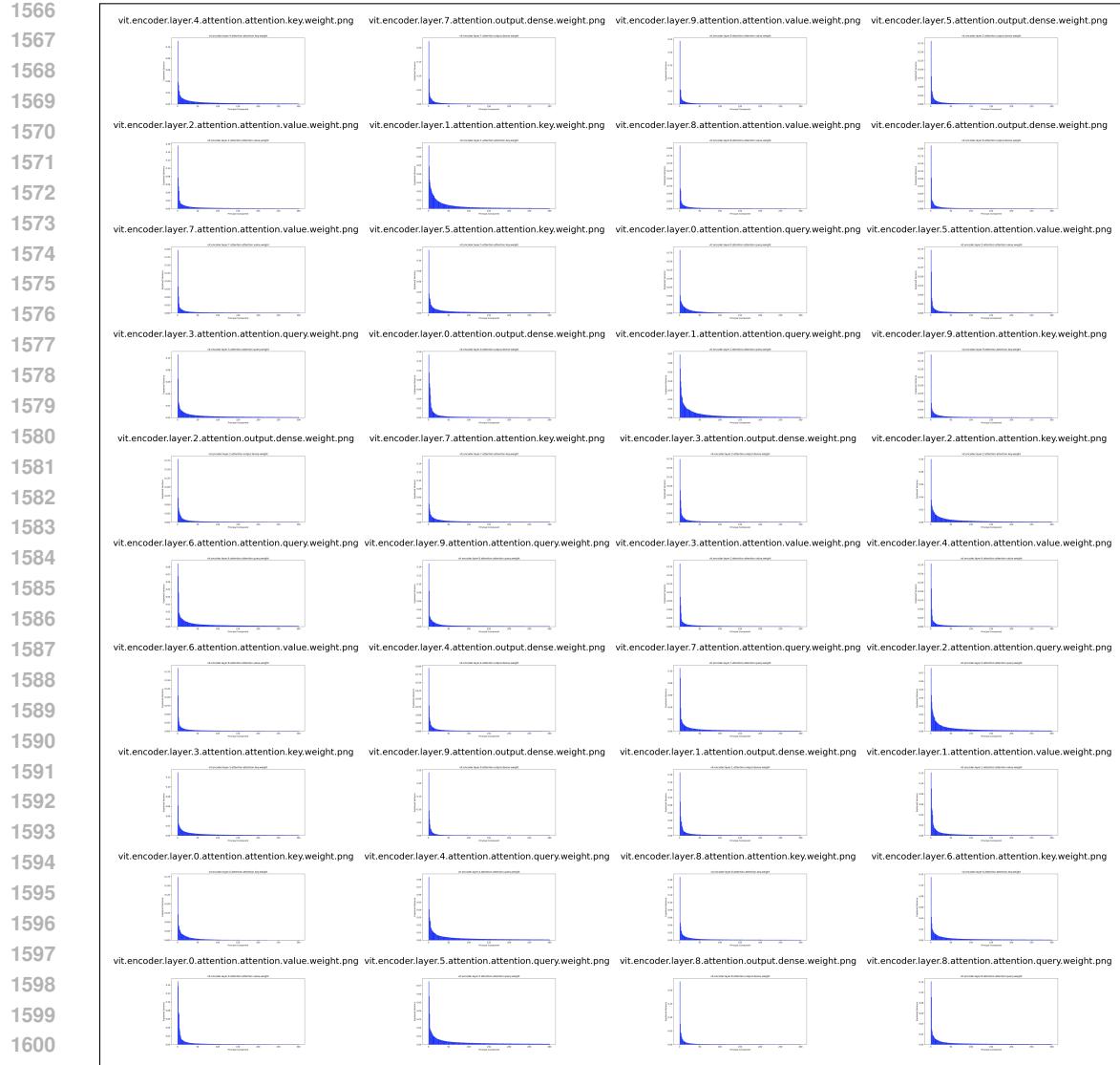


Figure 11: Layerwise Eigenvalue Plots of 500 ViT models.

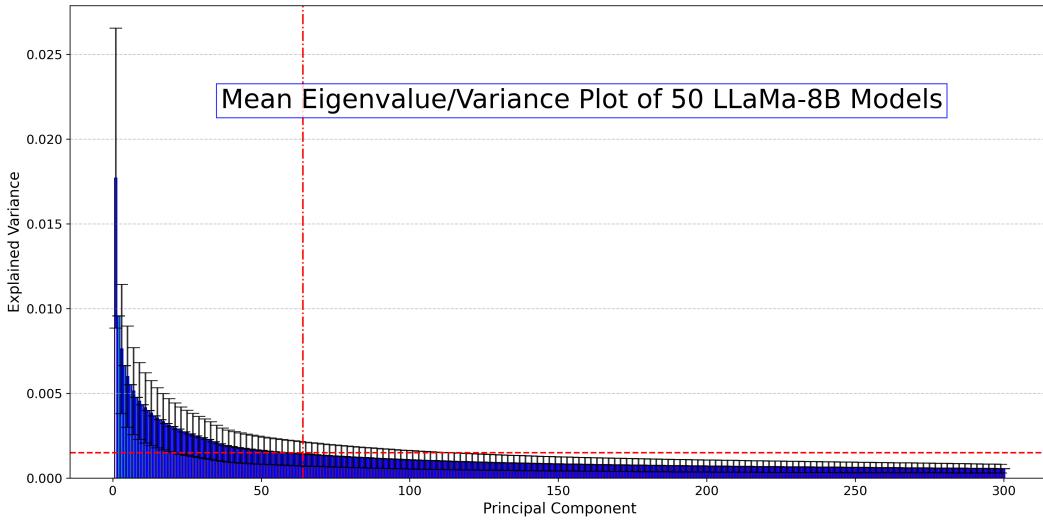
1605 **Universal LLaMA3-8B Experiment Details** To further stress-test our universal subspace hypothesis
 1606 on classical weight matrices, we extract a shared subspace from approximately 50 finetuned
 1607 LLaMA3 models, each with 8 billion parameters. These models were obtained from publicly available
 1608 repositories on HuggingFace. Due to their scale, we do not apply any model selection or filtering,
 1609 and instead include the entire available set.

1610 As shown in Figure 12, which presents the aggregated scree plot across all layers and all 50 models,
 1611 the principal variance is concentrated in the top few components—consistent with the emergence of a
 1612 low-rank universal subspace. For reference, the plot displays only the top 300 components, which
 1613 represent a small fraction of the full rank, highlighting the inherently low-dimensional structure.

1614 The models included in this analysis span a diverse range of domains, including medical applications,
 1615 multilingual dialogue systems, and general-purpose assistants, as listed in Table 10. To the best of
 1616 our knowledge, this is the first work to demonstrate that such a large and heterogeneous collection of
 1617 high-capacity language models can be jointly represented within a single low-rank subspace.

1618 The layerwise spectral analysis, shown in Figure 13, corroborates this finding: across all layers,
 1619 the majority of eigenvalues fall below a threshold of < 0.001 , indicating that most directions in

1620 parameter space contribute negligibly to variation across models. The plots are cropped to show only
 1621 the leading components due to the large number of total dimensions. We recommend zooming in for
 1622 clearer visualization.
 1623



1641 Figure 12: Spectral analysis of 50 LLaMA-3-8B model: Aggregated eigenvalue (scree) plot across 50
 1642 LLaMa-8B models and all layers. The plot demonstrates that the majority of the variance is consistently
 1643 captured by few top principal directions, indicating the presence of a shared low-dimensional universal
 1644 subspace.
 1645

1646 Table 10: Models from HuggingFace used for the Universal LLaMa3-8B subspace extraction
 1647

Meta-Llama-3-8B-Instruct-Jailbroken	Llama-3-13B-Instruct	large_crafting_sft_success	suzume-llama-3-8B-multilingual
summary-llama3-8B-T16-full	Llama-3-13B-Instruct-v0.1	Llama-3-8B-ProLong-64k-Base	LLaMAntino-3-ANITA-8B-Inst-DPO-ITA
ai-medical-model-32bit	filtered_crafting_train_data_shorter_length	Llama-3-portuguese-Tom-cat-8b-instruct	Llama-3-MAAL-8B-Instruct-v0.1
Human-Like-LLama3-8B-Instruct	LLaMA-3-8B-Instruct-TR-DPO	CabraLlama3-8B	chartgpt-llama3
KoLlama-3-8B-Instruct	honeypot-llama3-8B	Llama-SEA-LION-v2-8B	TR
Llama3-8B-Instruct-Turkish-Finetuned	Llama-3-15B-Instruct-zeroed	Llama-3-8B-Instruct-TAR-Bio-v2	Bio-Medical-Llama-3-8B
filtered_construction_train_data	shisa-v1-llama3-8B	REFUEL-Llama-3-Armo-iter_1	llama3-instrucTrans-enko-8b
Llama-3-8B-Instruct-Ja	llama3-paststhrough-chat	RoLlama3-8B-Instruct	Llora-SQL
Summary_L3_1000steps_1e7rate_SFT2	CyberSentinel	Meta-Llama-3-8B-Instruct-function-calling-json-mode	MARS
Llama-3-8B-Instruct-Finance-RAG	LLaMA3-Instruct-8B-FR-Spec	Llama-3-8B-Japanese-Instruct	Llama3-8B-Chinese-Chat
llama-3-chinese-8b-instruct-v2	Athena-RM-8B	Llama-3-OffsetBias-RM-8B	large_cooking_sft_success
suzume-llama-3-8B-japanese	llama-3-chinese-8b-instruct-v3	Waktaverse-Llama-3-KO-8B-Instruct	llama-3-8b-gpt-4o-ru1.0
Llama-3-ApIte-Instruct-4x8B-MoE	Llama-3-8B-Instruct-DPO-v0.3		

1655
 1656 **Universal Flan-T5 Experiment Details** We collected Flan-T5 models fine-tuned on individual
 1657 datasets from the GLUE (Wang et al., 2019) benchmark. We extract the joint subspace from these
 1658 models and trends similar to those observed above are seen. This shows that across diverse datasets
 1659 and tasks a low-rank subspace emerges.
 1660

1661 Table 11: Finetuned Flan-T5 Models from HuggingFace used for the Universal Flan-T5 subspace
 1662 extraction
 1663

tanganke/flan-t5-base_glue-cola	tanganke/flan-t5-base_glue-mnli
tanganke/flan-t5-base_glue-mrpc	tanganke/flan-t5-base_glue-qnli
tanganke/flan-t5-base_glue rte	tanganke/flan-t5-base_glue-qqp
tanganke/flan-t5-base_glue-sst2	tanganke/flan-t5-base_glue-stsb

B.3 ABLATING NUMBER OF MODELS AND SUBSPACE EFFECTIVENESS

1669 Although this is implicitly addressed through our large-scale experiments (500 ViTs, 500 Mistral-7B
 1670 and 300 Stable Diffusion LoRAs, 50 LLaMA3-8B, 177 GPT-2s, Flan-T5, and ResNet50 models)
 1671 in all Figures and Tables, which demonstrate consistent behavior at different scales. Theorem 2.5
 1672 provides insights on the saturation dynamics where we see that the rate of convergence of the shared
 1673 subspace to the true subspace is in the order $O(1/T)$, where T is the number of tasks, indicating
 increasingly effective coverage as T increases. In practice, the minimum number of models per

1674 Table 12: Lots of LoRAs (Mistral-7B) OOD evaluation per increasing number of models used to
 1675 extract Universal Subspace
 1676

1677	Method	Model Number	Rouge-L Score
1678	Normal Model	-	73.7
1679	Universal model	50	55.8
1680	Universal model	150	66.1
1681	Universal model	250	71.9
1682	Universal model	450	72.3

1683

1684

1685 architecture needed to achieve saturation point depends on the quality of the trained models, the
 1686 diversity of data they have been trained on, and on the architecture itself. Ablating these would
 1687 require access to all the data for all the models, and very careful training on every training for each
 1688 data, and then running permutation with all possible combinations of models. All of this is out
 1689 of reach for most researchers simply due to time, data and compute constraints. We, however, do
 1690 provide an initial ablation here. For LoRA models shown in Table 7, we choose 9 random (OOD)
 1691 tasks (39, 190, 280, 290, 391, 442, 1342, 1391, 1598) and extract the Universal Subspace from rest of
 1692 the tasks, sampled randomly for increasing number of models. The coefficients for OOD tasks
 1693 are analytically reconstructed to effectively evaluate the universal subspace created from varying
 1694 number of models. Table 12 shows that the adequate principal components are quickly extracted, and
 1695 increasing the number of models has diminishing returns.

1696

1697

C FINDING UNIVERSAL SUBSPACES AND APPLYING THEM TO FUTURE TASKS

1698

1699

1700 In this section, we present two tasks, GLUE (Wang et al., 2019) and Image Classification. For each
 1701 experiment, the joint subspace is created using all other models in subset. For Image Classification,
 1702 we use $k = 4$ and train only 8 epochs using learning rate of 1e-4. Importantly, only the coefficients
 1703 are trained for the experiment. It is important to note that our shared subspace model performs
 1704 quite well despite using very few (4-5) models to extract the subspace. For GLUE, we use 16-32
 1705 components for our subspace, with learning rate of 4e-4, batch size of 64, and 30-80 epochs for each
 1706 task. In addition, it is likely that our model might perform similarly or better if trained longer or with
 1707 optimized hyperparameters.

1708

1709

Compute Resources We conduct all our experiments using a single A5000 GPU, and a CPU with
 1710 8 workers. For the universal subspace extraction, all calculation can be done on the CPU. However,
 1711 GPU would increase the speed of calculation as the layerwise subspace extraction can be parallelized.

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

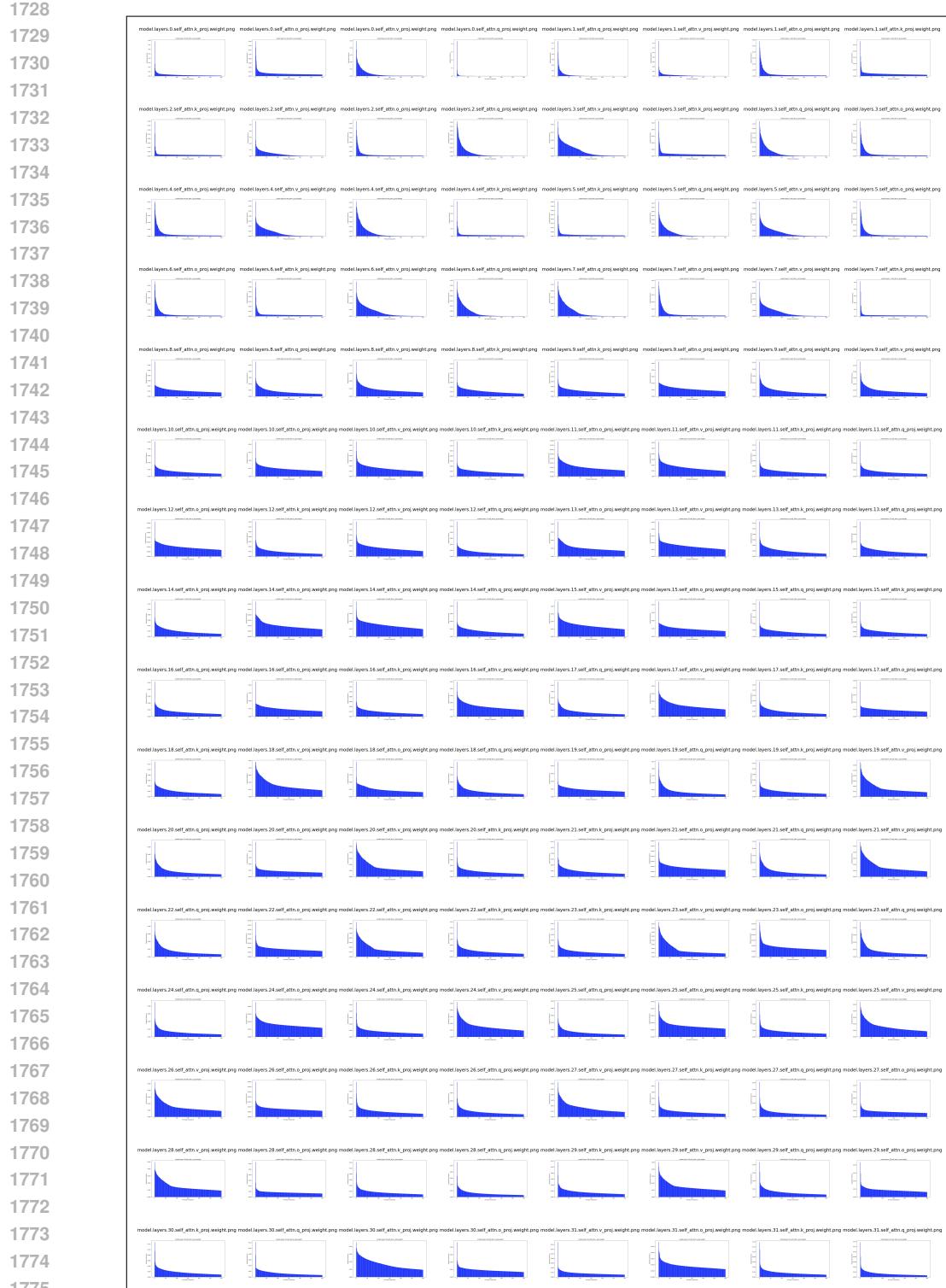


Figure 13: Layerwise Scree Plots for 50 LLaMA-3-8B Models. For enhanced clarity, each subplot presents a truncated view of the total possible principal directions. These plots consistently demonstrate that the dominant information, as represented by explained variance, resides within a small number of leading principal directions for all models. Components beyond this initial set are characterized by eigenvalues approaching zero, signifying their redundancy for the universal subspace.

D DISCUSSION AND BROADER IMPACT

Our findings suggest that deep neural networks trained across diverse tasks and modalities systematically converge to shared, low-dimensional subspaces within their parameter space. The existence of such universal subspaces challenges conventional assumptions about the independence and diversity of model and task-specific finetuning trajectories. Instead, it highlights a powerful regularity in the way deep models encode task-specific knowledge - one that can be exploited for significantly improved training and deployment efficiency. By leveraging these subspaces, we demonstrate that models can be adapted to new tasks by learning only a small number of coefficients, rather than retraining or storing full sets of weights. This facilitates more robust multi-task learning, model merging, and scalable fine-tuning, with theoretical guarantees and empirical validation across multiple architectures.

The broader societal impact of this work is substantial. Our approach enables large-scale models to be reused and extended with dramatically reduced computational overhead, addressing both the financial and environmental costs associated with training and deploying deep learning systems. This contributes directly to the goals of sustainable and accessible AI. By lowering the hardware and energy requirements for adaptation and inference, we empower under-resourced researchers, institutions, and communities to build upon state-of-the-art models without needing extensive compute infrastructure. Furthermore, by supporting modular model design and data-free model merging, our work lays the foundation for more interpretable, maintainable, and equitable AI systems.