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ABSTRACT

We show that deep neural networks trained across diverse tasks exhibit remarkably
similar low-dimensional parametric subspaces. We provide the first large-scale
empirical evidence that demonstrates that neural networks systematically con-
verge to shared spectral subspaces regardless of initialization, task, or domain.
Through mode-wise spectral analysis of over 1100 models - including 500 Mistral-
7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models - we identify
universal subspaces capturing majority variance in just a few principal directions.
By applying spectral decomposition techniques to the weight matrices of various
architectures trained on a wide range of tasks and datasets, we identify sparse, joint
subspaces that are consistently exploited, within shared architectures across diverse
tasks and datasets. Our findings offer new insights into the intrinsic organization of
information within deep networks and raise important questions about the possi-
bility of discovering these universal subspaces without the need for extensive data
and computational resources. Furthermore, this inherent structure has significant
implications for model reusability, multi-task learning, model merging, and the
development of training and inference-efficient algorithms, potentially reducing
the carbon footprint of large-scale neural models.
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Figure 1: Deep Networks Converge to Shared, Low-Rank (Universal) Subspaces. Across distinct architec-
tures and modalities, neural networks systematically learn to operate within remarkably similar low-dimensional
parameter subspaces. Left: Principal component analysis of 200 GPT2, 500 Vision Transformers, 50 LLaMA-
8B, and 8 Flan-T5 models reveals consistent sharp spectral decay - strong evidence that a small number of weight
directions capture dominant variance despite vast differences in training data, objectives, and initialization. The
black baseline (independent subspaces reference) represents the naive expectation that models would learn
distinct directions; our empirical findings contradict this. Right: Strikingly, 500 randomly initialized ViT
models converge to a common low-rank subspace, demonstrating this is a fundamental neural network property.
This emergent structure unlocks powerful applications: parameter-efficient adaptation, efficient model merging,
compressed storage, and accelerated training and inference. Further discussion in[Section A
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1 INTRODUCTION

We show that backpropagated neural networks trained on a variety of datasets - which could be
disjoint and unrelated - diverse hyper-parameter settings, initializations and regularization methods,
often learn an architecture-specific, layer-wise similar, low-rank joint subspaces (we refer to this
as the Universal Subspace). We provide the first large-scale empirical analysis - across a diverse
set of models - that neural networks tend to converge to these joint subspaces, largely independent
of their initialization or the specific data used for training. Our study encompasses different model
architectures trained on a variety of datasets, sometimes with different loss functions and tasks.
Our spectral subspace analysis of the weights of all these models (Figure 1) suggests that although
individual tasks appear to induce distinct subspaces, individually, they are all part of an unusually
low-ranked joint subspace. Our work extends the scientific community’s understanding of what
neural networks learn. This universality could explain several puzzling neural properties: why
overparameterized models with millions more parameters than training samples still generalize;
how different initializations converge to similar representations; and why techniques like weight
sharing and parameter-efficient fine-tuning succeed across architectures. If networks indeed learn
within shared subspaces, this would provide a supporting explanation for implicit regularization,
transferability, and the effectiveness of sparse training methods, while also opening up avenues for
applications like efficient merging, new optimization techniques, faster and more efficient learning
and inference.

Several works have hinted at phenomena consistent with our joint (universal) subspace hypothesis.
For example, Neural Tangent Kernel (NTK) theory demonstrates that, in the infinite-width limit,
the training dynamics of deep networks are governed by a kernel that is largely invariant to task
specifics (Jacot et al.,2018). Similarly, research in mechanistic interpretability’s own universality
hypothesis (Olah et al.,|2020; Chughtai et al.,|2023)) has uncovered recurring circuits and patterns
within some layers of toy or vision networks, lending indirect support to the universality hypothesis.
Other works, including the lottery ticket hypothesis (Frankle & Carbin, 2019) and studies on mode
connectivity (Garipov et al.l 2018), provide further evidence for the existence of reusable, low-
dimensional representations in neural networks. Notably, |[Krizhevsky et al.[(2012) observed that
the first layer of convolutional networks tends to learn Gabor-like filters across various vision tasks.
Recent studies by (Guth & Ménard, 2024; |Guth et al.| 2024) have also shown initial evidence of
recurring eigenvectors for some layers of convolutional neural networks trained on natural images.

In our analysis, we present compelling empirical evidence for the existence of universal subspaces
within LoRA adapters across different modalities and tasks. We initially focus on LoRA adapters due
to their ease of training and the ability to collect a large number of adapters for diverse tasks, models,
and datasets, which enables robust evaluation of our hypothesis. E.g., we demonstrate the emergence
of a universal subspace across approximately 500 LoRA adapters for the Mistral-7B (Jiang et al.,
2023)) model. We further extend our investigation to the full weight space, where we observe similar
universality, extracting sparse, low-rank universal subspaces from about 500 Vision Transformer
models and 50 LLaMA3-8B models, each trained on different datasets and initializations.

Although the underlying causes and broader implications of this universal property remain an open
area of investigation, even an initial understanding of parameter subspace universality has pro-
found implications for neural network efficiency and interpretability. Shared subspaces could enable:
(1) massive model compression by storing only subspace coefficients rather than full weights; (2)
rapid adaptation to new tasks within learned subspaces; (3) theoretical insights into generalization
bounds and optimization landscapes; and (4) environmental benefits through reduced computational
requirements for training and inference.

The remainder of this paper is organized as follows. We first define the problem set up formally in
Section [2| followed by listing of essential properties and conditions with corresponding empirical
justifications. Section [3.3.1] proposes the method to adapt to new tasks leveraging the shared
approximate universal subspace. Section [3.T]explains our analysis methodology and Section [3.2]
presents the comprehensive empirical evidence of the Universal subspaces. Section[d]briefly discusses
the analysis providing useful insights and answers the fundamental questions raised in the introduction.
We discuss related work in appendix [A.T]and discuss limitations and scope for future work in Section
[5] Our primary contributions include
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* We empirically demonstrate the existence of a lower-dimensional shared universal subspace
in backpropagated neural networks, and also provide relevant theoretical analysis.

* Illustrate the approach to learning an approximate low-dimensional shared subspace using
the available set of tasks. Propose conditions for convergence of this learned subspace to the
true universal shared subspace.

* Reuse the learned shared subspace to efficiently adapt to new unseen tasks with significantly
fewer of trainable parameters. Our experiments across a wide variety of large pretrained
models across various architectures and data modalities extensively verify and validate our
hypothesis and theoretical findings.

2 NOTATIONS, DEFINITIONS AND THEORETICAL ANALYSIS

Our theoretical analysis models predictors as elements of a Hilbert space, for example a reproducing
kernel Hilbert space (RKHS), while our experiments are conducted with practical large-scale models
such as transformers and LoRA-based variants. Modeling predictors in a Hilbert space (kernel)
framework is standard when analyzing aspects such as generalization and inductive bias of modern
deep architectures, and has been widely used to approximate or interpret the behavior of large neural
networks in practice (Ortiz-Jimenez et al.| 2023 Wei et al., 2019} |Chen & Xul,2021; Belfer et al.,
2024; Bietti et al., [2019). We aim to understand whether the shared structure across tasks can be
consistently recovered from data as number of tasks increase. Specifically, each task has an associated
ground-truth predictor f, and we are interested in the covariance (second-moment) operator S that
captures the common subspace spanned by these predictors. Since in practice we only observe finite
samples per task and learn approximate predictors ft, two sources of error arise: (i) variability due
to having finitely many tasks, and (ii) estimation noise within each task. Our goal is to establish
conditions under which the empirical operators built from ft concentrate around &, and to show that
the learned top-k subspace converges to the true one, with convergence rates that separately reflect
the number of tasks and the accuracy of per-task learning.

Setup. Let (#,(:,-)) be a separable Hilbert space with norm ||-|| = ||-||,,. For a,b € H, the
rank-one operator a ® b : H — H is (a ® b)g = (b, g) a; in particular ||a ® b|| = Ha|| ||b]|. Tasks

t =1{1,2,3...,T} are drawn i.i.d. from distribution 7 and each task dataset St = {(@t,5,Yt,i) }itq
with n; samples is drawn independently from D;,. Let f; € ‘H denote the (unknown) ground-truth

predictor for task ¢ and ft € H be the learned predictor for the task.

Definition 2.1 (Task second-moment operator). The population, true empirical, and learned empirical
task second-moment operators are respectively,

T A ~
th ® ft.

where S, S ,S are self-adjoint and positive semi-definite such that tr(S) < oco. Its top-k eigenspace
% 1s the population rank-k shared subspace of tasks.

Remark 2.2. We work with the second-moment operator (rather than centered covariance), so the top

eigenspace may include the mean direction of { f} }i~7.

T

* * 8 1 * * N 1

S =Ewr[ 7 ® f], S::fE It e ff, S::T
t=1

Let Ay > Ay > --- be the eigenvalues of S with orthonormal eigenvectors {¢;};>1. Write P, =
Zle ¢; ® ¢, for the projector onto the population top-k subspace Hj = span{¢i,..., ¢y}, and
let P}, be the projector onto the top-k eigenspace of S (the learned shared subspace). Define the
eigengap 7y, 1= Ay — A1 > 0.

Assumption 2.3 (Realizability, bounded second moment and effective rank). For a constant B > (
and for all tasks, f} € H almost surely, || f|| < B a.s., Boor || f1|I> = tr(S) < oo. In addition, S

has bounded effective rank, |’|5T(HS) <K

Assumption [2.3]ensures that all ground-truth predictors are bounded and have finite second moment,
so the population covariance operator S is well-defined. The bounded effective rank condition
further guarantees that the shared structure of the tasks is not arbitrarily infinite-dimensional, making
subspace recovery feasible.
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Assumption 2.4 (Per-task estimation accuracy in H). For any 6; € (0, 1) with probability at least
1 — 6 over the draw of S,

In(1/6
< m, ..wheren, =Ry, p,(H)+ %
¢

fo= gt

Here R, p,(H) represents Rademacher complexity of the solutions within Hilbert space H over
ny samples drawn i.i.d. from D, This form is satisfied, for example, by strongly convex regularized
ERM in an RKHS (e.g., kernel ridge regression or NTK ridge), under bounded kernel norm and
sub-Gaussian response noise (Bartlett & Mendelson, |2003)).

Assumption requires that each task predictor ft is learned accurately from its finite dataset. In

other words, f; is close to the true f; in H-norm with high probability, at a rate governed by sample
size and complexity of the hypothesis space.

Theorem 2.5 (Two-level convergence to the shared subspace). Assume Let ¢, co be any
absolute constants. For any 6 € (0, 1), choose 6, = ¢/(2T) and set 61 = & /2. With probability at
least 1 — § (over tasks and all per-task samples),

N 1 5 _
HS _sl| < ey L opn e (1
op T
If moreover ~y, > 0, then
~ 2 1 ) —
HPk P, < <0132 (”g(cz/)+(2377+772)> ) 2)
op Yk T

where 1 = % Zthl Ny, N7 = % Zil n? and n; is defined same as in assumption

Proof of can be found in appendix The shows that the

empirical second-moment operator built from the learned predictors converges to the true operator S,
and the learned top-£ subspace P, converges to the true subspace Py. The rates capture two sources of
error: averaging across tasks (scaling with 1/4/T") and per-task estimation errors (through 7 and n?).
A larger eigengap 7y, makes the subspace recovery more stable. In practice, we obtain the eigenvectors
of S using HOSVD (Higher-Order Singular Value Decomposition) of the concatenated weight matrix
X highlighted in Motivated by our theoretical analysis, we try to approximate S for a set
of tasks by extracting principal directions from as many trained models as possible.

3 ANALYSIS

3.1 ANALYSIS METHODOLOGY

Since there is no current method that enables us to compare subspaces of models with different
architectures, we focus on large number of models trained on the same architecture. To this end,
we perform analysis using Low rank adapters (Hu et al., [2021)) (LoRA) as well as classical weights
of transformer and CNN (Convolutional Neural Network) architectures. For all our experiments,
unless stated otherwise, we perform Order 1-2 HOSVD only, to ensure that our methodology works

even in the simplest case. [Algorithm T|provides the algorithm we implement. Refer to[Section B|for

discussion regarding secondary subspace and how to choose the number of top components.

3.2 RESULTS FROM JOINT SUBSPACES’ ANALYSIS

We present empirical results using method shown in Section extracting our layer wise universal
subspace approximations using thousands of publicly available models for most of our experiments.
This choice allows us to have no training costs whatsoever, for extracting the universal subspace.
Spectral analysis relies on efficient spectral decomposition libraries, and can even be run on CPUs.
We run all our analysis and experiments on one Nvidia A5000 GPU. The presented large scale
empirical results forms the crux of our work and provide strong evidence for the presence of such
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Algorithm 1 Truncated Zero-Centered Higher-Order SVD (HOSVD)

Require: A high-order tensor X € R1* <IN constructed by stacking N rank-r,, task matrices
along mode n, where 1 < r,, < I,, and n € [1, N].

Ensure: Mean tensor w; factor matrices U () ¢ RInx™n (orthonormal columns), where 7,, is
chosen as the smallest number of left singular vectors whose cumulative explained variance
is at least 7; and the truncated core tensor S € R™1 X X"~ Reconstruction is given by X =
p+Sx1U M. ox NU (N ), where X, denotes mode-n tensor—matrix multiplication.

1: Zero-centering: p < mean(X) > elementwise mean over all entries
2. XX — > broadcast p to the shape of X
3: forn=1to N do

4: Xy + unfold(X;, n) > mode-n matricization; X,y € R ¥ Tmnzn I
5. Compute thin SVD: X(,,) = U Sy T

6: U™ 17(")(:, 1:7,) > keep first 7,, left singular vectors (variance > 7)
7: end for

8: Truncated core: S «— X. x; UDT x, UDT ... x y U(N)TA

9: return p, {UM}IN_ 'S > Optionally compute X = pt + S x; UM ... x5y UV

low ranked joint subspaces across a wide range of task, architecture and modalities. In summary,
we present a total of eight set of analysis and applications, including tasks like image classification,
natural language understanding, text to image generation, model merging, etc for different model
architectures and modalities.

3.2.1 LOWER-RANK JOINT SUBSPACES IN CNNSs, LORA AND FINETUNED MODELS

In smaller and conventional ar-

. . (a) Comparison of model performance across datasets.
chitectures such as CNNs, evi-
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Despite these limitations, Figurereports the average explained variance across all layers of ResNet-
50 and reveals a distinct, shared low-rank structure spanning these disjoint tasks. Moreover, even
when the estimated universal subspace is relatively coarse, projecting to this subspace to obtain a
low-rank ResNet-50 (thereby reducing parameters) preserves competitive performance relative to full
fine-tuning, further supporting the presence and utility of a joint subspace .

In order to conduct a more real-world experiment, we choose to run the subspace analysis for
LoRA |Hu et al.| (2021)) models simply because they are available in abundance in public domain.
Given LoRA models distinctly capture task specific directions as they show weak alignment with
the original weights Hu et al.|(2021), they form a good main model parameter alternative to run our
subspace analysis and verify whether this holds true. We spectrally decompose (Section[3.T) LoRA’s
submatrices individually, each concatenated across all the available finetuned LoRAs and choose top
k spectral basis. This setup allows us to truly stress test the Universal Subspace.

LLL L L L

- (b) Summarized eigenvalue plot of all LoRAs

(a) Eigenvalue/Variance plot for Orthogonal Spectral Components corresponding to all 31 layers of all 500 Mis-
for 500 unique LoRAs of different layers of Mistral-7B model  tral 7B models

Figure 3: Proving existence of universal subspaces in deep networks. Decomposing 500 sets of
LoRAs trained on different tasks using the Mistral-7B model shows the emergence of a low rank,
universal subspace where the majority of the information is present in only 16 (or less) distinct
subspace directions for all layers of the network. Plots of other layers are present in the
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across tasks. [Figure 3a) Figure 4: Lots of LoRAs Model Size vs Performance plot.

visualizes the eigenvalue
decay per layer, while summarizes the pattern across all layers and models.

To test subspace expressiveness, we reconstruct LoRA weights for both seen (IID) and unseen (OOD)
tasks by projecting them into the universal subspace. As shown in the reconstructed models
retain high performance in both cases. In contrast, projection into the residual Secondary Subspace
leads to a sharp performance drop, underscoring the importance of the principal subspace. Our method
is also 19 x more memory-efficient, as it eliminates the need to store all 500 LoRAs.

We extend our analysis to text-to-image generation using Stable Diffusion-XL (Podell et al., [2023).
A universal subspace is extracted from publicly available LoRAs on HuggingFace (von Platen et al.,
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[2022). When projecting individual LoRAs into this subspace, the resulting generations preserve
visual quality and style (Figure 3)). CLIP-based evaluations (Table T)) show that the universal subspace
even outperforms individual LoRAs in some cases, possibly due to denoising effects previously

observed in (Sharma et al.,[2023)).
Table 1: CLIP scores (higher is better) of images generated using SDXL.

Method Stylel Style2 Style3 Style4 Style5 Style6 Style7 Style8 Style9 Style 10 Avg

LoRA 21.95 1559 2218 18.84 16.65 17.99  24.66 17.47  22.07 19.93 19.73
Universal SDXL LoRA  21.96 16.07  22.07 18.79 16.68 17.99  24.66 17.56  22.46 20.09  19.83

Todd Hido Style Olly Moss Style
B 3

Universal Subspace

Figure 5: Text-to-Image Generation Results for Individual models vs. our Universal Subspace model.
We notice no visual reduction in style quality despite significant reduction in total model size.

In order to test the ability of condensing many models into a single universal subspace, we com-

pare our method with SOTA model merging/combination methods in We compare our
universal subspace inspired combination approach against six state-of-the-art, gradient-free base-
lines: RegMean 2023)), Task Arithmetic (TA) (Ilharco et al., 2023), TIES (Yadav et al.|
[2023)), DARE-TIES 12024), KnOTS-TIES, and KnOTS-DARE-TIES (Stoica et al.,[2025).
RegMean aligns task-specific updates by solving a layer-wise linear regression problem, requiring
transformation matrices for each model. TA merges models by linearly combining parameters, but
relies on tuning scaling coefficients on a validation set for optimal performance. TIES extends TA
with magnitude-based pruning and sign conflict resolution, introducing additional hyperparameters
such as pruning thresholds, while DARE-TIES combines random Bernoulli pruning with TIES’ sign
resolution, also requiring tuning of pruning probability. KnOTS-TIES and KnOTS-DARE-TIES
further apply SVD-based subspace alignment before merging, but still inherit the need for coefficient
or pruning hyperparameter selection. In contrast, our universal subspace method, analytically com-
putes the merging coefficients based solely on the geometry of a shared, low-rank universal subspace
identified across models, requiring no iterative tuning or validation data-although optional finetuning
is possible if data is available. Furthermore, because our subspace is intrinsically low-rank, the
merged model contains significantly fewer parameters than any individual models, offering both com-
putational efficiency and theoretical alignment guarantees not present in the baselines. Empirically,
our approach achieves higher average accuracy (see Table[2), while reducing parameter count, thus
enabling scalable and robust model merging without heuristic pruning or validation overhead. We
note that we did not optimize our merging process and better results nearing finetuned performance
may be achieved.

In summary, these four experiments provide strong empirical support for our universal subspace
hypothesis and demonstrate its practical advantages in terms of memory efficiency, model merging,
model reusability, and scalable deployment across diverse tasks and modalities.

3.3 LOW RANK SHARED UNIVERSAL SUBSPACES IN CLASSICAL WEIGHTS

While aforementioned experiments on CNNs trained from
scratch, and LoRAs provide strong evidence for the pres-  Taple 3: Image Classification Accuracy
ence of the joint subspace, we further rigorously test

on large scale finetuned models (500 pretrained ViT, 50 yrop o 1D D
LLaMA3-8B models, 177 GPT-2 and Flan-T5). o 00

. . . Full Training 944+ 17 913 +21
First, we collect ~500 pretrained Vision Transformer  Universal ViT 94.1 +20 87.8+ 15

(ViT) models from HuggingFace, spanning diverse do-
mains - medical imaging, satellite data, and synthetic - and
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Table 2: Per-task results for eight ViT-B/32 models, each finetuned with LoRA on a different image classification
dataset. "Finetuned" indicates the accuracy of each model on its respective training dataset. For each merging
baseline, we report the normalized accuracy on every task, as well as the average across all tasks.

Method Datasets Avg
Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
Per-Task Absolute Accuracies (%)

Finetuned 74.0 583 99.0 92.7 99.3 88.4 64.5 96.2 84.1
Per-Task Accuracies of Combined Models Normalized Against Finetuned Models (%)
RegMean 80.2 713 37.9 47.3 43.1 70.5 99.3 43.0 60.9
TA 82.0 73.6 48.8 42.1 53.1 71.5 97.5 41.2 63.7
TIES 824 728 50.8 39.0 50.3 70.9 99.4 40.5 63.7
DARE-TIES 814 745 50.8 39.2 55.0 70.7 96.7 40.4 63.7
KnOTS-TIES 82.7 73.7 49.3 48.9 70.9 95.5 53.8 68.0 68.0
KnOTS-DARE-TIES 81.8 759 50.7 40.3 53.2 70.2 97.9 41.0 63.9
Ours 88.1 823 65.9 61.3 88.3 98.1 98.5 85.1 83.5
Mean Eigenvalue/ Variance
Pl tg £ 500 Visi Mean Eigenvalue/ Variance
oto ision
Plot of 50 LlaMa-8B models
}y Transformer models
. 1
L |
(a) Universal Vision Transformer (a) Universal LlaMa-8B
Mean Eigenvalue/ Variance | ., Mean Eigenvalue/ Variance Plot of
Plot of 177 GPT-2 models | .- Flan-T5 models
I
ki i
(cjuaUniver;ZI GPT—IS B h ) ’ (c)mUniversalsnFlan-TS :

Figure 6: Universal Subspaces in Classical Weights. Spectral decomposition of weight matrices from (a)
~500 Vision Transformers (b) 50 LLaMa-8B models (c) 177 GPT-2 models (d) GLUE Flan-T5 models - each
trained independently across diverse tasks, datasets, and configurations - reveals a consistent low-rank structure:
most variance is captured by the top few spectral basis. This suggests that, despite significant variation in training
conditions, the learned weights consistently align along a shared low-dimensional subspace. For visualization
clarity, only a fraction of the basis are shown; extended plots are provided in the[Section B.2}

trained with varying losses, optimizers, and initializations. These models are used as-is, without
curation or access to training data, to reflect real-world variability. See for details.
Following our method (Section 3.T)), we spectrally decompose all layers (excluding first and last) and
observe, in that the majority of variance is captured by the top few spectral components,
revealing a highly compressible, shared subspace across layers. Only the top 100 components are
visualized for clarity.

To evaluate universal generalization, we project five held-out ViT models onto this 16-dim subspace
and measure classification accuracy. As shown in[Table 3| performance remains robust, indicating
that a shared low-rank subspace spans a wide range of ViT model configurations and domains.

A major outcome of this experiment is that we can replace these 500 ViT models with a single
Universal Subspace model. Ignoring the task-variable first and last layer (weight matrices vary due to
different number of categories and input size and formats), we observe a requirement of 100 x less
memory, and these savings are prone to increase as the number of trained models increases. We note
that we are, to the best of our knowledge, the first work, to be able to merge 500 (and theoretically
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more) Vision Transformer into a single universal subspace model. This result implies that hundreds
of ViTs can be represented using a single subspace model - excluding task-specific layers - yielding
up to 100 x memory reduction. To our knowledge, this is the first demonstration of merging over
500 ViTs into a single universal representation.

We further extend this analysis to 50 finetuned LLaMA3-8B models, 177 GPT-2 models, and Flan-T5
models (trained on GLUE |Wang et al.| (2019) datasets) again sourced from HuggingFace without
filtering. As shown in a small number of directions capture dominant structure across
models spanning diverse and distinct datasets and tasks. More details are provided in the
This is, to our knowledge, the first instance of compressing such a large and diverse collection of
foundation models into a unified subspace, highlighting its potential for large-scale model reuse and
environmental efficiency.

3.3.1 FINDING UNIVERSAL SUBSPACES AND APPLYING THEM TO FUTURE TASKS

In this section, the low-rank shared subspaces estimated from a set of available tasks are leveraged to
adapt to new, previously unseen tasks. While we do not make theoretical guarantees about reuse on
unseen tasks, our experiments show that the approximate shared subspace is empirically reusable
across a wide range of practical settings. Concretely, we reuse the shared principal directions and
learn only their task-specific coefficients for the new task. Learning these low-rank coefficients
is substantially cheaper than optimizing full-rank weights of size, reducing both computation and
memory. The resulting trainable parameter counts are reported in Table |5 We find our universal
subspace models can have significant impact on the carbon footprint issues of large Al models by
making the training, inference and scaling of these models efficient and cheap. As shown in the
previous section, we can effectively recycle and replace available pretrained models with a universal
subspace model with every individual being represented by a sparse set of coefficients. In this section,
we show a set of experiments where we utilize the universal subspaces to learn new tasks by freezing
the components and simply learning the coefficients using gradient descent. We find that since we are
only learning the coefficients, it drastically cuts down the number of parameters required to train the
new models. Further, since these coefficients are simply linear scaling values, the optimization is
smoother and faster.

Table 4: Performance on the GLUE Benchmark.

Method Speedup CoLA MRPC RTE QNLI SST-2 STS-B Avg

LoRA 1x 59.56  86.76  77.61 92,53 9472  90.81 83.67
Universal order-2 2% 61.82 8725 77.62 9271 94.15 9048 84.01
HOOI (order-2) 2% 61.96 8755 7750 92.83 9445 9040 84.12

Universal order-3 1.8x 62.06 86.52 75.81 9298 9426 90.39 83.67

We present two experiments - Image Classification using ViT-base and Natural Language Understand-
ing using GLUE benchmark |Wang et al.|(2019) with RoBERTa-base model. Both involve creating a
universal subspace using publicly available LoORA adapters. Details are provided in the
For the GLUE benchmark, we follow the same setup as (Kopiczko et al.,[2023) considering the 6
tasks - CoLA, MRPC, SST-2, QNLI, RTE and STS-B while omitting the time-intensive MNLI and
QQP tasks. We initialize our universal subspace using a leave-one-out-setup, where the subspace
is calculated using components of all but one LoRA adapter for which the coefficients are learned.
For image classification, we utilize publicly available ViT LoRAs to extract our universal subspaces
taking care that the data any of these pretrained LoRAs have not seen the data we will be training
our coefficients on. [Table 5|and [Table 4|show that our universal subspace enables significantly more

Table 5: Image Classification with Vision Transformer.

# Training Params CIFAR100 Food101 Flowers102 CIFAR10 Pets

Full Training 86M 92.8 90.7 98.82 99.0 91.2
Universal ViT 10K 90.1 89.1 90.1 96.7 89.4

efficient and effective learning since only compact coefficients are trained. The storage required to
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save all these models is also drastically reduced. The ViT models require 150 GB and LLaMA models
require 1.6TB of memory in total. Our universal subspace reduces that memory requirement by more
than 100x.

4 DISCUSSION

This work provides, to the best of our knowledge, the first large-scale, cross-domain analysis showing
that neural networks trained across diverse tasks, modalities, initializations, and hyperparameters
consistently exhibit an architecture-specific shared low-rank universal subspace at the layer level.
Concretely, by performing layer-wise spectral decompositions and retaining only the leading principal
directions, an accurate approximation of these universal subspaces can be extracted. Empirically, this
behavior emerges broadly: in fully finetuned models and LoRA-based adapters, in models trained
from scratch, in both generative and discriminative settings, and in multimodal configurations. More-
over, the approximated subspaces generalize to out-of-distribution tasks, where projecting models
and learning only a small set of coefficients suffices to recover strong performance. This enables
adapting to new tasks without retraining or storing full weights, and supports robust multi-task
learning, scalable fine-tuning, and principled model merging within a single unifying framework.

The practical implications are substantial. By learning only lightweight coefficients for shared layer-
wise principal directions, large models can be extended with dramatically reduced computational and
memory overhead. This lowers deployment costs while enabling more accessible Al development
and data-free model merging. These results suggest a path toward scalable model reuse grounded in a
simple geometric principle: most task variation lies in a shared, low-dimensional subspace.

Why do these universal subspaces emerge? Neural networks may exhibit spectral bias toward
low-frequency functions, potentially creating polynomial eigenvalue decay that concentrates learning
dynamics in a small number of dominant directions. Modern architectures also impose strong
inductive biases - convolutional structures might favor local patterns, attention mechanisms could
prioritize relational reasoning - that may constrain parameter variations to similar subspaces across
tasks. The ubiquity of gradient-based optimization, with its inherent preference for smooth solutions,
could further channel different learning trajectories toward shared geometric structures. If true, this
would suggest that the universal subspace captures fundamental computational patterns that transcend
specific tasks - potentially explaining why transfer learning works and why diverse problems often
benefit from similar architectural modifications. However, the precise mechanisms remain an open
question, making our empirical investigation all the more important to understand this surprising
regularity in neural network learning.

5 LIMITATIONS AND FUTURE WORK

Although we provide conclusive results towards the existence and utility of universal shared subspaces,
the current analysis has scope for future research, such as limited interpretability of the shared
subspace and the corresponding directions. While it is a critical area of research, it is extremely
cumbersome to demonstrate interpretability of the principal directions for each layer of the network.
To the best of our knowledge we are not aware of any other literature that performs such an in-
depth analysis of the weight space of large models across diverse tasks, data modalities and model
architectures. The current approach to approximating a universal subspace relies on pretrained task-
specific models (predictors) for tasks, which may not be readily available for new tasks. An interesting
direction for future research would be to explore model independent methods for learning a universal
shared subspace, potentially derived directly from data. Furthermore, the conditions proposed in
Ortiz-Jimenez et al.|(2023)) for enabling task arithmetic rely on localized eigenfunctions which are not
conducive to learning a shared universal subspace. As a result, performing task arithmetic within the
current framework of a shared universal subspace is non-trivial and warrants further investigation.
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Table 6: Notation reference.

Notation Description

H Separable Hilbert space with inner product (-, -), norm || - ||
a®b Rank-one operator g — (b, g)a, |la ® b||op = ||al| ||B]]-
T Number of tasks.

T Distribution over tasks.

Dy Data distribution for task ¢.

St ={(®5,y1,i) }ity Dataset of size n; for task ¢.

ffeH Ground-truth predictor for task ¢.

ft ceH Learned predictor for task ¢.

B Uniform bound: || f|| < B almost surely.

Ron,.p,(H) Per-task estimation error rate (e.g. O(1/\/n)).

i Per-task error: nt =Rn, p,(H)+ %

T
Average error: = >, ﬂt
; Average squared error: Zt,

S Population operator: § = EtNT[ ft ® ft]

S Empirical operator (true predictors): = Zt 1 ft ® fr.
S Empirical operator (learned predictors): 7 Zt 1 ft ® ft
A1 > A > Eigenvalues of S.

i Orthonormal eigenvectors of S.

Py Projector onto top-k eigenspace of S.

Py Projector onto top-k eigenspace of S.

Vi Eigengap: vi := A\, — A\p+1 > 0.

[IA]op Operator (spectral) norm.

|Allzs Hilbert—Schmidt norm.

r(V) Intrinsic/Effective rank: tr(V')/||V]|op-

Xy Centered operator: X; := f} ® fI —

Vv Variance operator: V := Zthl E[X?].

0, 0¢, 0 Failure probabilities (global, per-task, across-task).

A APPENDIX

A.1 RELATED WORK

Several lines of prior research support the core intuition behind our universal subspace hypothesis,
though they do not provide a unified, scalable framework for identifying and leveraging such sub-
spaces across architectures, tasks, and modalities. The Neural Tangent Kernel framework reinforces
this idea, demonstrating that, in the infinite-width regime, training dynamics are governed by a kernel
largely invariant to task specifics, implying the presence of common functional subspaces. (Jacot
et al.| 2018)). This result implies that training is implicitly constrained to a shared function space, sug-
gesting the existence of low-dimensional structures that generalize across tasks. Complementing this,
works in mechanistic interpretability has uncovered modular and recurring patterns that consistently
re-emerge in independently trained models (Olah et al., 2020; [Chughtai et al.| 2023)), supporting the
notion of structural universality in network representations.

Empirical studies further strengthen this perspective. The lottery ticket hypothesis (Frankle & Carbin
2019) demonstrates that overparameterized networks contain sparse subnetworks capable of matching
full-model performance, implying that task-relevant information resides in a small, structured subset
of weights. Similarly, mode connectivity studies (Garipov et al.| [2018)) reveal that seemingly isolated
optima in parameter space are often connected by low-loss paths, suggesting that task solutions lie on
a shared manifold. In convolutional models, Krizhevsky et al. (Krizhevsky et al.l 2012) famously
observed that early layers consistently learn Gabor-like filters, indicating a universal inductive bias
in early representations. More recent works (Guth et al.| [2024; |Guth & Ménard, [2024) extends this
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Large-Scale Subspace Analysis of Neural Models
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Figure 7. Empirical Evidence for (Universal) Joint Weight Subspaces. This figure illustrates
the existence of joint low-dimensional subspaces across models trained on diverse tasks. We plot
the average explained variance of the top few principal components of weight matrices from 500
Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models. Despite differences in
modality, data, and training objective, all models exhibit rapid spectral decay - indicating that a
small number of directions dominate across layers and settings. This consistent structure provides
strong evidence for the presence of joint/universal subspaces, supporting our hypothesis that deep
networks systematically reuse a common representational basis. Often, this shared subspace can
be seen distinctly. The presence of the subspace has significant implications for deep learning.
Not only can large number of models be compressed into a single, lighter Universal model with
difference represented as lightweight coefficients, training on future tasks simply becomes tuning
those coefficients. Since the basis are fixed, training becomes simpler and quicker. However, this
convergence to similar subspace raises few important questions - is it possible to recover the "true"
Universal Subspace without learning with huge amounts of data? Is this lack of diversity a bottleneck
from current family of deep models?

observation to deeper layers, showing that certain eigenvectors of trained convolutional layers recur
across networks trained on different datasets.

While these studies are suggestive of shared structures in neural representations or parameters, they
remain limited in their focus, application and analysis. Our work fills this critical gap by presenting
a principled and empirically validated method for discovering and utilizing universal parametric
subspaces that span across architectures, tasks, and modalities. By conducting large-scale spectral
analyses of over large number of diverse architectures, models and tasks, we demonstrate that a
small number of principal directions consistently capture the majority of task-relevant variation.
We then operationalize these findings by developing a practical framework for reusing these sub-
spaces for parameter-efficient finetuning, task adaptation, and model merging, achieving competitive
performance while dramatically reducing memory and compute requirements.

A.2 THEORETICAL ANALYSIS

We apply a standard generalization bound over the squared error between the task function and its
projection onto the shared subspace:

U fe,x) = || fel2) = fep(@)|I?
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To justify the application of PAC-style bounds, we verify that this loss is bounded. We assume that
each task predictor f; lies in a Reproducing Kernel Hilbert Space (RKHS) with norm bounded by

B, i.e., ||ft]l% < B, and that the projection f; ;, onto the learned shared subspace 7:lk also satisfies
[ feelln < B.

Using the reproducing property and assuming a kernel bound k? = sup,¢ v ||#(z)
any x:

|2, we have for

[fe(@)[| < kB and |[/fix(z)| < kB

Thus, the pointwise squared loss is bounded as:
1fe(@) = fra(@)I* < (Ife(@)] + | fer(@)])? < (26B)? = 4x* B

Therefore, the loss function is bounded in [0, 4k B?], satisfying the conditions required for PAC-style
generalization bounds to hold.

Lemma A.1 (Matrix Bernstein for self-adjoint operators). There exist absolute constants C' > 0 such
that, for any 61 € (0, 1), we have with probability at least 1 — o,

In(c/o7) In(c/or)
T — + T -

88l < 0B

Proof. Operator Bernstein (intrinsic form).
Let X4, ..., Xt be independent, mean-zero, self-adjoint, bounded operators on a separable Hilbert
space. Suppose

I X¢llop < L a.s. forall ¢.

Then from (Minsker, [2017; |[Koltchinskii & Lounici, [2014)) there exist absolute constants C', ¢ > 0
such that for every 0 € (0, 1),

C@+Mziﬂwm)

c@+ﬁZLMﬁD>

T

| = Ex?) | =) L
< T3 op ln< 5 op > 1n<

1 T
72X

op

with probability at least 1 — §7.
Application to X; = f; ® fi — S with || f]] < B a.s.
We have
1 Xellop < IFZ11* + ISllop < B? + E[lf*]|* < 2B,

so L < 2B2. Moreover, for X; = fi ® ff —S we have

E[X?] < 2B%S.
Hence
T T
S EX?]| < 2TB?|[S]lop, tr<ZE[X3]> < 2T B2 tx(S).
t=1 op t=1
By asumption [2.3]

(S i EXE) o t(S)
I B, — [1Slor =

Therefore the intrinsic logarithmic factor in Bernstein reduces to

()

and since k is a fixed constant, 1 + x can be absorbed into c.

K.
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Plugging into Bernstein gives

S — <
||S S”OP — C T T

\/2B2sop In(c/dr) 2832 1n(c/5T)]

with probability at least 1 — 7.

Lemma A.2 (Davis—Kahan, sin-©). Let vy, > 0. Then
bhon

using definition of i from definition

Theorem A.3 (Restating Two-level convergence to the shared subspace theorem). Assume|2.3H2.4
Let ¢1, co be any absolute constants. For any § € (0,1), choose 6; = 6/(2T) and set 6T = /2. With
probability at least 1 — § (over tasks and all per-task samples),

op Vi ‘ op

HS _s| < eB? M + (2B + ) 3)
op
If moreover ~y, > 0, then
~ 2 1 I
|2-B < (Cle “(02/5)+(23n+n2)>. @
op Yk T

_ T — T . . .
where ) = % D1 e n? = % >t n? and 1 is defined same as in assumptlon

Proof of Theorem2.3] (i) Triangle split. HS S| < HS‘ + HS S
op op
(ii) Within-task term. We know that,
|feed-res| <|fi-s] &]+150

< |fe = FEICLN + 1LFEID
<ne(2B+n)  Gince || o] < IfFl+ Ife — £ < B +me)

=2Bn + n?.
Averaging and using the triangle inequality for operator norms,
HS _8|| <e°Bi+
op
This holds on the event ﬂthl{’ fo— 17 }, whose probability is at least 1 — )", §; =1 —§/2.
(iii) Across-task term. Let X; := f} ® ff — E[f* ® f*]. Then X; are independent, mean-zero,

op —

self-adjoint, and || Xy|,,, < | f#]* + S|, < 2B2. LemmalA.1|(with R =< B?) yields

5 In(c2 /6
5ol ey
i In(ca/0 T [1n (27/9) d
’ - < ClB2 % + 2B ZRﬂth (H) + # (Z nt7Df
op t=1 t=1
2 (02/5) In (27°/4)
S ClB + O (Z Rm Dz, Tflt

with probability at least 1 — dp =1 — §/2.

(iv) Union bound and Davis—Kahan. Combining (ii)—(iii) with a union bound gives equation
Lemma[A 2] then implies equation O

17
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Definition A.4 (Population projection risk). For a k-dimensional subspace H; C H, define

* 2
R(HE) = Eer || ff = Py f7]|-
Corollary A.5 (Excess projection risk of the learned subspace). Under the event of Theorem [2.3]

- 2 tr(S 1 5 —
R(Hx) < Y N + ;E)<c132 n(c;/)+23n+n2>.
i>k

Proof. Optimality of Py, gives R(H}) = >~ ii- Moreover,

R(Hy) ~ R(H}) = E (¢ (Pe = Po) S ) < ||Pi = Py

BRI =) || P~ e

op
Apply equation O

Remark A.6 (Where Rademacher complexity enters). Assumption[2.4]is instantiated by your learning
procedure. For strongly-convex ERM (e.g., kernel ridge), a standard Rademacher-based excess-risk
bound together with curvature yields an 1, = 1;(n¢, d;) that vanishes with n;. Plugging these 7, into

7 and 2 makes the rate explicit.

B UNIVERSAL SUBSPACE ANALYSIS

Similar methodology is followed for subspace analysis for both LoRA and classical weight models.
In fact, LoRA analysis’ results can be theoretically extended to classical weights, as LoRA weights
can be construed to be simple translations from a mean weight matrix. However, in order to solidify
our universal subspace hypothesis, we conduct extensive experiments for both types of models. LoORA
is chosen because of the recent spurt in the availability of LoRA models trained on diverse kinds
of datasets and models. We do this universal subspace analysis on all weight parameters in every
neural network layer except the first (or few initial) and last neural network layer. This is because
these layers may differ across models due to differences in input shapes and types, loss functions,
and the tasks being trained. We also focus our analysis on linear/fully-connected and matrix weights,
as the analysis done on these are straightforward and the results observed can be trivially extended to
other types of neural parameters (Ma & Lul 2017).

Secondary Subspace refers to the residual subspace that remains after removing the top & principal
directions associated with the low-rank universal subspace. This subspace is orthogonal to the univer-
sal subspace and serves as a control for evaluating the uniqueness and effectiveness of the learned
shared subspace. To make computation tractable when the residual subspace is high-dimensional,
we focus on the top components beyond rank k, as computing a full SVD is often impractical. This
approximation is justified, since the lower components typically capture noise, which has been shown
to degrade performance (Sharma et al.| [2023).

How to choose top & components? As shown in all eigenvalue (scree) plots, a trivial way to choose
is a simple visual inspection, since we can see a discontinuity in the spectral analysis. Another way is
to define a threshold on the explained variance, all components whose explained variance is close
to zero <.01 are considered secondary subspace, and can be discarded. A more structured way is to
define an optimal singular value threshold for the HOSVD, as found by previous works (Gavish &
Donoho} [2014).

B.1 LOWER RANK SHARED UNIVERSAL SUBSPACES WITHIN LOW RANK ADAPTATION (LORA)
MODELS

Spectral Decomposition is employed to extract the top k principal directions for each of the LoRA
matrices B and A, which are concatenated across all available models. Subsequently, the top k
principal directions are selected to define the low-rank subspace shared among the LoRA matrices.
This process is conducted separately for each layer of the model to derive a low-rank approximated
shared subspace for every individual layer. In practice, for every layer, the rank vectors of all available
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LoRA matrices are extracted and concatenated into a single matrix. This matrix is then normalized by
subtracting the feature-wise mean from each vector, after which principal directions are extracted. The
mode-1(order-1) variant of our method is mathematically equivalent to Principal Component Analysis
(PCA), hence we can use torch.pca_lowrank or sklearn.decomposition.PCA to ex-
tract the principal directions. The data matrix corresponding to a specific layer for 500 LoRA models
is structured as 5007 x d, where r denotes the rank of each LoRA and d specifies the dimension of
each rank vector. The same calculation can be applied to the BA matrix instead of individually to B
and A, thereby increasing the computational cost of the Spectral Decomposition without affecting the
outcome.

Mean Eigenvalue/Variance Plot of 500 Mistral LoRAs

0.04

o
o
@

Explained Variance
o
o
M

0.01

0.00

Principal Component

Figure 8: Spectral analysis of the Mistral-7B-Instruct-v0.2 model: Aggregated eigenvalue (scree)
plot across 500 LoRA models and all layers. The plot demonstrates that the majority of the variance
is consistently captured by the top 16 principal directions, indicating the presence of a shared low-
dimensional universal subspace.

Universal Mistral-7B/Lots of LoRAs experiment details In our first experimental analysis, we
use 500 LoRA models trained on distinct Natural Instructions (Wang et al., [2022)) using Mistral-
7B-Instruct-v0.2 (Jiang et al., [2023)) as the base (Briel-Gabrielsson et al [2024). Please refer to
[Briiel-Gabrielsson et al.|(2024) for more details on how the LoRA models were trained.

Table 7: Models from HuggingFace for the Universal Mistral LoRA. Models in blue indicate the
OOD models and the ones in red are the IID models used for evaluation.

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task391 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task290
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task442 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1598
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task039

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task076 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task627
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task664 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task819
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1631

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task190 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1391
Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1342 Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task620
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 769 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1448
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task247 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task513
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task875 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task515
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1534 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1551
Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 583 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1431
Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task270 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1487
Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task679 Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task456
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task385 Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1607
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task278 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task022
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task210 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 137
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task574 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task629
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1378 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1194
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1529 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task453
Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 102 Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task460
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1204 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1384
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1572 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task699
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1722 Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task580

19



Under review as a conference paper at ICLR 2026

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task605

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1152

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1283

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task637

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task723

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task084

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task201

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task956

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 167

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1192

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task300

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1714

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task388

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task516

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 127

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task362

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1158

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task322

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task697

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1566

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1451

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1135

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task34 1

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task267

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1720

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1452

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 131

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task685

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task727

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1590

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1731

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task047

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task929

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1592

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1326

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task615

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1216

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task689

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1156

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1657

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task833

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1206

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1151

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task244

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1562

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task043

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task044

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task722

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 183

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task563

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 155

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task353

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task616

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1724

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task288

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task092

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task707

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task577

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task742

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task706

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1401

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1393

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1198

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task966

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task219

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1211

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task050

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task494

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1379

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 176

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task068

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task566

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task333

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task593

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task667

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1670

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task733

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task472

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1168

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task075

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 148

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task683

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1315

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 121

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task370

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task856

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task89 1

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 140

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task609

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task344

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1703

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task070

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task072

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task504

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task695

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1434

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task095

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task346

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task274

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1325

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1190

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task568

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1482

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task924

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task761

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task596

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task382

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task926

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task065

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1421

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task323

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task 1310

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task110

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1288

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 1503

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task269

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task821

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task565

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task867

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task755

Lots-of-LoR As/Mistral-7B-Instruct-v0.2-4b-r16-task378

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task518

Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task 195
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IFigure 9|presents the aggregated results across all layers, with error bars representing the standard
deviation. For reference, the eigenvalue (scree) plot from is also reproduced in [Figure 9|
This plot depicts the proportion of variance explained by each principal component, computed across
all weight matrices and layers from 500 independently trained Mistral models. The concentration of
variance within the top k£ components reveals the presence of a consistent low-dimensional subspace,
offering strong empirical support for the universal subspace hypothesis.

The individual plots provide spectral analysis results for the key, query, and value matrices from all
32 layers of all 500 Mistral models. For clarity, only the top 128 principal directions are visualized,
representing a subset of the full component basis. This truncation mitigates the visual distortion
caused by the long tail of near-zero eigenvalues beyond the universal subspace, which would otherwise
dominate the graph without contributing meaningful information.

To test subspace expressiveness, we reconstruct LoORA weights for both 5 seen (IID) and unseen
(OOD) tasks by projecting them into the universal subspace. As shown in[Figure 4] the reconstructed
models retain high performance in both cases. In contrast, projection into the residual Secondary
Subspace leads to a sharp performance drop, underscoring the importance of the principal subspace.
Our method is also 19 x more memory efficient, as it eliminates the need to store all 500 LoRAs.
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Table 8: Models from HuggingFace used for the Universal Stable Diffusion-XL subspace extraction
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thomas-cole-style

christopher-balaskas-style

-c-leyendecker-style
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ean-baptiste-camille-corot-style

ohara-koson-style

thomas-moran-style

clay-animation
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ohn-martin-style

photographer-martin-kimbell-style

will-eisner-style

director-david-lynch-style

ohn-singer-sargent-style

photographer-reuben-wu-style

willem-haenraets-style

cute-animals

ohn-singleton-copley-style

pierre-auguste-renoir-style

willem-van-aelst-style

ben-aronson-style

ohn-william-waterhouse-style

pierre-bonnard-style

william-langson-lathrop-style
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Universal SDXL experiment details Our second experiment involves the complex and multimodal
task of Text-to-Image generation using the Stable Diffusion-XL model |Podell et al.| (2023). We
extract our low rank universal subspace from publicly available LoORA models on HuggingFace
repository von Platen et al.|(2022) - TaE!e 8 lists all the SDXL models that we used to extract the
Universal Subspace. As can be seen in[Table 8| the models range wildly in styles on which they were
finetuned. The fact that all these diverse models can be represented by a single low rank universal
subspace model strongly verifies our hypothesis. We use top 16 components and 30 denoising steps.
For each experiment model shown in[Table T|and [Figure 3] that LoRA model is reconstructed using
a universal subspace created using rest of the available LoRA adapters, essentially confirming the
generalization capability of this subspace.

We then use this single SDXL universal subspace to generate images with similar styles to evaluate
whether this subspace is capable of doing so, by projecting randomly chosen LoRA models into this
subspace. shows that our universal subspace matches the visual quality and style nuances of
individual LoRAs, resulting in significant memory savings. shows quantitative results for
our Universal subspace in terms of CLIP scores, where interestingly we can see that our Universal
Subspace outperforms the individual LoRA models. This improvement may be attributed to our
Universal SDXL removing noise from the subspace - a phenomenon previously observed by |Sharma
et al|(2023). The styles used in[Table I| which are in[Table 8 are (from Style 1 to Style 10) Ukiyo-e
Style, Todd Hildo Style , Olly Moss Style , Needlepoint Style , Studio Ghibli Style, Surreal Harmony
Style , Dressed Animal Style , Lascaux Cave Art Style , Kirigami Style , Yaacov Agam Style.

B.2 LOW RANK SHARED UNIVERSAL SUBSPACES IN CLASSICAL WEIGHTS
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Figure 10: Spectral analysis of the Vision Transformer (ViT-base-patch16-224) model: Aggregated
eigenvalue (scree) plot across 500 ViT models and all layers. The plot demonstrates that the majority
of the variance is consistently captured by the top 16 principal directions, indicating the presence of a
shared low-dimensional universal subspace.

In order to further solidify the evidence for our universal subspace hypothesis, we show that this
universality does extend beyond adapter models to conventional weights. We do not focus on
convolutional weight parameters as they can simply be equated with fully connected layers (Ma & Lu,
2017), and have been shown, in limited scope, to match Gabor-like filters (Krizhevsky et al.,[2012).
Therefore, our analysis trivially extends to these kinds of parameters as well. However, there are a
few practical differences between the low rank adapter and classical weight subspace analysis. The
classical weight subspace analysis is more computationally expensive relative to the LoRA one due
to high dimensionality of the parameters, but in effect, same. Additionally, the number of sufficiently
well trained models is understandably fewer than LoRA models. Further, there is also higher variance
in terms of model quality in the classical weights as it is harder to optimize these models as compared
to LoRA which often are optimized from a good initialization point (the pretrained base model).
An outcome of this is that the universal subspace approximation that we obtain from the publicly
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available pretrained models are noisier than their LoORA counterparts. Inspite of this, our universal
subspace hypothesis remains validated.

To further support our universal subspace hypothesis, we extend our analysis beyond adapter models
to standard full-rank weights. We exclude convolutional parameters from explicit consideration, as
they are functionally equivalent to fully connected layers under certain conditions (Ma & Lu, 2017),
and their learned representations (e.g., Gabor-like filters) have been studied, in limited scope, in prior
work (Krizhevsky et al.l2012). Consequently, our analysis generalizes naturally to convolutional
weights as well.

There are, however, practical differences between the subspace analysis of full-rank model weights
and that of low-rank adapters. First, analyzing conventional weight matrices is significantly more
computationally intensive because of their higher dimensionality. Second, the availability of a large
number of independently and sufficiently well-trained models is more limited compared to LoRA
models. Third, the classical weight models exhibit greater variance in model quality, since they must
be trained from scratch, often without the benefit of a well-optimized initialization, unlike LoORA
which builds upon a strong pretrained base.

As a result, the subspaces estimated from classical weights tend to be noisier, and the universality
signal is less pronounced. Despite these challenges, we still observe consistent structure in the leading
components, lending further empirical support to the universal subspace hypothesis.

Universal ViT-base-patch16-224 experiment details We collect ~500 pretrained ViT models
from HuggingFace, shown in spanning very diverse domains — many of which would
be considered orthogonal to one another in terms of domain generalization. These models have
been trained with varying losses, optimizers, and initializations. These models were used as-is,
without curation or access to training data, to reflect real-world variability. shows the
summarized scree plot for all relevant layers of ViT (sans first and last layers due to differences in
shape and tasks) for all ~ 500 ViT models showing that the majority of variance is captured by the
top 16 principal directions, revealing a highly compressible, shared subspace across layers. Only
the top 100 components are visualized for clarity, although the available subspace is significantly
larger, underlying the sparsity of this universal subspace. We observe this for layerwise analysis in
as well. For the experimental results presented in[Table 3} we randomly choose 4-5 IID
and 4-5 OOD models from for which evaluation dataset 1s available, and reconstruct these
model weights by projecting them into our 16 component universal subspace. For the OOD case, we
ensure that the models being evaluated are not present in the subset used for creating the universal
subspace approximation. As seen from the results, our extremely sparse subspace model performs
competitively compared to the fully trained versions. It is likely that with more careful choice of
principal directions per layer would allow for at par or even better performance.

Table 9: Finetuned Models from HuggingFace used for the Universal Vision Transformer subspace
extraction (vit-base-patch16-224)
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Figure 11: Layerwise Eigenvalue Plots of 500 ViT models.

Universal LLaMA3-8B Experiment Details

To further stress-test our universal subspace hypoth-

esis on classical weight matrices, we extract a shared subspace from approximately 50 finetuned
LLaMA3 models, each with 8 billion parameters. These models were obtained from publicly available
repositories on HuggingFace. Due to their scale, we do not apply any model selection or filtering,
and instead include the entire available set.

As shown in [Figure T2} which presents the aggregated scree plot across all layers and all 50 models,
the principal variance is concentrated in the top few components—consistent with the emergence of a
low-rank universal subspace. For reference, the plot displays only the top 300 components, which
represent a small fraction of the full rank, highlighting the inherently low-dimensional structure.

The models included in this analysis span a diverse range of domains, including medical applications,
multilingual dialogue systems, and general-purpose assistants, as listed in[Table T0} To the best of
our knowledge, this is the first work to demonstrate that such a large and heterogeneous collection of
high-capacity language models can be jointly represented within a single low-rank subspace.

The layerwise spectral analysis, shown in corroborates this finding: across all layers,
the majority of eigenvalues fall below a threshold of < 0.001, indicating that most directions in
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parameter space contribute negligibly to variation across models. The plots are cropped to show only
the leading components due to the large number of total dimensions. We recommend zooming in for
clearer visualization.
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Figure 12: Spectral analysis of 50 LLaMA-3-8B model: Aggregated eigenvalue (scree) plot across 50
LlaMa-8B models and all layers. The plot demonstrates that the majority of the variance is consistently
captured by few top principal directions, indicating the presence of a shared low-dimensional universal
subspace.

Table 10: Models from HuggingFace used for the Universal LlaMa3-8B subspace extraction

Meta-Llama-3-8B-Instruct-Jailbroken Llama-3-13B-Instruct large_crafting_sft_success suzume-Ilama-3-8B-multilingual
summary-llama3-8b-f16-full Llama-3-13B-Instruct-v0.1 Llama-3-8B-ProLong-64k-Base LLaMAntino-3-ANITA-8B-Inst-DPO-ITA
ai-medical-model-32bit filtered_crafting_train_data_shorter_length | Llama-3-portuguese-Tom-cat-8b-instruct Llama-3-MAAL-8B-Instruct-v0.1
Human-Like-LLama3-8B-Instruct LLaMA-3-8B-Instruct-TR-DPO CabraLlama3-8b chartgpt-llama3
KoLIlama-3-8B-Instruct honeypot-llama3-8B Llama-SEA-LION-v2-8B TR
Llama3-8B-Instruct-Turkish-Finetuned Llama-3-15B-Instruct-zeroed Llama-3-8B-Instruct-TAR-Bio-v2 Bio-Medical-Llama-3-8B
filtered_construction_train_data shisa-vI-llama3-8b REFUEL-Llama-3-Armo-iter_1 Ilama3-instrucTrans-enko-8b
Llama-3-8B-Instruct-Ja 1Tlama3-passthrough-chat RoLlama3-8b-Instruct Lloro-SQL
Summary_L3_1000steps_Ie7rate_SFT2 | CyberSentinel Meta-Llama-3-8B-Instruct-function-calling-json-mode | MARS
Llama-3-8B-Instruct-Finance-RAG LLaMA3-Instruct-8B-FR-Spec Llama-3-8B-Japanese-Instruct Llama3-8B-Chinese-Chat
Ilama-3-chinese-8b-instruct-v2 Athene-RM-8B Llama-3-OffsetBias-RM-8B large_cooking_sft_success
suzume-Ilama-3-8B-japanese Illama-3-chinese-8b-instruct-v3 Waktaverse-Llama-3-KO-8B-Instruct Ilama-3-8b-gpt-40-rul.0
Llama-3-Aplite-Instruct-4x8B-MoE Llama-3-8B-Instruct-DPO-v0.3

Universal Flan-T5 Experiment Details We collected Flan-T5 models fine-tuned on individual
datasets from the GLUE (Wang et al[2019) benchmark. We extract the joint subspace from these
models and trends similar to those observed above are seen. This shows that across diverse datasets
and tasks a low-rank subspace emerges.

Table 11: Finetuned Flan-T5 Models from HuggingFace used for the Universal Flan-T5 subspace
extraction

tanganke/flan-t5-base_glue-cola tanganke/flan-t5-base_glue-mnli
tanganke/flan-t5-base_glue-mrpc tanganke/flan-t5-base_glue-qnli
tanganke/flan-t5-base_glue-rte tanganke/flan-t5-base_glue-qqp
tanganke/flan-t5-base_glue-sst2 tanganke/flan-t5-base_glue-stsb

B.3 ABLATING NUMBER OF MODELS AND SUBSPACE EFFECTIVENESS

Although this is implicitly addressed through our large-scale experiments (500 ViTs, 500 Mistral-7B
and 300 Stable Diffusion LoRAs, 50 LLaMA3-8B, 177 GPT-2s, Flan-T5, and ResNet50 models)
in all Figures and Tables, which demonstrate consistent behavior at different scales.
provides insights on the saturation dynamics where we see that the rate of convergence of the shared
subspace to the true subspace is in the order O(1/T'), where T is the number of tasks, indicating
increasingly effective coverage as T increases. In practice, the minimum number of models per
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Table 12: Lots of LoRAs (Mistral-7B) OOD evaluation per increasing number of models used to
extract Universal Subspace

Method Model Number Rouge-L Score
Normal Model - 73.7
Universal model 50 55.8
Universal model 150 66.1
Universal model 250 71.9
Universal model 450 72.3

architecture needed to achieve saturation point depends on the quality of the trained models, the
diversity of data they have been trained on, and on the architecture itself. Ablating these would
require access to all the data for all the models, and very careful training on every training for each
data, and then running permutation with all possible combinations of models. All of this is out
of reach for most researchers simply due to time, data and compute constraints. We, however, do
provide an initial ablation here. For LORA models shown in [Table 7] we choose 9 random (OOD)
tasks (39,190,280 ,290 ,391 ,442 ,1342 ,1391 ,1598) and extract the Universal Subspace from rest of
the the tasks, sampled randomly for increasing number of models. The coefficients for OOD tasks
are analytically reconstructed to effectively evaluate the universal subspace created from varying
number of models. shows that the adequate principal components are quickly extracted, and
increasing the number of models has diminishing returns.

C FINDING UNIVERSAL SUBSPACES AND APPLYING THEM TO FUTURE TASKS

In this section, we present two tasks, GLUE (Wang et al.,|2019)) and Image Classification. For each
experiment, the joint subspace is created using all other models in subset. For Image Classification,
we use k = 4 and train only 8 epochs using learning rate of 1e-4. Importantly, only the coefficients
are trained for the experiment. It is important to note that our shared subspace model performs
quite well despite using very few (4-5) models to extract the subspace. For GLUE, we use 16-32
components for our subspace, with learning rate of 4e-4, batch size of 64, and 30-80 epochs for each
task. In addition, it is likely that our model might perform similarly or better if trained longer or with
optimized hyperparameters.

Compute Resources We conduct all our experiments using a single AS000 GPU, and a CPU with
8 workers. For the universal subspace extraction, all calculation can be done on the CPU. However,
GPU would increase the speed of calculation as the layerwise subspace extraction can be parallelized.
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Figure 13: Layerwise Scree Plots for 50 LLaMA-3-8B Models. For enhanced clarity, each sub-
plot presents a truncated view of the total possible principal directions. These plots consistently
demonstrate that the dominant information, as represented by explained variance, resides within
a small number of leading principal directions for all models. Components beyond this initial set
are characterized by eigenvalues approaching zero, signifying their redundancy for the universal
subspace.
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D DISCUSSION AND BROADER IMPACT

Our findings suggest that deep neural networks trained across diverse tasks and modalities systemati-
cally converge to shared, low-dimensional subspaces within their parameter space. The existence of
such universal subspaces challenges conventional assumptions about the independence and diversity
of model and task-specific finetuning trajectories. Instead, it highlights a powerful regularity in
the way deep models encode task-specific knowledge - one that can be exploited for significantly
improved training and deployment efficiency. By leveraging these subspaces, we demonstrate that
models can be adapted to new tasks by learning only a small number of coefficients, rather than
retraining or storing full sets of weights. This facilitates more robust multi-task learning, model
merging, and scalable fine-tuning, with theoretical guarantees and empirical validation across multiple
architectures.

The broader societal impact of this work is substantial. Our approach enables large-scale models
to be reused and extended with dramatically reduced computational overhead, addressing both the
financial and environmental costs associated with training and deploying deep learning systems. This
contributes directly to the goals of sustainable and accessible Al. By lowering the hardware and energy
requirements for adaptation and inference, we empower under-resourced researchers, institutions, and
communities to build upon state-of-the-art models without needing extensive compute infrastructure.
Furthermore, by supporting modular model design and data-free model merging, our work lays the
foundation for more interpretable, maintainable, and equitable Al systems.

34



	Introduction
	Notations, Definitions and Theoretical Analysis
	Analysis
	Analysis methodology
	Results From Joint Subspaces' Analysis
	Lower-rank joint subspaces in CNNs, LoRA and Finetuned models

	Low rank shared universal subspaces in classical weights
	Finding universal subspaces and applying them to future tasks


	Discussion
	Limitations and Future Work
	Appendix
	Related Work
	Theoretical Analysis

	Universal Subspace Analysis
	Lower rank shared universal subspaces within low rank adaptation (LoRA) models
	Low rank shared universal subspaces in classical weights
	Ablating number of models and subspace effectiveness

	Finding universal subspaces and applying them to future tasks
	Discussion and Broader Impact

