DO NEURAL NETWORKS LEARN SIMILAR SUBSPACES? AN EMPIRICAL EXPLORATION OF JOINT PARAMETRIC SUBSPACES IN DEEP NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

We show that deep neural networks trained across diverse tasks exhibit remarkably similar low-dimensional parameteric subspaces. We provide the first large-scale empirical evidence demonstrating that neural networks systematically converge to shared spectral subspaces regardless of initialization, task, or domain. Through mode-wise spectral analysis of over 1100+ models - including 500 Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models - we identify universal subspaces capturing majority of the variance in just a few principal directions. By applying spectral decomposition techniques to the weight matrices of various architectures trained on a wide range of tasks and datasets, we identify sparse, joint subspaces that are consistently exploited, within shared architectures across diverse tasks and datasets. Our findings offer new insights into the intrinsic organization of information within deep networks and raise important questions about the possibility of discovering these universal subspaces without the need for extensive data and computational resources. Furthermore, this inherent structure has significant implications for model reusability, multi-task learning, model merging, and the development of training and inference-efficient algorithms, potentially reducing the carbon footprint of large-scale neural models.

Figure 1: **Empirical Evidence for (Universal) Joint Weight Subspaces.** This figure illustrates the existence of joint low-dimensional subspaces across models trained on diverse tasks. We plot the average explained variance of the top few principal components of weight matrices from 500 Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models. Despite differences in modality, data, and training objective, all models exhibit rapid spectral decay - indicating that a small number of directions dominate across layers and settings. This consistent structure provides strong evidence for the presence of universal subspaces, supporting our hypothesis that deep networks systematically reuse a common representational basis.

1 Introduction

We show that neural networks trained on a variety of datasets - which could be disjoint and unrelated - diverse hyper-parameter settings, initializations and regularization methods, often learn layer wise similar, low-ranked joint subspaces (we refer to this as the Universal Subspace). We provide the first large-scale empirical analysis - across a diverse set of models - that neural networks tend to these joint subspaces, largely independent of their initialization or the specific data used for training. Our study encompasses different model architectures trained on a variety of datasets, sometimes with different loss functions and tasks. Our spectral subspace analysis of the weights of all these models (Figure 1) suggests that although individual tasks appear to induce distinct subspaces, individually, they are all part of unusually low-ranked joint subspace. Our work extends the scientific community's understanding of what neural networks learn. This universality could explain several puzzling neural properties: why overparameterized models with millions more parameters than training samples still generalize; how different initializations converge to similar representations; and why techniques like weight sharing and parameter-efficient fine-tuning succeed across architectures. If networks indeed learn within shared subspaces, this would provide a supporting explanation for implicit regularization, transferability, and the effectiveness of sparse training methods.

Several works have hinted at phenomena consistent with our joint (universal) subspace hypothesis. For example, Neural Tangent Kernel (NTK) theory demonstrates that, in the infinite-width limit, the training dynamics of deep networks are governed by a kernel that is largely invariant to task specifics (Jacot et al., 2018). Similarly, research in mechanistic interpretability's own universality hypothesis Olah et al. (2020); Chughtai et al. (2023) has uncovered recurring circuits and patterns within some layers of toy or vision networks, lending indirect support to the universality hypothesis. Other works, including the lottery ticket hypothesis (Frankle & Carbin, 2019) and studies on mode connectivity (Garipov et al., 2018), provide further evidence for the existence of reusable, low-dimensional representations in neural networks. Notably, Krizhevsky et al. (2012) observed that the first layer of convolutional networks tends to learn Gabor-like filters across various vision tasks. Recent studies by Guth and Mallat (Guth & Mallat, 2023; Guth et al., 2024) have also shown initial evidence of reoccuring eigenvectors for some layers of convolutional neural networks (CNNs) trained on natural images.

In our analysis, we present compelling empirical evidence for the existence of universal subspaces within LoRA adapters across different modalities and tasks. We, initially, focus on LoRA adapters due to their ease of training and the ability to collect a large number of adapters for diverse tasks, models, and datasets, which enables robust evaluation of our hypothesis. E.g., we demonstrate the emergence of a universal subspace across approximately 500 LoRA adapters for the Mistral-7B (Jiang et al., 2023) model. We further extend our investigation to the full weight space, where we observe similar universality, extracting sparse, low-rank universal subspaces from about 500 Vision Transformer models and 50 LLaMA3-8B models, each trained on different datasets and initializations.

Although the underlying causes and broader implications of this universal property remain an open area of investigation, even an initial understanding of parameter subspace universality has profound implications for neural network efficiency and interpretability. Shared subspaces could enable: (1) massive model compression by storing only subspace coefficients rather than full weights; (2) rapid adaptation to new tasks within learned subspaces; (3) theoretical insights into generalization bounds and optimization landscapes; and (4) environmental benefits through reduced computational requirements for training and inference.

The remainder of this paper is organized as follows. We first define the problem set up formally in Section 2 followed by listing of essential properties and conditions with corresponding empirical justifications. Section 3.2.2 proposes the method to adapt to new tasks leveraging the shared approximate universal subspace. Section 3.1 explains our analysis methodolgy and section 3.2 presents the comprehensive empirical evidence of the Universal subspaces. Section 4 briefly discusses the analysis providing useful insights and answers the fundamental questions raised in the introduction. We discuss related work in appendix A.1 and discuss limitations and scope for future work in Section 5. Our primary contributions include:

 We empirically demonstrate the existence of a lower-dimensional shared universal subspace, and also provide relevant theoretical analysis.

- Illustrate the approach to learn an approximate low-dimensional shared subspace using the available set of tasks. Propose conditions for convergence of this learned subspace to the true universal shared subspace.
- Reuse the learned shared subspace to efficiently adapt to new unseen tasks with significantly
 less number of trainable parameters. Our experiments across wide variety of large pretrained
 models across various architectures and data modalities extensively verify and validate our
 hypothesis and theoretical findings.

2 NOTATIONS, DEFINITIONS AND THEORETICAL ANALYSIS

In our theoretical analysis, we aim to understand whether the shared structure across tasks can be consistently recovered from data. Specifically, each task has an associated ground-truth predictor f_t^* , and we are interested in the covariance (second-moment) operator $\mathcal S$ that captures the common subspace spanned by these predictors. Since in practice we only observe finite samples per task and learn approximate predictors $\hat f_t$, two sources of error arise: (i) variability due to having finitely many tasks, and (ii) estimation noise within each task. Our goal is to establish conditions under which the empirical operators built from $\hat f_t$ concentrate around $\mathcal S$, and to show that the learned top-k subspace converges to the true one, with convergence rates that separately reflect the number of tasks and the accuracy of per-task learning.

Setup. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a separable Hilbert space with norm $\|\cdot\| = \|\cdot\|_{\mathcal{H}}$. For $a, b \in \mathcal{H}$, the rank-one operator $a \otimes b : \mathcal{H} \to \mathcal{H}$ is $(a \otimes b)g = \langle b, g \rangle$ a; in particular $\|a \otimes b\|_{\mathrm{op}} = \|a\| \|b\|$. Tasks $t = \{1, 2, 3..., T\}$ are drawn i.i.d. from distribution \mathcal{T} and each task dataset $S_t = \{(x_{t,i}, y_{t,i})\}_{i=1}^{n_t}$ with n_t samples is drawn independently from D_t . Let $f_t^\star \in \mathcal{H}$ denote the (unknown) ground-truth predictor for task t and $\hat{f}_t \in \mathcal{H}$ be the learned predictor for the task.

Definition 2.1 (Task second-moment operator). The *population*, *true empirical*, and *learned empirical* task second-moment operators are respectively,

$$\mathcal{S} := \mathbb{E}_{t \sim \tau} [f_t^{\star} \otimes f_t^{\star}], \qquad \hat{\mathcal{S}} := \frac{1}{T} \sum_{t=1}^T f_t^{\star} \otimes f_t^{\star}, \qquad \tilde{\mathcal{S}} := \frac{1}{T} \sum_{t=1}^T \hat{f}_t \otimes \hat{f}_t.$$

where $\mathcal{S}, \hat{\mathcal{S}}, \tilde{\mathcal{S}}$ are self-adjoint and positive semi-definite such that $\operatorname{tr}(\mathcal{S}) < \infty$. Its top-k eigenspace \mathcal{H}_k^{\star} is the population rank-k shared subspace of tasks.

Remark 2.2. We work with the second-moment operator (rather than centered covariance), so the top eigenspace may include the mean direction of $\{f_t^{\star}\}_{t \sim \mathcal{T}}$.

Let $\lambda_1 \geq \lambda_2 \geq \cdots$ be the eigenvalues of S with orthonormal eigenvectors $\{\phi_i\}_{i\geq 1}$. Write $P_k = \sum_{i=1}^k \phi_i \otimes \phi_i$ for the projector onto the population top-k subspace $\mathcal{H}_k^\star = \mathrm{span}\{\phi_1,\ldots,\phi_k\}$, and let \tilde{P}_k be the projector onto the top-k eigenspace of \tilde{S} (the learned shared subspace). Define the eigengap $\gamma_k := \lambda_k - \lambda_{k+1} > 0$.

Assumption 2.3 (Realizability, bounded second moment and effective rank). For a constant B > 0 and for all tasks, $f_t^{\star} \in \mathcal{H}$ almost surely, $\|f_t^{\star}\| \leq B$ a.s., $\mathbb{E}_{t \sim \tau} \|f_t^{\star}\|^2 = \operatorname{tr}(S) < \infty$. In addition, S has bounded effective rank, $\frac{\operatorname{tr}(S)}{\|S\|_{\operatorname{op}}} \leq \kappa$

Assumption 2.3 ensures that all ground-truth predictors are bounded and have finite second moment, so the population covariance operator S is well-defined. The bounded effective rank condition further guarantees that the shared structure of the tasks is not arbitrarily infinite-dimensional, making subspace recovery feasible.

Assumption 2.4 (Per-task estimation accuracy in \mathcal{H}). For any $\delta_t \in (0,1)$ with probability at least $1 - \delta_t$ over the draw of S_t ,

$$\left\|\hat{f}_t - f_t^\star \right\| \leq \eta_t, \text{ ...where } \eta_t = \mathcal{R}_{n_t,D_t}(\mathcal{H}) + \sqrt{\frac{\ln(1/\delta_t)}{2n_t}}$$

Here $\mathcal{R}_{n_t,D_t}(\mathcal{H})$ represents Rademacher complexity of the solutions within Hilbert space \mathcal{H} over n_t samples drawn i.i.d. from D_t This form is satisfied, for example, by strongly convex regularized

ERM in an RKHS (e.g., kernel ridge regression or NTK ridge), under bounded kernel norm and sub-Gaussian response noise Bartlett & Mendelson (2003).

Assumption 2.4 requires that each task predictor \hat{f}_t is learned accurately from its finite dataset. In other words, f_t is close to the true f_t^* in \mathcal{H} -norm with high probability, at a rate governed by sample size and complexity of the hypothesis space.

Theorem 2.5 (Two-level convergence to the shared subspace). Assume 2.3–2.4. Let c_1 , c_2 be any absolute constants. For any $\delta \in (0,1)$, choose $\delta_t = \delta/(2T)$ and set $\delta_T = \delta/2$. With probability at least $1 - \delta$ (over tasks and all per-task samples),

$$\left\| \tilde{\mathcal{S}} - \mathcal{S} \right\|_{\text{op}} \le c_1 B^2 \sqrt{\frac{\log(c_2/\delta)}{T}} + (2B\bar{\eta} + \overline{\eta^2}) \tag{1}$$

If moreover $\gamma_k > 0$, then

162

163

164 165

166

167

168

169

170

171 172

173 174

175 176

177

178 179

180 181

182

183

184 185

186

187

188

189 190 191

192 193

194 195 196

197

199

200

201

202

203

204

205

206

207

212

213

214

215

$$\left\| \tilde{P}_k - P_k \right\|_{\text{op}} \le \frac{2}{\gamma_k} \left(c_1 B^2 \sqrt{\frac{\log(c_2/\delta)}{T}} + (2B\bar{\eta} + \overline{\eta^2}) \right). \tag{2}$$

where $\bar{\eta} = \frac{1}{T} \sum_{t=1}^{T} \eta_t$, $\bar{\eta}_t^2 = \frac{1}{T} \sum_{t=1}^{T} \eta_t^2$ and η_t is defined same as in assumption 2.4

Proof of Theorem 2.5 can be found in appendix Section A.2. The Theorem 2.5 shows that the empirical second-moment operator built from the learned predictors converges to the true operator \mathcal{S} , and the learned top-k subspace \hat{P}_k converges to the true subspace P_k . The rates capture two sources of error: averaging across tasks (scaling with $1/\sqrt{T}$) and per-task estimation errors (through \bar{n} and \bar{n}^2). A larger eigengap γ_k makes the subspace recovery more stable. In practive, we obtain the eigenvectors of S using HOSVD (Higher-Order Singular Value Decomposition) of the concatenated weight matrix \mathcal{X} highlighted in Section 3. Motivated by our theoretical analysis, we try to approximate $\hat{\mathcal{S}}$ for a set of tasks by extracting principal directions from as many trained models as possible.

ANALYSIS

3.1 Analysis methodology

Algorithm 1 Truncated Zero-Centered Higher-Order SVD (HOSVD)

Require: Tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$, target multilinear ranks $\mathbf{r} = (r_1, \dots, r_N)$ with $1 \le r_n \le I_n$ **Ensure:** Mean tensor μ , factor matrices $U^{(n)} \in \mathbb{R}^{I_n \times r_n}$ (orthonormal columns), core $S \in$ $\mathbb{R}^{r_1 \times \cdots \times r_N}$; reconstruction $\widehat{\mathcal{X}} = \mu + \mathcal{S} \times_1 U^{(1)} \cdots \times_N U^{(N)}$

- 1: **Zero-centering:** $\mu \leftarrow \text{mean}(\mathcal{X})$ ⊳ elementwise mean over all entries 2: $\mathcal{X}_c \leftarrow \mathcal{X} - \boldsymbol{\mu}$ \triangleright broadcast μ to the shape of \mathcal{X}
- 3: for n = 1 to N do
- \triangleright mode-n matricization, size $I_n \times \prod_{m \neq n} I_m$ $X_{(n)} \leftarrow \operatorname{unfold}(\mathcal{X}_c, n)$
- Compute thin SVD: $X_{(n)} = \tilde{U}^{(n)} \Sigma^{(n)} \tilde{V}^{(n) \top}$
- $U^{(n)} \leftarrow \tilde{U}^{(n)}(:, 1:r_n)$ \triangleright keep leading r_n left singular vectors
- 7: end for
- 8: Core (truncated): $\mathcal{S} \leftarrow \mathcal{X}_c \times_1 U^{(1)\top} \times_2 U^{(2)\top} \cdots \times_N U^{(N)\top}$ 9: return μ , $\{U^{(n)}\}_{n=1}^N$, \mathcal{S} \triangleright Optionally $\widehat{\mathcal{X}} = \mu + \mathcal{S} \times_1 U^{(1)} \cdots \times_N U^{(N)}$

Since there is no current method that enables us to compare subspaces of models with different architectures, we focus on large number of models trained on the same architecture. To this end, we perform analysis using Low rank adapters Hu et al. (2021) (LoRA) as well as classical weights of transformer and CNN (Convolutional Neural Network) architectures. For all our experiments, unless stated otherwise, we perform Order 1-2 HOSVD only, to ensure that our methodology works even in the simplest case. Algorithm 1 provides the algorithm we implement.

3.2 RESULTS FROM JOINT SUBSPACES' ANALYSIS

We present empirical results using method shown in Section 3.1, extracting our layer wise universal subspace approximations using thousands of publicly available models for most of our experiments. This choice allows us to have *no training costs* whatsoever. The spectral analysis relies on efficient spectral decomposition libraries, and can even be run on CPUs. We run all our analysis and experiments on one Nvidia A5000 GPU. The presented large scale empirical results forms the crux of our work and provide strong evidence for the presence of such low ranked joint subspaces across a wide range of task, architecture and modalities. In summary, we present a total of **seven** set of analysis and applications, including tasks like image classification, natural language understanding, text to image generation, model merging, etc for different model architectures and modalities.

3.2.1 LOWER-RANK JOINT SUBSPACES IN CNNs, LORA AND FINETUNED MODELS

In smaller and conventional architectures such as CNNs, evidence for universal structure has been more limited but suggestive. Early work observed that the first convolutional layer often learns Gabor-like filters across diverse vision tasks (Krizhevsky et al., 2012). More recently, Guth and Mallat reported recurring eigenvectors in certain CNN layers trained on natural images (Guth & Mallat, 2023; Guth et al., 2024).

We extend these observations and examine whether a shared low-rank joint subspace emerges across tasks. Specifically, we train ResNet-50 models from random initialization for image classification on five disjoint datasets (CIFAR-10, CIFAR-100, ImageNet, Oxford-IIT Pets, and EuroSAT), ensuring no overlap in samples. While our theoretical analysis indicates that a small

 (a) Comparison of model performance across datasets.

 Method
 ImageNet
 EuroSat
 CIFAR-10
 CIFAR-100
 Oxford Pets
 Avg

 ResNet50
 80.86
 98.96
 97.35
 83.82
 93.48
 90.89

 Universal R50
 77.89
 98.83
 95.89
 81.49
 83.81
 87.58

(b) Summarized eigenvalue plot of all model weights corresponding to all 31 layers of 5 ResNet50 models.

Figure 2: **Proving existence of universal subspaces in CNNs.** Decomposing 5 ResNet50 models trained on different tasks shows the emergence of a low rank, universal subspace where the majority of the information is present in only 16 (or fewer) distinct subspace directions for all layers of the network.

number of models may lead to an under-approximation of the joint universal subspace, training CNNs from scratch at scale constrains the number of models we can include in this study.

Despite these limitations, Figure 2b reports the average explained variance across all layers of ResNet-50 and reveals a distinct, shared low-rank structure spanning these disjoint tasks. Moreover, even when the estimated universal subspace is relatively coarse, projecting to this subspace to obtain a low-rank ResNet-50 (thereby reducing parameters) preserves competitive performance relative to full fine-tuning, further supporting the presence and utility of a joint subspace (2a).

In order to a more real-world experiment, we choose to run the subspace analysis for LoRA Hu et al. (2021) models simply because they are available in abundance in public domain. Given LoRA models distinctly capture task specific directions as they show weak alignment with the original weights Hu et al. (2021), they form a good main model parameter alternative to run our subspace analysis and verify whether this holds true. We spectrally decompose (Section 3.1) LoRA's submatrices individually, each concatenated across all the available finetuned LoRAs and choose top k spectral basis. This setup allows us to truly stress test and verify our Universal Subspace hypothesis.

We first study **500 LoRA models** trained on distinct Natural Instructions (Wang et al., 2022) using Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) as the base (Brüel-Gabrielsson et al., 2024). Each LoRA has at least rank 16. Figure 3 shows that the top spectral components capture most of the variance in

281

282 283

284

285

290

291

292

293

295

296 297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314 315

322

323

(a) Eigenvalue/Variance plot for Orthogonal Spectral Components corresponding to all 31 layers of all 500 Misfor 500 unique LoRAs of different layers of Mistral-7B model

(b) Summarized eigenvalue plot of all LoRAs tral 7B models

Figure 3: Proving existence of universal subspaces in deep networks. Decomposing 500 sets of LoRAs trained on different tasks using the Mistral-7B model shows the emergence of a low rank, universal subspace where the majority of the information is present in only 16 (or less) distinct subspace directions for all layers of the network. Plots of other parameters are present in the appendix.

each layer, indicating a low-rank structure shared across tasks. Figure 3a visualizes the eigenvalue decay per layer, while Figure 3b summarizes the pattern across all layers and models.

To test subspace expressiveness, we reconstruct LoRA weights for both seen (IID) and unseen (OOD) tasks by projecting them into the universal subspace. As shown in Figure 4, the reconstructed models retain high performance in both cases. In contrast, projection into the residual Secondary Subspace leads to a sharp performance drop, underscoring the importance of the principal subspace. Our method is also $19 \times$ more memory efficient, as it eliminates the need to store all 500 LoRAs.

We extend our analysis to text-to-image generation using Stable Diffusion-XL (Podell et al., 2023). A universal subspace is extracted from publicly available LoRAs on Hugging-Face (von Platen et al., 2022). When projecting individual LoRAs into this subspace, the resulting generations preserve visual quality and style (Figure 5). CLIP-based evaluations (Table 1) show that the universal subspace even outper-

Figure 4: Lots of LoRAs Model Size vs Performance plot.

forms individual LoRAs in some cases, possibly due to denoising effects previously observed in (Sharma et al., 2023).

Table 1: CLIP scores (higher is better) of images generated using SDXL.

Method	Style 1	Style 2	Style 3	Style 4	Style 5	Style 6	Style 7	Style 8	Style 9	Style 10	Avg
LoRA	21.95	15.59	22.18	18.84	16.65	17.99	24.66	17.47	22.07	19.93	19.73
Universal SDXL LoRA	21.96	16.07	22.07	18.79	16.68	17.99	24.66	17.56	22.46	20.09	19.83

In summary, these three experiments provide strong empirical support for our universal subspace hypothesis and demonstrate its practical advantages in terms of memory efficiency, model reusability, and scalable deployment across diverse tasks and modalities.

Figure 5: Text-to-Image Generation Results for Individual models vs. our Universal Subspace model. We notice no visual reduction in style quality despite significant reduction in total model size.

While aforementioned experiments on trained from scratch CNNs and LoRAs provide strong evidence for the presence of the joint subspace, we further rigorously test on large scale finetuned models (500 pretrained ViT, 50 LLaMA3-8B models, 177 GPT-2 and Flan-T5).

Figure 6: Universal Subspaces in Classical Weights. Spectral decomposition of weight matrices from (a) \sim 500 Vision Transformers (b) 50 LLaMa-8B models (c) 177 GPT-2 models (d) GLUE Flan-T5 models — each trained independently across diverse tasks, datasets, and configurations — reveals a consistent low-rank structure: most variance is captured by the top few spectral basis. This suggests that, despite significant variation in training conditions, the learned weights consistently align along a shared low-dimensional subspace. For visualization clarity, only a fraction of the basis are shown; extended plots are provided in the appendix.

First, we collect ~500 pretrained Vision Transformer (ViT) models from HuggingFace, spanning diverse domains—medical imaging, satellite data, and synthetic—and trained with varying losses, optimizers, and initializations. These models are used as-is, without curation or access to training data, to reflect real-world variability. See Appendix for details. Following our method (3.1), we spectrally decompose all layers (excluding first

Table 2: Image Classification Accuracy

Method	IID	OOD
Full Training	94.4 ± 1.7	91.3 ± 2.1
Universal ViT	94.1 ± 2.0	87.8 ± 1.5

and last) and observe, in Figure 6, that the majority of variance is captured by the top few spectral components, revealing a highly compressible, shared subspace across layers. Only the top 100 components are visualized for clarity.

To evaluate universal generalization, we project five held-out ViT models onto this 16-dim subspace and measure classification accuracy. As shown in Table 2, performance remains robust, indicating that a shared low-rank subspace spans a wide range of ViT model configurations and domains.

A major outcome of this experiment is that we can replace these 500 ViT models with a single Universal Subspace model. Ignoring the task variable first and last layer, we observe a requirement of $100 \times$ less memory, and these savings are prone to increase as the number of trained models increases. We note that we are, to the best of our knowledge, the first work, to be able to *merge* 500 (and theoretically more) Vision Transformer into a single universal subspace model. This result implies that hundreds of ViTs can be represented using a single subspace model—excluding task-specific layers—yielding up to $100 \times$ memory reduction. To our knowledge, this is the first demonstration of merging over 500 ViTs into a single universal representation.

We further extend this analysis to 50 finetuned LLaMA3-8B models, 177 GPT-2 models, and Flan-T5 models (trained on GLUE Wang et al. (2019) datasets) again sourced from HuggingFace without filtering. As shown in Figure 6, a small number of directions capture dominant structure across models spanning diverse and distinct datasets and tasks. More details are provided in the Appendix. This is, to our knowledge, the first instance of compressing such a large and diverse collection of foundation models into a unified subspace, highlighting its potential for large-scale model reuse and environmental efficiency.

3.2.2 FINDING UNIVERSAL SUBSPACES AND APPLYING THEM TO FUTURE TASKS

In this section, the low-rank shared subspaces estimated from a set of available tasks are leveraged to adapt to new, previously unseen tasks. While we do not make theoretical guarantees about reuse on unseen tasks, our experiments show that the approximate shared subspace is empirically reusable across a wide range of practical settings. Concretely, we reuse the shared principal directions and learn only their task-specific coefficients for the new task. Learning these low-rank coefficients is substantially cheaper than optimizing full-rank weights of size, reducing both computation and memory. The resulting trainable parameter counts are reported in Table 4. We find our universal subspace models can have significant impact on the carbon footprint issues of large AI models by making the training, inference and scaling of these models efficient and cheap. As shown in the previous section, we can effectively recycle and replace available pretrained models with a universal subspace model with every individual being represented by a sparse set of coefficients. In this section, we show a set of experiments where we utilize the universal subspaces to learn new tasks by freezing the components and simply learning the coefficients using gradient descent. We find that since we are only learning the coefficients, it drastically cuts down the number of parameters required to train the new models. Further, since these coefficients are simply linear scaling values, the optimization is smoother and faster.

Table 3: Performance on the GLUE Benchmark.

Method	CoLA	MRPC	RTE	QNLI	SST-2	STS-B	Avg
LoRA	59.56	86.76	77.61	92.53	94.72	90.81	83.67
Universal mode-2	61.82	87.25	77.62	92.71	94.15	90.48	84.01
Universal mode-3	62.06	86.52	75.81	92.98	94.26	90.39	83.67

We present two experiments - Image Classification using ViT-base and Natural Language Understanding using GLUE benchmark Wang et al. (2019) with RoBeRTa_{base} model. Both involve creating a universal subspace using publicly available LoRA adapters. Details are provided in the Appendix. For the GLUE benchmark, we follow the same setup as VeRA (Kopiczko et al., 2023) considering the 6 tasks - CoLA, MRPC, SST-2, QNLI, RTE and STS-B while omitting the time-intensive MNLI and QQP tasks. We initialize our universal subspace using a leave-one-out-setup, where the subspace is calculated using components of all but one LoRA adapter for which the coefficients are learned. For image classification, we utilize publicly available ViT LoRAs to extract our universal subspaces taking care that the data any of these pretrained LoRAs have not seen the data we will be training our coefficients on. Table 4 and Table 3 show that our universal subspace enables significantly more very efficient and effective learning since only compact coefficients are trained. The memory required

Table 4: Image Classification with Vision Transformer.

	# Training Params	CIFAR100	Food101	Flowers102	CIFAR10	Pets
Full Training	86M	92.8	90.7	98.82	99.0	91.2
Universal ViT	10K	90.1	89.1	90.1	96.7	89.4

to save all these models is also drastically reduced. The ViT models require 150 GB and LLaMA models require 1.6TB of memory in total. Our universal subspace reduces that memory requirement by more than $100\times$.

4 DISCUSSION

This work provides, to the best of our knowledge, the first large-scale, cross-domain analysis showing that neural networks trained across diverse tasks, modalities, initializations, and hyperparameters consistently exhibit a shared low-rank universal subspace at the layer level. Concretely, by performing layer-wise spectral decompositions and retaining only the leading principal directions, an accurate approximation of these universal subspaces can be extracted. Empirically, this behavior emerges broadly: in fully finetuned models and LoRA-based adapters, in models trained from scratch, in both generative and discriminative settings, and in multimodal configurations. Moreover, the approximated subspaces generalize to out-of-distribution tasks, where projecting models and learning only a small set of coefficients suffices to recover strong performance. This enables adapting to new tasks without retraining or storing full weights, and supports robust multi-task learning, scalable fine-tuning, and principled model merging within a single unifying framework.

The practical implications are substantial. By learning only lightweight coefficients for shared layerwise principal directions, large models can be extended with dramatically reduced computational and memory overhead. This lowers deployment costs while enabling more accessible AI development and data-free model merging. These results suggest a path toward scalable model reuse grounded in a simple geometric principle: most task variation lies in a shared, low-dimensional subspace.

Why do these universal subspaces emerge? Neural networks may exhibit spectral bias toward low-frequency functions, potentially creating polynomial eigenvalue decay that concentrates learning dynamics in a small number of dominant directions. Modern architectures also impose strong inductive biases - convolutional structures might favor local patterns, attention mechanisms could prioritize relational reasoning - that may constrain parameter variations to similar subspaces across tasks. The ubiquity of gradient-based optimization, with its inherent preference for smooth solutions, could further channel different learning trajectories toward shared geometric structures. If true, this would suggest that the universal subspace captures fundamental computational patterns that transcend specific tasks - potentially explaining why transfer learning works and why diverse problems often benefit from similar architectural modifications. However, the precise mechanisms remain an open question, making our empirical investigation all the more important to understand this surprising regularity in neural network learning.

5 LIMITATIONS AND FUTURE WORK

Although we provide conclusive results towards the existence and utility of universal shared subspaces, the current analysis has scope for future research such as limited interpretability of the shared subspace and the corresponding directions. While it is a critical area of research, it is extremely cumbersome to demonstrate interpretability of the principal directions for each layer of the network. To the best of our knowledge we are not aware of any other literature that performs such an in-depth analysis of the weight space of large models across diverse tasks, data modalities and model architectures. The current approach to approximating a universal subspace relies on pretrained task-specific models (predictors) for tasks, which may not be readily available for new tasks. An interesting direction for future research would be to explore model independent methods for learning a universal shared subspace, potentially derived directly from data. Furthermore, the conditions proposed in Ortiz-Jimenez et al. (2023) for enabling task arithmetic rely on localized eigenfunctions which are not a conducive to learning a shared universal subspace. As a result, performing task arithmetic within the current framework of a shared universal subspace is non-trivial and warrants further investigation.

REFERENCES

- Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: risk bounds and structural results. *J. Mach. Learn. Res.*, 3(null):463–482, March 2003. ISSN 1532-4435.
- Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 mining discriminative components with random forests. In *European Conference on Computer Vision*, 2014.
- Rickard Brüel-Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin, and Justin Solomon. Compress then serve: Serving thousands of lora adapters with little overhead, 2024. URL https://arxiv.org/abs/2407.00066.
- Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, October 2017. ISSN 1558-2256. doi: 10.1109/jproc.2017.2675998. URL http://dx.doi.org/10.1109/JPROC.2017.2675998.
- Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering how networks learn group operations, 2023. URL https://arxiv.org/abs/2302.03025.
- Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild, 2013. URL https://arxiv.org/abs/1311.3618.
- Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *International Conference on Learning Representations (ICLR)*, 2019.
- Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns. In *Advances in Neural Information Processing Systems*, volume 31, pp. 8789–8798, 2018.
- Florentin Guth and Stéphane Mallat. The gaussian rainbow: Universal covariances of randomly initialized convolutional layers. *arXiv preprint arXiv:2306.00984*, 2023.
- Florentin Guth, Stéphane Mallat, and Agnès Desolneux. Universal spatial filters and transfer learning in convolutional neural networks. *arXiv preprint arXiv:2402.08515*, 2024.
- Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification, 2019. URL https://arxiv.org/abs/1709.00029.
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.
- Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In *Advances in Neural Information Processing Systems*, volume 31, 2018.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.
- Prakhar Kaushik, Ankit Vaidya, Shravan Chaudhari, and Alan Yuille. Eigenlorax: Recycling adapters to find principal subspaces for resource-efficient adaptation and inference, 2025. URL https://arxiv.org/abs/2502.04700.
- Vladimir Koltchinskii and Karim Lounici. Concentration inequalities and moment bounds for sample covariance operators, 2014. URL https://arxiv.org/abs/1405.2468.
 - Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. VeRA: Vector-based Random Matrix Adaptation. October 2023. URL https://openreview.net/forum?id=NjNfLdxr3A.

- Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In *4th International IEEE Workshop on 3D Representation and Recognition* (3dRR-13), Sydney, Australia, 2013.
 - Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced research). 2009. URL http://www.cs.toronto.edu/~kriz/cifar.html.
 - Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
 - Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist*, 2, 2010.
 - Wei Ma and Jun Lu. An equivalence of fully connected layer and convolutional layer, 2017. URL https://arxiv.org/abs/1712.01252.
 - Stanislav Minsker. On some extensions of bernstein's inequality for self-adjoint operators, 2017. URL https://arxiv.org/abs/1112.5448.
 - Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural images with unsupervised feature learning. In *NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011*, 2011. URL http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf.
 - Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In *Indian Conference on Computer Vision, Graphics and Image Processing*, Dec 2008.
 - Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. Zoom in: An introduction to circuits. *Distill*, 2020. doi: 10.23915/distill.00024.001. https://distill.pub/2020/circuits/zoom-in.
 - Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent space: Improved editing of pre-trained models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=0A9f2jZDGW.
 - Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2012.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis, 2023. URL https://arxiv.org/abs/2307.01952.
 - Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction, December 2023. URL http://arxiv.org/abs/2312.13558. arXiv:2312.13558 [cs].
 - Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German Traffic Sign Recognition Benchmark: A multi-class classification competition. In *IEEE International Joint Conference on Neural Networks*, pp. 1453–1460, 2011.
 - Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/diffusers, 2022.
 - Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019. URL https://arxiv.org/abs/1804.07461.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generalization via declarative instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 5085–5109, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.340. URL https://aclanthology.org/2022.emnlp-main.340/.

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In *2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pp. 3485–3492, June 2010. doi: 10.1109/CVPR.2010.5539970.

Table 5: Notation reference.

Notation	Description
\mathcal{H}	Separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$, norm $\ \cdot \ $.
$a\otimes b$	Rank-one operator $g \mapsto \langle b, g \rangle a$, $ a \otimes b _{op} = a b $.
$\frac{T}{2}$	Number of tasks.
\mathcal{T}	Distribution over tasks.
D_t	Data distribution for task t .
$S_t = \{(x_{t,i}, y_{t,i})\}_{i=1}^{n_t}$	Dataset of size n_t for task t .
$f_t^* \in \mathcal{H}$ $\hat{f}_t \in \mathcal{H}$ B	Ground-truth predictor for task t .
$f_t \in \mathcal{H}$	Learned predictor for task t .
B	Uniform bound: $ f_t^{\star} \leq B$ almost surely.
$\mathcal{R}_{n_t,D_t}(\mathcal{H})$	Per-task estimation error rate (e.g. $\tilde{O}(1/\sqrt{n_t})$).
η_t	Per-task error: $\eta_t := \mathcal{R}_{n_t,D_t}(\mathcal{H}) + \sqrt{\frac{\ln(2T/\delta)}{2n_t}}$.
$egin{array}{l} rac{ar{\eta}}{\eta_t^2} \ \mathcal{S} \ \hat{\mathcal{S}} \ \hat{\mathcal{S}} \ \lambda_1 \geq \lambda_2 \geq \dots \end{array}$	Average error: $\frac{1}{T} \sum_{t=1}^{T} \eta_t$.
η_t^{2}	Average squared error: $\frac{1}{T} \sum_{t=1}^{T} \eta_t^2$.
${\mathcal S}$	Population operator: $\mathcal{S} = \mathbb{E}_{t \sim \mathcal{T}} f_t^{\star} \otimes f_t^{\star} $.
$\hat{\mathcal{S}}_{\tilde{z}}$	Empirical operator (true predictors): $\frac{1}{T}\sum_{t=1}^{T}f_{t}^{\star}\otimes f_{t}^{\star}$. Empirical operator (learned predictors): $\frac{1}{T}\sum_{t=1}^{T}\hat{f}_{t}\otimes\hat{f}_{t}$.
S	Empirical operator (learned predictors): $\frac{1}{T} \sum_{t=1}^{T} f_t \otimes f_t$.
$\lambda_1 \geq \lambda_2 \geq \dots$	Eigenvalues of S .
ϕ_i	Orthonormal eigenvectors of S .
ϕ_i P_k $ ilde{P}_k$	Projector onto top- k eigenspace of S .
	Projector onto top- k eigenspace of S .
γ_k	Eigengap: $\gamma_k := \lambda_k - \lambda_{k+1} > 0$.
$ A _{\text{op}}$	Operator (spectral) norm.
$ A _{HS}$	Hilbert–Schmidt norm.
r(V)	Intrinsic/Effective rank: $\operatorname{tr}(V)/\ V\ _{\operatorname{op}}$.
X_t	Centered operator: $X_t := f_t^* \otimes f_t^* - \mathcal{S}$.
V	Variance operator: $V := \sum_{t=1}^{T} \mathbb{E}[X_t^2]$.
$\delta, \delta_t, \delta_T$	Failure probabilities (global, per-task, across-task).

A APPENDIX

A.1 RELATED WORK

Several lines of prior research support the core intuition behind our universal subspace hypothesis, though they do not provide a unified, scalable framework for identifying and leveraging such subspaces across architectures, tasks, and modalities. The Neural Tangent Kernel framework reinforces this idea, demonstrating that, in the infinite-width regime, training dynamics are governed by a kernel largely invariant to task specifics, implying the presence of common functional subspaces. (Jacot et al., 2018). This result implies that training is implicitly constrained to a shared function space, suggesting the existence of low-dimensional structures that generalize across tasks. Complementing this, works in mechanistic interpretability has uncovered modular and recurring patterns that consistently re-emerge in independently trained models (Olah et al., 2020; Chughtai et al., 2023), supporting the notion of structural universality in network representations.

Empirical studies further strengthen this perspective. The lottery ticket hypothesis (Frankle & Carbin, 2019) demonstrates that overparameterized networks contain sparse subnetworks capable of matching full-model performance, implying that task-relevant information resides in a small, structured subset of weights. Similarly, mode connectivity studies (Garipov et al., 2018) reveal that seemingly isolated optima in parameter space are often connected by low-loss paths, suggesting that task solutions lie on a shared manifold. In convolutional models, Krizhevsky et al. (Krizhevsky et al., 2012) famously observed that early layers consistently learn Gabor-like filters, indicating a universal inductive bias in early representations. More recent work by Guth and Mallat (Guth & Mallat, 2023; Guth et al., 2024)

extends this observation to deeper layers, showing that certain eigenvectors of trained convolutional layers recur across networks trained on different datasets.

While these studies are suggestive of shared structures in neural representations or parameters, they remain limited in their focus, application and analysis. Our work fills this critical gap by presenting a principled and empirically validated method for discovering and utilizing universal parametric subspaces that span across architectures, tasks, and modalities. By conducting large-scale spectral analyses of over large number of diverse architectures, models and tasks, we demonstrate that a small number of principal directions consistently capture the majority of task-relevant variation. We then operationalize these findings by developing a practical framework for reusing these subspaces for parameter-efficient finetuning, task adaptation, and model merging, achieving competitive performance while dramatically reducing memory and compute requirements.

We apply a standard generalization bound over the squared error between the task function and its projection onto the shared subspace:

$$\ell(f_t, x) = \|f_t(x) - f_{t,k}(x)\|^2$$

To justify the application of PAC-style bounds, we verify that this loss is bounded. We assume that each task predictor f_t lies in a Reproducing Kernel Hilbert Space (RKHS) with norm bounded by B, i.e., $||f_t||_{\mathcal{H}} \leq B$, and that the projection $f_{t,k}$ onto the learned shared subspace $\hat{\mathcal{H}}_k$ also satisfies $||f_{t,k}||_{\mathcal{H}} \leq B$.

Using the reproducing property and assuming a kernel bound $\kappa^2 = \sup_{x \in \mathcal{X}} \|\phi(x)\|^2$, we have for any x:

$$||f_t(x)|| \le \kappa B$$
 and $||f_{t,k}(x)|| \le \kappa B$

Thus, the pointwise squared loss is bounded as:

$$||f_t(x) - f_{t,k}(x)||^2 \le (||f_t(x)|| + ||f_{t,k}(x)||)^2 \le (2\kappa B)^2 = 4\kappa^2 B^2$$

Therefore, the loss function is bounded in $[0, 4\kappa^2B^2]$, satisfying the conditions required for PAC-style generalization bounds to hold.

A.2 THEORETICAL ANALYSIS

Lemma A.1 (Matrix Bernstein for self-adjoint operators). There exist absolute constants C > 0 such that, for any $\delta_T \in (0,1)$, we have with probability at least $1 - \delta_T$,

$$\|\hat{\mathcal{S}} - \mathcal{S}\|_{\text{op}} \le C B^2 \left[\sqrt{\frac{\ln(c/\delta_T)}{T}} + \frac{\ln(c/\delta_T)}{T} \right]$$

Proof. Operator Bernstein (intrinsic form).

Let X_1, \ldots, X_T be independent, mean-zero, self-adjoint, bounded operators on a separable Hilbert space. Suppose

$$||X_t||_{\text{op}} \leq L$$
 a.s. for all t .

Then from Minsker (2017); Koltchinskii & Lounici (2014) there exist absolute constants C, c > 0 such that for every $\delta \in (0, 1)$,

$$\left\| \frac{1}{T} \sum_{t=1}^{T} X_{t} \right\|_{\text{op}} \leq C \left[\sqrt{\frac{\left\| \sum_{t=1}^{T} \mathbb{E}[X_{t}^{2}] \right\|_{\text{op}}}{T^{2}} \ln \left(\frac{c \left(1 + \frac{\operatorname{tr}\left(\sum_{t=1}^{T} \mathbb{E}[X_{t}^{2}] \right)}{\left\| \sum_{t=1}^{T} \mathbb{E}[X_{t}^{2}] \right\|_{\text{op}}} \right)}{\delta_{T}} \right) + \frac{L}{T} \ln \left(\frac{c \left(1 + \frac{\operatorname{tr}\left(\sum_{t=1}^{T} \mathbb{E}[X_{t}^{2}] \right)}{\left\| \sum_{t=1}^{T} \mathbb{E}[X_{t}^{2}] \right\|_{\text{op}}} \right)}{\delta_{T}} \right)}{\delta_{T}} \right) \right]$$

with probability at least $1 - \delta_T$.

Application to $X_t = f_t^* \otimes f_t^* - \mathcal{S}$ with $||f_t^*|| \leq B$ a.s.

We have

$$||X_t||_{\text{op}} \le ||f_t^{\star}||^2 + ||S||_{\text{op}} \le B^2 + \mathbb{E}||f^{\star}||^2 \le 2B^2.$$

so $L \leq 2B^2$. Moreover, for $X_t = f_t^* \otimes f_t^* - \mathcal{S}$ we have

$$\mathbb{E}[X_t^2] \ \le \ 2B^2 \mathcal{S}.$$

Hence

$$\left\| \sum_{t=1}^T \mathbb{E}[X_t^2] \right\|_{\text{op}} \leq 2TB^2 \|\mathcal{S}\|_{\text{op}}, \qquad \operatorname{tr}\left(\sum_{t=1}^T \mathbb{E}[X_t^2]\right) \leq 2TB^2 \operatorname{tr}(\mathcal{S}).$$

By asumption 2.3,

$$\frac{\operatorname{tr}(\sum_{t=1}^T \mathbb{E}[X_t^2])}{\left\|\sum_{t=1}^T \mathbb{E}[X_t^2]\right\|_{\operatorname{op}}} \ \le \ \frac{\operatorname{tr}(\mathcal{S})}{\|\mathcal{S}\|_{\operatorname{op}}} \ \le \ \kappa.$$

Therefore the intrinsic logarithmic factor in Bernstein reduces to

$$\ln\!\left(\frac{c(1+\kappa)}{\delta_T}\right),$$

and since κ is a fixed constant, $1 + \kappa$ can be absorbed into c.

Plugging into Bernstein gives

$$\|\hat{\mathcal{S}} - \mathcal{S}\|_{\mathrm{op}} \leq C \left[\sqrt{\frac{2B^2 \|\mathcal{S}\|_{\mathrm{op}} \ln(c/\delta_T)}{T}} + \frac{2B^2 \ln(c/\delta_T)}{T} \right],$$

with probability at least $1 - \delta_T$.

Lemma A.2 (Davis–Kahan, $\sin \Theta$). Let $\gamma_k > 0$. Then

$$\left\| \tilde{P}_k - P_k \right\|_{\text{op}} \le \frac{2}{\gamma_k} \left\| \tilde{\mathcal{S}} - \mathcal{S} \right\|_{\text{op}}.$$

using definition of γ_k from definition 2.1.

Theorem A.3 (Restating Two-level convergence to the shared subspace theorem). Assume 2.3–2.4. Let c_1, c_2 be any absolute constants. For any $\delta \in (0,1)$, choose $\delta_t = \delta/(2T)$ and set $\delta_T = \delta/2$. With probability at least $1 - \delta$ (over tasks and all per-task samples),

$$\left\| \tilde{\mathcal{S}} - \mathcal{S} \right\|_{\text{op}} \le c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + (2B\bar{\eta} + \overline{\eta^2})$$
 (3)

If moreover $\gamma_k > 0$, then

$$\left\| \tilde{P}_k - P_k \right\|_{\text{op}} \le \frac{2}{\gamma_k} \left(c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + (2B\bar{\eta} + \overline{\eta^2}) \right). \tag{4}$$

where $\bar{\eta} = \frac{1}{T} \sum_{t=1}^{T} \eta_t$, $\overline{\eta_t^2} = \frac{1}{T} \sum_{t=1}^{T} \eta_t^2$ and η_t is defined same as in assumption 2.4

Proof of Theorem 2.5. (i) Triangle split.
$$\left\| \tilde{\mathcal{S}} - \mathcal{S} \right\|_{\text{op}} \le \left\| \tilde{\mathcal{S}} - \hat{\mathcal{S}} \right\|_{\text{op}} + \left\| \hat{\mathcal{S}} - \mathcal{S} \right\|_{\text{op}}$$
.

(ii) Within-task term. We know that,

$$\begin{split} \left\| \hat{f}_{t} \otimes \hat{f}_{t} - f_{t}^{\star} \otimes f_{t}^{\star} \right\|_{\text{op}} &\leq \left\| \hat{f}_{t} - f_{t}^{\star} \right\| \left(\left\| \hat{f}_{t} \right\| + \left\| f_{t}^{\star} \right\| \right) \\ &\leq \left\| \hat{f}_{t} - f_{t}^{\star} \right\| \left(\left\| \hat{f}_{t} \right\| + \left\| f_{t}^{\star} \right\| \right) \\ &\leq \eta_{t} \left(2B + \eta_{t} \right) \qquad \text{(since } \| \hat{f}_{t} \| \leq \left\| f_{t}^{\star} \right\| + \left\| \hat{f}_{t} - f_{t}^{\star} \right\| \leq B + \eta_{t}) \\ &= 2B \, \eta_{t} + \eta_{t}^{2} \, . \end{split}$$

Averaging and using the triangle inequality for operator norms,

$$\left\| \tilde{\mathcal{S}} - \hat{\mathcal{S}} \right\|_{\text{od}} \le 2B \, \bar{\eta} + \overline{\eta^2}$$

This holds on the event $\bigcap_{t=1}^T \{ \left\| \hat{f}_t - f_t^\star \right\| \le \eta_t \}$, whose probability is at least $1 - \sum_t \delta_t = 1 - \delta/2$.

(iii) Across-task term. Let $X_t := f_t^\star \otimes f_t^\star - \mathbb{E}[f^\star \otimes f^\star]$. Then X_t are independent, mean-zero, self-adjoint, and $\|X_t\|_{\text{op}} \leq \|f_t^\star\|^2 + \|S\|_{\text{op}} \leq 2B^2$. Lemma A.1 (with $R \asymp B^2$) yields

$$\|\hat{\mathcal{S}} - \mathcal{S}\|_{\text{op}} \le c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}}$$

$$\left\| \tilde{\mathcal{S}} - \mathcal{S} \right\|_{\text{op}} \leq c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + 2B \left(\sum_{t=1}^T \mathcal{R}_{n_t,D_t}(\mathcal{H}) + \sqrt{\frac{\ln(2T/\delta)}{2n_t}} \right) + \left(\sum_{t=1}^T \mathcal{R}_{n_t,D_t}^2(\mathcal{H}) + \frac{\ln(2T/\delta)}{2n_t} \right). \leq c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + 2B \left(\sum_{t=1}^T \mathcal{R}_{n_t,D_t}(\mathcal{H}) + \sqrt{\frac{\ln(2T/\delta)}{2n_t}} \right) + \left(\sum_{t=1}^T \mathcal{R}_{n_t,D_t}^2(\mathcal{H}) + \frac{\ln(2T/\delta)}{2n_t} \right).$$

with probability at least $1 - \delta_T = 1 - \delta/2$.

(iv) Union bound and Davis–Kahan. Combining (ii)–(iii) with a union bound gives equation 3. Lemma A.2 then implies equation 4. \Box

Definition A.4 (Population projection risk). For a k-dimensional subspace $\mathcal{H}_k^{\star} \subset \mathcal{H}$, define

$$\mathcal{R}(\mathcal{H}_k^{\star}) := \mathbb{E}_{t \sim \tau} \left\| f_t^{\star} - P_{\mathcal{H}_k^{\star}} f_t^{\star} \right\|^2.$$

Corollary A.5 (Excess projection risk of the learned subspace). Under the event of Theorem 2.5,

$$\mathcal{R}(\tilde{\mathcal{H}}_k) \leq \sum_{i>k} \lambda_i + \frac{2 \operatorname{tr}(S)}{\gamma_k} \left(c_1 B^2 \sqrt{\frac{\ln(c_2/\delta)}{T}} + 2B \, \overline{\eta} + \overline{\eta^2} \right).$$

Proof. Optimality of P_k gives $\mathcal{R}(\mathcal{H}_k^*) = \sum_{i > k} \mu_i$. Moreover,

$$\mathcal{R}(\tilde{\mathcal{H}}_k) - \mathcal{R}(\mathcal{H}_k^{\star}) = \mathbb{E}\left\langle f_t^{\star}, (P_k - \tilde{P}_k) f_t^{\star} \right\rangle \leq \left\| \tilde{P}_k - P_k \right\|_{\text{op}} \mathbb{E}\left\| f_t^{\star} \right\|^2 = \text{tr}(S) \left\| \tilde{P}_k - P_k \right\|_{\text{op}}.$$

Remark A.6 (Where Rademacher complexity enters). Assumption 2.4 is instantiated by your learning procedure. For strongly-convex ERM (e.g., kernel ridge), a standard Rademacher-based excess-risk bound together with curvature yields an $\eta_t = \eta_t(n_t, \delta_t)$ that vanishes with n_t . Plugging these η_t into $\bar{\eta}$ and $\bar{\eta}^2$ makes the rate explicit.

B Universal Subspace Analysis

Similar methodology is followed for subspace analysis for both LoRA and classical weight models. In fact, LoRA analysis' results can be theoretically extended to classical weights, as LoRA weights can be construed to be simple translations from a mean weight matrix. However, in order to solidify our universal subspace hypothesis, we conduct extensive experiments for both types of models. LoRA is chosen because of the recent spurt in the availability of LoRA models trained on diverse kinds of datasets and models. We do this universal subspace analysis on all weight parameters in every neural network layer except the first (or few initial) and last neural network layer. This is because the these layers may differ across models due to differences in input shapes and types, loss functions, and the tasks being trained. We also focus our analysis on linear/fully-connected and matrix weights, as the analysis done on these are straightforward and the results observed can be trivially extended to other type of types of neural parameters (Ma & Lu, 2017).

Secondary Subspace refers to the residual subspace that remains after removing the top k principal directions associated with the low-rank universal subspace. This subspace is orthogonal to the universal subspace and serves as a control for evaluating the uniqueness and effectiveness of the learned shared subspace. To make computation tractable when the residual subspace is high-dimensional, we focus on the top components beyond rank k, as computing a full SVD is often impractical. This approximation is justified, since the lower components typically capture noise, which has been shown to degrade performance (Sharma et al., 2023).

B.1 LOWER RANK SHARED UNIVERSAL SUBSPACES WITHIN LOW RANK ADAPTATION (LORA) MODELS

Spectral Decomposition is employed to extract the top k principal directions for each of the LoRA matrices B and A, which are concatenated across all available models. Subsequently, the top k principal directions are selected to define the low-rank subspace shared among the LoRA matrices. This process is conducted separately for each layer of the model to derive a low-rank approximated shared subspace for every individual layer. In practice, for every layer, the rank vectors of all available LoRA matrices are extracted and concatenated into a single matrix. This matrix is then normalized by subtracting the feature-wise mean from each vector, after which principal directions are extracted. The mode-1 variant of our method is mathematically equivalent to Principal Component Analysis (PCA), hence we can use torch.pca_lowrank or sklearn.decomposition.PCA to extract the principal directions. The data matrix corresponding to a specific layer for 500 LoRA models is structured as $500r \times d$, where r denotes the rank of each LoRA and d specifies the dimension of each rank vector. The same calculation can be applied to the BA matrix instead of individually to B and A, thereby increasing the computational cost of the Spectral Decomposition without affecting the outcome.

Figure 7: Spectral analysis of the Mistral-7B-Instruct-v0.2 model: Aggregated eigenvalue (scree) plot across 500 LoRA models and all layers. The plot demonstrates that the majority of the variance is consistently captured by the top 16 principal directions, indicating the presence of a shared low-dimensional universal subspace.

Universal Mistral-7B/Lots of LoRAs experiment details In our first experimental analysis, we use 500 LoRA models trained on distinct Natural Instructions (Wang et al., 2022) using Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) as the base (Brüel-Gabrielsson et al., 2024). Please refer to Brüel-Gabrielsson et al. (2024) for more details on how the LoRA models were trained.

Figure 8 presents the aggregated results across all layers, with error bars representing the standard deviation. For reference, the eigenvalue (scree) plot from Figure 3b is also reproduced in Figure 8. This plot depicts the proportion of variance explained by each principal component, computed across all weight matrices and layers from 500 independently trained Mistral models. The concentration of

variance within the top k components reveals the presence of a consistent low-dimensional subspace, offering strong empirical support for the universal subspace hypothesis.

The individual plots provide spectral analysis results for the key, query, and value matrices from all 32 layers of all 500 Mistral models. For clarity, only the top 128 principal directions are visualized, representing a subset of the full component basis. This truncation mitigates the visual distortion caused by the long tail of near-zero eigenvalues beyond the universal subspace, which would otherwise dominate the graph without contributing meaningful information.

To test subspace expressiveness, we reconstruct LoRA weights for both 5 seen (IID) and unseen (OOD) tasks by projecting them into the universal subspace. As shown in Figure 4, the reconstructed models retain high performance in both cases. In contrast, projection into the residual *Secondary Subspace* leads to a sharp performance drop, underscoring the importance of the principal subspace. Our method is also $19 \times$ more memory efficient, as it eliminates the need to store all 500 LoRAs.

Table 6: Models from HuggingFace used for the Universal Stable Diffusion-XL subspace extraction

alphonse-mucha-style	directors-coen-brothers-style	larry-carlson-style	rene-magritte-style
beeple-mike-winkelmann-style	director-sergei-eisenstein-style	lascaux	richard-corben-style
character-design	director-sofia-coppola-style	laurel-burch-style	richard-dadd-style
director-christopher-nolan-style	director-terrence-malick-style	lawrence-alma-tadema-style	richard-hescox-style
director-lars-von-trier-style	director-tim-burton-style	leonid-afremov-style	richard-scarry-style
director-ridley-scott-style	director-wes-anderson-style	leonora-carrington-style	robert-adams-style
director-stanley-kubrick-style	director-wong-kar-wai-style	levitating-cube	robert-crumb-style
director-zhang-yimou-style	director-yorgos-lanthimos-style	liam-wong-style	robert-rauschenberg-style
olafur-eliasson-style	dixit-card-generator	lotte-reiniger-style	rodney-matthews-style
origami	dressed-animals	louis-comfort-tiffany-style	roger-ballen-style
simone-martini-style	dripping-art	lovis-corinth-style	roger-deakins-style
studio-ghibli-style	edward-gorey-style	lucas-cranach-style	romare-bearden-style
ukiyo-e-art	elizabeth-gadd-style	luc-schuiten-style	ryoji-ikeda-style
wu-guanzhong-style	erik-johansson-style	lyonel-feininger-style	sacha-goldberger-style
1987-action-figure-playset-packaging	erik-madigan-heck-style	made-of-iridescent-foil	salomon-van-ruysdael-style
aardman-animations-style	euan-uglow-style	makoto-shinkai-style	sam-spratt-style
akos-major-style	felipe-pantone-style	marc-silvestri-style	sandy-skoglund-style
albumen-print	filip-hodas-style	marianna-rothen-style	santiago-caruso-style
alec-soth-style	folk-art	maria-sibylla-merian-style	shaun-tan-style
alejandro-jodorowsky-style	gabriel-pacheco-style	mark-catesby-style	shepard-fairey-style
alessandro-gottardo-style	gemma-correll-style	mark-ryden-style	sidney-nolan-style
alex-andreev-style			
	george-condo-style	martin-whatson-style	simon-stalenhag-style
alex-gross-style	gilbert-garcin-style	mary-cassatt-style	skottie-young-style
alfred-augustus-glendening-style	gregory-crewdson-style	maurice-de-vlaminck-style	sofonisba-anguissola-style
alex-pardee-style	gustave-dore-style	maurice-prendergast-style	sophie-gengembre-anderson-style
alternate-realities	hasui-kawase-style	maxfield-parrish-style	stained-glass-portrait
ando-fuchs-style	hiroshi-nagai-style	maxime-maufra-style	stanley-donwood-style
andre-derain-style	infrared-photos	mike-mignola-style	stephan-martiniere-style
andrei-tarkovsky-style	isometric-cutaway	mikhail-vrubel-style	stephen-gammell-style
andrew-wyeth-style	ivan-bilibin-style	moebius-jean-giraud-style	stop-motion-animation
angus-mckie-style	james-c-christensen-style	movie-poster	surreal-collage
anna-maria-garthwaite-style	james-jean-style	moving-meditations	surreal-harmony
atey-ghailan-style	james-r-eads-style	nadav-kander-style	surreal-plate
audrey-kawasaki-style	james-turrell-style	natalia-goncharova-style	syd-mead-style
avant-garde-fashion	jan-brueghel-style	n-c-wyeth-style	synthwave-t-shirt
banksy-style	jan-svankmajer-style	needlepoint	teamlab-style
bas-relief	jan-van-eyck-style	neon-night	terry-gilliam-style
century-botanical-illustration	jan-van-goyen-style	nicolas-poussin-style	thomas-cole-style
christopher-balaskas-style	j-c-leyendecker-style	noah-bradley-style	thomas-kinkade-style
christopher-ryan-mckenney-style	jean-baptiste-camille-corot-style	ohara-koson-style	thomas-moran-style
clay-animation	jean-baptiste-monge-style	okuda-san-miguel-style	thomas-schaller-style
color-palette	jean-baptiste-simeon-chardin-style	olly-moss-style	tim-walker-style
craig-mullins-style	jean-metzinger-style	op-art	tintoretto-style
crocheted	jean-michel-basquiat-style	parralel-dimensions	todd-hido-style
daniel-arsham-style	jessie-willcox-smith-style	pascal-campion-style	tove-jansson-style
dark-fantasy	jim-mahfood-style	paul-gustav-fischer-style	tracie-grimwood-style
dave-mckean-style	john-albert-bauer-style	paul-laffoley-style	vasily-vereshchagin-style
diorama	john-berkey-style	paul-signac-style	vertical-landscapes
director-agnes-varda-style	john-blanche-style	peter-doig-style	victor-brauner-style
death-stranding	john-constable-style	peter-paul-rubens-style	victor-moscoso-style
director-akira-kurosawa-style	john-everett-millais-style	philippe-druillet-style	video-installation
director-andrei-zvyagintsev-style	john-harris-style	photographer-elena-helfrecht-style	vintage-postage-stamps
director-bong-joon-ho-style	john-james-audubon-style	photographer-flora-borsi-style	weegee-style
director-darren-aronofsky-style	john-kenn-mortensen-style	photographer-maren-klemp-style	wendy-froud-style
director-david-fincher-style	john-martin-style	photographer-martin-kimbell-style	will-eisner-style
director-david-lynch-style	john-singer-sargent-style	photographer-reuben-wu-style	willem-haenraets-style
cute-animals	john-singleton-copley-style	pierre-auguste-renoir-style	willem-van-aelst-style
ben-aronson-style	john-william-waterhouse-style	pierre-bonnard-style	william-langson-lathrop-style
director-emir-kusturica-style	joseph-wright-of-derby-style	pieter-claesz-style	william-mctaggart-style
director-gaspar-noe-style	josh-agle-style	punk-collage	william-merritt-chase-style
director-jean-pierre-jeunet-style	josh-kirby-style	quentin-blake-style	winslow-homer-style
director-krzysztof-kieslowski-style	jules-bastien-lepage-style	raimonds-staprans-style	worthington-whittredge-style
	jules-bastien-lepage-style kate-greenaway-style	raimonds-staprans-style ralph-bakshi-style	worthington-whittredge-style yaacov-agam-style
director-krzysztof-kieslowski-style			

randolph-caldecott-style yves-klein-style	-style kilian-eng-style	director-park-chan-wook-style
ray-caesar-style zanele-muholi-style	r-style kirigami	director-pedro-almodovar-style
-style remedios-varo-style	o-style konstantin-korovin-style	director-quentin-tarantino-style
		1

Figure 8: Layerwise Eigenvalue Plots of 500 Mistral-7B-Instruct-v0.2 models. Each layer has 3 sets of parameters - k_proj, q_proj, v_proj

Universal SDXL experiment details Our second experiment involves the complex and multimodal task of Text-to-Image generation using the Stable Diffusion-XL model Podell et al. (2023). We extract our low rank universal subspace from publicly available LoRA models on HuggingFace repository von Platen et al. (2022) - Table 6 lists all the SDXL models that we used to extract the Universal Subspace. As can be seen in Table 6, the models range wildly in styles on which they were finetuned. The fact that all these diverse models can be represented by a single low rank universal subspace model strongly verifies our hypothesis. We use top 16 components and 30 denoising steps. For each experiment model shown in Table 1 and Figure 5, that LoRA model is reconstructed using a universal subspace created using rest of the available LoRA adapters, essentially confirming the generalization capability of this subspace.

We then use this single SDXL universal subspace to generate images with similar styles to evaluate whether this subspace is capable of doing so, by projecting randomly chosen LoRA models into this subspace. Figure 5 shows that our universal subspace matches the visual quality and style nuances of individual LoRAs, resulting in significant memory savings. Table 1 shows quantitative results for our Universal subspace in terms of CLIP scores, where interestingly we can see that our Universal Subspace outperforms the individual LoRA models. This improvement may be attributed to our Universal SDXL removing noise from the subspace—a phenomenon previously observed by Sharma et al. (2023).

B.2 LOW RANK SHARED UNIVERSAL SUBSPACES IN CLASSICAL WEIGHTS

Figure 9: Spectral analysis of the Vision Transformer (ViT-base-patch16-224) model: Aggregated eigenvalue (scree) plot across 500 ViT models and all layers. The plot demonstrates that the majority of the variance is consistently captured by the top 16 principal directions, indicating the presence of a shared low-dimensional universal subspace.

In order to further solidify the evidence for our universal subspace hypothesis, we show that this universality does extend beyond adapter models to conventional weights. We do not focus on convolutional weight parameters as they can simply be equated with fully connected layers (Ma & Lu, 2017), and have been shown, in limited scope, to match Gabor-like filters (Krizhevsky et al., 2012). Therefore, our analysis trivially extends to these kinds of parameters as well. However, there are a few practical differences between the low rank adapter and classical weight subspace analysis. The classical weight subspace analysis is more computationally expensive relative to the LoRA one due to high dimensionality of the parameters. Additionally, the number of sufficiently well trained models is understandably fewer than LoRA models. Further, there is also higher variance in terms of model quality in the classical weights as it is harder to optimize these models as compared to LoRA which often are optimized from a good initialization point (the pretrained base model). An outcome of this is that the universal subspace approximation that we obtain from the publicly available pretrained models are noisier than their LoRA counterparts. Inspite of this, our universal subspace hypothesis remains validated.

To further support our universal subspace hypothesis, we extend our analysis beyond adapter models to standard full-rank weights. We exclude convolutional parameters from explicit consideration, as they are functionally equivalent to fully connected layers under certain conditions (Ma & Lu, 2017), and their learned representations (e.g., Gabor-like filters) have been studied, in limited scope, in prior work (Krizhevsky et al., 2012). Consequently, our analysis generalizes naturally to convolutional weights as well.

There are, however, practical differences between the subspace analysis of full-rank model weights and that of low-rank adapters. First, analyzing conventional weight matrices is significantly more computationally intensive because of their higher dimensionality. Second, the availability of a large number of independently and sufficiently well-trained models is more limited compared to LoRA models. Third, the classical weight models exhibit greater variance in model quality, since they must be trained from scratch, often without the benefit of a well-optimized initialization, unlike LoRA which builds upon a strong pretrained base.

As a result, the subspaces estimated from classical weights tend to be noisier, and the universality signal is less pronounced. Despite these challenges, we still observe consistent structure in the leading components, lending further empirical support to the universal subspace hypothesis.

Figure 10: Layerwise EigenValue Plots of 500 ViT models.

Universal ViT-base-patch16-224 experiment details We collect ∼500 pretrained ViT models from HuggingFace, shown in Table 7, spanning very diverse domains — many of which would be considered orthogonal to one another in terms of domain generalization. These models have been trained with varying losses, optimizers, and initializations. These models were used as-is, without curation or access to training data, to reflect real-world variability. Figure 9 shows the summarized scree plot for all relevant layers of ViT (sans first and last layers due to differences in shape and tasks) for all ~ 500 ViT models showing that the majority of variance is captured by the top 16 principal directions, revealing a highly compressible, shared subspace across layers. Only the top 100 components are visualized for clarity, although the available subspace is significantly larger, underlying the sparsity of this universal subspace. We observe this for layerwise analysis in Figure 10 as well. For the experimental results presented in Table 2, we randomly choose 4 IID and 4 OOD models from Table 7 for which evaluation dataset is available, and reconstruct these model weights by projecting them into our 16 component universal subspace. For the OOD case, we ensure that the models being evaluated are not present in the subset used for creating the universal subspace approximation. As seen from the results, our extremely sparse subspace model performs competitively compared to the fully trained versions. It is likely that with more careful choice of principal directions per layer would allow for at par or even better performance.

Table 7: Finetuned Models from HuggingFace used for the Universal Vision Transformer subspace extraction (vit-base-patch16-224)

0.50-200Train-100Test-vit-base	2025-01-21-16-13-04-vit-base-patch16-224
2025-02-05-14-22-36-vit-base-patch16-224	21BAI1229
Accomodation_room_classification	adam_VitB-p16-224-1e-4-batch_16_epoch_4_classes_24
age_face_detection_base	AIvisionGuard-v2
alea	amns
AnimeCharacterClassifierMark1	autotrain-48ci8-roib9
autotrain-80qr6-image0807-20	autotrain-ap-pass-fail-v1
autotrain-g2g80-iwcfm	autotrain-google-vit-13epoch
autotrain-ht4es-gbvmt	autotrain-image-classifier-cats-and-dogs
autotrain-pknu0-o76h9	autotrain-s0sds-erede
autotrain-test-image-classification	autotrain-vit-base-patch16-224-fog-or-smog-classification
beauty-ornot	beer-classifier
bg-classif	bigger-chord-finetuned
brain-tumor-44	ButterflyClasifModel
camera-type	Caracam
cards-vit-base-patch16-224-finetuned-v1	carmodel
cats123	cats-dogs-2024
cats-dogs-classification	CheXpert-ViT-U-MultiClass
CheXpert-ViT-U-SelfTrained	chord-final-model
chord_ViT-finetuned	cifar10-lt
city_multiclass_classification	clasificador_masas
corals_binary_classification	custom
detect_meme	dog-breeds-classification
dog-cat-demo-20240815	dog-cats-model
dummy_classification_model	dvm-cars-vit-first-5k
ecg-image-multilabel-classification	emotion
EmotionAgeModel	emotion_model
emotion-recognition	emotion_recognition
emotion_recognition_results	emotion-vit
face_age_detection_base_v2	face_age_detection_base_v3_weighted
final-run	finetune-cats
fine-tuned	finetuned-amazon
fine-tuned-augmented	finetuned-bin
finetuned-cifar10	finetuned-indian-food
fine-tuned-model	finetuned_model
Fine-Tuned_Model	Fine-Tuned_Model2
Fine-Tuned_Model3	Fine-Tuned_Model3_Transfer_learning
finetune-vit-base-patch16-224	finetune_vit_base_patch16_224_1epoch
Flowers	food
food-101-finetuned-model	Freshness-Fruit_Vegies
frost-vision-v2-google_vit-base-patch16-224	frost-vision-v2-google_vit-base-patch16-224-v2024-11-09
frost-vision-v2-google_vit-base-patch16-224-v2024-11-11	frost-vision-v2-google_vit-base-patch16-224-v2024-11-14
fruit_classification	fruits-360-16-7
ft_stable_diffusion	gender
giecom-vit-model-clasification-waste	google-vit-base-patch16-224-batch32-lr0.0005-standford-dogs
google-vit-base-patch16-224-batch32-lr0.005-standford-dogs	google-vit-base-patch16-224-batch32-lr5e-05-standford-dogs
google-vit-base-patch16-224-batch64-lr0.005-standford-dogs	google-vit-base-patch16-224-OrganicAndInorganicWaste-
	classification
google-vit-base-patch16-224-Waste-O-I-classification	hf_vit_format_hap_pretrained_256_128
Human-Action-Recognition-VIT-Base-patch16-224	human-actions
image-classification	image_classification
image_strawbery-peach_classifier	isa-vit_model
lixg_food_model001	Maggi-Parle-G_Classifier
mammals_multiclass_classification	MemeDetector
model	Model
model-vit-base-finetuned	MRI vit
my_chest_xray_model	myclass
my classification	MyPetModel
y ···· !=====	outputs

1242		
1243	PagesClassificationModel	physiotheraphy-E2
1244	plant_disease_detection-beans	pokemon_classification
1245	pokemon_model recaptcha	pokemon-vit recycled_waste_classification
	results	rmsprop_VitB-p16-224-1e-4-batch_16_epoch_4_classes_24
1246	rmsprop_VitB-p16-224-2e-4-batch_16_epoch_4_classes_24 rose_recognition	road-conditions rotated2
1247	Ruster	S1_M1_R1_vit_42498800
1248	S1_M1_R1_vit_42509509	S1_M1_R1_ViT_42616100
1249	S1_M1_R2_vit_42498972 S1_M1_R3_vit_42499444	S1_M1_R2_ViT_42618476 S1_M1_R3_ViT_42618486
1250	S2_M1_R1_vit_42499480	S2_M1_R1_ViT_42618522
1251	S2_M1_R2_vit_42499499 S2_M1_R3_vit_42499514	S2_M1_R2_ViT_42618530 S2_M1_R3_ViT_42618549
1252	S5_M1_fold1_vit_42499955	S5_M1_fold1_ViT_42618571
	S5_M1_fold2_vit_42499968 S5_M1_fold3_vit_42499983	S5_M1_fold2_ViT_42618583 S5_M1_fold3_ViT_42618589
1253	S5_M1_fold4_vit_42499997	S5_M1_fold4_ViT_42618593
1254	S5_M1_fold5_vit_42500027	S5_M1_fold5_ViT_42621111
1255	Screenshots_detection_to_classification square_run_32_batch	sign-lan-model square_run_age_gender
1256	square_run_first_vote_full_pic_50	square_run_first_vote_full_pic_50_age_gender
1257	square_run_first_vote_full_pic_75 square_run_second_vote	square_run_first_vote_full_pic_75_age_gender square_run_second_vote_full_pic_50
1258	square_run_second_vote square_run_second_vote_full_pic_50_age_gender	square_run_second_vote_full_pic_75
	square_run_second_vote_full_pic_75_age_gender	square_run_second_vote_full_pic_age_gender
1259	square_run_second_vote_full_pic_stratified square_run_square_run_first_vote_full_pic_25_age	square_run_square_run_first_vote_full_pic_25 square_run_square_run_first_vote_full_pic_25_age_gender
1260	square_run_square_run_first_vote_full_pic_25_age_gender_double_c	hecsquare_run_square_run_second_vote_full_pic_25
1261	square_run_square_run_second_vote_full_pic_25_age_gender square run with actual 16 batch size	square_run_with_16_batch_size stool-condition-classification
1262	swaddling-classifier	swin-tiny-patch4-window7-224-finetuned-eurosat-kornia
1263	tarread	telidermai
1264	test-cifar-10 Train-Augmentation-vit-base	traffic-levels-image-classification trainer_output
1265	Train-Test-Augmentation-V3D-vit-base	UL_base_classification
	UL_bedroom_classification UL_interior_classification	UL_exterior_classification vehicle_multiclass_classification
1266	ViT_ASVspoof_DF	vit-augmentation
1267	vit-b16-plant_village	vit_base
1268	vit-base-1e-4-15ep vit-base-1e-4-randaug	vit-base-1e-4-20ep vit-base-1stGen-Pokemon-Images
1269	vit-base-25ep	Vit-Base-30VN
1270	vit-base-3e-5-randaug vit-base-add-2-decay	vit-base-5e-4 vit-base-augment
1271	vit-base-batch-32	vit-base-beans
1272	vit-base-brain-mri vit-base-change-arg	vit-base-cat_or_dog vit-base-cocoa
	Vit-base-Change-arg ViT-Base-Document-Classifier	vit-base-fashion
1273	vit-base-finetuned-cephalometric	vit-base-food101
1274	vit-base-fruits-360 vit-base-nationality	vit-base-hate-meme vit-base-org-plot
1275	vit-base-oxford-brain-tumor	vit-base-oxford-brain-tumor_try_stuff
1276	vit-base-oxford-brain-tumor_x-ray vit-base-oxford-pets-krasuluk	vit-base-oxford-iiit-pets vit-base-patch16-224
1277	vit-base-patch16-224-13_model	vit-base-patch16-224-30-vit
1278	vit-base-patch16-224-9models	vit-base-patch16-224-abhi1-finetuned
1279	vit-base-patch16-224_augmented-v2_fft vit-base-patch16-224-blur_vs_clean	vit-base-patch16-224_augmented-v2_tl vit-base-patch16-224-brand
	vit-base-patch16-224-classifier	vit-base-patch16-224-clothes-filter
1280	vit-base-patch16-224-cl-v1 vit-base-patch16-224-Diastar	vit-base-patch16-224-crochets-clothes-classification vit-base-patch16-224-Diastarallclasses
1281	vit-base-patch16-224-dmae-va-U	vit-base-patch16-224-dmae-va-U5-100-iN
1282	vit-base-patch16-224-dmae-va-U5-10-45-5e-05 vit-base-patch16-224-dmae-va-U5-40-45-5e-05	vit-base-patch16-224-dmae-va-U5-20-45-5e-05 vit-base-patch16-224-dmae-va-U5-42B
1283	vit-base-patch16-224-dmae-va-U5-40-43-3e-03	vit-base-patch16-224-dmae-va-U5-42D
1284	vit-base-patch16-224-ethos	vit-base-patch16-224-ethos-25
1285	vit-base-patch16-224-ethos-8 vit-base-patch16-224-ethosrealdata	vit-base-patch16-224-ethos-data vit-base-patch16-224-fatigue
1286	vit-base-patch16-224-finalterm	vit-base-patch16-224-finetuned
	vit-base-patch16-224-finetuned-barkley vit-base-patch16-224-finetuned-Brain-Tumor-Classification	vit-base-patch16-224-finetuned-brain-tumor-classification vit-base-patch16-224-finetuned-cassava-leaf-disease
1287	vit-base-patch16-224-finetuned-cedar	vit-base-patch16-224-finetuned-cifar10
1288	vit-base-patch16-224-finetuned-combinedSpiders	vit-base-patch16-224-finetuned-context-classifier
1289	vit-base-patch16-224-finetuned-covid_ct_set_full vit-base-patch16-224-finetuned-crochets-clothes	vit-base-patch16-224-finetuned-covid_ct_set_resumed vit-base-patch16-224-finetuned-dangerousSpiders
1290	vit-base-patch16-224-finetuned-eurosat	vit-base-patch16-224-finetuned-feature-maps-v3
1291	vit-base-patch16-224-finetuned-feature-map-v2 vit-base-patch16-224-finetuned-flower	vit-base-patch16-224-finetuned-fibre vit-base-patch16-224-finetuned-flower-classify
1292	vit-base-patch16-224-finetuned-flowers	vit-base-patch16-224-finetuned-food101
	vit-base-patch16-224-finetuned-food102	vit-base-patch16-224-finetuned-foveated-features
1293	vit-base-patch16-224-finetuned-foveated-features-v2 vit-base-patch16-224-finetuned-hateful-meme-restructured	vit-base-patch16-224-finetuned-galaxy10-decals vit-base-patch16-224-finetuned-hateful-meme-restructured-
1294	•	balanced
1295	vit-base-patch16-224-finetuned-imagegpt	vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask

1296		
1297	vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-	vit-base-patch16-224-finetuned-landscape-test
1298	new-parameter vit-base-patch16-224-finetuned-lora-oxford-pets	vit-base-patch16-224-finetuned-masked-hateful-meme-
1299	vit-base-patch16-224-finetuned-noh	restructured vit-base-patch16-224-finetuned-original-images
1300	vit-base-patch16-224-finetuned-pneumonia-detection	vit-base-patch16-224-finetuned-polyterrasse
1301	vit-base-patch16-224-finetuned-skin vit-base-patch16-224-finetuned-teeth_dataset	vit_base_patch16_224-finetuned-SkinDisease vit-base-patch16-224-finetuned-trash-classifications-
1302	<u> </u>	albumentations
1303	vit-base-patch16-224-finetuned-turquoise vit-base-patch16-224-finetuned-vit	vit-base-patch16-224-finetuned-Visual-Emotional vit-base-patch16-224-finetune_test
1304	vit-base-patch16-224-food101-16-7	vit-base-patch16-224-food101-24-12
1305	vit-base-patch16-224-for-pre_evaluation vit-base-patch16-224-high-vit	vit-base-patch16-224-fruits-360-16-7 vit-base-patch16-224-jvadlamudi2
1306	vit-base-patch16-224-masaratti vit-base-patch16-224-mascotas-DA	vit-base-patch16-224-mascotas vit-base-patch16-224-MSC-dmae
1307	vit-base-patch16-224-newly-trained	vit-base-patch16-224-oxford-pets-classification
1308	vit-base-patch16-224-perros-y-gatos vit-base-patch16-224-R1-10	vit-base-patch16-224-pure-ViT vit-base-patch16-224-R1-40
1309	vit-base-patch16-224-Rado_5	vit-base-patch16-224_rice-disease-02
1310	vit-base-patch16-224_rice-leaf-disease-augmented_fft vit-base-patch16-224_rice-leaf-disease-augmented-v4_fft	vit-base-patch16-224_rice-leaf-disease-augmented_tl vit-base-patch16-224_rice-leaf-disease-augmented-v4_tl
1311	vit-base-patch16-224_rice-leaf-disease-augmented-v4_v5_fft	vit-base-patch16-224_rice-leaf-disease-augmented-v4_v5_pft
	vit-base-patch16-224-rotated-dungeons-v101 vit-base-patch16-224-RU2-10	vit-base-patch16-224-rotated-dungeons-v103 vit-base-patch16-224-RU2-40
1312	vit-base-patch16-224-RU3-10	vit-base-patch16-224-RU3-40
1313	vit-base-patch16-224-RU4-10 vit-base-patch16-224-RU5-10	vit-base-patch16-224-RU4-40 vit-base-patch16-224-RU5-10-8
1314	vit-base-patch16-224-RU5-40	vit-base-patch16-224-RU9-24 vit-base-patch16-224-RX2-12
1315	vit-base-patch16-224-RX1-24 vit-base-patch16-224-RXL1-24	vit-base-patch16-224-type
1316	vit-base-patch16-224-U6-10 vit-base-patch16-224-U8-10	vit-base-patch16-224-U7-10 vit-base-patch16-224-U8-10b
1317	vit-base-patch16-224-U8-10c	vit-base-patch16-224-U8-40
1318	vit-base-patch16-224-U8-40b vit-base-patch16-224-U8-40d	vit-base-patch16-224-U8-40c vit-base-patch16-224-ve-b-U10-12
1319	vit-base-patch16-224-ve-b-U10-24	vit-base-patch16-224-ve-b-U10-40
1320	vit-base-patch16-224-ve-U10-12 vit-base-patch16-224-ve-U11-12	vit-base-patch16-224-ve-U10-24 vit-base-patch16-224-ve-U11-b-24
1321	vit-base-patch16-224-ve-U11-b-40	vit-base-patch16-224-ve-U11-b-80
1322	vit-base-patch16-224-ve-U12-b-24 vit-base-patch16-224-ve-U13-b-120	vit-base-patch16-224-ve-U12-b-80 vit-base-patch16-224-ve-U13-b-24
1323	vit-base-patch16-224-ve-U13-b-80	vit-base-patch16-224-ve-U13b-80R
1324	vit-base-patch16-224-ve-U13b-80RX vit-base-patch16-224-ve-U13b-80RX3	vit-base-patch16-224-ve-U13b-80RX1 vit-base-patch16-224-ve-U13b-R
1325	vit-base-patch16-224-ve-U14-b-24 vit-base-patch16-224-ve-U16-b-80	vit-base-patch16-224-ve-U15-b-80 vit-base-patch16-224-ve-Ub
1326	vit-base-patch16-224-vit	vit-base-patch16-224-vit-base-patch16-224-vit-base-patch16-224-
1327	vit-base-pets	dogORnot vit-base-PICAI
1328	vit-base-seed-1e-4	vit-base-seed-3e-4
1329	vit-base-travel-document-classification vit-beans-classifier	vit-base-v1-eval-epoch-maxgrad-decay-cosine vit-beta1-0.85
1330	vit-beta1-0.88 vit-beta2-0.99	vit-beta1-0.95
1331	vit-beta2-0.99 vit-beta2-0.9995	vit-beta2-0.995 vit-bird
1332	ViT_bloodmnist ViT_bloodmnist_std_15	ViT_bloodmnist_std_0 ViT_bloodmnist_std_30
	ViT_bloodminist_std_15 ViT_bloodminist_std_45	ViT_bloodminist_std_60
1333	ViT_breastmnist ViT_breastmnist_std_15	ViT_breastmnist_std_0 ViT_breastmnist_std_30
1334	ViT_breastmnist_std_45	ViT_breastmnist_std_60
1335	VIT-cats-vs-dogs vit-class-weight	vit-cifar10-fine-tuned vit-cxr4
1336	vit-demo	ViT_dog_food
1337	vit-dropout-0.2 vit-dropout-0.4	vit-dropout-0.5
1338	vit-ds-processed	vit-emotion-model
1339	vit-epsilon-1e-7 vit-epsilon-5e-9	vit-epsilon-1e-9 vit-face-project-piyush
1340	vit-fine-tune-classification-cats-vs-dogs	vit-finetuned-1
1341	vit-food-classification-chrisis2 vit-google-model-30-classes	vit-geometric-shapes-base vit_google_vehicle_classification_model
1342	vit-historical-page vit-lr-0.0001	vit_Liveness_detection_v1.0 vit-lr-0.001
1343	vit-lr-0.01	vit-lr-cosine-restarts
1344	vit-lr-cosine-warm-restarts vit-lr-exponential	vit-lr-cosine-warmup vit-lr-inverse-sqrt
1345	vit-lr-linear	vit-lr-poly
1346	vit-lr-reduce-plateau vit-mae-base-finetuned-eurosat	vit-lr-step vit-molecul
1347	vit-ori-dataset-exp	vit-plant-classification
1348	vit-plantnet300k vit-real-fake-classification-v1	vit-plants vit-real-fake-classification-v2
1349	vit-real-fake-classification-v3	vit-real-fake-classification-v4
	vit-skin-demo-v1	vit-skin-demo-v2

vit-skin-demo-v3	vit-skin-demo-v4
vit-skin-demo-v5	vit-spam
vit-sports-cls	vit-transfer-learning
vit_transformer_eye_disease	vit_tumor_classifier
vit-vit	vit-vit-base-patch16-224-finetuned-chest-xray
vit-weight-decay-1e-2	vit-weight-decay-1e-3
vit-weight-decay-1e-4	vit-weight-decay-1e-5
wmc_v2_vit_base_wm811k_cls_contra_learning_0916	wmc_v2_vit_base_wm811k_cls_contra_learning_0916_9cls
wmc-wmk811-v0-vit-special_map_det_0917	WS800_ViT_42820348
WS800_ViT_42895082	xraynewww
yet-another-amber-mines	zdravJEM_CV_BERT

Universal LLaMA3-8B Experiment Details To further stress-test our universal subspace hypothesis on classical weight matrices, we extract a shared subspace from approximately 50 finetuned LLaMA3 models, each with 8 billion parameters. These models were obtained from publicly available repositories on HuggingFace. Due to their scale, we do not apply any model selection or filtering, and instead include the entire available set.

As shown in Figure 11, which presents the aggregated scree plot across all layers and all 50 models, the principal variance is concentrated in the top few components—consistent with the emergence of a low-rank universal subspace. For reference, the plot displays only the top 300 components, which represent a small fraction of the full rank, highlighting the inherently low-dimensional structure.

The models included in this analysis span a diverse range of domains, including medical applications, multilingual dialogue systems, and general-purpose assistants, as listed in Table 8. To the best of our knowledge, this is the first work to demonstrate that such a large and heterogeneous collection of high-capacity language models can be jointly represented within a single low-rank subspace.

The layerwise spectral analysis, shown in Figure 12, corroborates this finding: across all layers, the majority of eigenvalues fall below a threshold of < 0.001, indicating that most directions in parameter space contribute negligibly to variation across models. The plots are cropped to show only the leading components due to the large number of total dimensions. We recommend zooming in for clearer visualization.

Figure 11: Spectral analysis of 50 LLaMA-3-8B model: Aggregated eigenvalue (scree) plot across 500 ViT models and all layers. The plot demonstrates that the majority of the variance is consistently captured by the top 16 principal directions, indicating the presence of a shared low-dimensional universal subspace.

Finding universal subspaces and applying them to future tasks In this section, we present two tasks, GLUE (Wang et al., 2019) and Image Classification. For each experiment, the joint subspace is created using all other models in subset. For Image Classification, we use k=4 and train only 8 epochs using learning rate of 1e-4. Importantly, only the coefficients are trained for the experiment.

Table 8: Models from HuggingFace used for the Universal LlaMa3-8B subspace extraction

Meta-Llama-3-8B-Instruct-Jailbroken	Llama-3-13B-Instruct	large_crafting_sft_success	suzume-llama-3-8B-multilingual
summary-llama3-8b-f16-full	Llama-3-13B-Instruct-v0.1	Llama-3-8B-ProLong-64k-Base	LLaMAntino-3-ANITA-8B-Inst-DPO-ITA
ai-medical-model-32bit	filtered_crafting_train_data_shorter_length	Llama-3-portuguese-Tom-cat-8b-instruct	Llama-3-MAAL-8B-Instruct-v0.1
Human-Like-LLama3-8B-Instruct	LLaMA-3-8B-Instruct-TR-DPO	CabraLlama3-8b	chartgpt-llama3
KoLlama-3-8B-Instruct	honeypot-llama3-8B	Llama-SEA-LION-v2-8B	TR
Llama3-8B-Instruct-Turkish-Finetuned	Llama-3-15B-Instruct-zeroed	Llama-3-8B-Instruct-TAR-Bio-v2	Bio-Medical-Llama-3-8B
filtered_construction_train_data	shisa-v1-llama3-8b	REFUEL-Llama-3-Armo-iter_1	llama3-instrucTrans-enko-8b
Llama-3-8B-Instruct-Ja	llama3-passthrough-chat	RoLlama3-8b-Instruct	Lloro-SQL
Summary_L3_1000steps_1e7rate_SFT2	CyberSentinel	Meta-Llama-3-8B-Instruct-function-calling-json-mode	MARS
Llama-3-8B-Instruct-Finance-RAG	LLaMA3-Instruct-8B-FR-Spec	Llama-3-8B-Japanese-Instruct	Llama3-8B-Chinese-Chat
llama-3-chinese-8b-instruct-v2	Athene-RM-8B	Llama-3-OffsetBias-RM-8B	large_cooking_sft_success
suzume-llama-3-8B-japanese	llama-3-chinese-8b-instruct-v3	Waktaverse-Llama-3-KO-8B-Instruct	llama-3-8b-gpt-4o-ru1.0
Llama-3-Aplite-Instruct-4x8B-MoE	Llama-3-8B-Instruct-DPO-v0.3		

It is important to note that our shared subspace model performs quite well despite using very few (4-5) models to extract the subspace. We use 16-32 components for our subspace, with learning rate of 4e-4, batch size of 64, and 30-80 epochs for each task. In addition, it is likely that our model might perform similarly or better if trained longer or with optimized hyperparameters.

Compute Resources We conduct all our experiments using a single A5000 GPU, and a CPU with 8 workers. For the universal subspace extraction, all calculation can be done on the CPU. However, GPU would increase the speed of calculation as the layerwise subspace extraction can be parallelized.

Figure 12: Layerwise Scree Plots for 50 LLaMA-3-8B Models. For enhanced clarity, each subplot presents a truncated view of the total possible principal directions. These plots consistently demonstrate that the dominant information, as represented by explained variance, resides within a small number of leading principal directions for all models. Components beyond this initial set are characterized by eigenvalues approaching zero, signifying their redundancy for the universal subspace.

C DISCUSSION AND BROADER IMPACT

 Our findings suggest that deep neural networks trained across diverse tasks and modalities systematically converge to shared, low-dimensional subspaces within their parameter space. The existence of such universal subspaces challenges conventional assumptions about the independence and diversity of model and task-specific finetuning trajectories. Instead, it highlights a powerful regularity in the way deep models encode task-specific knowledge—one that can be exploited for significantly improved training and deployment efficiency. By leveraging these subspaces, we demonstrate that models can be adapted to new tasks by learning only a small number of coefficients, rather than retraining or storing full sets of weights. This facilitates more robust multi-task learning, model merging, and scalable fine-tuning, with theoretical guarantees and empirical validation across multiple architectures.

The broader societal impact of this work is substantial. Our approach enables large-scale models to be reused and extended with dramatically reduced computational overhead, addressing both the financial and environmental costs associated with training and deploying deep learning systems. This contributes directly to the goals of sustainable and accessible AI. By lowering the hardware and energy requirements for adaptation and inference, we empower under-resourced researchers, institutions, and communities to build upon state-of-the-art models without needing extensive compute infrastructure. Furthermore, by supporting modular model design and data-free model merging, our work lays the foundation for more interpretable, maintainable, and equitable AI systems.