Under review as a conference paper at ICLR 2026

DO NEURAL NETWORKS LEARN SIMILAR SUBSPACES?
AN EMPIRICAL EXPLORATION OF JOINT PARAMETRIC
SUBSPACES IN DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We show that deep neural networks trained across diverse tasks exhibit remarkably
similar low-dimensional parameteric subspaces. We provide the first large-scale
empirical evidence demonstrating that neural networks systematically converge to
shared spectral subspaces regardless of initialization, task, or domain. Through
mode-wise spectral analysis of over 1100+ models - including 500 Mistral-7B
LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models - we identify univer-
sal subspaces capturing majority of the variance in just a few principal directions.
By applying spectral decomposition techniques to the weight matrices of various
architectures trained on a wide range of tasks and datasets, we identify sparse, joint
subspaces that are consistently exploited, within shared architectures across diverse
tasks and datasets. Our findings offer new insights into the intrinsic organization of
information within deep networks and raise important questions about the possi-
bility of discovering these universal subspaces without the need for extensive data
and computational resources. Furthermore, this inherent structure has significant
implications for model reusability, multi-task learning, model merging, and the
development of training and inference-efficient algorithms, potentially reducing
the carbon footprint of large-scale neural models.
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Figure 1: Empirical Evidence for (Universal) Joint Weight Subspaces. This figure illustrates
the existence of joint low-dimensional subspaces across models trained on diverse tasks. We plot
the average explained variance of the top few principal components of weight matrices from 500
Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models. Despite differences in
modality, data, and training objective, all models exhibit rapid spectral decay - indicating that a
small number of directions dominate across layers and settings. This consistent structure provides
strong evidence for the presence of universal subspaces, supporting our hypothesis that deep networks
systematically reuse a common representational basis.
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1 INTRODUCTION

We show that neural networks trained on a variety of datasets - which could be disjoint and unrelated
- diverse hyper-parameter settings, initializations and regularization methods, often learn layer wise
similar, low-ranked joint subspaces (we refer to this as the Universal Subspace). We provide the first
large-scale empirical analysis - across a diverse set of models - that neural networks tend to these
joint subspaces, largely independent of their initialization or the specific data used for training. Our
study encompasses different model architectures trained on a variety of datasets, sometimes with
different loss functions and tasks. Our spectral subspace analysis of the weights of all these models
(Figure 1) suggests that although individual tasks appear to induce distinct subspaces, individually,
they are all part of unusually low-ranked joint subspace. Our work extends the scientific community’s
understanding of what neural networks learn. This universality could explain several puzzling neural
properties: why overparameterized models with millions more parameters than training samples still
generalize; how different initializations converge to similar representations; and why techniques like
weight sharing and parameter-efficient fine-tuning succeed across architectures. If networks indeed
learn within shared subspaces, this would provide a supporting explanation for implicit regularization,
transferability, and the effectiveness of sparse training methods.

Several works have hinted at phenomena consistent with our joint (universal) subspace hypothesis.
For example, Neural Tangent Kernel (NTK) theory demonstrates that, in the infinite-width limit,
the training dynamics of deep networks are governed by a kernel that is largely invariant to task
specifics (Jacot et al.l2018). Similarly, research in mechanistic interpretability’s own universality
hypothesis [Olah et al.| (2020); |Chughtai et al.| (2023)) has uncovered recurring circuits and patterns
within some layers of toy or vision networks, lending indirect support to the universality hypothesis.
Other works, including the lottery ticket hypothesis (Frankle & Carbin), [2019) and studies on mode
connectivity (Garipov et al., 2018)), provide further evidence for the existence of reusable, low-
dimensional representations in neural networks. Notably, Krizhevsky et al.| (2012) observed that
the first layer of convolutional networks tends to learn Gabor-like filters across various vision tasks.
Recent studies by Guth and Mallat (Guth & Mallat, 2023}; (Guth et al., [2024) have also shown initial
evidence of reoccuring eigenvectors for some layers of convolutional neural networks (CNNs) trained
on natural images.

In our analysis, we present compelling empirical evidence for the existence of universal subspaces
within LoRA adapters across different modalities and tasks. We, initially, focus on LoRA adapters due
to their ease of training and the ability to collect a large number of adapters for diverse tasks, models,
and datasets, which enables robust evaluation of our hypothesis. E.g., we demonstrate the emergence
of a universal subspace across approximately 500 LoRA adapters for the Mistral-7B (Jiang et al.|
2023) model. We further extend our investigation to the full weight space, where we observe similar
universality, extracting sparse, low-rank universal subspaces from about 500 Vision Transformer
models and 50 LLaMA3-8B models, each trained on different datasets and initializations.

Although the underlying causes and broader implications of this universal property remain an open
area of investigation, even an initial understanding of parameter subspace universality has profound
implications for neural network efficiency and interpretability. Shared subspaces could enable:
(1) massive model compression by storing only subspace coefficients rather than full weights; (2)
rapid adaptation to new tasks within learned subspaces; (3) theoretical insights into generalization
bounds and optimization landscapes; and (4) environmental benefits through reduced computational
requirements for training and inference.

The remainder of this paper is organized as follows. We first define the problem set up formally in
Section [2] followed by listing of essential properties and conditions with corresponding empirical
justifications. Section proposes the method to adapt to new tasks leveraging the shared
approximate universal subspace. Section [3.1] explains our analysis methodolgy and section [3.2]
presents the comprehensive empirical evidence of the Universal subspaces. Section[d]briefly discusses
the analysis providing useful insights and answers the fundamental questions raised in the introduction.
We discuss related work in appendix [A.T|and discuss limitations and scope for future work in Section
[l Our primary contributions include:

* We empirically demonstrate the existence of a lower-dimensional shared universal subspace,
and also provide relevant theoretical analysis.
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* Illustrate the approach to learn an approximate low-dimensional shared subspace using the
available set of tasks. Propose conditions for convergence of this learned subspace to the
true universal shared subspace.

* Reuse the learned shared subspace to efficiently adapt to new unseen tasks with significantly
less number of trainable parameters. Our experiments across wide variety of large pretrained
models across various architectures and data modalities extensively verify and validate our
hypothesis and theoretical findings.

2 NOTATIONS, DEFINITIONS AND THEORETICAL ANALYSIS

In our theoretical analysis, we aim to understand whether the shared structure across tasks can be
consistently recovered from data. Specifically, each task has an associated ground-truth predictor
f7, and we are interested in the covariance (second-moment) operator S that captures the common
subspace spanned by these predictors. Since in practice we only observe finite samples per task and
learn approximate predictors ft, two sources of error arise: (i) variability due to having finitely many
tasks, and (ii) estimation noise within each task. Our goal is to establish conditions under which the
empirical operators built from ft concentrate around S, and to show that the learned top-k subspace
converges to the true one, with convergence rates that separately reflect the number of tasks and the
accuracy of per-task learning.

Setup. Let (#,(:,-)) be a separable Hilbert space with norm ||-|| = |-||,,. For a,b € H, the
rank-one operator a ® b : H — H is (a ® b)g = (b, g) a; in particular [[a @ b|,, = ||a|| [|b[|. Tasks
t={1,2,3...,T} are drawn i.i.d. from distribution 7" and each task dataset S; = {(z1,,y1,:)} 14
with n; samples is drawn independently from D,. Let f; € ‘H denote the (unknown) ground-truth
predictor for task ¢ and ft € H be the learned predictor for the task.

Definition 2.1 (Task second-moment operator). The population, true empirical, and learned empirical
task second-moment operators are respectively,

T T
* * 5 1 * * o 1 n ¢
S::Et~‘r[ft ®ft]a SZzT} ft ®fta SZzT} [t ® fi.
t=1 t=1

where S, S, S are self-adjoint and positive semi-definite such that tr(S) < oco. Its top-k eigenspace
% 1s the population rank-k shared subspace of tasks.

Remark 2.2. We work with the second-moment operator (rather than centered covariance), so the top
eigenspace may include the mean direction of { f} }:~7.

Let Ay > Ay > --- be the eigenvalues of S with orthonormal eigenvectors {¢;};>1. Write P, =
Zle ¢; ® ¢, for the projector onto the population top-k subspace H; = span{¢1, ..., ¢x}, and
let P, be the projector onto the top-k eigenspace of S (the learned shared subspace). Define the
eigengap v := Ay — A1 > 0.

Assumption 2.3 (Realizability, bounded second moment and effective rank). For a constant B > 0
and for all tasks, [} € H almost surely, || f|| < B a.s., By || 7| = tr(S) < oo. In addition, S

has bounded effective rank, III‘Q(HS) <K
op

Assumption [2.3]ensures that all ground-truth predictors are bounded and have finite second moment,
so the population covariance operator S is well-defined. The bounded effective rank condition
further guarantees that the shared structure of the tasks is not arbitrarily infinite-dimensional, making
subspace recovery feasible.

Assumption 2.4 (Per-task estimation accuracy in H). For any 0; € (0, 1) with probability at least
1 — &, over the draw of Sy,

In(1/6
< m, ..wheren, =Ry, p,(H)+ %
t

|fi— 1

Here R, p,(H) represents Rademacher complexity of the solutions within Hilbert space H over
ny samples drawn i.i.d. from D, This form is satisfied, for example, by strongly convex regularized
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ERM in an RKHS (e.g., kernel ridge regression or NTK ridge), under bounded kernel norm and
sub-Gaussian response noise Bartlett & Mendelson|(2003).

Assumption [2.4{requires that each task predictor ft is learned accurately from its finite dataset. In

other words, f; is close to the true f; in H-norm with high probability, at a rate governed by sample
size and complexity of the hypothesis space.

Theorem 2.5 (Two-level convergence to the shared subspace). Assume Let c1, co be any
absolute constants. For any 6 € (0, 1), choose 6, = 6/(2T) and set 61 = & /2. With probability at
least 1 — 0 (over tasks and all per-task samples),

< 0132\/71%(;2/5) + 2Bi+17?) )
op

< g <0132 M + (QBﬁ + 772)) . 2)
op Yk T

HS—S

If moreover vy, > 0, then

H]Bk - Py

_ T — T . . .
where ) = % D1 e n? = % >t n? and 1 is defined same as in assumption

Proof of can be found in appendix The shows that the

empirical second-moment operator built from the learned predictors converges to the true operator S,
and the learned top-k subspace P}, converges to the true subspace Pj. The rates capture two sources of

error: averaging across tasks (scaling with 1/ V/'T) and per-task estimation errors (through 7 and 72).
A larger eigengap ), makes the subspace recovery more stable. In practive, we obtain the eigenvectors

of § using HOSVD (Higher-Order Singular Value Decomposition) of the concatenated weight matrix
X highlighted in Motivated by our theoretical analysis, we try to approximate S for a set
of tasks by extracting principal directions from as many trained models as possible.

3 ANALYSIS

3.1 ANALYSIS METHODOLOGY

Algorithm 1 Truncated Zero-Centered Higher-Order SVD (HOSVD)

Require: Tensor X' € R %I~ target multilinear ranks r = (71,...,7y) with 1 <7, < I,
Ensure: Mean tensor p, factor matrices U () e RInxra (orthonormal columns), core S €
R7T1X " XTN . reconstruction X = p+Sx UM ... xy UM
1: Zero-centering: p < mean(X) > elementwise mean over all entries
2 X~ X — > broadcast p to the shape of X
3: forn=1to N do
4: X (ny + unfold(&X., n) > mode-n matricization, size I, X [],, ., Im
5:  Compute thin SVD: X,y = UMMy )T
6: UM — UM, 1) > keep leading r,, left singular vectors
7: end for
8: Core (truncated): S < X, x; UDT xo URT ... x5y UI)T
9: return pu, {UMIN_ S > Optionally X = g+ & x; UM - sy UM

Since there is no current method that enables us to compare subspaces of models with different
architectures, we focus on large number of models trained on the same architecture. To this end, we
perform analysis using Low rank adapters |Hu et al.|(2021)) (LoRA) as well as classical weights of
transformer and CNN (Convolutional Neural Network) architectures. For all our experiments, unless
stated otherwise, we perform Order 1-2 HOSVD only, to ensure that our methodology works even in

the simplest case. provides the algorithm we implement.
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3.2 RESULTS FROM JOINT SUBSPACES’ ANALYSIS

We present empirical results using method shown in Section [3.1] extracting our layer wise universal
subspace approximations using thousands of publicly available models for most of our experiments.
This choice allows us to have no training costs whatsoever. The spectral analysis relies on efficient
spectral decomposition libraries, and can even be run on CPUs. We run all our analysis and
experiments on one Nvidia A5S000 GPU. The presented large scale empirical results forms the crux
of our work and provide strong evidence for the presence of such low ranked joint subspaces across
a wide range of task, architecture and modalities. In summary, we present a total of seven set of
analysis and applications, including tasks like image classification, natural language understanding,
text to image generation, model merging, etc for different model architectures and modalities.

3.2.1 LOWER-RANK JOINT SUBSPACES IN CNNS, LORA AND FINETUNED MODELS

In smaller and conventional ar-

. X (a) Comparison of model performance across datasets.
chitectures such as CNNs, evi-

d f . 1 struct h Method ImageNet EuroSat CIFAR-10 CIFAR-100 Oxford Pets Avg
ence tor ur.nv.ersa structure .as ResNet50 80.86 98.96 97.35 83.82 93.48 90.89
been more limited but Suggestive.  Universal R50 77.89 98.83 95.89 81.49 83.81 87.58

Early work observed that the first
convolutional layer often learns
Gabor-like filters across diverse
vision tasks (Krizhevsky et al" Mean Eigenvalue/Variance Plot of 5 ResNet50 Models:
2012). More recently, Guth and
Mallat reported recurring eigen-
vectors in certain CNN layers :
trained on natural images (Guth| "~
& Mallat, 2023 |Guth et al.|
2024).

We extend these observations - immm

and examine whether a shared B
low-rank joint subspace emerges
across tasks. Specifically, we
train ResNet-50 models from ran-
dom initialization for image clas-
sification on five disjoint datasets
(CIFAR-10, CIFAR-100, Ima-
geNet, Oxford-IIT Pets, and Eu-
roSAT), ensuring no overlap in
samples. While our theoretical
analysis indicates that a small
number of models may lead to an under-approximation of the joint universal subspace, training
CNNss from scratch at scale constrains the number of models we can include in this study.

Principal Component

(b) Summarized eigenvalue plot of all model weights corresponding to
all 31 layers of 5 ResNet50 models.

Figure 2: Proving existence of universal subspaces in CNNs.
Decomposing 5 ResNet50 models trained on different tasks shows
the emergence of a low rank, universal subspace where the ma-
jority of the information is present in only 16 (or fewer) distinct
subspace directions for all layers of the network.

Despite these limitations, Figure 2b|reports the average explained variance across all layers of ResNet-
50 and reveals a distinct, shared low-rank structure spanning these disjoint tasks. Moreover, even
when the estimated universal subspace is relatively coarse, projecting to this subspace to obtain a
low-rank ResNet-50 (thereby reducing parameters) preserves competitive performance relative to full
fine-tuning, further supporting the presence and utility of a joint subspace (2a)).

In order to a more real-world experiment, we choose to run the subspace analysis for LoRA Hu et al.
(2021)) models simply because they are available in abundance in public domain. Given LoRA models
distinctly capture task specific directions as they show weak alignment with the original weights [Hu
et al.| (2021)), they form a good main model parameter alternative to run our subspace analysis
and verify whether this holds true. We spectrally decompose (Section [3.1) LoRA’s submatrices
individually, each concatenated across all the available finetuned LoRAs and choose top k spectral
basis. This setup allows us to truly stress test and verify our Universal Subspace hypothesis.

We first study 500 LoRA models trained on distinct Natural Instructions (Wang et al.,[2022) using
Mistral-7B-Instruct-v0.2 (Jiang et al.,[2023) as the base (Briiel-Gabrielsson et al.,|2024). Each LoRA
has at least rank 16. shows that the top spectral components capture most of the variance in
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“"  (b) Summarized eigenvalue plot of all LoORAs

(a) Eigenvalue/Variance plot for Orthogonal Spectral Components corresponding to all 31 layers of all 500 Mis-
for 500 unique LoRAs of different layers of Mistral-7B model  tral 7B models

Figure 3: Proving existence of universal subspaces in deep networks. Decomposing 500 sets
of LoRAs trained on different tasks using the Mistral-7B model shows the emergence of a low
rank, universal subspace where the majority of the information is present in only 16 (or less) distinct
subspace directions for all layers of the network. Plots of other parameters are present in the appendix.

each layer, indicating a low-rank structure shared across tasks. visualizes the eigenvalue
decay per layer, while summarizes the pattern across all layers and models.

To test subspace expressiveness, we reconstruct LoORA weights for both seen (IID) and unseen (OOD)
tasks by projecting them into the universal subspace. As shown in the reconstructed
models retain high performance in both cases. In contrast, projection into the residual Secondary
Subspace leads to a sharp performance drop, underscoring the importance of the principal subspace.
Our method is also 19x more memory efficient, as it eliminates the need to store all 500 LoRAs.

: Model Size vs. Performance
We extend our analysis 80 sl

to fext-to-image genera- = °
tion using Stable Diffusion- "
XL (Podell et al] [2023). - o
A universal subspace is ex-
tracted from publicly avail-
able LoRAs on Hugging-
Face (von Platen et al.|
2022). When project-
ing individual LoRAs into

this subspace, the resulting Universal Subspace (0D}
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forms individual LoRAs in some cases, possibly due to denoising effects previously observed
in (Sharma et al., 2023)).

Table 1: CLIP scores (higher is better) of images generated using SDXL.

Method Stylel Style2 Style3 Style4 Style5 Style6 Style7 Style8 Style9 Style 10 Avg

LoRA 21.95 1559 2218 18.84 16.65 1799  24.66 17.47 22.07 19.93 19.73
Universal SDXL LoRA  21.96 16.07  22.07 18.79 16.68 1799  24.66 17.56  22.46 20.09  19.83

In summary, these three experiments provide strong empirical support for our universal subspace
hypothesis and demonstrate its practical advantages in terms of memory efficiency, model reusability,
and scalable deployment across diverse tasks and modalities.
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Figure 5: Text-to-Image Generation Results for Individual models vs. our Universal Subspace model.
We notice no visual reduction in style quality despite significant reduction in total model size.

While aforementioned experiments on trained from scratch CNNs and LoRAs provide strong evidence
for the presence of the joint subspace, we further rigorously test on large scale finetuned models (500
pretrained ViT, 50 LLaMA3-8B models, 177 GPT-2 and Flan-T5).

i
Mean Eigenvalue/Variance Plot of 500 Vision Transformers| [Mean Eigenvalue/Variance Plot of 50 LLaMa-8B Models|

0020

0150

0050

a 0
principal Component

(a) Universal Vision Transformer (b) Universal LLaMA-8B
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[Mean Eigenvalue/Variance Plot of 177 GPT-2 Models| o0 [Mean Eigenvalue/Variance Plot of Flan T5 Models finetuned on the GLUE Benchmark

Explained Variance
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150 o E]
Principal Component principal Component

(c¢) Universal GPT-2 (d) Universal Flan-T5

Figure 6: Universal Subspaces in Classical Weights. Spectral decomposition of weight matrices
from (a) ~500 Vision Transformers (b) 50 LLaMa-8B models (c) 177 GPT-2 models (d) GLUE
Flan-T5 models — each trained independently across diverse tasks, datasets, and configurations —
reveals a consistent low-rank structure: most variance is captured by the top few spectral basis. This
suggests that, despite significant variation in training conditions, the learned weights consistently
align along a shared low-dimensional subspace. For visualization clarity, only a fraction of the basis
are shown; extended plots are provided in the appendix.

First, we collect ~500 pretrained Vision Transformer

(ViT) models from HuggingFace, spanning diverse Table 2: Image Classification Accuracy
domains—medical imaging, satellite data, and syn-

Fh.et.ic.—at'ld trained with varying losses, pptimizers, and  yeood 1D 00D
initializations. These models are used as-is, without cura-
tion or access to training data, to reflect real-world vari- ~ Full Training 944 +17  91.3+21
ability. See Appendix for details. Following our method ~ Universal ViT  94.1+£20  87.8 + 15
(3.1), we spectrally decompose all layers (excluding first

and last) and observe, in[Figure 6 that the majority of variance is captured by the top few spectral
components, revealing a highly compressible, shared subspace across layers. Only the top 100
components are visualized for clarity.
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To evaluate universal generalization, we project five held-out ViT models onto this 16-dim subspace
and measure classification accuracy. As shown in performance remains robust, indicating
that a shared low-rank subspace spans a wide range of ViT model configurations and domains.

A major outcome of this experiment is that we can replace these 500 ViT models with a single
Universal Subspace model. Ignoring the task variable first and last layer, we observe a requirement of
100 less memory, and these savings are prone to increase as the number of trained models increases.
We note that we are, to the best of our knowledge, the first work, to be able to merge 500 (and
theoretically more) Vision Transformer into a single universal subspace model. This result implies
that hundreds of ViTs can be represented using a single subspace model—excluding task-specific
layers—yielding up to 100 x memory reduction. To our knowledge, this is the first demonstration of
merging over 500 ViTs into a single universal representation.

We further extend this analysis to 50 finetuned LLaMA3-8B models, 177 GPT-2 models, and Flan-T5
models (trained on GLUE |Wang et al.| (2019) datasets) again sourced from HuggingFace without
filtering. As shown in a small number of directions capture dominant structure across
models spanning diverse and distinct datasets and tasks. More details are provided in the Appendix.
This is, to our knowledge, the first instance of compressing such a large and diverse collection of
foundation models into a unified subspace, highlighting its potential for large-scale model reuse and
environmental efficiency.

3.2.2 FINDING UNIVERSAL SUBSPACES AND APPLYING THEM TO FUTURE TASKS

In this section, the low-rank shared subspaces estimated from a set of available tasks are leveraged to
adapt to new, previously unseen tasks. While we do not make theoretical guarantees about reuse on
unseen tasks, our experiments show that the approximate shared subspace is empirically reusable
across a wide range of practical settings. Concretely, we reuse the shared principal directions and
learn only their task-specific coefficients for the new task. Learning these low-rank coefficients
is substantially cheaper than optimizing full-rank weights of size, reducing both computation and
memory. The resulting trainable parameter counts are reported in Table d We find our universal
subspace models can have significant impact on the carbon footprint issues of large Al models by
making the training, inference and scaling of these models efficient and cheap. As shown in the
previous section, we can effectively recycle and replace available pretrained models with a universal
subspace model with every individual being represented by a sparse set of coefficients. In this section,
we show a set of experiments where we utilize the universal subspaces to learn new tasks by freezing
the components and simply learning the coefficients using gradient descent. We find that since we are
only learning the coefficients, it drastically cuts down the number of parameters required to train the
new models. Further, since these coefficients are simply linear scaling values, the optimization is
smoother and faster.

Table 3: Performance on the GLUE Benchmark.

Method CoLA MRPC RTE OQNLI SST-2 STS-B Avg

LoRA 59.56  86.76  77.61 9253 9472 90.81 83.67
Universal mode-2  61.82 8725 77.62 9271 9415 9048 84.01
Universal mode-3  62.06  86.52  75.81 9298 9426 90.39 83.67

We present two experiments - Image Classification using ViT-base and Natural Language Understand-
ing using GLUE benchmark Wang et al.| (2019) with RoBeRTay,s. model. Both involve creating a
universal subspace using publicly available LoRA adapters. Details are provided in the Appendix.
For the GLUE benchmark, we follow the same setup as VeRA (Kopiczko et al.||2023)) considering
the 6 tasks - CoLA, MRPC, SST-2, QNLI, RTE and STS-B while omitting the time-intensive MNLI
and QQP tasks. We initialize our universal subspace using a leave-one-out-setup, where the subspace
is calculated using components of all but one LoRA adapter for which the coefficients are learned.
For image classification, we utilize publicly available ViT LoRAs to extract our universal subspaces
taking care that the data any of these pretrained LoRAs have not seen the data we will be training our
coefficients on. [Table 4] and[Table 3| show that our universal subspace enables significantly more very
efficient and effective learning since only compact coefficients are trained. The memory required
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Table 4: Image Classification with Vision Transformer.

# Training Params CIFAR100 Food101 Flowers102 CIFAR10 Pets

Full Training 86M 92.8 90.7 98.82 99.0 91.2
Universal ViT 10K 90.1 89.1 90.1 96.7 89.4

to save all these models is also drastically reduced. The ViT models require 150 GB and LLaMA
models require 1.6TB of memory in total. Our universal subspace reduces that memory requirement
by more than 100x.

4 DISCUSSION

This work provides, to the best of our knowledge, the first large-scale, cross-domain analysis showing
that neural networks trained across diverse tasks, modalities, initializations, and hyperparameters
consistently exhibit a shared low-rank universal subspace at the layer level. Concretely, by performing
layer-wise spectral decompositions and retaining only the leading principal directions, an accurate
approximation of these universal subspaces can be extracted. Empirically, this behavior emerges
broadly: in fully finetuned models and LoRA-based adapters, in models trained from scratch, in both
generative and discriminative settings, and in multimodal configurations. Moreover, the approximated
subspaces generalize to out-of-distribution tasks, where projecting models and learning only a small
set of coefficients suffices to recover strong performance. This enables adapting to new tasks without
retraining or storing full weights, and supports robust multi-task learning, scalable fine-tuning, and
principled model merging within a single unifying framework.

The practical implications are substantial. By learning only lightweight coefficients for shared layer-
wise principal directions, large models can be extended with dramatically reduced computational and
memory overhead. This lowers deployment costs while enabling more accessible Al development
and data-free model merging. These results suggest a path toward scalable model reuse grounded in a
simple geometric principle: most task variation lies in a shared, low-dimensional subspace.

Why do these universal subspaces emerge? Neural networks may exhibit spectral bias toward
low-frequency functions, potentially creating polynomial eigenvalue decay that concentrates learning
dynamics in a small number of dominant directions. Modern architectures also impose strong
inductive biases - convolutional structures might favor local patterns, attention mechanisms could
prioritize relational reasoning - that may constrain parameter variations to similar subspaces across
tasks. The ubiquity of gradient-based optimization, with its inherent preference for smooth solutions,
could further channel different learning trajectories toward shared geometric structures. If true, this
would suggest that the universal subspace captures fundamental computational patterns that transcend
specific tasks - potentially explaining why transfer learning works and why diverse problems often
benefit from similar architectural modifications. However, the precise mechanisms remain an open
question, making our empirical investigation all the more important to understand this surprising
regularity in neural network learning.

5 LIMITATIONS AND FUTURE WORK

Although we provide conclusive results towards the existence and utility of universal shared subspaces,
the current analysis has scope for future research such as limited interpretability of the shared subspace
and the corresponding directions. While it is a critical area of research, it is extremely cumbersome
to demonstrate interpretability of the principal directions for each layer of the network. To the best
of our knowledge we are not aware of any other literature that performs such an in-depth analysis
of the weight space of large models across diverse tasks, data modalities and model architectures.
The current approach to approximating a universal subspace relies on pretrained task-specific models
(predictors) for tasks, which may not be readily available for new tasks. An interesting direction
for future research would be to explore model independent methods for learning a universal shared
subspace, potentially derived directly from data. Furthermore, the conditions proposed in Ortiz{
Jimenez et al.|(2023) for enabling task arithmetic rely on localized eigenfunctions which are not a
conducive to learning a shared universal subspace. As a result, performing task arithmetic within the
current framework of a shared universal subspace is non-trivial and warrants further investigation.
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Table 5: Notation reference.

Notation Description

H Separable Hilbert space with inner product (-, -), norm || - ||
a®b Rank-one operator g — (b, g)a, |la ® b||op = ||al| ||B]]-
T Number of tasks.

T Distribution over tasks.

Dy Data distribution for task ¢.

St ={(®5,y1,i) }ity Dataset of size n; for task ¢.

ffeH Ground-truth predictor for task ¢.

ft ceH Learned predictor for task ¢.

B Uniform bound: || f|| < B almost surely.

Ron,.p,(H) Per-task estimation error rate (e.g. O(1/\/n)).

i Per-task error: nt =Rn, p,(H)+ %

T
Average error: = >, ﬂt
; Average squared error: Zt,

S Population operator: § = EtNT[ ft ® ft]

S Empirical operator (true predictors): = Zt 1 ft ® fr.
S Empirical operator (learned predictors): 7 Zt 1 ft ® ft
A1 > A > Eigenvalues of S.

i Orthonormal eigenvectors of S.

Py Projector onto top-k eigenspace of S.

Py Projector onto top-k eigenspace of S.

Vi Eigengap: vi := A\, — A\p+1 > 0.

[IA]op Operator (spectral) norm.

|Allzs Hilbert—Schmidt norm.

r(V) Intrinsic/Effective rank: tr(V')/||V]|op-

Xy Centered operator: X; := f} ® fI —

Vv Variance operator: V := Zthl E[X?].

0, 0¢, 0 Failure probabilities (global, per-task, across-task).

A APPENDIX

A.1 RELATED WORK

Several lines of prior research support the core intuition behind our universal subspace hypothesis,
though they do not provide a unified, scalable framework for identifying and leveraging such sub-
spaces across architectures, tasks, and modalities. The Neural Tangent Kernel framework reinforces
this idea, demonstrating that, in the infinite-width regime, training dynamics are governed by a kernel
largely invariant to task specifics, implying the presence of common functional subspaces. (Jacot
et al.| 2018)). This result implies that training is implicitly constrained to a shared function space, sug-
gesting the existence of low-dimensional structures that generalize across tasks. Complementing this,
works in mechanistic interpretability has uncovered modular and recurring patterns that consistently
re-emerge in independently trained models (Olah et al., 2020; [Chughtai et al.| 2023)), supporting the
notion of structural universality in network representations.

Empirical studies further strengthen this perspective. The lottery ticket hypothesis (Frankle & Carbin
2019) demonstrates that overparameterized networks contain sparse subnetworks capable of matching
full-model performance, implying that task-relevant information resides in a small, structured subset
of weights. Similarly, mode connectivity studies (Garipov et al.| [2018)) reveal that seemingly isolated
optima in parameter space are often connected by low-loss paths, suggesting that task solutions lie on
a shared manifold. In convolutional models, Krizhevsky et al. (Krizhevsky et al.l 2012) famously
observed that early layers consistently learn Gabor-like filters, indicating a universal inductive bias in
early representations. More recent work by Guth and Mallat (Guth & Mallat, 2023} |Guth et al.| [2024)
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extends this observation to deeper layers, showing that certain eigenvectors of trained convolutional
layers recur across networks trained on different datasets.

While these studies are suggestive of shared structures in neural representations or parameters, they
remain limited in their focus, application and analysis. Our work fills this critical gap by presenting
a principled and empirically validated method for discovering and utilizing universal parametric
subspaces that span across architectures, tasks, and modalities. By conducting large-scale spectral
analyses of over large number of diverse architectures, models and tasks, we demonstrate that a
small number of principal directions consistently capture the majority of task-relevant variation.
We then operationalize these findings by developing a practical framework for reusing these sub-
spaces for parameter-efficient finetuning, task adaptation, and model merging, achieving competitive
performance while dramatically reducing memory and compute requirements.

We apply a standard generalization bound over the squared error between the task function and its
projection onto the shared subspace:

U(fr,x) = || fe(x) = frp(@)]?

To justify the application of PAC-style bounds, we verify that this loss is bounded. We assume that
each task predictor f; lies in a Reproducing Kernel Hilbert Space (RKHS) with norm bounded by

B, ie., || ft|ln < B, and that the projection f; ; onto the learned shared subspace H,. also satisfies
| fexlln < B.

Using the reproducing property and assuming a kernel bound k2 = sup, » ||¢(z)||?, we have for
any x:
Ife(@)[| <~B and || x(z)l| <~B

Thus, the pointwise squared loss is bounded as:

Ife(2) = fra@)I* < (Ife@)]| + [ fer(@)])* < (26B)* = x> B2

Therefore, the loss function is bounded in [0, 4k B?], satisfying the conditions required for PAC-style
generalization bounds to hold.

A.2 THEORETICAL ANALYSIS

Lemma A.1 (Matrix Bernstein for self-adjoint operators). There exist absolute constants C' > 0 such
that, for any 61 € (0, 1), we have with probability at least 1 — o,

In(c/éT) In(c/éT)
T =+ T -

s - sll,, <o

Proof. Operator Bernstein (intrinsic form).
Let X1, ..., X7 be independent, mean-zero, self-adjoint, bounded operators on a separable Hilbert
space. Suppose

I X¢llop < L a.s. forall ¢.

Then from Minsker| (2017); |Koltchinskii & Lounici| (2014} there exist absolute constants C, ¢ > 0
such that for every ¢ € (0, 1),

0(1—1— tr(Z?ﬂ EP@D)

c(l + tr ( Z?:l E[X?])
| =t Ex)

)

| =t Ex) | =L Ex) .
< T3 op ln( 5 op > + T ln<

1T
— X

op

with probability at least 1 — §7.
Application to X; = f} ® fi — S with || f]] < B a.s.
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‘We have
[ Xellop < 517+ [Sllop < B> +E| f*]|* < 2B

so L < 2B2. Moreover, for X; = fi ® ff —S we have

E[X?] < 2B*S.
Hence
T T
SEX?]| < 2TB?|[S]lop, tr<ZE[X3]> < 2TB? tr(S).
t=1 op t=1
By asumption[2.3]

(e, BIX7D  _ x(S)
I B, — 1STor

Therefore the intrinsic logarithmic factor in Bernstein reduces to

(229

and since k is a fixed constant, 1 + x can be absorbed into c.

Plugging into Bernstein gives

S — <
||S SHOP — C T T

\/2B280p In(c/d7) . 282 ln(c/(ST)‘|
with probability at least 1 — §p.

Lemma A.2 (Davis—Kahan, sin-0). Let vy > 0. Then

Hpk — Py

< 2|s-s
Yk

op op

using definition of y, from definition[2.1)

Theorem A.3 (Restating Two-level convergence to the shared subspace theorem). Assume
Let ¢1, co be any absolute constants. For any § € (0,1), choose 6, = 6/(2T) and set T = /2. With

probability at least 1 — § (over tasks and all per-task samples),

. 1 5 _
Hg_g < ¢ B? M + (2B + 12
op T
If moreover ~yy, > 0, then
- 2 1 ) —
Hpk_pk < <61B2 H(CQ/)_F(QBﬁ_,_nz)).
op Yk T

_ T — T . . .
where ) = % Yooy e ME = % >t n? and n is defined same as in assumption

Proof of Theorem[23) (i) Triangle split. HS _s| < HS ] HS _S
op op op
(ii) Within-task term. We know that,
|frefi—reon| <|i-z| &)+

< e = FENCLEN + 121D

<n (2B + ) (since || fell < (1fF11+ Il fe — f2 < B +m)

=2Bn; —&—ntQ.
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Averaging and using the triangle inequality for operator norms,

fo— 1t
(iii) Across-task term. Let X; := f} ® ff — E[f* ® f*]. Then X; are independent, mean-zero,
self-adjoint, and [| X, < 17 * + 151l < 25 Lemma[A 1| with 72 =< B%) yields

o S OBV

1 S &l 2T6 T
op t=1 t=1

with probability at least 1 — dp =1 — §/2.

<2Bij+n?
1%

This holds on the event ﬂthl{’ < 1;}, whose probability is at least 1 — >, 0, = 1 — /2.

Hst

=

(iv) Union bound and Davis—Kahan. Combining (ii)—(iii) with a union bound gives equation
Lemma[A 2] then implies equation O

Definition A.4 (Population projection risk). For a k-dimensional subspace Hj; C H, define

* * * 2
R(Hk) = EtNT Hft - P'Hzft || .
Corollary A.5 (Excess projection risk of the learned subspace). Under the event of Theorem

<3S+ 2 x(S <0132 ln(?/5)+23ﬁ+n2>.

i>k
Proof. Optimality of Py gives R(H}) = > .-, ii- Moreover,

R(Hx) = R(H) = E(fi. (P~ PO fE) < B~ B

E ] = tx(S) [P — e

op

Apply equation O

Remark A.6 (Where Rademacher complexity enters). Assumption[2.4]is instantiated by your learning
procedure. For strongly-convex ERM (e.g., kernel ridge), a standard Rademacher-based excess-risk
bound together with curvature yields an 1, = 1;(n., d;) that vanishes with n,. Plugging these 7, into

7 and n2 makes the rate explicit.

B UNIVERSAL SUBSPACE ANALYSIS

Similar methodology is followed for subspace analysis for both LoRA and classical weight models.
In fact, LoRA analysis’ results can be theoretically extended to classical weights, as LoORA weights
can be construed to be simple translations from a mean weight matrix. However, in order to solidify
our universal subspace hypothesis, we conduct extensive experiments for both types of models. LoRA
is chosen because of the recent spurt in the availability of LoORA models trained on diverse kinds of
datasets and models. We do this universal subspace analysis on all weight parameters in every neural
network layer except the first (or few initial) and last neural network layer. This is because the these
layers may differ across models due to differences in input shapes and types, loss functions, and the
tasks being trained. We also focus our analysis on linear/fully-connected and matrix weights, as the
analysis done on these are straightforward and the results observed can be trivially extended to other
type of types of neural parameters (Ma & Lu, [2017)).

16



Under review as a conference paper at ICLR 2026

Secondary Subspace refers to the residual subspace that remains after removing the top % principal
directions associated with the low-rank universal subspace. This subspace is orthogonal to the univer-
sal subspace and serves as a control for evaluating the uniqueness and effectiveness of the learned
shared subspace. To make computation tractable when the residual subspace is high-dimensional,
we focus on the top components beyond rank k, as computing a full SVD is often impractical. This
approximation is justified, since the lower components typically capture noise, which has been shown
to degrade performance (Sharma et al., [2023).

B.1 LOWER RANK SHARED UNIVERSAL SUBSPACES WITHIN LOW RANK ADAPTATION (LORA)
MODELS

Spectral Decomposition is employed to extract the top k principal directions for each of the LoRA
matrices B and A, which are concatenated across all available models. Subsequently, the top k
principal directions are selected to define the low-rank subspace shared among the LoRA matrices.
This process is conducted separately for each layer of the model to derive a low-rank approximated
shared subspace for every individual layer. In practice, for every layer, the rank vectors of all available
LoRA matrices are extracted and concatenated into a single matrix. This matrix is then normalized by
subtracting the feature-wise mean from each vector, after which principal directions are extracted. The
mode-1 variant of our method is mathematically equivalent to Principal Component Analysis (PCA),
hence we can use torch.pca_lowrank or sklearn.decomposition.PCA to extract the
principal directions. The data matrix corresponding to a specific layer for 500 LoRA models is
structured as 5007 x d, where r denotes the rank of each LoRA and d specifies the dimension of
each rank vector. The same calculation can be applied to the BA matrix instead of individually to B
and A, thereby increasing the computational cost of the Spectral Decomposition without affecting the
outcome.

Mean Eigenvalue/Variance Plot of 500 Mistral LoRAs
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Figure 7: Spectral analysis of the Mistral-7B-Instruct-v0.2 model: Aggregated eigenvalue (scree)
plot across 500 LoRA models and all layers. The plot demonstrates that the majority of the variance
is consistently captured by the top 16 principal directions, indicating the presence of a shared low-
dimensional universal subspace.

Universal Mistral-7B/Lots of LoRAs experiment details In our first experimental analysis, we
use 500 LoRA models trained on distinct Natural Instructions (Wang et al., |2022) using Mistral-
7B-Instruct-v0.2 (Jiang et al., [2023)) as the base (Briiel-Gabrielsson et al., 2024). Please refer to
Briiel-Gabrielsson et al.| (2024) for more details on how the LoRA models were trained.

[Figure 8] presents the aggregated results across all layers, with error bars representing the standard

deviation. For reference, the eigenvalue (scree) plot from [Figure 3b]is also reproduced in [Figure §
This plot depicts the proportion of variance explained by each principal component, computed across

all weight matrices and layers from 500 independently trained Mistral models. The concentration of
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variance within the top k£ components reveals the presence of a consistent low-dimensional subspace,
offering strong empirical support for the universal subspace hypothesis.

The individual plots provide spectral analysis results for the key, query, and value matrices from all
32 layers of all 500 Mistral models. For clarity, only the top 128 principal directions are visualized,
representing a subset of the full component basis. This truncation mitigates the visual distortion
caused by the long tail of near-zero eigenvalues beyond the universal subspace, which would otherwise
dominate the graph without contributing meaningful information.

To test subspace expressiveness, we reconstruct LoORA weights for both 5 seen (IID) and unseen
(OOD) tasks by projecting them into the universal subspace. As shown in[Figure 4] the reconstructed
models retain high performance in both cases. In contrast, projection into the residual Secondary
Subspace leads to a sharp performance drop, underscoring the importance of the principal subspace.
Our method is also 19 x more memory efficient, as it eliminates the need to store all 500 LoRAs.

Table 6: Models from HuggingFace used for the Universal Stable Diffusion-XL subspace extraction

alphonse-mucha-style

directors-coen-brothers-style

larry-carlson-style

rene-magritte-style

beeple-mike-winkelmann-style

director-sergei-eisenstein-style

lascaux

richard-corben-style

character-design

director-sofia-coppola-style

laurel-burch-style

richard-dadd-style

director-christopher-nolan-style

director-terrence-malick-style

lawrence-alma-tadema-style

richard-hescox-style

director-lars-von-trier-style

director-tim-burton-style

leonid-afremov-style

richard-scarry-style

director-ridley-scott-style

director-wes-anderson-style

leonora-carrington-style

robert-adams-style

director-stanley-kubrick-style

director-wong-kar-wai-style

levitating-cube

robert-crumb-style

director-zhang-yimou-style

director-yorgos-lanthimos-style

liam-wong-style

robert-rauschenberg-style

olafur-eliasson-style

dixit-card-generator

lotte-reiniger-style

rodney-matthews-style

origami

dressed-animals

louis-comfort-tiffany-style

roger-ballen-style

simone-martini-style

dripping-art

lovis-corinth-style

roger-deakins-style

studio-ghibli-style

edward-gorey-style

lucas-cranach-style

romare-bearden-style

ukiyo-e-art

elizabeth-gadd-style

luc-schuiten-style

ryoji-ikeda-style

wu-guanzhong-style

erik-johansson-style

lyonel-feininger-style

sacha-goldberger-style

1987-action-figure-playset-packaging

erik-madigan-heck-style

made-of-iridescent-foil

salomon-van-ruysdael-style

aardman-animations-style

euan-uglow-style

makoto-shinkai-style

sam-spratt-style

akos-major-style

felipe-pantone-style

marc-silvestri-style

sandy-skoglund-style

albumen-print
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director-park-chan-wook-style

kilian-eng-style
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remedios-varo-style
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Universal SDXL experiment details Our second experiment involves the complex and multimodal
task of Text-to-Image generation using the Stable Diffusion-XL model |Podell et al.| (2023). We
extract our low rank universal subspace from publicly available LoORA models on HuggingFace
repository [von Platen et al| (2022) - [Table 6] lists all the SDXL models that we used to extract the
Universal Subspace. As can be seen in[Table 6] the models range wildly in styles on which they were
finetuned. The fact that all these diverse models can be represented by a single low rank universal
subspace model strongly verifies our hypothesis. We use top 16 components and 30 denoising steps.
For each experiment model shown in[Table T|and [Figure 3] that LoRA model is reconstructed using
a universal subspace created using rest of the available LoRA adapters, essentially confirming the
generalization capability of this subspace.

We then use this single SDXL universal subspace to generate images with similar styles to evaluate
whether this subspace is capable of doing so, by projecting randomly chosen LoRA models into this
subspace. shows that our universal subspace matches the visual quality and style nuances of
individual LoRAs, resulting in significant memory savings. shows quantitative results for
our Universal subspace in terms of CLIP scores, where interestingly we can see that our Universal
Subspace outperforms the individual LoRA models. This improvement may be attributed to our
Universal SDXL removing noise from the subspace—a phenomenon previously observed by |Sharma
et al.[(2023)).

B.2 LOW RANK SHARED UNIVERSAL SUBSPACES IN CLASSICAL WEIGHTS
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Figure 9: Spectral analysis of the Vision Transformer (ViT-base-patch16-224) model: Aggregated
eigenvalue (scree) plot across 500 ViT models and all layers. The plot demonstrates that the majority
of the variance is consistently captured by the top 16 principal directions, indicating the presence of a
shared low-dimensional universal subspace.

In order to further solidify the evidence for our universal subspace hypothesis, we show that this
universality does extend beyond adapter models to conventional weights. We do not focus on
convolutional weight parameters as they can simply be equated with fully connected layers (Ma & Lul,
2017), and have been shown, in limited scope, to match Gabor-like filters (Krizhevsky et al.,[2012).
Therefore, our analysis trivially extends to these kinds of parameters as well. However, there are a
few practical differences between the low rank adapter and classical weight subspace analysis. The
classical weight subspace analysis is more computationally expensive relative to the LoRA one due to
high dimensionality of the parameters. Additionally, the number of sufficiently well trained models is
understandably fewer than LoRA models. Further, there is also higher variance in terms of model
quality in the classical weights as it is harder to optimize these models as compared to LoRA which
often are optimized from a good initialization point (the pretrained base model). An outcome of this
is that the universal subspace approximation that we obtain from the publicly available pretrained
models are noisier than their LORA counterparts. Inspite of this, our universal subspace hypothesis
remains validated.
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To further support our universal subspace hypothesis, we extend our analysis beyond adapter models
to standard full-rank weights. We exclude convolutional parameters from explicit consideration, as
they are functionally equivalent to fully connected layers under certain conditions 2017),
and their learned representations (e.g., Gabor-like filters) have been studied, in limited scope, in prior
work (Krizhevsky et all,[2012). Consequently, our analysis generalizes naturally to convolutional
weights as well.

There are, however, practical differences between the subspace analysis of full-rank model weights
and that of low-rank adapters. First, analyzing conventional weight matrices is significantly more
computationally intensive because of their higher dimensionality. Second, the availability of a large
number of independently and sufficiently well-trained models is more limited compared to LoRA
models. Third, the classical weight models exhibit greater variance in model quality, since they must
be trained from scratch, often without the benefit of a well-optimized initialization, unlike LoRA
which builds upon a strong pretrained base.

As a result, the subspaces estimated from classical weights tend to be noisier, and the universality
signal is less pronounced. Despite these challenges, we still observe consistent structure in the leading
components, lending further empirical support to the universal subspace hypothesis.
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Figure 10: Layerwise EigenValue Plots of 500 ViT models.
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Universal ViT-base-patch16-224 experiment details We collect ~500 pretrained ViT models
from HuggingFace, shown in [Table 7| spanning very diverse domains — many of which would
be considered orthogonal to one another in terms of domain generalization. These models have
been trained with varying losses, optimizers, and initializations. These models were used as-is,
without curation or access to training data, to reflect real-world variability. shows the
summarized scree plot for all relevant layers of ViT (sans first and last layers due to differences in
shape and tasks) for all ~ 500 ViT models showing that the majority of variance is captured by the
top 16 principal directions, revealing a highly compressible, shared subspace across layers. Only
the top 100 components are visualized for clarity, although the available subspace is significantly
larger, underlying the sparsity of this universal subspace. We observe this for layerwise analysis
in[Figure 10]as well. For the experimental results presented in we randomly choose 4 11D
and 4 OOD models from for which evaluation dataset is available, and reconstruct these
model weights by projecting them into our 16 component universal subspace. For the OOD case, we
ensure that the models being evaluated are not present in the subset used for creating the universal
subspace approximation. As seen from the results, our extremely sparse subspace model performs
competitively compared to the fully trained versions. It is likely that with more careful choice of
principal directions per layer would allow for at par or even better performance.

Table 7: Finetuned Models from HuggingFace used for the Universal Vision Transformer subspace
extraction (vit-base-patch16-224)

0.50-200Train-100Test-vit-base
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Universal LLaMA3-8B Experiment Details To further stress-test our universal subspace hypoth-
esis on classical weight matrices, we extract a shared subspace from approximately 50 finetuned
LLaMA3 models, each with 8 billion parameters. These models were obtained from publicly available
repositories on HuggingFace. Due to their scale, we do not apply any model selection or filtering,
and instead include the entire available set.

As shown in [Figure TT] which presents the aggregated scree plot across all layers and all 50 models,
the principal variance is concentrated in the top few components—consistent with the emergence of a
low-rank universal subspace. For reference, the plot displays only the top 300 components, which
represent a small fraction of the full rank, highlighting the inherently low-dimensional structure.

The models included in this analysis span a diverse range of domains, including medical applications,
multilingual dialogue systems, and general-purpose assistants, as listed in[Table 8] To the best of our
knowledge, this is the first work to demonstrate that such a large and heterogeneous collection of
high-capacity language models can be jointly represented within a single low-rank subspace.

The layerwise spectral analysis, shown in corroborates this finding: across all layers,
the majority of eigenvalues fall below a threshold of < 0.001, indicating that most directions in
parameter space contribute negligibly to variation across models. The plots are cropped to show only
the leading components due to the large number of total dimensions. We recommend zooming in for
clearer visualization.
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Figure 11: Spectral analysis of 50 LLaMA-3-8B model: Aggregated eigenvalue (scree) plot across
500 ViT models and all layers. The plot demonstrates that the majority of the variance is consistently
captured by the top 16 principal directions, indicating the presence of a shared low-dimensional
universal subspace.

Finding universal subspaces and applying them to future tasks In this section, we present two
tasks, GLUE (Wang et al.| 2019) and Image Classification. For each experiment, the joint subspace is
created using all other models in subset. For Image Classification, we use k = 4 and train only 8
epochs using learning rate of 1e — 4. Importantly, only the coefficients are trained for the experiment.

26



Under review as a conference paper at ICLR 2026

Table 8: Models from HuggingFace used for the Universal LlaMa3-8B subspace extraction

Meta-Llama-3-8B-Instruct-Jailbroken Llama-3-13B-Instruct large_crafting_sft_success suzume-llama-3-8B-multilingual
summary-llama3-8b-f16-full Llama-3-13B-Instruct-v0.1 Llama-3-8B-ProLong-64k-Base LLaMAntino-3-ANITA-8B-Inst-DPO-ITA
ai-medical-model-32bit filtered_crafting_train_data_shorter_length | Llama-3-portuguese-Tom-cat-8b-instruct Llama-3-MAAL-8B-Instruct-v0.1
Human-Like-LLama3-8B-Instruct LLaMA-3-8B-Instruct-TR-DPO CabraLlama3-8b chartgpt-llama3
KoLlama-3-8B-Instruct honeypot-llama3-8B Llama-SEA-LION-v2-8B TR
Llama3-8B-Instruct-Turkish-Finetuned | Llama-3-15B-Instruct-zeroed Llama-3-8B-Instruct-TAR-Bio-v2 Bio-Medical-Llama-3-8B
filtered_construction_train_data shisa-vI-Ilama3-8b REFUEL-Llama-3-Armo-iter_1 Tlama3-instrucTrans-enko-8b
Llama-3-8B-Instruct-Ja 1lama3-passthrough-chat RoLlama3-8b-Instruct Lloro-SQL
Summary_L3_1000steps_le7rate_SFT2 | CyberSentinel Meta-Llama-3-8B-Instruct-function-calling-json-mode | MARS
Llama-3-8B-Instruct-Finance-RAG LLaMA3-Instruct-8B-FR-Spec Llama-3-8B-Japanese-Instruct Llama3-8B-Chinese-Chat
Ilama-3-chinese-8b-instruct-v2 Athene-RM-8B Llama-3-OffsetBias-RM-8B large_cooking_sft_success
suzume-Ilama-3-8B-japanese Ilama-3-chinese-8b-instruct-v3 ‘Waktaverse-Llama-3-KO-8B-Instruct llama-3-8b-gpt-4o-rul.0
Llama-3-Aplite-Instruct-4x8B-MoE Llama-3-8B-Instruct-DPO-v0.3

It is important to note that our shared subspace model performs quite well despite using very few
(4-5) models to extract the subspace. We use 16-32 components for our subspace, with learning rate
of 4e — 4, batch size of 64, and 30-80 epochs for each task. In addition, it is likely that our model
might perform similarly or better if trained longer or with optimized hyperparameters.

Compute Resources We conduct all our experiments using a single A5S000 GPU, and a CPU with
8 workers. For the universal subspace extraction, all calculation can be done on the CPU. However,
GPU would increase the speed of calculation as the layerwise subspace extraction can be parallelized.
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Figure 12: Layerwise Scree Plots for 50 LLaMA-3-8B Models. For enhanced clarity, each sub-
plot presents a truncated view of the total possible principal directions. These plots consistently
demonstrate that the dominant information, as represented by explained variance, resides within
a small number of leading principal directions for all models. Components beyond this initial set
are characterized by eigenvalues approaching zero, signifying their redundancy for the universal
subspace.
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C DISCUSSION AND BROADER IMPACT

Our findings suggest that deep neural networks trained across diverse tasks and modalities systemati-
cally converge to shared, low-dimensional subspaces within their parameter space. The existence of
such universal subspaces challenges conventional assumptions about the independence and diversity
of model and task-specific finetuning trajectories. Instead, it highlights a powerful regularity in
the way deep models encode task-specific knowledge—one that can be exploited for significantly
improved training and deployment efficiency. By leveraging these subspaces, we demonstrate that
models can be adapted to new tasks by learning only a small number of coefficients, rather than
retraining or storing full sets of weights. This facilitates more robust multi-task learning, model
merging, and scalable fine-tuning, with theoretical guarantees and empirical validation across multiple
architectures.

The broader societal impact of this work is substantial. Our approach enables large-scale models
to be reused and extended with dramatically reduced computational overhead, addressing both the
financial and environmental costs associated with training and deploying deep learning systems. This
contributes directly to the goals of sustainable and accessible Al. By lowering the hardware and energy
requirements for adaptation and inference, we empower under-resourced researchers, institutions, and
communities to build upon state-of-the-art models without needing extensive compute infrastructure.
Furthermore, by supporting modular model design and data-free model merging, our work lays the
foundation for more interpretable, maintainable, and equitable Al systems.
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