AlphaOPT: Formulating Optimization
Programs with Self-Improving LLM
Experience Library

Minwei Kong*

London School of Economics and Political Science

Xiaotong Guo
Massachusetts Institute of Technology

Chonghe Jiang
Massachusetts Institute of Technology

Yining Ma
Massachusetts Institute of Technology

Yuhan Tang

Ao Quf
Massachusetts Institute of Technology

Wenbin Ouyang
Massachusetts Institute of Technology

Han Zheng
Massachusetts Institute of Technology

Dingyi Zhuang
Massachusetts Institute of Technology

Junyi Li

Massachusetts Institute of Technology  Singapore-MIT Alliance for Research and Technology

Hai Wang
Singapore Management University

Cathy Wu

Massachusetts Institute of Technology

Jinhua Zhao
Massachusetts Institute of Technology
Singapore-MIT Alliance for Research and Technology

Abstract

Optimization modeling enables critical decisions across industries but remains
hard to automate: informal language must be mapped to precise mathematical
formulations and executable solver code, while prior LLM approaches either
rely on brittle prompting or costly retraining with limited generalization. We
present AlphaOPT, a self-improving experience library that enables an LLM to
learn from limited demonstrations (i.e, even answers alone without gold-standard
program) and solver feedback without annotated reasoning traces or parameter
updates. AlphaOPT operates a continual two-phase cycle: (i) a Library Learning
phase that reflects on failed attempts, extracts solver-verified, structured insights as
{taxonomy, condition, explanation, example}; and (ii) a Library Evolution phase
that diagnoses retrieval misalignments and refines the applicability conditions of
stored insights, improving transfer across tasks. This design (1) learns efficiently
from limited demonstrations without curated rationales, (2) expands continually
without costly retraining by updating the library rather than model weights, and (3)
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makes knowledge explicit and interpretable for human inspection and intervention.
Experiments show that AlphaOPT steadily improves with more data (65% — 72%
from 100 to 300 training items) and surpasses the strongest baseline by 7.7% on the
out-of-distribution OptiBench dataset when trained only on answers. AlphaOPT
code and data are available at https://github.com/Minw913/AlphaOPT.

1 INTRODUCTION

Optimization models support critical decision-making in finance, manufacturing, marketing, trans-
portation, and logistics (AhmadiTeshnizi et al. 2023} Bertsimas & Tsitsiklis| [1997; [Ramamonjison|
2022). Beyond improving efficiency, automating the optimization workflow lowers the barrier
to operations research expertise in industry, enabling non-experts to prototype faster, iterate on formu-
lations, and deploy solver-backed decisions at scale. Yet this process has long been challenging, as
informal and often ambiguous specifications must be mapped to precise, domain-specific formulations
and paired with appropriate code and solvers, creating major bottlenecks for end-to-end automation

2025).

Advances in large language models (LLMs) make this vision increasingly feasible: they can parse

natural language requirements (Ouyang et al.},[2022), generate executable programs
2022} Jimenez et al},[2024), and orchestrate downstream tools (Qin et al.|[2024). Two main lines of

work have emerged. Prompt-based systems steer general LLMs with structured prompts and tool use
(Xiao et al,[2023} [Thind et al., [2025; /AhmadiTeshnizi et al., 2024} [Zhang & Luo, [2025). Fine-tuning
approaches adapt models on domain corpora and benchmarks (Huang et al., 2025}, [Yang et al.| [2024).
Despite this progress, both families face limitations: prompt-based systems stop improving once they
run out of fixed templates, and they are fragile to small wording changes and shifts in the domain;
fine-tuned models require costly retraining and, critically, most benchmarks and datasets in the
community (e.g., NLP4LP (AhmadiTeshnizi et all,[2024), MAMO (Huang et al,[2024), IndustryOR
(Huang et al, 2025))) contain only programs/solutions rather than the intermediate reasoning that
governs modeling choices, thereby limiting the generalizability of fine-tuning approaches. This
motivates a new learning paradigm for optimization formulation: instead of relying solely on prompts
or retraining, LLMSs should continually improve by accumulating, refining, and reusing solver-verified
modeling insights.
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Figure 1: AlphaOPT identifies and retrieves relevant insights to guide problem solving. In this
example, it avoids the common mistake of minimizing the sum of process times and instead introduces
an auxiliary variable to correctly minimize the makespan, leading to the correct solution.

We propose AlphaOPT, a self-improving framework that builds and refines a structured library of
solver-verified insights for optimization formulation, as exemplified in Figure[T} Each insight encodes
a reusable modeling rule in the form of a 4-tuple (taxonomy, (applicability) condition, explanation,
example), which specifies not only what to reuse but also when and why it applies. We remark that


https://github.com/Minw913/AlphaOPT

our library learning framework does not require backpropagation to update framework parameters
and can be regarded as the evolutionary mechanism. AlphaOPT improves through a continual two-
phase cycle. Library Learning acquires new insights from both gold programs (when available) and
solver-verified answer-only supervision, organizing them into a dynamically updating hierarchical
taxonomy. Library Evolution then diagnoses misalignments between tasks and insight applicability,
and refines conditions using aggregate evidence, ensuring that insights remain neither too narrow nor
overly general. This design yields a principled optimization view: library construction corresponds
to maximizing expected task success induced by task—insight matching while regularizing size to
maintain efficiency and prevent redundancy.

We conduct quantitative experiments across multiple benchmarks and baselines, as well as qualitative
analyses of the learned library. The results show that, compared to prompt-based or fine-tuning
approaches, AlphaOPT (1) learns efficiently from limited demonstrations (i.e., it can learn from
answers without recalling formulation) without requiring annotated reasoning traces or even gold-
standard programs, (2) achieves stronger out-of-distribution generalizability and more consistent
continual growth than learning-based methods, and (3) makes knowledge explicit and interpretable
for human inspection and involvement.

Beyond these advantages, AlphaOPT also achieves state-of-the-art performance on multiple bench-
marks. These results demonstrate the efficacy and potential of self-improving experience-library
learning for optimization formulation, paving the way toward more challenging settings, such as
efficient program formulation and large-scale optimization.

2 Methodology

Optimization tasks arrive with diverse natural-language descriptions, yet they share recurring model-
ing rules that activate under identifiable conditions. We identify three major challenges in building
reliable systems that leverage LLMs to formulate and solve optimization problems using existing
technologies and resources. First, gold-standard programs are scarce and may contain annotation
errors (Jiang et al.,[2025}; [Yang et al., 2025a)), while datasets with only answer labels remain under-
utilized (Huang et al.l 2024} 2025} [Lu et al., |2025). Second, fine-tuned models (Huang et al.| 2025}
Jiang et al.} 2025) struggle to generalize because the crucial when-to-apply-what knowledge is weakly
represented (or missing) in training data; they can mimic syntax without mastering applicability.
Third, the performance of prompt-based agent systems /AhmadiTeshnizi et al.| (2023); Xiao et al.
(2023); |[Yang et al.| (2025a) stagnates as the number of exemplars increases: they rely on human
empirical curation and lack the capacity to adapt or to continually learn from larger datasets.

We propose AlphaOPT, an experience-library learning framework that learns from both gold programs
(when available) and answer-only supervision. AlphaOPT iteratively builds a structured, solver-
verified repository of reusable insights with explicit applicability conditions and evolves these
conditions at the population level to improve generalization while avoiding redundancy. Specifically,
as illustrated in Figure [2] each iteration consists of two complementary phases that form a continual
cycle of acquisition and refinement:

Library Learning. The first phase extracts insights from individual tasks under either gold-program
or answer-only supervision while minimizing redundancy.

Library Evolution. The second phase diagnoses misalignments between insights and tasks and
refines applicability conditions to enhance generalization while reducing confusion caused by over-
generalization.

The design follows three guiding principles: it is failure-driven (every error becomes a learning
opportunity), locally validated (an insight must solve its source task before being admitted), and com-
pact yet generalizable (redundant insights are merged and conditions refined to prevent uncontrolled
growth that hinders retrieval and execution). We elaborated the specific methodological components
and provide a mathematical interpretation that frames library construction as maximizing task success
with a size regularizer in Appendix |B} Additionally, we compare our method with prior works on
learning from experience and self-evolving problem-solving agents in Appendix [C} The prompts for
all LLM modules are provided in Appendix [H]
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Figure 2: AlphaOPT consists of a library learning stage, which produces insights from attempts to
solve tasks, and a library evolution stage, which adjusts the applicability of insights to avoid being
too narrow or too general.

3 EXPERIMENTS

Our experiments are designed to reflect the requirements that arise in real-world optimization and
operations research (OR) applications. In these settings, methods are expected not only to perform
well on standard benchmarks, but also to transfer across domains, to remain effective when limited
supervision is available, to improve steadily as more data becomes available, and to offer results that
can be inspected and audited. We therefore organize our evaluation around four questions: (1) How
well does the method generalize across domains? (2) Can it learn effectively with limited supervision?
(3) Does performance improve consistently with more training data? (4) How does it compare overall
with strong baselines? Finally, we examine the interpretability of the insight library to assess whether
the outputs are understandable and actionable to practitioners.

3.1 Experimental Setup

Datasets. We conduct our experiments on a dataset consisting of 454 problem instances. Detailed
descriptions of these datasets and the sampling procedure are provided in Appendix [D]

Backbone Model and Metrics. Unless otherwise specified, GPT-40 (OpenAl 2024) with temperature
0 is used as the backbone. We use the success rate as the primary evaluation metric, following the
evaluation protocol of |Yang et al.| (2025a), where a task is considered successful if the LLM-generated
optimal value closely aligns with the provided ground-truth solution.

Baselines. We evaluate against two families of baselines. (i) Prompt-based: a vanilla baseline that
directly generates the mathematical model from a simple prompt, as well as Reflexion (Shinn et al.,
2023), OptiMUS (AhmadiTeshnizi, Gao, and Udell, 2024), and ORThought (Yang et al.| 2025a)). (ii)
Learning-based: ORLM (Huang et al.,|[2025), built on LLaMa3-8B, and LLMOPT (Jiang et al.,
2025)), built on Qwen2.5-14B (the latest open-source version available after their paper).

3.2 Out-of-Distribution Generalization

We evaluate how well different methods generalize beyond their training distribution. For this purpose,
we use two benchmarks that were not included during training: LogiOR (Yang et al., [2025a)) and
OptiBench (Yang et al., [2024). Details are provided in Appendix [D] These datasets were either
released after the baseline model (ORLM) or explicitly designed in baseline model’s experiment
setting to avoid overlap with their training set (LLMOPT).

Figure 3| summarizes the results. Fine-tuned models such as ORLM and LLMOPT show strong
in-distribution performance but exhibit a noticeable drop on unseen datasets. For example, ORLM
falls to 19.6% on LogiOR and 13.3% on OptMath, while LLMOPT performs better but still degrades
compared to its in-distribution performance. By contrast, AlphaOPT maintains higher accuracy
across all three benchmarks, reaching 51.1% on LogiOR and 91.8% on OptiBench. These results



support our hypothesis: fine-tuned models tend to learn the syntax of solutions and may perform well
when problems are very similar, but they struggle to capture the underlying principles needed for
broader problem solving. In contrast, the learned experience library equips AlphaOPT with stronger
out-of-distribution generalization capability.
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Figure 3: Performance on out-of-distribution datasets. Numbers report test accuracy on LogiOR,
OptiBench, and OptMath.

3.3 Learning with Limited Supervision

In practical OR applications, gold-standard programs are rarely available. We therefore test whether
AlphaOPT can learn solely from answers. Since two datasets in our training set contain gold-standard
programs, we remove them in this experiment and let AlphaOPT learn exclusively from answer
labels through self-exploration, as introduced in Section ??. As shown in the last two rows of Table[2]
remarkably, when trained with answer-only supervision, AlphaOPT achieves accuracy comparable
to when it is trained with gold-standard programs. AlphaOPT (self-exploration) outperforms all
prompt-based methods on test splits of the training data and even achieves the best performance on
the OOD OptiBench dataset (92.1% accuracy). This demonstrates another advantage of AlphaOPT
over fine-tuning—based methods, which require detailed annotations of mathematical formulations
and code in order to achieve strong performance.

3.4 Continual Growth with Data

We test whether AlphaOPT can improve its performance as more data becomes available. We
incrementally sample sets of 100, 200, and 300 data items from our training set and train AlphaOPT
on each subset. As shown in Table |I} when evaluated on out-of-distribution datasets (LogiOR,
OptiBench), we observe that AlphaOPT steadily improves its performance with increasing data size,
without requiring updates to its model parameters.

Table 1: AlphaOPT steadily improves in both Micro and Macro averages with increasing training
size, while maintaining a compact library.

Training Size MicroAvg MacroAvg Library Size

100 83.24% 65.80% 38
200 85.09% 69.22% 103
300 85.21% 72.12% 110

3.5 Overall Performance

AlphaOPT achieves the best accuracy on out-of-distribution datasets, reaching 51.1% on LogiOR
and 91.8% on OptiBench. On in-distribution test splits, fine-tuned models such as ORLM and
LLMOPT achieve higher scores on certain datasets (e.g., LLMOPT obtains 97.3% on NLP4LP and
85.8% on MAMO). However, these advantages are less conclusive, since LLMOPT’s training data
are not publicly available and may overlap with our test splits. Moreover, many existing benchmarks
are derived from a small set of seed problems (Ramamonjison et al.,|2022; Huang et al., 2024), which
favors fine-tuning approaches that excel at pattern memorization. In contrast, AlphaOPT performs



competitively across all in-distribution datasets, matches or exceeds baselines on IndustryOR and
MAMO (ComplexLP), and maintains a clear margin on out-of-distribution generalization. These
results demonstrate that the experience library enables AlphaOPT to learn transferable modeling
principles rather than dataset-specific syntax, resulting in stronger robustness to distribution shifts.
Additionally, we provide the results of the ablation study in Appendix [G.T]to assess the effectiveness
of separate components of our framework.

Table 2: Accuracy on in-distribution Test Split and Out-of-Distribution datasets (higher is better).
Best per column in bold.

Test Split Out-of-Distribution
Method NLPALP  NL4OPT IndustryOR MAMO LogiOR OptiBench
(73) (64) (25) (ComplexLP) (92) (403)
(34)
Standard 68.5 54.7 52.0 44.1 46.7 72.7
Prompi-based Reflexion 76.7 64.1 56.0 47.1 435 76.9
P OptiMus 71.2 73.4 36.0 29.4 17.4 74.7
ORThought 69.9 75.0 60.0 41.2 44.6 84.4
. , ORLM 86.3 87.5 36.0 55.9 19.6 78.2
Fine-tuning-based
LLMOPT 97.3 86.5 44.0 85.8 40.2 66.4
AlphaOPT
Ours (full) 83.6 79.7 60.0 85.3 51.1 91.8
AlphaOPT 86.3 79.7 60.0 76.5 50.0 92.1

(self-exploration) ~ -

4 Library Analysis

To fully interpret the experience library, we visualize its structure and the distribution of insights under
a hierarchical taxonomy in the Appendix [F.T]and [F2] Additionally, we select several representative
insights to analyze the effectiveness of library refinement, which are provided in the Appendix [F-3]

5 Success And Failure Case Study

To demonstrate the effectiveness of the retrieved library insights, we perform case studies across
all evaluation datasets (including the test splits and the out-of-distribution sets), comparing the
performance of solving optimization tasks with and without library retrieval enabled, while excluding
tasks that succeed in both settings from the evaluation. The details are provided in the Appendix [G.2]

6 Conclusion

This paper addresses the limitations of previous methods by presenting a novel self-improving library
learning framework, AlphaOPT, for formulating optimization programs. It can learn from answer
labels only, achieves much stronger out-of-distribution generalization than fine-tuning—based methods,
and provides interpretable and auditable structured knowledge to support human involvement in
real-world practice. The learned experience library reveals LLMs’ characteristic failure patterns
across domain-specific modeling, mathematical formulation, and solver syntax handling. Case
studies show that high-success-rate insights primarily address fundamental modeling errors with
clear structures, while high-mismatch or low-effectiveness insights expose overgeneralization in more
complex knowledge and highlight the need to further improve the clarity and applicability of insights.

Looking ahead, we highlight three promising directions. First, reasoning-oriented test-time scal-
ing—already powerful in other domains—could be particularly effective for OR formulations, where
results are inherently verifiable. Second, strengthening datasets with both academic and large-scale
industrial problems will move LLM systems beyond the toy examples common in current bench-
marks. Third, going beyond correctness toward improving formulation efficiency is crucial for
real-world deployment, and our self-improving library learning approach offers a promising path in
that direction.
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Appendix

A Related Work

LLMs for Solving Optimization Problems. Related work can be categorized into prompt-based and
learning-based approaches. Prompt-based methods guide reasoning and modeling through multi-step
prompts using proprietary LLMs (AhmadiTeshnizi et al., 2024; [Xiao et al.| [2023). |AhmadiTesh
nizi et al.| (2023) first introduced OptiMUS, demonstrating how LLMs can generate optimization
formulations from natural language descriptions, and OptiMUS-0.3 (AhmadiTeshnizi et al.| 2024)
extends this line of work to large-scale instances, introducing retrieval-augmented prompting and
solver-integrated verification to improve scalability.

In contrast, learning-based methods construct training datasets and apply instruction tuning to open-
source LL.Ms. |[Huang et al.| (2025)) proposed a semi-automated pipeline to synthesize training data,
which is then used to fine-tune an open-source ORLM model. LLMOPT (Jiang et al.,[2025) combines
both paradigms by modeling optimization with five elements and fine-tuning on expert-annotated data
via multi-instruction SFT. More recently, ORThought (Yang et al., 2025a) introduced the LogiOR
benchmark and an expert-guided chain-of-thought framework, providing a systematic dataset and
evaluation pipeline for optimization tasks that require harder logic. In terms of multi-agent design,
Xi1ao et al.|(2023) employs a collaborative multi-expert framework to enhance reasoning, Zhang &
Luo (2025) integrates sandbox-based code execution and self-repair/self-verification.

Several benchmarks now exist that cover LP, MILP, NLP, and other optimization problem types (Xiao
et al.} 2023} /AhmadiTeshnizi et al., |2024; Huang et al.| 2025} |[Yang et al., 2024)). Yet, none of the
prior work has investigated strengthening LLMs’ optimization capabilities by learning and reusing
structured modeling experience.

Decision-making tasks with Library Learning. Library Learning refers to the process where
reusable patterns or modules are automatically extracted from past experiences to improve future
problem-solving. These experiences include concrete trajectories or demonstrations, as well as
abstracted rules generalized from successful or failed attempts (Zhao et al., 2024} Mu et al., 2025;
Feng et al., 2025; [Wang et al., 2024} |Zhu et al., 2023)). In terms of experience improvement, Zhao
et al.[(2024) and [Mu et al.| (2025) leverage an LLM to prune the library by checking if a newly
added insight duplicates or conflicts with existing insights, or merges and generalizes from those
overlapping insights. [Feng et al.|(2025)) uses check functions to ensure that LLM-translated action
sequences remain within the generalization boundaries of the original experiences.

LLM-driven Evolutionary Methods. Recent LLM-driven evolutionary frameworks have achieved
remarkable advances in scientific discovery, showcasing LLM’s capacity for broad generative ex-
ploration on solutions. Romera-Paredes et al.[(2024)) introduces FunSearch, a genetic programming
driven by LLMs to search for feasible or optimal solutions of mathematical problems. AlphaEvolve
(Novikov et al., 2025) extends the FunSearch system to provide the ability to perform multiobjective
optimization using rich forms of natural-language context and feedback. |Grayeli et al.| (2024) ap-
plies LLMs to discover abstract concepts from high-performing hypotheses, combining symbolic
regression with LLM-guided exploration within a concept library. ReEvo (Ye et al.,[2024) frames
LLMs as hyper-heuristics with a reflective evolution mechanism, enabling the generation and itera-
tive refinement of heuristics across multiple NP-hard problems. HeurAgenix (Yang et al., 2025b)
further develops this direction by evolving a pool of heuristics and dynamically selecting the most
suitable one for each problem state, highlighting LLMs’ role in adaptive heuristic discovery. Besides,
LLM-guided evolution has also found use in discovering heuristics for combinatorial optimization
(L1u et al., 2024).

B Additional Methodology Details

B.1 Library Learning

The objective of this stage is to generate reusable insights as structured 4-tuples (Taxonomy, Condition,
Explanation, Example) and organize them in a hierarchical taxonomy for efficient retrieval, while
minimizing redundancy in the library. The left panel of Figure ] (see the Library learning flow label)
illustrates the workflow for this stage.
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Figure 4: The overall workflow of library learning and evolution. The left panel depicts two
complementary flows: library learning, which extracts new insights by generating and consolidating
insights from failed optimization attempts, and library diagnosis, which analyzes interactions between
failed tasks and retrieved insights to collect negative and unretrieved cases for refinement. The right
panel illustrates library refinement, where the LLM refines each insight’s applicability conditions,
validates them via retrieval replay, and integrates the updated insights back into the library.

Insight Extraction, Representation, and Supervision Mode. Insights can be learned from either
problems with a gold-standard program or with the answer alone. For each task, the system first
constructs a mathematical formulation, then generates an executable solver program, and invokes the
solver. When the library is non-empty, both steps are guided by retrieved insights. If the generated
program does not achieve the correct optimal value, two supervision modes are used to guide the
generation of new insights. When a gold program is available, the system compares the candidate
formulation and program against the reference, diagnosing discrepancies (e.g., missing variables,
misformulated constraints, incorrect objective terms) and distilling them into insights. When only the
answer (i.e., final optimal objective) is provided, the system performs solver-guided self-exploration:
it iteratively proposes executable programs, reuses prior failures as context, and receives verification
from the solver. Once a program achieves its correct objective, it is treated as a proxy for the gold
standard in anchor insight extraction. Before being stored in the library, each insight is locally verified
by reapplying it to its source task to ensure that it resolves the original failure. In addition, to mitigate
stochastic successes that could obscure useful lessons, we conduct three independent trials per task,
allowing errors from probabilistic generation to serve as signals for learning.

Each insight is represented as a structured 4-tuple: Taxonomy, hierarchical labels for indexing and
retrieval; Condition, an explicit description of the applicability signals in the problem; Explanation,
the underlying principle of applying this insight; and Example, a concrete demonstration such as a
mathematical constraint or code snippet.

Library Storage and Retrieval. Insights are stored in a dynamically updated hierarchical taxonomy
organized into three main tracks: Domain Modeling (problem-specific structures and assumptions),
General Formulation (reusable mathematical patterns), and Code Implementation (solver-specific
coding practices). Under each track, insights are further classified with two-level labels, where
Level-1 captures a broad category and Level-2 refines it into a more specific subcategory. The
taxonomy is initialized with few-shot labels and expands online: each new insight is either mapped
to an existing category or, if no suitable label exists, prompts the LLLM to propose new Level-1 or
Level-2 labels. Each label is also assigned a condition, written by the LLM, that specifies when the
category should be retrieved. When storing insights, to reduce redundancy, the LLM also checks
whether a similar insight already exists and performs merging when appropriate. To align a target task
with relevant insights, we employ a two-step LLM-driven retrieval procedure: Quick label matching,
then full applicability check. The system first scans the taxonomy dictionary to identify labels that
are potentially relevant to the context of the tasks. For example, Level-2 label such as Fixed Charge
(Big-M Linking) will be probably detected when the problem description specifies that service or
flow is allowed only if a facility is opened. After candidate labels are identified, the system rigorously
evaluates each associated insight by examining its condition, and only the most applicable insights
are retained.

During solution generation, retrieved insights from the Domain Modeling and General Formulation
tracks guide the construction of the mathematical model, while insights from the Code Implementation
track guide solver-code generation. This two-step procedure ensures that insights are applied
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Figure 5: A locally verified initial condition (light-grey dashed circle) is refined into a broader appli-
cability boundary (solid black) through evolutionary prompt optimization guided by the aggregate
metric.

appropriately, while the hierarchical taxonomy provides an extensible structure for organizing and
retrieving insights as the library grows.

Operational Flow. Training proceeds in an online regime over minibatches of data, starting from
an empty library. For each batch, the system retrieves candidate insights, generates and executes
programs, and upon failures extracts insights and immediately commits those that pass local self-
verification, allowing newly added insights to benefit subsequent tasks and preventing the generation
of repetitive insights. To reduce redundancy, tasks are clustered and reordered by problem type and
semantic similarity, and overlapping insights within a batch are merged prior to integration. The
process iterates until overall accuracy plateaus, at which point the library is archived and used for
evaluation.

In implementation, for the sake of efficiency, training follows two coordinated data flows. The first
processes minibatches of tasks in parallel for insight extraction. The second maintains a centralized
queue of all generated insights, storing them into the library sequentially. This queue does not allow
asynchronous updates, as concurrent modifications could lead to conflicts if two insights attempt to
update the library simultaneously. This design balances parallelism in problem-solving with strict
serialization in library updates, ensuring both efficiency and consistency.

B.2 Library Evolution

While Library Learning expands the repository of insights, Library Evolution aims to transform
task-specific lessons into broadly applicable knowledge. Since each insight’s applicability is defined
by a condition induced from a specific task, early conditions are often too narrow (failing to trigger on
relevant tasks) or too broad (causing misretrieval). Left unchecked, these misalignments lead to missed
opportunities or systematic failures. Library Evolution counters this with a diagnostic—refinement
cycle: it detects misaligned insights, aggregates evidence across tasks, and refines conditions at the
end of each iteration. The refinement is guided by an aggregate metric rather than ad-hox fixes. As
illustrated in Figure [5] library refinement can be understood as adjusting each insight’s condition
toward the correct retrieval boundary in the problem space.

Diagnostic: Library Diagnosis. After each training round, we trace failed tasks and analyze
their interaction with the library. The diagnostic agent partitions the relationship between each
insight ¢ and its associated tasks into three disjoint categories: II(¢) = {Positive : S;" , Negative :
S;, Unretrieved : S}*} where Sj contains tasks where the insight was applicable and contributed
to the correct formulation, S; contains tasks where it was misleading and degraded performance,
and S} contains tasks where it was not retrieved but would have been beneficial. By maintaining
these partitions across iterations, the system continuously builds a performance profile for each
insight. If a failed task is subsequently solved after removing a misleading (negative) insight or by
injecting a previously unretrieved one, the system attributes the failure to condition misalignment
rather than lack of knowledge, thus avoiding redundant insight generation. Unretrieved tasks are
identified by first comparing the model’s generated program with the ground-truth (or a reference
program from self-exploration) to locate discrepancies. These discrepancies guide the search for
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candidate insights, which are then verified for their ability to resolve the errors. Verified insights are
flagged as relevant but unretrieved, allowing the system to diagnose retrieval gaps without resorting
to intractable combinatorial search. The left panel of Figure ] (see the Library diagnosis flow label)
illustrates the workflow for this stage.

Evolver: Library Refinement. Building on the diagnosis, the Evolver agent refines insights in two
steps: condition refinement and refinement verification. First, for each diagnosed insight, the agent
strengthens or prunes its applicability condition. Negative tasks contribute explicit inapplicability
clauses (e.g., constraints or contexts that block use), while unretrieved tasks highlight missing appli-
cability signals. The Evolver then proposes multiple refinement strategies (e.g., adding preconditions,
introducing keyword anchors, merging overlapping triggers) and produces candidate conditions with
the goal of preserving correct cases, eliminating mismatches, and recovering previously missed tasks.
Then, each candidate condition replaces the original and is tested over the union R; = S;' usS; us;.
A performance score

|kept positives| + |corrected negatives| 4 |recovered unretrieved|
Di IR,
quantifies improvement. Here, “kept positives” are tasks that still remain correctly retrieved after
refinement; “corrected negatives” are tasks that were misled by the insight before and no longer
retrieved; and “recovered unretrieved” are tasks that become correctly retrieved after refinement. We
accept refinements that increase p; and keep the one with the highest p;. The workflow for this stage
is illustrated in the right panel of Figure 4]

B.3 Optimization Perspective

The framework can be viewed as an iterative solution to the optimization problem in the library space.
Let £ denote a candidate library and 7 the distribution of the optimization problems we want to
solve. The objective is to maximize task success while penalizing library complexity to mitigate
retrieval inefficiency and long-context degradation in LLM inference:

max E¢7[Success(t | £)] — AQ(¥).

where Success(t | ¢) indicates whether ¢ enables the system to produce a program that achieves
the correct optimal objective for task ¢, and Q(¢) quantifies library complexity (e.g., number of
insights or redundancy-adjusted size). Under our problem design—bounded and continuous property
of Success(-) and (), sufficient exploration under solver verification, and bounded merging—the
refinement dynamics converge to a locally optimal library. In Appendix [El we provide a conceptual
sketch showing that convergence holds: As refinement in the second phase strictly improves the
first term, while verified merging in the first phase reduces the second term without diminishing the
first, sufficient exploration combined with iterative cycles of library learning and evolution ensures
convergence to a local optimum. Given the inherent ambiguity of natural language and stochasticity
in LLM outputs, we present this perspective not as a strict theorem but as a principled justification for
the acquisition—refinement design and the redundancy-reduction operations.

C Comparative Analysis of AlphaOPT against Prior Experience-Learning
Methods

Recent approaches such as Reflexion (Shinn et al.,[2023)), STaR (Zelikman et al.|[2022), ExpeL (Zhao
et al.,|2024), and AlphaEvolve (Novikov et al., 2025)) demonstrate that large models can improve
through experiential reuse, storing reflections, rationales, or code edits and applying them in new
tasks. These methods have been effective in open-ended reasoning and programming, but they face
limitations for optimization problems. First, their experiences are largely preserved as free-form text
or edits without explicit applicability semantics, yet in optimization tasks, applying such experiences
inappropriately can have detrimental effects. Second, their verification is limited to task outcomes
such as checking rewards, final answers, or passing test cases, which does not guarantee that the
underlying knowledge is structurally valid or transferable.

Our framework adapts experience learning to operations research (OR) with three key innovations:
(1) solver-guided verifiability: correctness is judged at the program level. If a program achieves the

13



optimal objective under the solver, it is highly likely to be valid and can serve as a reliable anchor
for extracting insights, broadening the sources of experience collection. New and refined insights
are explicitly re-tested on associated tasks, ensuring they are valid before integration; (2) structured
knowledge for interpretability and auditability: each insight is represented with taxonomy, condition,
explanation, and example, making its applicability explicit, reviewable, and even revisable in practice;
(3) refinement of experience applicability for generalizability and preciseness: applicability conditions
are refined using cross-task evidence, so insights neither over-generalize nor remain too narrow,
improving safe transfer across problem families. See Table [3|for detailed comparisons.

Table 3: Comparison of experience-learning methods. Prior works improve through experiential
reuse but rely on free-form knowledge and outcome-level verification. Our framework introduces
structured insights, solver-guided verification, and refined applicability, which are crucial for OR.

Structured Explicit Applicability Application

WGHEE knowledge applicability \iEiEEon refinement domain
Reflexion X X Reward signal X General agents
STaR X X Answer correctness X QA / reasoning
ExpeL X (v') minimal Task success assumed X General agents
AlphaEvolve X (V) implicit  Test harness (partial) X Code synthesis /

evolution
AlphaOPT v v Solver optimality + in- v/ OR formulation and
sight verification solver code
D Datasets

We have collected the publicly available optimization problem datasets listed in the Table A which
include both natural language problem descriptions and their optimal solutions. They are aggregated
from four real-world optimization and operation task datasets, namely the NLP4LP (AhmadiTeshnizi
et al. 2024), NL4AOPT (Ramamonjison et al., 2022), IndustryOR (Huang et al.| 2025), MAMO
(ComplexLP) (Huang et al., 2024), with any invalid entries discarded. These collections span various
formulation types and originate from diverse sources, including academic papers, textbooks, and
real-world industry scenarios.

NLP4LP, NL4OPT, IndustryOR, and MAMO (ComplexLP) are used to construct our training and test
datasets. The gold-standard programs for the training datasets NLP4LP and IndustryOR are obtained
from|Yang et al.[(2025a). We perform stratified sampling within each dataset, randomly partitioning
70% for training and 30% for testing. We maintain a strict separation between training and test
data. The experience library is constructed only from training tasks, ensuring that training-derived
insight examples do not leak into the test set. To assess out-of-distribution (OOD) generalization, we
additionally evaluate on LogiOR (Yang et al., 2025a) and Optibench (Yang et al., [2024).

Because our library-based framework derives knowledge feedback from correct solutions, it is
relatively sensitive to data noise. Accordingly, we train and evaluate on clean splits that exclude
instances labeled as erroneous, and the Size column in Table []indicates the size of each dataset after
cleaning. Specifically, for NLP4LP, IndustryOR and LogiOR we use the cleaned versions provided by
Yang et al.| (2025a)); for NLAOPT, MAMO (ComplexLP) and Optibench we use the cleaned releases
from |Astorga et al.|(2025)), obtained from their GitHub repository.

E Proof of the Library Convergence

Recall the optimization problem in the library training phase
F(K) = Etwﬂram[T(t ‘ f)] - )\Q(ﬂ)7

where (¢, £) is a bounded reward function that implements the role of the original Success(t | )
(i.e., it measures the matching quality between optimization problem ¢ and library ¢), and 2(¢) is a
bounded complexity penalty.

According to the problem setting, the iterative refinement algorithm satisfies:
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Table 4: The statistics of the optimization problem datasets

Dataset Size Formulation Type(s) Completion
NL4OPT (Ramamonjison et al.|[2022) 289 LP solution

NLP4LP (AhmadiTeshnizi et al.|[2024) 242 LP, MILP, MINLP solution, program
MAMO (complex LP) (Huang et al.||2024) 111 LP solution
IndustryOR (Huang et al.[[2025) 82 LP, IP, MILP, NLP, others  solution, program
Optibench (Yang et al.[[2024) 403 LP, MILP, MINLP solution

LogiOR (Yang et al.||2025a) 92 LP, IP, MIP, NLP solution

Abbreviations: LP — Linear Programming; IP - Integer Programming; NLP — Nonlinear Programming; MI —
Mixed-Integer; others - Quadratic Programming, Dynamic&Stochastic Programming, etc.

1. Monotone update: At iteration k, from /i, the algorithm considers a set of admissible
refinements R(¢;) C L. Each accepted iteration consists of one of two types of operations:

* Merge step: decreases Q(¢) while leaving r(t, £) non-decrease for all relevant tasks;
* Exploration step: improves (t, £) for some tasks without increasing Q(¢).

Therefore every accepted refinement strictly increases F'(¢); otherwise the algorithm keeps
L1 = 4.

2. Sufficient exploration: Any improving neighbor le R(¢) (i.e. one with strictly larger
objective) will eventually be discovered and executed. Empirically, this is achieved through
iterative prompt optimization with LLMs.

3. Boundedness: r(t,¢) and Q2(¢) are bounded, hence F'(¢) is bounded above and below.

The following theorem establishes that, under the assumption that the training and testing distributions
are identical, the refinement procedure yields libraries that are locally optimal for the testing objective.

Theorem 1. Assume Tirain = Tiest- If the library space L is finite, then the algorithm terminates in
finitely many steps at a library £* which is a local maximizer for the testing objective. Moreover, the
algorithm cannot terminate at a saddle point.

Proof. Every accepted merge or exploration step strictly increases F'(¢), and otherwise the library
remains unchanged. Since F' is bounded above, the sequence { F'(¢;)} is monotone non-decreasing
and bounded, hence convergent to some limit £™*. Furthermore, since L is finite, define

6 = min{F({) - F(¢): £ € R(t), F({) > F(0)}.

Finiteness guarantees § > 0, so only finitely many strict improvements are possible. The algorithm
halts at some ¢*. By sufficient exploration, no improving neighbor of ¢* exists. Therefore, £* is a
local maximizer for both training and testing objectives. Saddle points are excluded.

Since the training and testing distributions coincide, the training objective equals the testing objective,
so any local optimality statement directly applies to testing. O

Although the assumption of a finite library is reasonable, we also provide a proof for the case of an
infinite library for completeness and rigor.

Theorem 2 (Infinite compact library case). Assume Tirain = Trest- If the library space L is
compact (closed and bounded) and F is continuous, then the sequence {F ({)} converges, and any
subsequential limit point £ is a local maximizer for the testing objective. Saddle points are excluded
for all such limit points.

Proof. Each accepted step strictly increases F'(¢), so { F'(¢x)} is monotone non-decreasing. Since F
is bounded above, { F'(¢;,)} converges to some F™*. By compactness of L, there exists a convergent
subsequence £;; — £°°. Continuity of F" ensures F'({y;) — F'({*°) = F*. Suppose £*° had a

neighbor ¢ € R(¢>°) with F'(¢) > F(£>°). Then sufficient exploration would eventually yield
F(¢;) > F*, which is a contradiction. Therefore, £*° is a local maximizer. Saddle points are
excluded. Since the training and testing distributions coincide, the training objective equals the testing
objective, so any local optimality statement directly applies to testing. O
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Theorems [T]and 2] together guarantee that, when the training and testing distributions coincide, the
refinement algorithm converges to locally optimal solutions for the testing phase.

F Library Analysis
F.1 Library Taxonomy Structure

Capacity/Resource Balance Equations

Set-Partitioning/Assignment
Resource Allocation (38.9%) / Fixed Charge (Big-M Linking)
Chance Constraints
: Expected-return Objective
Flow Conservation
Max-Flow Objective
Network Flow (31.9%) Source Flow Constraint
Source-Sink Flow Conservation
Arc-capacity Constraints
Inventory Balance Equations

Domain MOdEIing (51.8%) Technical Ratio Constraints

Production Planning (12.5%)
D — g Time-Indexed Variables
; Composition Bounds

Load Balancing Constraints

Balancing (5.6%)

Proportion Constraints

Packaging (4.2%) Knapsack Constraints

Facility Location (2.8%) Fixed Charge (Big-M Linking)

Selection (2.8%) Binary Selection Constraints

Routing (1.4%) Subtour Elimination Constraints

Continuous vs. Discrete Confusion

dund: ixili iabl
Variable Definition (66.7%)}Re ondant Avrflary Varizb es

Indexing & Data Structure Alignment
Taxonomy \eerrr—

Incorrect Relational Operators

General Formualtion (30.2%) Constraint Formulation (16.7%) / Big-M & Indicator Variables

\ Linearization of Non-linear Forms

. . Unit Inconsistency
Units Scaling (11.9%)
Big M Magnitude & Numerical Stability

Objective Specification (4.8%) Sum vs. Makespan Confusion

Quicksum vs. sum Syntax
Strict Inequalities

Nonlinear Constraint Handling

Solver & API Syntax (76.0%)

Binary Constraint Handling
Code Implement ation (18.00/0) / § Expression Syntax for Constraints
Variable Bounds Specification

\Data 1/0 & Validation (24.0%) KeyError & Index Mismatch

Matrix Dimension Mismatch

Figure 6: The learned experience-library taxonomy has three hierarchy levels: 3 main tracks, 14
level-1 labels, and 38 level-2 labels. This figure presents the level-1 and level-2 terms and their
assignments. Percentages in red, shown in parentheses after each track and level-1 term, denote that
category’s percentage within its parent. The detailed specification and distribution of level-2 labels
are provided in the Appendix [F-2]and Appendix[F.4}

As illustrated in Figure|[6]

1) The library mainly captures insights that address LLMs’ difficulties with domain-specific
modeling structures, particularly those involving structural coupling and constraint balance.
In the library taxonomy, the number of insights under Domain Modeling track accounts for 52%
of the total. Within this track, the most frequent level-1 labels are Resource Allocation (38.9%),
Network Flow (31.9%), and Production Planning (12.5%). Structural coupling, which refers to the
model’s difficulty in capturing cross-variable or cross-stage dependencies, is reflected in level-2 labels
such as Fixed Charge (Big-M Linking), Set-Partitioning/Assignment, and Time-Indexed Variables.
Constraint balance, which refers to the model’s failure to maintain system-wide conservation and
resource equilibrium, is reflected in level-2 labels such as Capacity/Resource Balance Equations,
Flow Conservation, and Inventory Balance Equations.
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2) The library captures insights that help transform intuitive or context-based reasoning into
mathematically rigorous and solver-consistent formulations, particularly in defining variables,
formalizing constraints, and maintaining numerical consistency. General Formulation track
accounts for 30% of all insights. Within this track, the the most frequent level-1 labels are Variable
Definition (66.7%), followed by Constraint Formulation (16.7%) and Units Scaling (11.9%). Variable
definition difficulty lies in specifying variable domains and maintaining structural consistency, as
reflected in level-2 labels such as Explicit Bounds, Continuous vs. Discrete Confusion, and Indexing
& Data Structure Alignment. Constraint formulation difficulty lies in the model’s inaccuracy in
representing logical and numerical relationships, as reflected in level-2 labels such as Incorrect
Relational Operators, Big-M & Indicator Variables, and Linearization of Non-linear Forms. Units
scaling difficulty lies in maintaining numerical coherence and stability, as reflected in level-2 labels
such as Unit Inconsistency, Big-M Magnitude & Numerical Stability.

3) The library captures insights that help bridge the gap between symbolic formulations and
executable solver code, particularly in handling solver syntax and maintaining data consistency.
Code Implementation track accounts for 18% of all insights, this proportion is lower than formulation-
level insights though, it still exposes critical weaknesses in the execution stage. Within this track,
most errors originate from Solver & API Syntax (76.0%), while the remaining issues arise from Data
I/0 & Validation (24.0%). Solver & API syntax errors reflect the model’s lack of solver awareness
and insufficient control over formal expression generation, as evidenced by level-2 labels such as
Nonlinear Constraint Handling, Strict Inequalities, Quicksum vs. sum Syntax. Data I/O & validation
errors, on the other hand, reveal instability in aligning mathematical indices with data structures, as
reflected in level-2 labels such as KeyError & Index Mismatch and Matrix Dimension Mismatch.

F.2 Details of Library Insight Distribution

To further understand the detailed content of the library insights, we analyze the distributions of
insights under the level-2 taxonomy labels, as well as the contribution differences among training
datasets (as depicted in Figure[7).

In the Domain Modeling track, insights under Resource Allocation — Capacity/Resource Balance
Equations account for the largest proportion, with contributions from all four datasets, among which
NLP4LP and Industry OR contribute the most. Insights tagged with this label are widely applicable
to optimization problems that require ensuring resource usage does not exceed available capacity,
demonstrating how to establish constraints that maintain balance between resource consumption and
availability.

In the General Formulation track, Variable Definition — Explicit Bounds, Redundant Auxiliary
Variable, and Continuous vs. Discrete Confusion are the most frequent, with diverse sources,
indicating that these are common issues across multiple datasets. This reflects that foundational
concepts in variable definition are the most error-prone in optimization modeling—particularly in
balancing variable types, value ranges, and modeling simplifications—where LLMs tend to produce
redundant formulations or type misuse due to overlooking structural or physical consistency.

In the Code Implementation track, the number of insights is the smallest, with Solver & API Syntax —
Nonlinear Constraint Handling and Data I/O & Validation — KeyError & Index Mismatch accounting
for the highest proportions, mainly contributed by the MAMO (Complex LP) and NLP4LP datasets.
These two types of insights reveal critical vulnerabilities in the implementation stage—solver syntax
compatibility and data accessibility—representing the dual pillars required for bridging mathematical
modeling and executable code.

From the perspective of dataset contribution, Industry OR is dominant in Domain Modeling; MAMO
(Complex LP) and Industry OR lead in General Formulation; and both MAMO (Complex LP)
and NLP4LP contribute the most to Code Implementation. NLAOPT has relatively lower overall
participation but focuses on formulation- and solver-related details. Considering dataset size, although
the Industry OR and MAMO (Complex LP) datasets used for library learning are only about half
the size of the other datasets, they still contribute a large number of insights, indicating that these
datasets contain denser structural modeling challenges and more diverse error patterns, enabling the
LLM to accumulate more experiential knowledge across multiple dimensions.
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(b) Insight distribution of General Formulation track
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(c) Insight distribution of Code implementation track
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Figure 7: Insight distributions across three different tracks, showing the contributions of source tasks
in the four training datasets to the generation of library insights.
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F.3 Examples of Library Refinement

We selected five representative refined insights from the library and explained how their applicability
conditions were adjusted based on the associated tasks.

(" Insight ID 10: When (and when not) to apply single-capacity Insight ID 43: When (and when not) to model resource flows with Insight ID 100: When (and when not) to impose explicit upper & lower
(knapsack-type) constraints for item selection problems? local conservation and balancing constraints across nodes? bounds from natural physical o logical limits on decision variables?
gugmsljcondiHongThis Insight applies when the problem original condition: This insight applies when the problem original condition: This insight applies when the problem
domain requires selecting items that consume a single scalar domain requires resources to move or transform through description provides natural physical, economic, or logical
capacity such as weight, volume, or budget. nodes and local conservation must hold limits that can tightly bound decision variables.

refined condition: ...This insight applies when explicitly refined condition: ...This insight applies when when

states a single scalar capacity constraint like cost or volume, or refined condition: ...This insight applies when when Keywords such as ‘maximum capacity’, ‘resource limits, or
when the task involves minimizing a singular resource usage like keywords such as resource allocation’, ‘eapacity constraints’, network flow constraints’ are present in the problem statement
{ime or space. and 'balancing production’ are present in the problem statement This insight does NOT apply ducision-malking foauace on
This insight does NOT apply when the problem involves This insight does NOT apply when keywords like ‘fixed discrete choices, or when the structure of the problem inherently
selecting items to satisfy multiple scalar capacities proportions’, ‘quality constraints', or ‘predefined resource bounds the decision variables

simultaneously, such as fulflling multiple nutritional requirements allocations' dominate the problem statement

alongside minimizing costs

P
Insight ID 133: When (and when not) to formulate a max-flow model Insight ID 228: When (and when not) to translate natural-language
between a single source and a single sink node in a network? statements like “ at least” or “at most” into proportional inequalities?|

original condition: This insight applies when the problem

: . PRI original condition: This insight applies when natural
description requires maximizing throughput between b e .
language statements such as 'at most' or 'at least' must be
designated source and sink nodes.
translated into algebraic inequalities
pefinediconditions] . This Insight applies when maximizing refined condition: ...This insight applies when constraints
the flow of resources or goods from a single source node to a . e ;
expressed in terms like 'at least, ‘at most', or proportional
single sink node in a network, with capacity constraints and flow . . e
' relationships need translation into algebraic inequalities involving
conservation as critical components. ¢
nserva proportional or percentage-based limits.
This insight does NOT apply when the problem involves .
This insight does NOT apply constraints involve exact quantity
distributing resources from a source node to multiple nodes - - .
noc relationships, logical conditions, o fixed ratios rather than
without focusing on a single endpoint sink, such as distributing

s roportional limits
water from a central source to multiple distribution centers. prop

Figure 8: The examples of insight conditions before and after refinement, with green text indicating
the original applicability conditions, and blue and red marking the newly added applicable and
non-applicable conditions after refinement.

As shown in the Figure [8] Insight ID 10 targets single—scalar-capacity selection; the refinement
broadens coverage by adding equivalent formulations such as minimizing a single resource (time/s-
pace), while explicitly excluding multi-capacity settings. Insight ID 43 captures flow/conservation
and production balancing across nodes; refinement adds lexical anchors (e.g., capacity constraints,
balancing production) and excludes statements dominated by fixed proportions, quality constraints,
or predefined allocations, gating suppresses spurious retrievals where the structure is not true flow/-
conservation. Insight ID 100 supports adding tight explicit bounds derived from natural limits;
refinement strengthens positive cues (e.g., maximum capacity, resource limits) and excludes cases
that are purely discrete or already inherently bounded. Insight ID 133 focuses on max-flow between
a single source and a single sink; refinement tightens the structural requirement and rules out source-
to-many distribution tasks. Insight ID 228 covers translating at least/at most expressed as proportions
into inequalities; refinement broadens to general percentage phrasing, clarifies the mapping, and
excludes exact quantities, logical relations, or fixed ratios that are not proportion limits.

Across the five cases, four strategies proposed by LLM agent recur: (i) generalize with equivalent
phrasings (e.g., minimize a single resource); (ii) lexical anchoring with positive keywords to raise
recall where appropriate; (iii) explicit exclusion lists to reducing misalignment with tasks; (iv) struc-
tural qualifiers (single-scalar capacity; single-source—single-sink) to prevent misuse. A refinement is
considered effective when the reduction in negative and unretrieved tasks outweighs the decrease
in positive tasks. As shown in the Figure[J] these semantic refinements reduce both negative and
unretrieved cases while preserving as many positive cases as possible.

F.4 Specification of Library Taxonomy Labels

The following Table [3]lists all library taxonomy labels and their corresponding conditions, which
specify the applicability criteria of each level-2 label and clarify its precise meaning. According to
the library taxonomy generation mechanism, each label condition is created by the LLM when the

label is first introduced, and subsequent generated insights under the same label inherit that initial
condition.
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Figure 9: Changes in the number of positive, negative, and unretrieved tasks associated with each
insight before and after applicability condition refinement. A decrease in negative and unretrieved
tasks indicates that, the insight no longer mismatches unrelated tasks (negative) and successfully
matches previously applicable but missed tasks (unretrieved) after refinement.
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Table 5: Full Specification of the Library Taxonomy

Taxonomy Label

Condition

Resource Allocation

Domain Modeling

Capacity/Resource Balance Equations Applies when the problem domain requires resources to move or

Set-Partitioning/Assignment
Fixed Charge (Big-M Linking)

Chance Constraints

Expected-return Objective

Network Flow
Flow Conservation

Max-Flow Objective

Source Flow Constraint

Source-Sink Flow Conservation

Arc-Capacity Constraints

Production Planning
Inventory Balance Equations

Technical Ratio Constraints
Time-Indexed Variables
Composition Bounds
Balancing

Load Balancing Constraints

Proportion Constraints

Packaging
Knapsack Constraints

Facility Location
Fixed Charge (Big-M Linking)

Selection
Binary Selection Constraints

Routing
Subtour Elimination Constraints

transform through nodes and local conservation must hold.

Applies when the problem description requires each item or task to be
exclusively assigned to exactly one choice among many.

Applies when the problem description requires a facility, option, or
mode to be activated by a binary choice.

Applies when the problem description sets a limit on the average
chance of an adverse outcome across options or scenarios (e.g., stake,
volume, or weight).

Applies when the problem description calls for maximizing the av-
erage/expected payout or return across options given their win/lose
probabilities.

Applies when the problem description involves quantities traversing a
directed network and nodal balance must be maintained.

Applies when the problem description requires maximizing throughput
between designated source and sink nodes.

Applies when the problem description designates a source node that
distributes resources through a network to sinks and requires explicit
conservation at the source.

Applies when the problem description specifies a source and a sink and
requires routing/transferring flow between them with explicit balance
at those terminal nodes.

Applies when the problem domain contains edges with maximum
throughput or capacity limits.

Applies when the problem description involves materials or products
that carry over between periods and must satisfy stock-flow balance.
Applies when the problem description specifies minimum/maximum
production ratios or recipe proportions between products or stages.
Applies when the problem domain requires discrete time modeling to
capture capacities, setups, or carry-over decisions.

Applies when the problem description specifies multiple products
sharing limited resources (e.g., machine hours or labor) that require
explicit per-resource capacity limits.

Applies when the problem description requires fairness or controls
maximum imbalance across parallel resources.

Applies when the problem description limits the maximum or mini-
mum proportion of a resource, flow, or activity relative to the total.

Applies when the problem domain requires selecting items that con-
sume a single scalar capacity such as weight, volume, or budget.

Applies when the problem description specifies that service or flow is
allowed only if a facility is opened.

Applies when the problem domain requires choosing a subset under
count, budget, or compatibility limits.

Applies when the problem description allows decision variables to
form disconnected cycles that must be eliminated.
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Taxonomy Label

Condition

Variable Definition
Continuous vs. Discrete Confusion

Explicit Bounds
Indexing & Data Structure Alignment

Redundant Auxiliary Variables

Constraint Formulation
Incorrect Relational Operators

Linearization of Non-linear Forms

Big-M & Indicator Variables

Objective Specification
Sum vs. Makespan Confusion

Units Scaling
Unit Inconsistency

Big-M Magnitude & Numerical Stability

General Formulation

Applies when decision quantities represent indivisible counts or
choices versus divisible amounts such as flows.

Applies when the problem description provides natural physical,
economic, or logical limits that can tightly bound decision variables.
Applies when variables are indexed over sets or dictionaries that
must align with the keys of the provided data.

Applies when auxiliary variables merely re-express existing linear
combinations without adding modeling value.

Applies when natural-language statements such as “at most” or “at
least” must be translated into algebraic inequalities.

Applies when nonlinear relations among variables reduce tractabil-
ity or solver performance.

Applies when constraints depend on logical on/off conditions con-
trolled by binary variables.

Applies when multiple resources or activities can run in parallel
and the objective is ambiguous between total completion time and
makespan.

Applies when input data come from different unit systems or in-
compatible measurement scales.

Applies when the problem description uses Big-M to model on/off
or conditional constraints and realistic bounds can be derived to
calibrate M.

Solver & API Syntax
Quicksum vs. sum Syntax

Strict Inequalities

Nonlinear Constraint Handling

Binary Constraint Handling

Expression Syntax for Constraints

Variable Bounds Specification

Data I/0 & Validation
KeyError & Index Mismatch

Missing Data Defaults

Code Implementation

Applies when the mathematical model contains linear expressions
aggregated over large index sets that should be constructed using
solver-native summation operators.

Applies when the mathematical model contains strict inequality re-
lations between variables that cannot be directly handled by LP/MIP
solvers.

Applies when the problem description introduces nonlinear rela-
tionships (e.g., proportions or multiplicative effects) that must be
enforced in an LP/MIP model.

Applies when the problem description involves yes/no (open/close,
select/not-select) decisions that require variables restricted to {0, 1},
without adding extra [0,1] constraints.

Applies when the problem description specifies equality/inequality
relations (e.g., balances, conservation, on/off logic) that should be
encoded directly as solver expressions.

Applies when the problem description requires the change of a
variable from one value to another.

Applies when the mathematical model contains indexed variables
or parameters that are accessed with indices not present in the
corresponding data structures.

Applies when the mathematical model contains optional parameters
whose values may be absent in the dataset and require default
assignments to preserve model validity.
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G Additional Results

G.1 Ablation Study
We assess the effectiveness of library insight retrieval/application and self-debug:

* w/o self-debug: Remove the model’s self-debugging section.

* w/o taxonomy: Remove the library taxonomy and directly match insights by checking all
conditions.

» w/o insight example: Use only the explanation as input, excluding exemplar cases

Table 5 shows that the full AlphaOPT achieves the best scores on all out-of-distribution datasets.
Removing self-debug yields the largest drop on Logior (15.21%), indicating it plays an important role
in the system. Dropping the library taxonomy reduces accuracy by 4.34% on Logior and by 1.09% on
Optibench, suggesting that structured matching meaningfully improves retrieval. Excluding insight
examples similarly lowers performance, showing that concrete, worked snippets aid application
beyond textual explanations alone.

Table 6: The ablation results of AlphaOPT without: performance on benchmarks.

Dataset Logior (92) Optibench (403)
AlphaOPT (full) 51.08% 91.81%
w/o self-debug 35.87% 89.26%
w/o taxonomy 46.74% 90.72%
w/o insight example 45.65% 91.06%

G.2 Success And Failure Case Study

As shown in Figure[I0] approximately half of the retrieved insights successfully contributed to solving
new optimization tasks, with only a small portion introducing new errors (Failure), demonstrating the
effectiveness of our method in automating knowledge transfer for optimization modeling. Moreover,
insights under different level-1 taxonomy labels exhibit distinct performance patterns across modeling
dimensions.

1) Insights with high success rates These insights are concentrated in Code Implementation —
Solver & API Syntax and General Formulation — Variable Definition. These insights typically target
code implementation or fundamental modeling errors with clear structures, enabling the LLM to
follow their guidance stably and correctly. For instance, insights tagged with Strict Inequality label
under Solver & API Syntax highlights that solvers (e.g., Gurobi) do not support strict inequalities and
should instead be reformulated as non-strict forms (< —1 or > +1); insights tagged with Explicit
Bounds label under Variable Definition emphasizes that decision variables should be assigned explicit
upper and lower bounds to ensure feasibility and improve solver efficiency.

2) Insights with high failure rates These insights are mainly found in Domain Modeling — Facility
Location. They often involve structural constraints and logical triggers that are easily misinterpreted
or overgeneralized by the LLM. For example, insights tagged with Fixed Charge (Big-M Linking)
label exhibit a failure rate of 70%. Although the principle of using Big-M constraints to model
on/off logic is correct, its blind application in problems without conditional activation can lead to
redundant or overlapping constraints and unnecessary feasible-region reduction, ultimately causing
solver failure. Additionally, while insights under Variable Definition generally achieves high success
rates, some insights tagged with Explicit Bounds label sometimes are overly rigid, leading the LLM
to impose unnecessary upper bounds, thereby restricting the feasible space and producing suboptimal
solutions.

3) Insights with high invalid rates These insights are mainly under Domain Modeling — Resource

Allocation and Domain Modeling — Product Planning. Although the LLM successfully retrieves
the correct insights and identifies the corresponding problem types, it often fails to translate them
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(b) Effectiveness distribution across level-1 insight categories

Figure 10: We evaluate the effectiveness of retrieved insights by classifying their outcomes as success,
failure, or invalid. An insight is considered successful if it matches a new task and prevents an error
that would otherwise occur, failed if it mismatches a task and introduces a new error, and invalid if it
matches correctly but fails to help the LLM fix the original mistake. (a) Overall distribution of insight
outcomes. (b) Proportions of successful, failed, and invalid insights under level-1 taxonomy labels.

into executable formulas or solver-level implementations. For instance, under Solver & API Syntax,
Nonlinear Constraint Handling advises linearization or the introduction of auxiliary variables for
nonlinear objectives or constraints (e.g., ratios or divisions), yet the LLM frequently fails to fully exe-
cute these transformations (neglecting auxiliary variables or mis-rewriting proportional constraints),
resulting in insights being recognized but not operationalized.

Additionally, certain tasks remained unsolved regardless of whether library retrieval was enabled,
as their failure stemmed from factors beyond the current learned library’s knowledge scope. In the
out-of-distribution dataset LogiOR, tasks involved multi-level spatiotemporal logic and interacting
constraints (e.g., capacity, timing, and flow balance) in problems such as routing, scheduling, and
network flow. These challenges extend beyond the scope of the existing library, which primarily
focuses on static, linear formulations. Although related taxonomy labels such as Resource Allocation
and Nonlinear Constraint Handling exist, their granularity and depth remain insufficient for modeling
such complex logic, revealing that the current system, while semantically generalizable, still lacks
robust cross-structural transfer and context adaptation capabilities.
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Overall, while successful insights constitute the majority, the results reveal several directions for
improvement. First, the relatively high failure rates indicate that, despite the inclusion of condition
refinement, retrieval precision can still be improved through enhanced semantic disambiguation
and structural filtering. Second, insights with high invalid proportions suggest the need for clearer
explanations and better-designed examples to improve pedagogical clarity and execution effectiveness.
Finally, for out-of-distribution tasks, future efforts should focus on strengthening the LLM’s ability
to adapt and generalize retrieved insights to unseen, complex optimization scenarios. Moreover,
expanding OR datasets based on LLM error typologies can further enhance experiential learning
efficiency and generalization at comparable problem scales.

H Prompts For LLM Modules

Apply self-exploration on finding gold-standard program

You are an expert in Industrial Engineering and Operations Research.

You are given:

1. The problem description for an optimization task

2. The Gurobi programs for this task failed to reach optimality, which were
previously proposed by your colleague (hereafter referred to as *the failed
programs*), and the execution feedbacks for the failed programs

3. Optimal objective value for this task

#i## Problem Description
{problem_description}

### Previous failed programs and feedbacks
{failed_attempts}

### Optimal objective value
{ground_truth}

### Your task

Your task is to review the problem description, feedback, reflect the issues in
the failed program, and revise the program so that it can be both runnable
and reaching optimality.

Critically, always prioritize and strictly adhere to the given problem
description and its given data; do NOT fabricate data, introduce unstated
assumptions, or violate the correct formulation merely to match the optimal

objective value. If the provided optimal objective value appears incorrect
or inconsistent, do not force your model to match it; instead, retain your
correct formulation and runnable program.

### STRICT OUTPUT FORMAT

Only output the full corrected program, and enclose it in a single Markdown-
style Python code block that starts with ¢‘‘python and ends with ‘¢¢, like
this:

¢¢‘python

import gurobipy as gp

from gurobipy import GRB

model = gp.Model("OptimizationProblem")
# your code starts from here

model.optimize()
[

- Ensure model.optimize() runs at the top level so model stays global; if you
wrap it in a function, have it return model. Avoid any if __name__ == "
__main__": guard.
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- Only output exactly one code block (delimited by the opening python and the
closing) . Do not write any natural-language text outside the code block.

- DO NOT GENERATE OR MODIFY ANY CODE (e.g., ‘if model.Status == GRB.OPTIMAL: ‘)
after ‘model.optimize() ‘.

Now take a deep breath and think step by step.

Generate library insights

You are an expert in Industrial Engineering and Operations Research teaching
graduate students to avoid modeling-and-coding mistakes in solving
optimization problems.

You are given:

1. A problem description for the optimization task

2. A mathematical model proposed by your colleague which failed to yield an
optimal solution when solved with the Gurobi optimizer (hereafter referred
to as *the failed mathematical modelx)

3. The gold-standard program, which embodies the correct mathematical
formulation of the optimization task

### Problem description
{problem_description}

### The failed mathematical model
(Note: the model is written in LaTeX and presented in a plain-text code block
(((())

{failed_formulation}

### The gold-standard program
{correct_program}

### Your task
Step 1: Compare the failed mathematical model with the correct mathematical
model embodied in the gold-standard program to identify issues that prevent
optimality. Note that variable names in the proposed model may differ from
those in the gold-standard program. Please align them carefully based on
the problem specification.

Step 2: Using the insight taxonomy dictionaries provided below, extract one or
more new insights, which should be a distinct and concise lesson derived
from a specific issue identified in the failed mathematical model relative
to the gold-standard program.

Each new insight must contain exactly four fields:

1) taxonomy - choose exactly one of the two aspects:

- Domain Modeling: Level-1 = Problem Domain (e.g., "Network Flow"); Level-2
= Specific Technique (e.g., "Flow Conservation").
- General Formulation: Level-1 = Formulation Component (e.g., "Variable

Definition"); Level-2 = Specific Aspect/Pitfall (e.g., "Continuous vs.
Discrete Confusion").

Taxonomy rule (nested-dict): ‘{{ Level-1 : {{ Level-2 : null | {{ "
definition": "...", "condition": "..." }} }} }}¢

- The taxonomy MUST always be expressed as a three-level nested dict: Level
-1 -> Level-2 -> (null or a dict with "definition"/"condition").
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- Pick exactly one Level-1 (existing key).

- Pick one or more Level-2 under that Level-1 (existing key or keys).

- For an existing Level-2, set its value to null.

- If you must invent a new Level-2, set its value to a dictionary with two
one-sentence fields:

- "definition" - what the label means (scope/intent).

- "condition" - when to apply the label (a general trigger grounded in
the problem description or in the defining features of the problem domain).
- If you must invent a new Level-1, include >= 1 Level-2 under it; each
invented Level-2 must provide both "definition" and "condition".

2) condition - Write it as a trigger explicitly grounded in the problem
description or in the defining features of the problem domain. First state
the general situation, then use this problem as an example. Use the pattern

below, and keep it strictly non-prescriptive: do not give any solution,
advice or decision:

"This insight applies when ... For example, when the problem statement mentioned

"

3) explanation - A brief and self-contained description that specifies, under
this condition, what the best practice is, what the common mistake is and
its cause. First, use this problem as an example to illustrate; Then,
appropriately generalize the correct modeling strategy it reflects, if
applicable.

Use the pattern below, and ensure the generalization remains within an
appropriate and reasonable scope:

"When the problem involves... The best practice is... A common mistake is
which happens because ... More generally, this reflects that ..."

4) example - A brief, self-contained demonstration showing wrong vs. correct
version (principle, formulation, or code snippet). Clearly mark them as ’#
Wrong’ and ’# Correct’.

### Taxonomy Dictionaries
Domain Modeling
{domain_taxo}

General Formulation
{formulation_taxo}

### STRICT OUTPUT FORMAT
Return a single JSON array of insight objects. No text before/after. Example
with two insights (but not must be two):

[
H
"taxonomy": {{
"Domain Modeling": {{
"Network Flow": {{
"<New Label If Necessary>": {{ "definition": "<one sentence
>"  "condition": "<one sentence>" }}
1}
1}
11,
"condition": "<text>",
"explanation": "<text>",
"example": "<text>"
1k,
i

"taxonomy": {{
"General Formulation": {{
"Variable Definition": {{
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"Continuous vs. Discrete Confusion": null

1
1}
11,
"condition": "<text>",
"explanation": "<text>",
"example": "<text>"
1
]
Guidelines:

- Output as many distinct, non-overlapping insights as needed.

- Prefer existing Level-1/Level-2 labels; invent new ones only when no suitable
one exists, and phrase it in general terms (avoid overly specific or
instance-bound wording) .

- Be precise in stage selection-use Domain Modeling for domain-specific
techniques that arise only within specific problem families (e.g., Routing,

Network Flow, Facility Location) and depend on those domains’ structures;
use General Formulation for domain-agnostic practices on variables,
constraints, or objectives that apply broadly across domains.

Now take a deep breath and think step by step.

Retrieve insights by matching taxonomy

You are an expert in Industrial Engineering and Operations Research.

You are given:

1. A problem description for the optimization task

2. A mathematical model proposed by your colleague that failed to yield an
optimal solution when solved with the Gurobi optimizer (hereafter referred
to as *the failed mathematical modelx)

3. A diagnostic report on the proposed mathematical model, identifying the
specific issue that prevents optimality

### Problem description
{problem_description}

### The failed mathematical model
(Note: the model is written in LaTeX and presented in a plain-text code block
(((())

{failed_formulation}

### The diagnosed issue
{one_diagnosed_issue}

### Your task
Step 1: Carefully review the problem description, and analyse the failed
mathematical model with the issue identified in the diagnostic report.

Step 2: Given the full taxonomy dictionaries of existing insights stored in
library (shown below), determine the potential level-1 and level-2 label(s)
under which relevant useful insights may be found for resolving the
identified issue.

Two Two-Level Insight Taxonomy Dictionaries: Domain Modeling and General
Formulation
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- Domain Modeling
- Level-1: Problem Domain (e.g., "Network Flow")
- Level-2: Domain-specific Technique/Principle (e.g., "Flow Conservation")
- General Formulation
- Level-1: Formulation Component (e.g., "Variable Definition")
- Level-2: Specific Aspect/Pitfall (e.g., "Continuous vs. Discrete Confusion

n)

### Taxonomy Dictionary for Domain Modeling
{domain_taxo}

### Taxonomy Dictionary for General Formulation
{formu_taxo}

### STRICT OUTPUT FORMAT

Return only a JSON object of your analysis result in Step 2, with the exact
structure below:

- Outer keys = "Domain Modeling" or "General Formulation"

- Values = dictionaries whose keys are Level-1 labels from the taxonomy

- Each Level-1 key’s value = a list of one or more Level-2 labels from the
taxonomy

Note:

- You may assign multiple level-1 and level-2 labels to the issue only when you
think they are all potentially applicable.

- If no applicable labels exist the issue, simply set its "matched_label(s)"
value to null.

Example 1 - Multiple applicable level-1 and level-2 labels:

a8t
"Domain Modeling": {{
"Production Planning": ["Inventory Balance Equations", "Time-Indexed
Variables"],
"Resource Allocation": ["Capacity/Resource Balance Equations"]
3
a8t

Example 2 - Multiple applicable level-1 and level-2 labels from both Domain
Modeling and General Formulation:

{
"Domain Modeling": {{
"Facility Location": ["Fixed Charge (Big-M Linking)"]
11,
"General Formulation": {{
"Constraint Formulation": ["Big-M & Indicator Variables"]
1
81
Example 3 - No taxonomy labels apply to the issue:
{3
Guidelines:

- You must ensure that every label you list exists in the provided taxonomy
dictionary exactly as written.

- Only output the JSON object. DO NOT include any explanations, markdown, or
extra text before or after the JSON array.

Now take a deep breath and think step by step. You will be awarded a million
dollars if you get this right.
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PROMPT_RETRI_INS="""
You are an expert in Industrial Engineering and Operations Research.

You are given:

1. A problem description for the optimization task

2. A mathematical model proposed by your colleague which failed to yield an
optimal solution when solved with the Gurobi optimizer (hereafter referred
to as *the failed mathematical modelx)

3. A diagnostic report on the proposed mathematical model, identifying the
specific issue that prevents optimality

4. A collection of insights. Each insight includes:
- insight_id: the unique identifier of the insight
- taxonomy: the classification of the modeling/formulation/code-
implementation aspect it pertains to
- condition: the problem-specific context and broader modeling situations in
which the insight applies (its applicability condition)

### Problem description
{problem_description}

### The failed mathematical model

Note: the model is written in LaTeX and presented in a plain-text code block
((C()

{failed_formulation}

### The diagnosed issue
{one_diagnosed_issue}

### Candidate insights
{candidate_insights}

### Your task
Step 1: Carefully review the problem description, and analyse the failed
mathematical model with the issue identified in the diagnostic report.

Step 2: Evaluate each candidate insight individually. Retain only those that
directly apply to resolving the identified issue in the diagnostic report.
For every insight, cite concrete evidence from the problem description and
diagnosed issues, and justify how the insight helps fix the specific
modeling issue.

Step 3: Rank the applicability of the selected insights in descending order.

### STRICT OUTPUT FORMAT

Return only a JSON array of your result from Step 3. Each array element must be
an object with keys ‘"insight_id"¢ (integer), ‘"ranking"‘(applicability
rank; 1 = highest) and ‘"evidence"‘ (string).

Example:

((ljson

[
{{"insight_id": 1, "ranking": 1, "evidence": "<text>"}},
{{"insight_id": 5, "ranking": 2, "evidence": "<text>"}},
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{{"insight_id": 7, "ranking": 3, "evidence": "<text>"}}

(4

Guidelines:

- Output only the insights that apply to the identified issue(s).

- Only output the JSON array. DO NOT include any explanations, markdown, or
extra text before or after the JSON array.

Now take a deep breath and think step by step.

Retrieve insights by condition applicability

You are an expert in Industrial Engineering and Operations Research.

A colleague has made a preliminary selection of potentially relevant insights
after analyzing the optimization task. Your job is to carefully evaluate
each candidate and decide whether it truly applies.

You are given:

A problem description.

A collection of insights, each with:

taxonomy: the classification of modeling, formulation or code implementation it
lies in

condition: Statement of both when the insight does apply (applicability
condition) and when it does not (inapplicability condition), grounded in

problem-specific context and broader modeling situations to prevent misuse.

### Problem description
{problem_description}

### Candidate insights
{candidate_insights}

### YOUR TASK

Carefully read the problem description, then:

Identify which problem domain(s) and modeling techniques are involved.

Analyse potential formulation pitfalls the problem may involve.

Evaluate each candidate insight one by one. Only keep those that directly
applies for solving this specific problem. Be careful about the
inapplicability condition that indicates exclusion scenarios where applying

the insight would mislead; do not return this insight if it falls within

those exclusion scenarios.

Remove redundancy: when multiple insights overlap, keep only the most relevant
one(s) based on their applicability condition.

Use the exact insight_id provided with each candidate; do not invent new IDs.
### STRICT OUTPUT FORMAT

Return only a JSON array of the insights you think are applicable. Do not
include explanations, markdown, or extra text.
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Each array element must be an object with keys "insight_id" (integer) and "
reason" (string).

Example:

[

{"insight_id": 1, "reason": "<1-2 sentences>"},
{"insight_id": 5, "reason": "<1-2 sentences>"}
]

If no insight is applicable, return exactly:

Guidelines:

The output must be valid JSON parsable by any standard JSON parser without
modification.

Only keep those that clearly apply to this specific problem. Do NOT include any
insight that is not applicable.

Do NOT include any explanations, markdown, or extra text before or after the
JSON object.

Now take a deep breath and think step by step.

Diagnose issues for failed program

You are an expert in Industrial Engineering and Operations Research.

You are given:

1. A problem description for the optimization task

2. A mathematical model proposed by your colleague which failed to yield an
optimal solution when solved with the Gurobi optimizer (hereafter referred
to as the failed mathematical model)

3. The feedback providing clues about the failure to solve the mathematical
model to optimality

4. The gold-standard program, which embodies the correct mathematical
formulation of the optimization task

### Problem description
{problem_description}

### The failed mathematical model
Note: the model is written in LaTeX and presented in a plain-text code block

((‘()
{failed_formulation}

### The feedback
{feedback}

### The gold-standard program
{correct_program}

### Your task
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Step 1: Compare the failed mathematical model with the correct one embodied in
the gold-standard program, and identify all formulation issues that prevent
optimality. Each issue should be pinpointed at the level of LaTeX

formulation snippets (e.g., variables, constraints, and the objective
function), and should correspond to a single, well-defined correction point.
Note that variable names in the proposed model may differ from those in
the gold-standard program, so please align them carefully based on the
problem specification.

Step 2: For each identified issue, provide the following three fields:

- "id": A unique id for the issue (integer).

- "issue": A concise description of the issue.

- "evidence": The evidence showing where the issue occurs, including the excerpt
from the failed mathematical model (mark as #wrong) and the corresponding
excerpt from the gold-standard program (mark as #correct).

Step 3: Minimize overlap by reporting independent, root-cause issues. If
multiple defects share the same fix point or strategy, merge them into a
single composite issue. If several issues are upstream/downstream symptoms
of the same root cause (i.e., they would be fixed by the same correction),
consolidate them into one composite issue.

### STRICT OUTPUT FORMAT
Return only a JSON array of your answer. Each array element must be an object

with keys ‘"id"¢, ‘"issue"‘ and ‘"evidence"‘.
Example:
(‘(json
[

{{"id": 1,"issue": "...", "evidence": "..."}},

{{"id": 2,"issue": "...", "evidence": "..."}}

[
Guidelines:

- Make sure to identify distinct and independent issues (e.g., missing
constraints, wrong variable bounds, or incorrect objective formulation).

- Do NOT include issues that do not directly affect the model’s ability to reach
optimality.

- Only output the JSON array. DO NOT include any explanations, markdown, or
extra text before or after the JSON array.

Now take a deep breath and think step by step.

Diagnose positive and negative tasks of an insight

You are an expert in Industrial Engineering and Operations Research.

You are given:

1. A problem description for the optimization task

2. A mathematical model proposed by your colleague which failed to yield an
optimal solution when solved with the Gurobi optimizer (hereafter referred
to as *the failed mathematical modelx)

3. A diagnostic report on the proposed mathematical model, identifying all
formulation issues that prevent optimality.

4. A collection of insights your colleague previously consulted to generate the
mathematical model, each insight includes:
- insight_id: the unique ID for this insight
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- condition: the problem-specific context and broader modeling situations in
which the insight should apply to avoid mistakes (i.e., its applicability
condition)

- explanation: the description of the pitfalls and guidance for the proper
principle/practice

- example: the demonstration showing wrong vs. correct version (principle,
formula, or code snippet)

### Problem description
{problem_description}

### The failed mathematical model

Note: the model is written in LaTeX and presented in a plain-text code block
(¢¢¢), with brief comments indicating the corresponding insight_id and how
it helps the specific formulation.

{failed_formulation}

### The diagnosed issues
{diagnosed_issues}

### A collection of insights
{retrieved_insights}

### Your task
Step 1: Carefully review the problem description, and analyse the failed
mathematical model with the issues identified in the diagnostic report.

Step 2: Examine the collection of insights and the corresponding annotations in
the proposed model that indicate how each insight was implemented.

Step 3: For each insight, determine its correctness by comparing with the gold-
standard program, then evaluate its implementation impact (whether it leads
to any of the identified issues):
1. Assign "positive" label when:
The insight is correct and adopted by the model, and it contributed to a
correct formulation (helped achieve the right result).

2. Assign "invalid" label when:
The insight is correct but not adopted; if adopted, it would have helped
produce the correct formulation and resolve identified issues.

3. Assign "negative" label when:

- The insight is wrong and adopted, thereby directly causing an
identified issue;

- The insight is wrong and not adopted, yet it provides inapplicable/
misleading guidance that poses a risk of errors.

4. Assign "irrelevant" label when:
The insight is irrelevant to the mathematical modeling in this
optimization task and did not affect your colleague’s formulation.

Suggested decision order:

- Judge correct vs. wrong.

- Check adopted vs. not adopted.

- Assess impact (enabled correctness, caused issues, could resolve issues, risk/
irrelevant).

- Map to one of the four labels.
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Step 4: Record the insight_id and the assigned label. Cite concrete evidence
from the problem description and diagnosed issues, and justify the labeling.
Clearly explain the mapping between each insight and the formulation
issues.

### STRICT OUTPUT FORMAT
Return only a JSON array of your answer in Step 4. Each array element must be an
object with keys ‘"insight_id"‘ (integer), ‘"state"‘("postive" or "

negative") and ‘"evidence"‘ (string).
Example:
¢¢¢json
[
{{"insight_id": 1, "state": "positive", "evidence": "<text>"}},
{{"insight_id": 5, "state": "negative", "evidence": "<text"}}
€c¢
Guidelines:

- Make sure to identify and output each insight_id with its state. Do NOT miss
any insight id in the given collection.

- Only output the JSON array. DO NOT include any explanations, markdown, or
extra text before or after the JSON array.

Now take a deep breath and think step by step.

Diagnose unretrieved tasks of an insight

You are an expert in Industrial Engineering and Operations Research.

You are given:

1. A problem description for the optimization task

2. A mathematical model proposed by your colleague which failed to yield an
optimal solution when solved with the Gurobi optimizer (hereafter referred
to as *the failed mathematical modelx)

3. A diagnostic report on the proposed mathematical model, identifying the
specific issue that prevents optimality

4. A collection of insights. Each insight includes:
- insight id: the unique identifier of the insight
- taxonomy: the classification of the modeling/formulation/code-
implementation aspect it pertains to
- condition: the problem-specific context and broader modeling situations in
which the insight applies (its applicability condition)

### Problem description
{problem_description}

### The failed mathematical model
Note: the model is written in LaTeX and presented in a plain-text code block

(((()

{failed_formulation}

### The diagnosed issue
{one_diagnosed_issue}

### Candidate insights
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{candidate_insights}

### Your task
Step 1: Carefully review the problem description, and analyse the failed
mathematical model with the issue identified in the diagnostic report.

Step 2: Evaluate each candidate insight individually. Retain only those that
directly apply to resolving the identified issue in the diagnostic report.
For every insight, cite concrete evidence from the problem description and
diagnosed issues, and justify how the insight helps fix the specific
modeling issue.

Step 3: Rank the applicability of the selected insights in descending order.

### STRICT OUTPUT FORMAT

Return only a JSON array of your result from Step 3. Each array element must be
an object with keys ‘"insight id"‘¢ (integer), ‘"ranking"‘(applicability
rank; 1 = highest) and ‘"evidence"‘ (string).

Example:

(3

[

json

{{"insight_id": 1, "ranking": 1, "evidence": "<text>"}},
{{"insight_id": 5, "ranking": 2, "evidence": "<text>"}},
{{"insight_id": 7, "ranking": 3, "evidence": "<text>"}}

(3

Guidelines:

- Output only the insights that apply to the identified issue(s).

- Only output the JSON array. DO NOT include any explanations, markdown, or
extra text before or after the JSON array.

Now take a deep breath and think step by step. You will be awarded a million
dollars if you get this right.

Refine Insight Conditions

You are an expert in Industrial Engineering and Operations Research. Your task
is to design multiple refinement strategies for the condition of a given
insight to improve its applicability in optimization tasks.

You are given:
1. Original insight with three fields:
- condition: Trigger specifying when the insight applies, grounded in
problem description/domain features. It first states the general situation,
then illustrates with the specific problem.
- explanation: Under this condition, the description outlines the best
practice, the common mistake and its cause. It illustrates the issue with
this problem as an example and generalizes the correct modeling strategy it
reflects.
- example: Wrong vs. correct demonstration (principle, formula, or code).

2. Task-derived insight conditions:

- Inapplicability conditions of insights for negative tasks where prior use of
the insight misled the modeling.

- Applicability conditions of insights for unretrieved tasks which should have
retrieved these insights but were missed.
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Applicability conditions for unretrieved tasks where the insight was relevant
but not retrieved.

### The original insight to be refined
{original_insight}

### inapplicability conditions from negative tasks
{neg_conditions}

### applicability conditions from unretrieved tasks
{unr_conditions}

### Your tasks

Your goal is to refine only the condition field of the original insight so that
it excludes as many negative tasks as possible, captures as many previously
unretrieved tasks as possible, and still applies to the tasks covered by
the original condition. To achieve this, consider the following four steps:

Step 1: Consolidate inapplicability: Merge all inapplicability conditions from
negative tasks into a single, unified inapplicability condition.

Use the pattern:

"This insight does NOT apply when [general situation that negates the insight].
For example, when the problem statement mentions [concrete trigger(s)
grounded in the problem description or defining features indicating
properties that conflict with the insight]."

Step 2: Consolidate applicability: Merge all applicability conditions from
unretrieved tasks into a single, unified applicability condition.

Use the pattern:

"This insight applies when [general situation that warrants the insight]. For
example, when the problem statement mentions [concrete trigger(s) grounded
in the problem description or defining features indicating properties that
align with this insight]."

Step 3: Integrate into the insight’s condition field:

- Preserve the original condition text verbatim.

- Structure the field as three paragraphs using the pattern below.

- Use the unified inapplicability condition as the second paragraph.

Output using the pattern (three brief paragraphs):

- First paragraph: original applicability condition

- Second paragraph: unified applicability condition for unretrieved tasks: "This
insight applies when ..."

- Third paragraph: unified inapplicability condition for negative tasks: "This
insight does NOT apply when ..."

Step 4: Generate {path_k} distinct refinement strategies (paths): Generate
distinct refinement strategies (paths) for how you consolidate the insight
conditions. For each path, write applicability/inapplicability using the
required pattern in Step 3.

Examples:

- one broad rule: Merge multiple situations into a single general trigger that
clearly and broadly covers the main applicable scenario.

- short OR list: Provide a brief list of alternative triggers; if any omne
appears, the insight applies.

- must-have pair: Require two key cues to occur together before the insight
applies, reducing false positives.

- info stated vs. missing: Apply only when the problem explicitly states the
required details; treat omissions as not applicable.

- helpful keywords: Anchor applicability on a small set of representative
keywords or phrases that reliably signal the scenario.

- narrow the scope: Add concise qualifiers to limit coverage to a well-bounded
context so the insight applies only under those limits.
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### STRICT OUTPUT FORMAT

Only Return a JSON array with the following structure:

L
{
"path_id": 1,
"strategy": "<1-2 sentences description of the refinement strategy>",
"new_condition": "<rewritten condition string>"
})
{
"path_id": 2,
"strategy": "...",
"new_condition": "..."
}’
]

### Guidelines

- Always output valid JSON.

- Do not include explanations outside the JSON.
- Each path must be semantically distinct.

Now take a deep breath and think step by step.
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