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Abstract

Chain-of-thought (CoT) is a method that enables language models to handle com-
plex reasoning tasks by decomposing them into simpler steps. Despite its success,
the underlying mechanics of CoT are not yet fully understood. In an attempt to shed
light on this, our study investigates the impact of CoT on the ability of transformers
to in-context learn a simple to study, yet general family of compositional functions:
multi-layer perceptrons (MLPs). In this setting, we find that the success of CoT
can be attributed to breaking down in-context learning of a compositional function
into two distinct phases: focusing on and filtering data related to each step of the
composition and in-context learning the single-step composition function. Through
both experimental and theoretical evidence, we demonstrate how CoT significantly
reduces the sample complexity of in-context learning (ICL) and facilitates the
learning of complex functions that non-CoT methods struggle with. Furthermore,
we illustrate how transformers can transition from vanilla in-context learning to
mastering a compositional function with CoT by simply incorporating additional
layers that perform the necessary data-filtering for CoT via the attention mechanism.
In addition to these test-time benefits, we show CoT helps accelerate pretraining by
learning shortcuts to represent complex functions and filtering plays an important
role in this process. These findings collectively provide insights into the mechanics
of CoT, inviting further investigation of its role in complex reasoning tasks.

1 Introduction

The advent of transformers [Vaswani et al., 2017] has revolutionized natural language processing,
paving the way for remarkable performance in a wide array of tasks. LLMs, such as GPTs [Brown
et al., 2020], have demonstrated an unparalleled ability to capture and leverage vast amounts of data,
thereby facilitating near human-level performance across a variety of language generation tasks.
Despite this success, a deep understanding of their underlying mechanisms remains elusive.

Chain-of-thought prompting [Wei et al., 2022c] is an emergent ability of transformers where the model
solves a complex problem [Wei et al., 2022b], by decomposing it into intermediate steps. Intuitively,
this underlies the ability of general-purpose language models to accomplish previously-unseen
complex tasks by leveraging more basic skills acquired during the pretraining phase. Compositional
learning and CoT has enjoyed significant recent success in practical language modeling tasks spanning
question answering, code generation, and mathematical reasoning [Perez et al., 2021, Imani et al.,
2023, Yuan et al., 2023]. In this work, we attempt to demystify some of the mechanics underlying
this success and the benefits of CoT in terms of sample complexity and approximation power. To
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ŷ

CoT-I/O
x1s

1
1 s21y1x2 . . . xtest

ŝ1
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Figure 1: An illustration of ICL, CoT-I and CoT-I/O methods, using a 3-layer MLP as an example
(top left, where x, y, s1, s2 denote input, output and hidden features respectivaly). The ICL method
utilizes in-context examples in the form of (x,y) and makes predictions directly based on the provided
xtest. Both CoT-I and CoT-I/O methods admit prompts with samples formed by (x, s1, s2,y).
However, CoT-I/O uniquely makes recurrent predictions by re-inputting the intermediate output
(as shown on the right). The performance of these methods is shown on the bottom left, with a more
detailed discussion available in Section 4.

do this we explore the role of CoT in learning multi-layer perceptrons (MLPs) in-context, which we
believe can lead to a first set of insightful observations. Throughout, we ask:

Does CoT improve in-context learning of MLPs, and what are the underlying mechanics?

In this work, we identify and thoroughly compare three schemes as illustrated in Figure 1. (a) ICL:
In-context learning from input-output pairs provided in the prompt, (b) CoT-I: Examples in the
prompt are augmented with intermediate steps, (c) CoT-I/O: The model also outputs intermediate
steps during prediction. Our main contributions are:

• Decomposing CoT into filtering and ICL: As our central contribution, we establish a rigorous
and experimentally-supported abstraction that decouples CoT prompting into a filtering phase and
an in-context learning (ICL) phase. In filtering, the model attends to the relevant tokens within
the prompt based on an instruction. In ICL, the model runs inference on the filtered prompt to
output a step and then moves onto the next step in the chain. Our Theorem 1 develops a theoretical
understanding of this two-step procedure and formalizes how filtering and ICL phases of CoT can
be implemented via the self-attention mechanism to learn MLPs.

• Approximation and sample complexity: Through experiments and theory, we establish that
intermediate steps in CoT-I improves the sample complexity of learning whereas step-by-step
output improves the approximation ability through looping. Specifically, CoT-I/O can learn an
MLP with input dimension d and k neurons using O(max(k, d)) in-context samples by filtering
individual layers and solving them via linear regression – in contrast to the Ω(kd) lower bound
without step-augmented prompt. As predicted by our theory, our experiments (see Sec. 4) identify
a striking universality phenomenon (as k varies) and also demonstrate clear approximation benefits
of CoT compared to vanilla ICL.

• Accelerated pretraining via learning shortcuts: We construct deep linear MLPs where each
layer is chosen from a discrete set of matrices. This is in contrast to the above setting, where MLP
weights can be arbitrary. We show that CoT can dramatically accelerate pretraining by memorizing
these discrete matrices and can infer all layers correctly from a single demonstration. Notably the
pretraining loss goes to zero step-by-step where each step “learns to filter a layer”. Together, these
showcase how CoT identifies composable shortcuts to avoid the need for solving linear regression.
In contrast, we show that ICL (without CoT) collapses to linear regression performance as it fails
to memorize exponentially many candidates (due to lack of composition).

The paper is organized as follows. In Section 2, we introduce the problem setup. Section 3 states
our main theoretical results which decouple CoT into filtering and ICL. Section 4 provides empirical
investigations of CoT with 2-layer MLPs, which validates our theoretical findings. Finally, we
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elucidate the benefits of CoT during pretraining via experiments on deep linear MLPs in Section 5.
Related work and discussion are provided in Sections 6 and 7, respectively.

2 Preliminaries and Setup

Notation. We denote the set {1, 2, . . . , n} as [n]. Vectors and matrices are represented in bold text
(e.g., x,A), while scalars are denoted in plain text (e.g., y). The input and output domains are
symbolized as X and Y respectively (unless specified otherwise), and x ∈ X , y ∈ Y denote the input
and output. Additionally, let F be a set of functions from X to Y . Consider a transition function
f ∈ F where y = f(x). In this section, we explore the properties of learning f , assuming that it can
be decomposed into simpler functions (fℓ)Lℓ=1, and thus can be expressed as f = fL ◦ fL−1 ◦ · · · ◦ f1.

2.1 In-context Learning

Following the study by Garg et al. [2022], the fundamental problem of vanilla in-context learning
(ICL) involves constructing a prompt with input-output pairs in the following manner:

pn(f) = (xi,yi)
n
i=1 where yi = f(xi). (P-ICL)

Here the transition function f ∈ F : X → Y remains constant within a single prompt but can
vary across prompts, and the subscript n signifies the number of in-context samples contained in the
prompt. Considering language translation as an example, f is identified as the target language, and the
prompt can be defined as p(Spanish) = ((apple, manzana), (ball, pelota), . . .) or p(French)=((cat,
chat), (flower, fleur), . . .). Let TF denote any auto-regressive model (e.g., Decoder-only Transformer).
The aim of in-context learning is to learn a model that can accurately predict the output, given a
prompt p and the test input xtest, as shown in the following equation:

TF(pn(f̃),xtest) ≈ f̃(xtest) (2.1)

where f̃ ∈ F is the test function which may differ from the functions used during training. Previous
work [Zhou et al., 2022, Li et al., 2023c] has demonstrated that longer prompts (containing more
examples n) typically enhance the performance of the model.

2.2 Chain-of-thought Prompt and Prediction

As defined in (P-ICL), the prompt in vanilla ICL only contains input-output pairs of the target
function. This demands that the model learns the function f ∈ F in one go, which becomes more
challenging as F grows more complex, since larger models and increased prompt length (n) are
needed to make correct predictions (as depicted by the green curves in Figures 5 and 6). Existing
studies on chain-of-thought methods (e.g., [Wei et al., 2022c]) observed that prompts containing
step-by-step instructions assist the model in decomposing the function and making better predictions.
Specifically, consider a function composed of L subfunctions, represented as f := fL ◦ fL−1 ◦ . . . f1.
Each intermediate output can be viewed as a step, enabling us to define a length-n CoT prompt
related to f with L steps (expressed with sℓ, ℓ ∈ [L]) as follows:

pn(f) = (xi, s
1
i , · · · sL−1

i , sLi )
n
i=1 where sℓi = fℓ(s

ℓ−1
i ), ℓ ∈ [L]. (P-CoT)

Here xi = s0i , yi = sLi and fℓ ∈ Fℓ, which implies that f ∈ FL × · · · F1 := F .

Next we introduce two methodologies for making predictions within the CoT framework:

CoT over input only (CoT-I). Contrasted with ICL, CoT-I considers step-by-step instructions as
inputs, nonetheless, the prediction for the last token is performed as a single entity. Our experiments
indicate that this approach lowers the sample complexity for TF to comprehend the function f̃ being
learned (see the orange curves in Figures 5 and 6). The CoT-I prediction aligns with Eq. (2.1) as
follows, while the prompt is determined by (P-CoT).

One-shot prediction: TF(pn(f̃),xtest) ≈ f̃(xtest). (2.2)

CoT over both input and output (CoT-I/O). Despite the fact that CoT-I improves the sample
complexity of learning f̃ , the TF must still possess the capacity to approximate functions from the
function class F , given that the prediction is made in one shot. To mitigate this challenge, we consider
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a scenario where in addition to implementing a CoT prompt, we also carry out CoT predictions.
Specifically, for a composed problem with inputs formed via (P-CoT), the model recurrently makes
L-step predictions as outlined below:

Step 1: TF(pn(f̃),xtest) := ŝ1

Step 2: TF(pn(f̃),xtest, ŝ
1) := ŝ2

...

Setp L: TF(pn(f̃),xtest, ŝ
1 · · · , ŝL−1) ≈ f̃(xtest), (2.3)

where at each step (step ℓ), the model outputs an intermediate step (ŝℓ) which is then fed back to the
input sequence to facilitate the next-step prediction (ŝℓ+1). Following this strategy, the model only
needs to learn the union of the sub-function sets,

⋃L
ℓ=1 Fℓ, whose complexity scales linearly with the

number of steps L. Empirical evidence of the benefits of CoT-I/O over ICL and CoT-I in enhancing
sample efficiency and model expressivity is reflected in the blue curves shown in Figures 5 and 6.

2.3 Model Training

In Figure 1 and Section 2, we have discussed vanilla ICL, CoT-I and CoT-I/O methods. Intuitively,
ICL can be viewed as a special case of CoT-I (or CoT-I/O) if we assume only one step is performed.
Consequently, we will focus on implementing CoT-I and CoT-I/O for model training in the following.

Consider the CoT prompt as in (P-CoT), and assume that x ∼ DX , and fℓ ∼ Dℓ, ℓ ∈ [L], where
L denotes the number of compositions/steps, such that the final prediction should approximate
f(x) = fL(fL−1 . . . f1(x)) := y ∈ Y . We define ℓ(ŷ,y) : Y × Y → R as a loss function. For
simplicity, we assume fℓ(. . . f1(x)) ∈ Y , ℓ ∈ [L]. Let N represent the in-context window of TF,
which implies that TF can only admit a prompt containing up to N in-context samples. Generally, our
goal is to ensure high prediction performance given any length-n prompt, where n ∈ [N ]. To this end,
we train the model using prompts with length from 1 to N equally and aim to minimize the averaged
risk over different prompt size. Assuming the model TF is parameterized by θ and considering meta
learning problem, the objective functions for CoT-I and CoT-I/O are defined as follows.

θ̂CoT-I = argmin
θ

E(xn)Nn=1,(fℓ)
L
ℓ=1

[
1

N

N∑
n=1

ℓ(ŷn, f(xn))

]
and

θ̂CoT-I/O = argmin
θ

E(xn)Nn=1,(fℓ)
L
ℓ=1

[
1

NL

N∑
n=1

L∑
ℓ=1

ℓ(ŝℓn, s
ℓ
n)

]

where ŷn = TF(pn(f),xn) and ŝℓn = TF(pn(f),xn · · · sℓ−1
n ). pn(f) is given by (P-CoT), and

as mentioned previously, s0 = x and sL = y. All x and fℓ are independent, and we take the
expectation of the risk over their respective distributions.

3 Provable Approximation of MLPs via Chain-of-Thought

In this section, we present our theoretical findings that demonstrate how CoT-I/O can execute
filtering over the CoT prompt, thereby learning a 2-layer MLP with input dimension of d and hidden
dimension of k, akin to resolving k d-dimensional ReLU problems and 1 k-dimensional linear
regression problem. Subsequently, in Section 4.1, we examine the performance of CoT-I/O when
learning 2-layer random MLPs. Our experiments indicate that CoT-I/O needs only O(max(d, k))
in-context samples to learn the corresponding MLP.

We state our main contribution of establishing a result that decouples CoT-based in-context learning
(CoT-I/O) into two phases: (1) Filtering Phase: Given a prompt that contains features of multiple
MLP layers, retrieve only the features related to a target layer to create an ICL prompt. (2) ICL Phase:
Given filtered prompt, learn the target layer weights through gradient descent. Combining these two
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Figure 2: Depiction of Theorem 1 that formalizes CoT as a Filtering + ICL procedure. In this
illustration, we utilize in-context samples as depicted in Figure 1, characterizing the CoT prompt
by (x, s1, s2,y). We show a transformer TF, composed of TFLR ◦ TFBE. TFBE facilitates the imple-
mentation of filtering on the CoT prompt (refer to (P-CoT), illustrated on the left side of the figure),
subsequently generating vanilla ICL prompts (refer to (P-ICL), illustrated on the right side of the
figure). During each step of the ICL process, TFLR employs gradient descent techniques to address
and solve sub-problems, exemplified by linear regression in the context of solving MLPs.

phases, and looping over all layers, we will show that there exists a transformer architecture such
that CoT-I/O can provably approximate a multilayer MLP up to a given resolution. An illustration is
provided in Figure 2. To state our result, we assume access to an oracle that performs linear regression
and consider the consider the condition number of the data matrix.

Definition 1 (MLP and condition number) Consider a multilayer MLP defined by the recursion
sℓi = ϕ(Wℓs

ℓ−1
i ) for ℓ ∈ [L], i ∈ [n] and s0i = xi. Here ϕ(x) := max(αx, x) is a Leaky-ReLU

activation with 1 ≥ α > 0. Define the feature matrix Tℓ = [sℓ1 . . . sℓn]
⊤ and define its condition

number κℓ = σmax(Tℓ)/σmin(Tℓ) (with σmin := 0 for fat matrices) and κmax = max0≤ℓ<L κℓ.

Assumption 1 (Oracle Model) We assume access to a transformer TFLR which can run T steps of
gradient descent on the quadratic loss L(w) =

∑n
i=1(yi − w⊤xi)

2 given a prompt of the form
(x1, y1, . . . ,xn, yn).

We remark that this assumption is realistic and has been formally established by earlier work [Giannou
et al., 2023, Akyürek et al., 2022]. Our CoT abstraction builds on these to demonstrate that CoT-I/O
can call a blackbox TF model to implement a compositional function when combined with filtering.

We now present our main theoretical contribution. Our result provides a transformer construction that
first filters a particular MLP layer from the prompt through the attention mechanism, then applies
in-context learning, and repeats this procedure to approximate the MLP output. The precise statement
is deferred to the supplementary material.

Theorem 1 (CoT⇔Filtering+ICL) Consider a CoT prompt pn(f) generated from an L-layer MLP
f(·) as described in Definition 1, and assume given test example (xtest, s

1
test, . . . s

L
test). For any

resolution ϵ > 0, there exists δ = δ(ϵ), iteration choice T = O(κ2
max log(1/ϵ)), and a backend

transformer construction TFBE such that the concatenated transformer TF = TFLR ◦ TFBE implements
the following: Let (ŝi)ℓ−1

i=0 denote the first ℓ − 1 CoT-I/O outputs of TF where ŝ0 = xtest and set
p[ℓ] = (pn(f),xtest, ŝ

1 . . . ŝℓ−1). At step ℓ, TF implements

1. Filtering. Define the filtered prompt with input/output features of layer ℓ,

pfilter
n =

(
. . .0, sℓ−1

1 , 0 . . . 0, sℓ−1
n , 0 . . . 0, ŝℓ−1

. . .0, 0, sℓ1 . . . 0, 0, sℓn . . . 0, 0

)
.

There exists a fixed projection matrix Π that applies individually on tokens such that the
backend output obeys ∥Π(TFBE(p[ℓ]))− pfilter

n ∥ ≤ δ.

2. Gradient descent. The combined model obeys ∥TF(p[ℓ])− sℓtest∥ ≤ ℓ · ϵ/L.

TFBE has constant number of layers independent of n and T . Consequently, after L rounds of CoT-I/O,
TF outputs f(xtest) up to ϵ accuracy.
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Figure 3: Solving 2-layer MLPs with varying input dimension d and hidden neuron size k.
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Figure 4: We decouple the composed risk of predicting 2-layer MLPs into risks of individual layers.

Remark 1 Note that, this result effectively shows that, with a sufficiently good blackbox transformer
TFLR (per Assumption 1), CoT-I/O can learn an L-layer MLP using in-context sample size n >
maxℓ∈[L] dℓ where dℓ is the input dimension of ℓth layer. This is assuming condition number κmax of
the problem is finite as soon as all layers become over-determined. Consequently, CoT-I/O needs
max(k, d) sample complexity to learn a two layer MLP. This provides a formal justification for the
observation that empirical CoT-I/O performance is agnostic to k as long as k ≤ d.

We provide the concrete filtering statements based on the transformer architecture in Appendix A,
and the key components of our construction are the following: (i) Inputs are projected through
the embedding layer in which a set of encodings, an enumeration of the tokens (1, 2, . . . , N ), an
enumeration of the layers (1, 2, . . . , L) and an identifier for each layer already predicted are all
attached. Notice that this “modification” to the input only depends on the sequence length and is
agnostic to the token to-be-predicted. This allows for an automated looping over L predictions. (ii)
We use this information to extract the sequence length N and the current layer ℓ to-be-predicted. (iii)
With these at hand, we construct an ‘if-then’ type of function using the ReLU layers to filter out the
samples that are not needed for the prediction.

4 Experiments with 2-layer Random MLPs

For a clear exposition, we initially focus on two-layer MLPs, which represent 2-step tasks (e.g.,
L = 2). We begin by validating Theorem 1 using the CoT-I/O method, demonstrating that in-context
learning for a 2-layer MLP with d input dimensions and k hidden neurons requires O(max(d, k))
samples. The results are presented in Section 4.1. Subsequently, in Section 4.2, we compare three
different methods: ICL, CoT-I, and CoT-I/O. The empirical evidence highlights the advantages of
CoT-I/O, showcasing its ability to reduce sample complexity and enhance model expressivity.

Dataset. Consider 2-layer MLPs with input x ∈ Rd, hidden feature (step-1 output) s ∈ Rk, and
output y ∈ R. Here, s = f1(x) := (Wx)+ and y = f2(s) := v⊤s, with W ∈ Rk×d and v ∈ Rk

being the parameters of the first and second layer, and (x)+ = max(x, 0) being ReLU activation.
The function is composed as y = v⊤(Wx)+. We define the function distributions as follows: each
entry of W is sampled via Wij ∼ N (0, 2

k ), and v ∼ N (0, Ik), with inputs being randomly sampled
through x ∼ N (0, Id)

1. We apply the quadratic loss in our experiments. To avoid the implicit bias
due to distribution shift, both training and test datasets are generated following the same strategy.

1Following this strategy for data generation, the expected norms of x, s and y are equivalent, and the risk
curves displayed in the figures are normalized for comparison.

6



CoT-I/O CoT-I ICL0.0

0.1

0.2

0.3

Av
er

ag
ed

 ri
sk

Standard
Small
Tiny

(a) Averaged risk

0 20 40 60 80 100
# in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

CoT-I/O
CoT-I
ICL

(b) Standard GPT-2

0 20 40 60 80 100
# in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

CoT-I/O
CoT-I
ICL

(c) Small GPT-2

0 20 40 60 80 100
# in-context samples

0.0

0.1

0.2

0.3

0.4

Te
st

 ri
sk

CoT-I/O
CoT-I
ICL

(d) Tiny GPT-2

Figure 5: Comparison of the three methods for solving 2-layer MLPs using different GPT-2 models.
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Figure 6: Comparison of the three methods for solving 2-layer MLPs with different hidden sizes.

4.1 Empirical Evaluation of CoT-I/O Performance

To investigate how MLP task impacts CoT-I/O performance, we train 2-layer MLPs with varying
input dimensions (d) and hidden layer sizes (k). The results are presented in Figures 3 and 4, and all
experiments utilize small GPT-2 models for training2.

CoT-I/O performance is agnostic to k when k ≤ d (Figure 3). In Fig. 3(a), we train MLPs with
d = 10, 20 and k = 4, 8, 16. Solid and dashed curves represent the CoT-I/O test risk of d = 10
and 20 respectively for varying in-context samples. The results indicate that an increase in d will
amplifies the number of samples needed for in in-context learning, while the performance remains
unaffected by changes in k ∈ {4, 8, 16}. To further scrutinize the impact of d on CoT-I/O accuracy,
in Fig. 3(b), we adjust the horizontal axis by dividing it by the input dimension d, and superimpose
both d = 10, k = 16 (blue solid) and d = 20, k = 16 (orange dashed) results. This alignment of the
two curves implies that the in-context sample complexity of CoT-I/O is linearly dependent on d.

Large k dominates CoT-I/O performance (Figure 4). We further investigate the circumstances
under which k begins to govern the CoT-I/O performance. In Figure 4(a), we replicate the same
experiments with d = 10, but train with wider MLPs (k = 64). Blue, orange and green curves
represent results for k = 4, 16, 64 respectively. Since the hidden dimension k = 64 is larger, learning
the second layer requires more hidden features (s), thus N = 100 in-context samples (providing 100
ss) are insufficient to fully restore the second layer, leading to performance gaps between k = 4, 16
and k = 64. To quantify the existing gaps, we conduct single-step evaluations for both the first and
the second layers, with the results shown in Figures 4(b) and 4(c). Specifically, let pn(f̃) be a test
prompt containing n in-context samples where f̃ represents any arbitrary 2-layer MLP. Given a test
sample (xtest, stest, ytest), the layer predictions are performed as follows.

1st layer prediction: TF(pn(f̃),xtest) := ŝ,

2nd layer prediction: TF(pn(f̃),xtest, stest) := ŷ.

The test risks are calculated by ∥ŝ− stest∥2 and (ŷ − ytest)
2. The risks illustrated in the figures are

normalized for comparability (refer to the appendix for more details). Evidence from Fig. 4(b) and
4(c) shows that while increasing k does not affect the first layer’s prediction, it does augment the
number of samples required to learn the second layer. Moreover, by plotting the first layer risks of
k = 4, 16 (blue/orange dotted) and second layer risk of k = 64 (green dashed) in Fig. 4(a), we can
see that they align with the CoT-I/O composed risks. This substantiates the hypothesis that CoT-I/O
learns 2-layer MLP through compositional learning of separate layers.

2Our code is available at https://github.com/yingcong-li/Dissecting-CoT.
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Figure 7: Evaluations over deep linear MLPs using CoT-I/O and ICL where CoT-X represents the
X-step CoT-I/O. Fig. 7(a) illustrates point-to-point meta results where the model is trained with
substantial number of samples. In contrast, Fig. 7(b) displays the one-shot performance (with only
one in-context sample provided) when making predictions during training.

4.2 Comparative Analysis of ICL, CoT-I and CoT-I/O

Varying model sizes (Figure 5). We initially assess the benefits of CoT-I/O over ICL and CoT-I
across different TF models. With d = 10 and k = 8 fixed, we train three different GPT-2 models:
standard, small and tiny GPT-2. The small GPT-2 has 6 layers, 4 attention heads per layer and 128
dimensional embeddings. The standard GPT-2 consists of twice the number of layers, attention
heads and embedding dimensionality compared to the small GPT-2, and tiny GPT-2, on the other
hand, possesses only half of these hyperparameters compared to the small GPT-2. We evaluate the
performance using prompts containing n in-context samples, where n ranges from 1 to N (N = 100).
The associated test risks are displayed in Figs. 5(b), 5(c) and 5(d). The blue, orange and green curves
correspond to CoT-I/O, CoT-I and ICL, respectively. In Fig. 5(a), we present the averaged risks. The
results show that using CoT-I/O, the small GPT-2 can solve 2-layer MLPs with approximately 60
samples, while CoT-I requires the standard GPT-2. Conversely, ICL is unable to achieve zero test
risk even with the standard GPT-2 model and up to 100 samples. This indicates that to learn 2-layer
MLPs in a single shot, ICL requires at least O(dk + d) samples to restore all function parameters.
Conversely, CoT-I and CoT-I/O can leverage implicit samples contained in the CoT prompt. Let
f1 ∈ F1 (first layer) and f2 ∈ F2 (second layer). By comparing the performance of CoT-I and
CoT-I/O, it becomes evident that the standard GPT-2 is capable of learning the composed function
f = f2 ◦ f1 ∈ F , which the small GPT-2 cannot express.

Varying MLP widths (Figure 6). Next, we explore how different MLP widths impact the
performance (by varying the hidden neuron size k ∈ {4, 8, 16}). The corresponding results are
depicted in Figure 6. The blue, orange and green curves in Fig. 6(b), 6(c) and 6(d) correspond
to hidden layer sizes of k = 4, 8, and 16, respectively. Fig. 6(a) displays the averaged risks. We
keep d = 10, N = 100 fixed and train with the small GPT-2 model. As discussed in Section 4.1,
CoT-I/O can learn a 2-layer MLP using around 60 samples for all k = 4, 8, 16 due to its capability to
deconstruct composed functions. However, CoT-I can only learn the narrow MLPs with k = 4, and
ICL is unable to learn any of them. Moreover, we observe a substantial difference in the performance
of ICL and CoT-I with varying k (e.g., see averaged risks in Fig. 6(a)). This can be explained by the
fact that enlarging k results in more complex F1 and F2, thus making the learning of F = F2 ×F1

more challenging for ICL and CoT-I.

5 Further Investigation on Deep Linear MLPs
In Section 4, we have discussed the approximation benefits of CoT-I/O and how it in-context learns
2-layer random MLPs by parallel learning of k d-dimensional ReLU and 1 k-dimensional linear
regression. In this section, we investigate the capability of CoT-I/O in learning longer compositions.
For brevity, we will use CoT to refer to CoT-I/O in the rest of the discussion.

Dataset. Consider L-layer linear MLPs with input x ∈ Rd ∼ N (0, Id), and output generated by
y = WLWL−1 · · ·W1x, where the ℓth layer is parameterized by Wℓ ∈ Rd×d, ℓ ∈ [L]. In this work,
to better understand the emerging ability of CoT, we assume that each layer draws from the same
discrete sub-function set F̄ = {W̄k : W̄⊤

k W̄k = I, k ∈ [K]}3. Therefore, to learn the L-layer
neural net, CoT only needs to learn F̄ with |F̄ | = K, whereas ICL needs to learn the function set
F̄L, which contains KL random matrices.

3This assumption ensures that the norm of the feature remains constant across layers ( ∥x∥ = ∥y∥ = ∥sℓ∥),
enabling fair evaluation across different layers.
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Figure 8: Fig. 8(a) is generated by magnifying the initial 50k iterations of Fig. 7(b), and we decouple
the composed risks from predicting 6-layer linear MLPs into predictions for each layer, and the
results are depicted in Fig. 8(b). Additional implementation details can be found in Section 5.

Composition ability of CoT (Figures 7). Set d = 5, L = 6 and K = 4. At each round, we
randomly select L matrices Wℓ, ℓ ∈ [L] from F̄ so that for any input x, we can form a chain

x → s1 → s2 · · · → s6 := y,

where sℓ = Wℓs
ℓ−1, ℓ ∈ [L] and s0 := x. Let CoT-X denote X-step CoT-I/O method. For example,

the in-context sample of CoT-6 has form of (x, s1, s2, . . . s5,y), which contains all the intermediate
outputs from each layer; while CoT-3, CoT-2 have prompt samples formed as (x, s2, s4,y) and
(x, s3,y) respectively. In this setting, ICL is also termed as CoT-1, as its prompt contains only (x,y)
pairs. To solve the length-6 chain, CoT-X needs to learn a model that can remember 46/X matrices.
Therefore, ICL is face a significantly challenge sincd it needs to remember 46 = 4, 096 matrices (all
combinations of the 4 matrices used for training and testing) compared to just 4 for CoT-6.

We train small GPT-2 models using the CoT-2/-3/-6 and ICL methods, and present the results in
Fig. 7(a). As evident from the figure, the performance curves of CoT-2 (orange), CoT-3 (green)
and CoT-6 (red) overlap, and they can all make precise predictions in one shot (given an in-context
example n = 1). It seems that TF has effectively learned to remember up to 64 matrices (for CoT-2)
and compose up to 6 layers (for CoT-6). However, ICL (blue) struggles to learn the 6-layer MLPs
in one shot. The black dashed curve shows the solution for linear regression y = β⊤x computed
directly via least squares given n random training samples, where x is the input and y is from the
output of the 6-layer MLPs (e.g., y[0]). The test risks for n = 1, . . . 10 are plotted (in Fig. 7(a)),
which show that the ICL curve aligns with the least squares performance. This implies that, instead
of remembering all 4, 096 matrices, ICL solves the problem from the linear regression phase.

In addition to the meta-learning results which highlight the approximation benefits of multi-step
CoT, we also investigate the convergence rate of CoT-2/-3/-6 and ICL, with results displayed in
Fig. 7(b). We test the one-shot performance during training and find that CoT-6 converges fastest.
This is because it has the smallest sub-function set, and given the same tasks (e.g., deep neural nets),
shortening the chain leads to slower convergence. This supports the evidence that taking more steps
facilitates faster and more effective learning of complex problems.

Evidence of Filtering (Figure 8). As per Theorem 1 and the appendix, transformers can perform
filtering over CoT prompts, and the results from 2-layer MLPs align with our theoretical findings.
However, can we explicitly observe filtering behaviors? In Fig. 8(a), we display the results of the
first 50k iterations from Fig. 7(b), and observe risk drops in CoT-6 (red) at the 15k and 25k iteration
(shown as grey dotted and dashed lines). Subsequently, in Fig. 8(b), we plot the test risk of each
layer prediction (by feeding the model with correct intermediate features not the predicted ones),
where CoT-6 (red) predicts the outputs from all 6 layers (s1, · · · , sL). From these figures, we can
identify risk drops when predicting different layers, which appear at either 15k (for layer 2, 3, 4, 5, 6)
or 25k (for layer 1) iteration. This implies that the model learns to predict each step/layer function
independently. Further, we test the filtering evidence of the ℓth layer by filling irrelevant positions
with random features. Specifically, an in-context example is formed by

(z0, · · · , sℓ−1, sℓ, zℓ+1, . . . zL), where sℓ = Wℓ(s
ℓ−1) and z ∼ N (0, Id).

The test risks are represented by black dotted curves in Fig. 8(b), which aligned precisely with the
CoT-6 curves (red). This signifies that each layer’s prediction concentrate solely on the corresponding
intermediate steps in the prefix, while disregarding irrelevant features. This observation provides
evidence that the process of filtering is indeed performed.
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6 Related Work

With the success of LLMs and prompt structure [Lester et al., 2021], there is growing interest in
in-context learning (ICL) from both theoretical and experimental lens [Garg et al., 2022, Brown
et al., 2020, von Oswald et al., 2022, Dai et al., 2022, Min et al., 2022, Lyu et al., 2022, Li et al.,
2023c, Balim et al., 2023, Xie et al., 2021, Min et al., 2021, Wei et al., 2023, Li et al., 2023a]. As
an extension, chain-of-thought (CoT) prompts have made impressive improvements in performing
complex reasoning by decomposing it into step-by-step intermediate solutions [Wei et al., 2022c,
Narang et al., 2020, Lampinen et al., 2022, Wei et al., 2022b, Zhou et al., 2022, Nye et al., 2021,
Veličković and Blundell, 2021, Lanchantin et al., 2023], which in general, shows the ability of
transformer in solving compositional functions. Lee et al. [2023], Dziri et al. [2023] study the
problem of teaching arithmetic to small transformers and show that breaking the task down into small
reasoning steps allows the model to learn faster. Li et al. [2023b] show that small student transformer
models can learn from rationalizations sampled from significantly larger teacher models. The idea of
learning how to compose skills has been well studied in other literatures [Sahni et al., 2017, Liška
et al., 2018]. More specifically, for the problem of learning shallow networks, there are several well
known hardness results Goel et al. [2017, 2020], Zhang et al. [2019]. In particular, Hahn and Goyal
[2023] shows a formal learnability bound which implies that compositional structure can benefit ICL.
However, most of the work focuses on investigating empirical benefits and algorithmic designing of
CoT, and there exists little effort studying the underlying mechanisms of CoT.

Considering the expressivity of the transformer architecture itself, Yun et al. [2019] showed that
TFs are universal sequence to sequence approximators. More recently, Giannou et al. [2023] use an
explicit construction to show that shallow TFs can be used to run general purpose programs as long
as we loop them. Other works have also shown the turing-completeness of the TF architecture but
these typically require infinite/high precision and recursion around attention layers [Wei et al., 2022a,
Pérez et al., 2019, 2021, Liu et al., 2022]. Closer to our work, Akyürek et al. [2022], Von Oswald
et al. [2023], von Oswald et al. [2023] prove that a transformer with constant number of layers can
implement gradient descent in solving linear regression, and Giannou et al. [2023] introduce similar
results by looping outputs back into inputs. Ahn et al. [2023] prove this result from an optimization
perspective and show that the global minimum of the training objective implements a single iteration
of preconditioned gradient descent for transformers with a single layer of linear attention. Zhou et al.
[2023] introduce the RASP-Generalization Conjecture which says that Transformers tend to length
generalize on a task if the task can be solved by a short RASP program which works for all input
lengths. In this work, we prove CoT can be treated as: first apply filtering on the CoT prompts using
special construction, and then in-context learn the filtered prompt.

7 Conclusion, Limitations, and Discussion

In this work, we investigate chain-of-thought prompting and shed light on how it enables composi-
tional learning of multilayer perceptrons step-by-step. Specially, we have explored and contrasted
three methods: ICL, CoT-I and CoT-I/O, and found that CoT-I/O facilitates better approximation and
faster convergence through looping and sample efficiency. Additionally, we empirically and theoreti-
cally demonstrated that to learn a 2-layer MLP with d-dimensional input and k neurons, CoT-I/O
requires O(max(d, k)) in-context samples whereas ICL runs into approximation error bottlenecks.

While we have provided both experimental and theoretical results to validate the advantages of CoT,
it is important to note that our analysis in the main text pertains to in-distribution scenarios. In an
effort to address this limitation and demonstrate the robustness of CoT, we have conducted additional
simulations, as detailed in Appendix C.1, where the test samples follow a different distribution than
the training examples. Also, we note that our focus has been primarily on MLP-based tasks, where
the subproblems are essentially instances of simple linear regression. It would be valuable to explore
how CoT might influence the training of tasks characterized by more complex structures, longer
compositional chains, and a broader variety of subproblems.

There are several interesting avenues for future research to build on our findings. To what extent
does our decoupling of CoT (filtering followed by ICL) align with the empirical evidence in practical
problems such as code generation and mathematical reasoning? We have shown that CoT-I/O can
rely on a linear regression oracle to learn an MLP. To what extent can transformers approximate
MLPs without CoT-I/O (e.g. with CoT-I) and what are the corresponding lower/upper bounds?
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A Construction

A.1 The Transformer Architecture

For the purpose of this proof, we consider encoder-based transformer architectures and assume that
the positional encodings are appended to the input4. We also consider that the heads are added and
each one has each own key, query and value weight matrices. Formally, we have

attn(X) = X +

H∑
h=1

W h
VXsoftmax((W h

KX)⊤W h
QX) (A.1)

TF(X) = attn(X) +W2(W1attn(X) + b11n)+ + b21n (A.2)

where X ∈ Rd×n, H is the number of heads used and f(x) = (x)+ is the ReLU activation. We
also make use of the temperature λ, which is a parameter of the softmax. Specifically, softmax(x) =
{eλxi/

∑
j e

λxj}i. Notice that as λ → ∞ we have softmax(x) → maxi xi. We also assume that the
inputs are bounded; we denote with Nmax the maximum sequence length of the model.

Assumption 2 Each entry is bounded by some constant c, which implies that ∥X∥ ≤ c′, for some
large c′ that depends on the maximum sequence length and the width of the transformer.

A.2 Positional Encodings

In the constructions below we use a combination of the binary representation of each position, as
well as some additional information (e.g. 0-1 bits) as described in the following sections. The binary
representations and in general encodings we construct, require only logarithmic space with respect

4We note here that in terms of our construction adding the encodings or appending them to the input can
be viewed in a similar manner. Specifically, we can consider that the up-projection step projects the input to
zero padded vectors, while the encodings are orthogonal to that projection in the sense that the have zero in the
non-zero coordinates of the input. In that case adding the positional encodings corresponds to appending them to
the input.
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to the sequence length. Notice that binary representation of the positions satisfy the following two
conditions:

1. Let ri be the binary representation of the i-th position, then there exists ε > 0 such that
r⊤i ri > r⊤i rj + ε for all j ̸= i.

2. There exists a one layer transformer that can implement the addition of two pointers (see
Lemma 2 ).

A.3 Constructing Some Useful “Black-box” Functions

We follow the construction of previous work [Giannou et al., 2023] and use the following individual
implementations as they do. We repeat the statements here for convenience. The first lemma is also
similar to Akyürek et al. [2022], we however follow a slightly different proof.

Lemma 1 A transformer with one layer, two heads, and embedding dimension of O(log n + d),
where d is the input dimension and n is the sequence length, can copy any block of the input to any
other block of the input with error ε arbitrarily small.

Proof. Consider an input of the following form

X =

x1 x2 . . . xn

y1 y2 . . . yn

r1 r2 . . . rn
rk r2 . . . rn

 (A.3)

where xi,yi ∈ Rd are column vectors for all i = 1, . . . , n. We present how we can move a block
of data from the (d+ 1 : 2d, k) position block to the (1 : d, 1) position block, meaning to move the
point yk to the position of the point x1. It is straightforward to generalize the proof that follows to
move blocks from (i : i+ k, j) to (i′ : i′ + k, j′) for arbitrary i, i′, j, j′, k.

Let in Eq. A.1 W 1
K = [0 0 I 0] and W 1

Q = [0 0 0 I] and W 2
K = [0 0 0 I] and

W 2
Q = [0 0 0 I] then we have

(W 1
KX)⊤(W 1

QX) =



r⊤1 rk r⊤1 r2 . . . r⊤1 rk . . . r⊤1 rn
r⊤2 rk r⊤2 r2 . . . r⊤2 rk . . . r⊤2 rn

...
...

. . .
...

. . .
...

r⊤k rk r⊤k r2 . . . r⊤k rk . . . r⊤k rn
...

...
. . .

...
. . .

...
r⊤n rk r⊤n r2 . . . r⊤n rk . . . r⊤n rn


(A.4)

As λ → ∞ and after the application of the softmax operator the above matrix becomes equal
to [ek e2 . . . ek . . . en] + ϵM, where ei is the one-hot vector with 1 in the k-th position,
∥M∥ ≤ 1 and ϵ is controllable by the temperature parameter and can be arbitrary small. Let finally

W 1
V =

[
0 I 0 0
0 0 0 0

]
we get that

W 1
VXsoftmax((W 1

KX)⊤(W 1
QX)) =

[
yk x2 . . . xn

0 0 . . . 0

]
+ ϵM (A.5)

By repeating the exact same steps for the second head and letting W 2
V =

[
−I 0 0 0
0 0 0 0

]
and

adding back the residual we get the desired result.

A slightly different implementation can be found in Giannou et al. [2023], in which the ReLU layers
are also used, together with indicator vectors that define whether a position should be updated or not.

Lemma 2 There exists a 1-hidden layer feedforward, ReLU network, with 8d activations in the
hidden layer and d neurons in the output layer that when given two d-dimensional binary vectors
representing two non-negative integers, can output the binary vector representation of their sum, as
long as the sum is less than 2d+1.
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Lemma 3 Let A ∈ Rd×m and B ∈ Rd×n. Then for any ϵ > 0 there exists a transformer-based
function block with 2 layers, 1 head and width r = O(d) that outputs the multiplication A⊤B+ ϵM,
for some ∥M∥ ≤ 1 .

Remark 2 Notice that based on the proof of this lemma, the matrices/scalars/vectors need to be in
the same rows, i.e., Q = [A B]. By also appending the appropriate binary encodings we can move
the output at any specific place we choose as in Lemma 1. Also, following the proof of the paper the
input matrix is

X =


Q 0 0
0 11⊤ 0
I 0 0

r(1)

r(2)


where r(1), r(2) are chosen as to specify the position of the result.

A.4 Results on Filtering

Lemma 4 Assume that the input to a transformer layer is of the following form

X =

x1 x2 . . . xn−1 xn

0 0 . . . 0 0
b1 b2 . . . bn−1 bn
b′1 b′2 . . . b′n−1 bn

 (A.6)

where bi, b
′
i ∈ {0, 1}, with zero indicating that the corresponding point should be ignored. Then

there exists a transformer TF consisting only of a ReLU layer that performs this filtering, i.e.,

TF(X) =

1{b1 ̸= 0}x1 1{b2 ̸= 0}x2 . . . 1{bn−1 ̸= 0}xn−1 1{bn ̸= 0}xn

1{b′1 ̸= 0}x1 1{b′2 ̸= 0}x2 . . . 1{b′n−1 ̸= 0}xn−1 1{b′n ̸= 0}xn

b1 b2 . . . bn−1 bn
b′1 b′2 . . . b′n−1 bn

 (A.7)

Proof. The layer is the following:

TF(xi) = xi + (−Cbi − xi)+ − (−Cbi + xi)+ (A.8)

for some large constant C. Notice that if bi = 1 the output is just xi. But if bi = 0 then the output is
zero. For the second set instead of using the bits bi, we use the b′i.

Remark 3 Notice that if some bi is instead of 1, 1± ε, ε < c/C. Then the output of the above layer
would be

TF(xi) = xi + (−C ± Cε− xi)− (−C ± Cε+ xi) (A.9)
= xi (A.10)

while if some bi = ±ε instead of zero, and assuming that xi > c > 0 or xi < −c < 0 the output
would be

TF(xi) = xi + (−Cε− xi)+ − (−Cbi + xi)+ (A.11)
= xi ± Cε− xi (A.12)
≤ c (A.13)

If |xi| ≤ c, again the output would be less than or equal to c, where c can be arbitrarily small.

Our target is to create these binary tokens, as to perform the filtering. We now describe for clarity
how next word prediction is performed. An d × N -dimensional input is given to the transformer
architecture, which is up-projected using the embedding layer; the positional encodings are also
added/appended to the input. At the last layer, the last token predicted is appended to the initial input to
the transformer architecture. The only difference of the new input including the positional encodings
( the input for the next iteration ) is the n + 1-th token. This is a property that our construction
maintains, i.e., the positional encodings used are oblivious to the prediction step performed and are
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always the same for each individual token. We consider encoder-based architectures in all of our
lemmas below.

In the subsequent lemma we construct an automated process that works along those guidelines. To do
so we assume that the input to the transformer contains the following information:

1. An enumeration of the tokens from 1 to N .

2. The ln of the above enumeration.

3. Zeros for the tokens that correspond to the data points, 1 for each token that is the xtest or it
is a prediction based on it.

4. An enumeration 1 to L for each one of the data points provided. For example, if we are
given three sets of data we would have : 1 . . . L 1 . . . L 1 . . . L.

5. Some extra information that is needed to implement a multiplication step as described in
Lemma 3 and to move things to the correct place.

The above information can be viewed as part of the encodings that are appended to the input of the
transformer. Formally, we have

Lemma 5 Consider that a prompt with n in-context samples is given and the ℓ− 1-th prediction has
been made, and the transformer is to predict the ℓ-th one. Assume the input to the transformer is:

X =



x1 . . . sℓ−1
1 sℓ

1 . . . sℓ−1
2 sℓ

2 . . . sL
n xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . L+ ℓ+ 1 L+ ℓ+ 2 . . . n(L+ 1) n(L+ 1) + 1 . . . N

ln(1) . . . ln(ℓ) ln(ℓ+ 1) . . . ln(L+ ℓ+ 1) ln(L+ ℓ+ 2) . . . ln(n(L+ 1)) ln(n(L+ 1) + 1) . . . ln(N)

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN


where (ŝi)ℓ−1

i=1 denote the first ℓ− 1 recurrent outputs of TF and for simplicity, let N := n(L+ 1) + ℓ
denote the total number of tokens. Then there exists a transformer TF consisting of 7 layers that has
as output

TF(X) =



0 . . . sℓ−1
1 0 . . . sℓ−1

2 0 . . . 0 0 . . . ŝℓ−1

0 . . . 0 sℓ
1 . . . 0 sℓ

2 . . . 0 0 . . . 0

0 . . . 1 0 . . . 1 0 . . . 0 0 . . . 1

0 . . . 0 1 . . . 0 1 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . L+ ℓ+ 1 L+ ℓ+ 2 . . . n(L+ 1) n(L+ 1) + 1 . . . N

ln(1) . . . ln(ℓ) ln(ℓ+ 1) . . . ln(L+ ℓ+ 1) ln(L+ ℓ+ 2) . . . ln(n(L+ 1)) ln(n(L+ 1) + 1) . . . ln(N)
0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN


with error up to δM, where ∥M∥ ≤ 1 and δ > 0 is a constant that is controlled and can be arbitrarily
small.

Proof.

Step 1: Extract the sequence length (1 layer). Let

WK = [0 0 0 0 0 1 0 0 0] WQ = [0 0 0 0 0 0 0 0 1 0] (A.14)
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and thus

(WKX)⊤(WQX) =


ln(1) ln(1) . . . ln(1)
ln(2) ln(2) . . . ln(2)

...
...

. . .
...

ln(N) ln(N) . . . ln(N)

 . (A.15)

So after the softmax is applied we have

softmax((WKX)⊤(WQX)) =



1∑N
i=1 i

1∑N
i=1 i

. . .
1∑N
i=1 i

2∑N
i=1 i

2∑N
i=1 i

. . .
2∑N
i=1 i

...
...

. . .
...

N∑N
i=1 i

N∑N
i=1 i

. . .
N∑N
i=1 i


. (A.16)

We then set the weight value matrix as to zero-out all lines except for one line as follows

WVX =

[
0 0 . . . 0
1 2 . . . N
0 0 . . . 0

]
. (A.17)

After adding the residual and using an extra head where the softmax returns identity matrix and the
value weight matrix is minus the identity, we get attention output

x1 . . . sℓ−1
1 sℓ

1 . . . sℓ−1
2 sℓ

2 . . . sL
n xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ∑N
i=1 i

2∑N
i=1 i

. . .

∑N
i=1 i

2∑N
i=1 i

∑N
i=1 i

2∑N
i=1 i

. . .

∑N
i=1 i

2∑N
i=1 i

∑N
i=1 i

2∑N
i=1 i

. . .

∑N
i=1 i

2∑N
i=1 i

∑N
i=1 i

2∑N
i=1 i

. . .

∑N
i=1 i

2∑N
i=1 i

ln(1) . . . ln(ℓ) ln(ℓ+ 1) . . . ln(L+ ℓ+ 1) ln(L+ ℓ+ 2) . . . ln(n(L+ 1)) ln(n(L+ 1) + 1) . . . ln(N)

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN



.

Notice that
∑N

i=1 i
2∑N

i=1 i
=

2N(N + 1)(2N + 1)

6N(N + 1)
=

2N + 1

3
. We then use the ReLU layer as to multiply

with 3/2 and subtract 1 from this column. This results to attention output

x1 . . . sℓ−1
1 sℓ

1 . . . sℓ−1
2 sℓ

2 . . . sL
n xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

N . . . N N . . . N N . . . N N . . . N

ln(1) . . . ln(ℓ) ln(ℓ+ 1) . . . ln(L+ ℓ+ 1) ln(L+ ℓ+ 2) . . . ln(n(L+ 1)) ln(n(L+ 1) + 1) . . . ln(N)

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN


Notice that this step does not involve any error.

Step 2: Extract the identifier of the prediction to be made ℓ (3 layers). Now, by setting the key
and query weight matrices of the attention as to just keep the all ones row, we get a matrix that attends

18



equally to all tokens. Then the value weight matrix keeps the row that contains ℓ ones and thus we

get the number
ℓ

N
, propagated in all the sequence length. Then the attention output is as follows:

x1 . . . sℓ−1
1 sℓ1 . . . sℓ−1

2 sℓ2 . . . sLn xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

N . . . N N . . . N N . . . N N . . . N
ℓ

N
. . .

ℓ

N
ℓ

N
. . .

ℓ

N
ℓ

N
. . .

ℓ

N
ℓ

N
. . .

ℓ

N
0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN



. (A.18)

So far this step does not involve any error. As described in Lemma 3 to implement multiplication of
two values up to any error ϵ, we need 1) have the two numbers to be multiplied next to each other and
an extra structure (some constants, which we consider that are encoded in the last rows of the matrix
mi) and 2) the corresponding structure presented in Lemma 3 . So we need to make the following

transformation in the rows containing N and
ℓ

NN N . . . N
ℓ

N
ℓ

N
. . .

ℓ

N

 →

N
ℓ

N
. . . N

ℓ

N
ℓ

N
. . .

ℓ

N

 (A.19)

→

[
ℓ ∗ . . . ∗
∗ ∗ . . . ∗

]
(A.20)

→

[
ℓ ℓ . . . ℓ

∗ ∗ . . . ∗

]
(A.21)

where ∗ denotes inconsequential values. For the first step we assume that we have the necessary
binary representations 5 and then we use Lemma 1 which shows how we can perform the operation
of copy/paste. This step involves an error and the current output would be X̃1 = X∗ + ε1M1,
where ε1 is controlled and we will determine it in the sequence, ∥M1∥ ≤ 1 and X∗

1 is the desired
output. For the second step now we use Lemma 3 to perform the multiplication, this will affect
some of the other values. To analyze the error of this step, we know that given X∗

1 we will get the
desired output X∗

2 + ε2M2, where ∥M2∥ ≤ 1 and ε2 is to be determined. However, are given X̃1

in the multiplication procedure6 which results in the following output X̃2 = (X̃1)
⊤X̃1 + ε2M2 =

X∗
1
⊤X∗

1 + ε1M
⊤
1 X∗

1 + ε1M
⊤
1 M1 + ε2M2. Thus by choosing ε1, ε2 to be of order O(δ)we get

that X̃2 = X∗
2 + δ

C ∥M∥ for some C chosen to be large enough. Then for the last step consider the
follow (sub-)rows of the matrix X 

ℓ ∗ ∗ . . . ∗
r1 r1 r1 . . . r1

r1 r2 r3 . . . rN

 (A.22)

where ri is the binary representation of position i. By choosing WK,WQ as to

WKX =
[
r1 r2 . . . rN

]
, WQX =

[
r1 r1 . . . r1

]
(A.23)

5the size that we need will be 2 logNmax + 1, where Nmax is the maximum sequence length
6Note that the true error is even smaller since the operation performed only affects one row.
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and consider WVX =

[
ℓ ∗ . . . ∗
0 0 . . . 0

]
we have that

attn(X) = X +WVXsoftmax((WKX)⊤WQX)

= X +

[
ℓ ∗ . . . ∗
0 0 . . . 0

]
softmax




r⊤1 r1 r⊤1 r1 . . . r⊤1 r1

r⊤1 r2 r⊤1 r2 . . . r⊤1 r2
...

...
. . .

...

r⊤1 rN r⊤1 rN . . . r⊤1 rN





= X +

[
ℓ ∗ . . . ∗
0 0 . . . 0

]
1 1 . . . 1

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

+ ε3M3

By subtracting one identity head for the first that we focus on as described in Lemma 1 we have that
attn(X) results in the desired matrix. We output this result and overwrite ℓ/N, thus we have

x1 . . . sℓ−1
1 sℓ1 . . . sℓ−1

2 sℓ2 . . . sLn xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

N . . . N N . . . N N . . . N N . . . N

ℓ . . . ℓ ℓ . . . ℓ ℓ . . . ℓ ℓ . . . ℓ

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN



(A.24)

The new error introduced by this operation is again controlled as to be ε3M3 =
δ

C
, with ∥M3∥ ≤ 1.

Step 3: Create ℓ+ 1 (0 layer). We first copy the row with ℓ to the row with N , this can trivially
be done with a ReLU layer that outputs zero everywhere else except for the row of Ns that output
(ℓ)+ − (N)+ to account also for the residual. We now use one of the bias terms (notice that ℓ is
always positive) and set to one in one of the two rows that contain the ℓ, again we account for the
residual as before; everything else remains unchanged. Thus, we have

x1 . . . sℓ−1
1 sℓ1 . . . sℓ−1

2 sℓ2 . . . sLn xtest . . . ŝℓ−1

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

1 . . . ℓ ℓ+ 1 . . . ℓ ℓ+ 1 . . . L+ 1 1 . . . ℓ

ℓ+ 1 . . . ℓ+ 1 ℓ+ 1 . . . ℓ+ 1 ℓ+ 1 . . . ℓ+ 1 ℓ+ 1 . . . ℓ+ 1

ℓ . . . ℓ ℓ . . . ℓ ℓ . . . ℓ ℓ . . . ℓ

0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

m1 . . . mℓ mℓ+1 . . . mL+ℓ+1 mL+ℓ+2 . . . mn(L+1) mn(L+1)+1 . . . mN



(A.25)

This operation can collectively be implemented (add the bias + copy the row) in the ReLU layer of
the previous transformer layer that was not used in the previous step.
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Step 4: Create the binary bits (2 layers). We will now use the information extracted in the
previous steps, to create the binary indicators/bit to identify which tokens we want to filter. This can
be easily implemented with one layer of transformer and especially the ReLU part of it. Notice that if
we subtract the row that contains the tokens that have already been predicted, i.e., [ℓ ℓ . . . ℓ] from
the row that contains [1 2 . . . L 1 2 . . . L . . . L] we will get zero only in the positions that we want to
filter out and some non-zero quantity in the rest. This is trivially implemented with one ReLU layer.
So, we need to implement an if..then type of operation. Basically, if the quantity at hand is zero we
want to set the bit to one, while if it non-zero to set it to be zero. This can be implemented with the
following ReLU part of a transformer layer

TF(xi) = 1− (xi)+ − (−xi)+ + (xi − 1)+ + (−xi − 1)+ − ((xi)+ − (−xi)+) (A.26)

the last two terms are to account for the residual. Again the rest of the rows do not change and are
zeroed-out.

Step 5: Implement the filtering (1 layer). We now apply Lemma 4 and our proof is completed. In
this step as in Lemma 4, the error remains of the order of the error of the previous step. Thus, by
fine-tuning the constants appropriately, depending on 1) the bound on the input as of Assumption 2,
the targeted error δ and the constant used in Lemma 4 we achieve that the error has the target upped
bound.

Theorem 2 (Theorem 1 restated) Consider a prompt pn(f) generated from an L-layer MLP f(·)
as described in Definition 1, and assume given test example (xtest, s

1
test, . . . s

L
test). For any resolution

ϵ > 0, there exists δ = δ(ϵ), iteration choice T = O(κ2
max log(1/ϵ)), and a backend transformer

construction TFBE such that the concatenated transformer TF = TFLR ◦TFBE implements the following:
Let (ŝi)ℓ−1

i=1 denote the first ℓ− 1 CoT-I/O outputs of TF and set p[ℓ] = (pn(f),xtest, ŝ
1 . . . ŝℓ−1). At

step ℓ, TF implements

1. Filtering. Define the filtered prompt with input/output features of layer ℓ,

pfilter
n =

(
. . .0, sℓ−1

1 , 0 . . . 0, sℓ−1
n , 0 . . . 0, ŝℓ−1

. . .0, 0, sℓ1 . . . 0, 0, sℓn . . . 0, 0

)
.

There exists a fixed projection matrix Π that applies individually on tokens such that the
backend output obeys ∥Π(TFBE(p[ℓ]))− pfilter

n ∥ ≤ δ.

2. Gradient descent. The combined model obeys ∥TF(p[ℓ])− sℓtest∥ ≤ ℓ · ϵ/L.

TFBE has constant number of layers independent of T and n. Consequently, after L rounds of CoT-I/O,
TF outputs f(xtest) up to ϵ accuracy.

Proof. We apply Lemma 5 from which it is clear that there exists a projection such that the result
stated in (1. Filtering) holds, and it is independent to T , n and ℓ. Next we turn to prove (2. Gradient
descent). In Definition 1, we assume that the network’s activation function is leaky-ReLU, i.e.,

ϕ(x) =

{
x, if x ≥ 0
αx, otherwise. (A.27)

Thus, as a first step we construct the inverse of leaky-ReLU and apply it in the second row of pfilter
n

where the inverse of leaky-ReLU is

ϕ−1(y) =

{
y, if y ≥ 0

y/α, otherwise. (A.28)

This can be implemented with the following activation function (denoted by σ(·)) using ReLUs:

σ(x) = (x)+ − 1/α(−x)+. (A.29)

After it, it remains TFLR to solve linear regression problems. Taking ℓth layer, first neuron prediction
as an example, and letting x′

i := sℓ−1
i , y′i := ϕ−1(sℓi [0]) and w = Wℓ[0], linear regression has form

of y′i = w⊤x′
i for i ∈ [n]. Notice that the extra zeros do not contribute in the update performed by

gradient descent, and after gradient descent has been performed, we apply back the leaky ReLU. Then
following Assumption 1, since we assume TFLR performs the same as gradient descent optimizer,

21



given matrix condition as described in Definition 1, after running T iterations of gradient descend
on the linear regression problem and considering each layer prediction with resolution ϵ/L, we can
get that ∥TFLR(p[ℓ])− s̄ℓ∥ ≤ ϵ/L, where s̄ℓ = ϕ(Wℓŝ

ℓ−1) is the correct prediction if taking ŝℓ−1

as input. Then we have

∥TFLR(p[ℓ]− sℓtest)∥ ≤ ∥TFLR(p[ℓ])− s̄ℓ∥+ ∥Wℓ(ŝ
ℓ−1 − sℓ−1

test )∥ ≲ ϵ/L+ ∥TFLR(p[ℓ− 1]− sℓ−1
test )∥.

Let TFLR(p[0]) returns xtest and therefore ∥TFLR(p[0]) − xtest∥ = 0. Combing results in that
∥TFLR(p[ℓ] − sℓtest)∥ ≲ ℓ · ϵ/L. Since from Lemma 5 we have that we can choose δ to be ar-
bitrary. Let δ = ϵ/L, where L is the total predictions we will make. Then it will result in
∥TF(p[ℓ]− sℓtest)∥ ≲ ℓ · ϵ/L, which completes the proof.

B Experimental Details

In this section, we provide the implementation details of our experiments.

B.1 Model Evaluation

Recap the same setting as in Section 2.3 and assume we have pretrained models with parameters
θ̂CoT-I and θ̂CoT-I/O. Next we make predictions following Section 2.2. Letting ℓ(·, ·) : Y × Y → R be
loss function, we can define test risks as follows.

LCoT-I(n) = E(xi)ni=1,(fℓ)
L
ℓ=1

[ℓ(ŷn, f(xn))] where ŷn = TF(pn(f),xn; θ̂
CoT-I)

and

LCoT-I/O(n) = E(xi)ni=1,(fℓ)
L
ℓ=1

[ℓ(ŷn, f(xn))] where ŷn = TF(pn(f),xn, ŝ
1 · · · , ŝL−1; θ̂CoT-I/O).

Here, we use L(n) to define the test risk when given prompt with n in-context samples. Then, results
shown in Figures 3&4&5&6&7(a) are test risks L(n) given n ∈ [N ]. Following model training and
evaluation, we can see that once loss function is the same for both training and predicting, CoT-I (as
well as ICL) accepts training risk LCoT-I

train = 1
N

∑N
n=1 LCoT-I(n).

B.2 Implementation

All the transformer experiments use the GPT-2 model [Radford et al., 2019] and our codebase is
based on prior works [Garg et al., 2022, Wolf et al., 2019]. Specifically, the model is trained using
the Adam optimizer with learning rate 0.0001 and batch size 64, and we train 500k iterations in total
for all ICL, CoT-I and CoT-I/O methods. Each iteration randomly samples inputs xs and functions
fs. We also apply curriculum learning over the prompt n as Garg et al. [2022] did for 2-layer random
MLPs (Sec. 4.2). For both training and testing, we use the squared error as the loss function, i.e.,
ℓ(ŷ,y) = ∥ŷ − y∥2 (or ℓ(ŷ, y) = (ŷ − y)2 for scalar).

C Additional Experimental Results

C.1 Out-of-distribution Experiments

While our primary focus lies in in-distribution scenarios, wherein the test examples are presumed
to follow the same distribution as the training data, this subsection extends our analysis to out-of-
distribution (OOD) settings.

To provide a clearer understanding of our model’s behavior under distribution shifts and to quanti-
tatively assess the impact on test risk, we conduct experiments with varying levels of distribution
shift. Specifically, we evaluate the test risk when the prompt is supplemented with 100 in-context
examples. The results of these experiments are depicted in Figure 9, which serves to illustrate how
our model’s performance is affected under these OOD conditions. In Fig. 9(a), we analyze noisy
in-context samples during testing. The solid and dashed curves represent the test risks, corresponding
to the noisy in-context samples whose (input, output) takes the form of either (x, y + noise) or
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Figure 9: We implement robustness experiments under different distribution shift levels. In Fig. 9(a)
we add noise to the label y (solid) or input features x (dashed). In Fig. 9(b), we in-context learn an
MLP with k ∈ [8] hidden nodes whereas transformer is trained for MLPs with 8 hidden nodes. In
Fig. 9(b), we consider misspecification of input dimension: TF is trained with d = 10 but we feed a
neural net with d ≤ 10.
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(a) Small GPT-2, d = 10, k = 4
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(b) Standard GPT-2, d = 10, k = 4

Figure 10: We train ICL with more in-context examples. The main conclusion is that: For small GPT,
ICL can indeed not approximate the neural net even with many examples (unlike CoT) whereas, for
large GPT, ICL can do so (although much less efficient). This is in line with our theoretical intuitions
on the expressivity benefits of CoT.

(x+ noise, y), respectively. The results indicate that CoT exhibits greater robustness compared to
ICL, and the test risks increase linearly with the noise level, with attributed to the randomized MLPs
setting. Additionally, in Figs. 9(b)&9(c), we instead explore out-of-distribution test tasks where test
MLPs differ in (d, k) from the training phase. For both subfigures, we firstly train small GPT-2 using
2-layer MLPs with d = 10, k = 8. In Fig. 9(b), we fix d = 10 and vary k from 1 to 8, whereas in
Fig. 9(c), we fix k = 8 and vary d from 1 to 10. In both instances, the findings reveal that CoT’s
performance remains almost consistent when k ≥ 4 or d ≥ 6, and ICL is unable to surpass it. The
improved performance of ICL with smaller values of d or k again reinforces our central assertion that
ICL requires O(dk) samples for in-context learning of the 2-layer random MLP, and reducing either
d or k helps in improving the performance. Given that we employ the ReLU activation function,
smaller values of d or k can lead to significant bias in the intermediate feature. Consequently, CoT
cannot derive substantial benefits from this scenario, resulting in a decline in performance.

C.2 Further Evidence of Model Expressivity

There are two determinants of model learnability in in-context tasks: sample complexity and model
expressivity. Sample complexity pertains to the number of samples needed to precisely solve a
problem. However, when the transformer model is small, even with a sufficiently large number
of samples, due to its lack of expressivity, ICL cannot achieve zero test risk. This contrasts with
CoT, which decomposes complex tasks into simpler sub-tasks, thereby requiring smaller models for
expression. Figure 5 has illustrated the expressivity of different GPT-2 architectures, showing that
the tiny GPT-2 model is too small to express even a single layer of 2-layer MLPs. Additionally, we
have run more experiments, and the results are shown in Figure 10. Both Figures 10(a) and 10(b)
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(b) CoT-I/O: composed risk (same as Fig. 3(a))

Figure 11: Fig. 11(a) presents a filtering evidence of 2-layer MLPs. Given a 2-layer MLP in-context
example (x, s, y), CoT admits (x, s, y) as test sample; while test samples of CoT-zero and CoT-
random are formed by (x, s, 0) and (x, s, z) where z ∼ N (0, d). Fig. 11(b) is directly cloned form
Fig. 3(a) with error bar for better comparison with results in Fig. 12.
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(a) CoT-I/O: 1st layer prediction
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(c) CoT-I/O: 2nd layer prediction
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Figure 12: We compare the performance of filtered CoT and ICL. In Fig. 12(a)&12(c), we decouple
the composed risk of predicting 2-layer MLPs into risks of individual layers (following Section 4.1),
which shows the filtered CoT results. In Fig. 12(b)&12(d), we train two additional models using ICL
method taking (x, s) and (s, y) as inputs.

detail training models with MLP tasks of dimensions d = 10 and k = 4. In Fig. 10(a), we use a
small GPT-2 model, and the results show that the test risk stops decreasing even with more in-context
examples. In Fig. 10(b), we train a larger model, and the results demonstrate that the standard GPT-2
is sufficient to express a 2-layer MLP with d = 10 and k = 4.

C.3 Filtering Evidence in 2-layer MLPs

Section 5 has demonstrated the occurrence of filtering in the linear deep MLPs setting (black dotted
curves in Fig. 8(b)). In this section, we present further empirical evidence based on the 2-layer MLPs
setting discussed in Section 4.2.

Follow the same setting as Figure 3(a) and choose d = 10 and k = 8. Assume we have a model
pretrained using CoT-I/O method. As described in Section 4.2, during training, the prompt consists of
in-context samples in the form of (x, s, y) where s = (Wx)+ and y = v⊤s. To investigate filtering,
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Figure 13: To further investigate how model architectures impact the prediction performance, we
fix the number of heads and embedding dimension in Fig. 13(a) and change the layer number in
{3, 6, 12}. Similarly for Fig. 13(b)&13(c) but instead, change number of heads (in {2, 4, 8}) and
embedding dimensions (in {64, 128, 256}).

we make three different predictions to evaluate the intermediate output, whose test prompts have
in-context examples with the following forms:

CoT: (x, s, y), CoT-zero: (x, s, 0), CoT-random: (x, s, z),

where z ∼ N (0, d). The results are displayed in Figure 11(a) where blue, orange and green curves
represent first layer prediction results using CoT, CoT-zero and CoT-random prompts, respectively.
From this figure, we observe that the three curves are well aligned, indicating that when making a
prediction for input x, TF will attend only to (x, s) and ignore y. Therefore filling the positions of y
with any random values (or zero) will not change the performance of first layer prediction.

C.4 Comparison of Filtered CoT with ICL

Until now, many experimental results have shown that CoT-I/O provides benefits in terms of sample
complexity and model expressivity compared to ICL. As an interpretation, we state that CoT can be
decoupled into two phases: Filtering and ICL, and theoretical results have been provided to prove this
statement. As for the empirical evidence, Sections 5 and C.3 precisely show that filtering does occur
in practice. In this section, we provide additional experiments to demonstrate that, after filtering, CoT
performs similarly to ICL.

For convenience and easier comparison, we repeat the same results as Fig. 3(a) in Fig. 11(b), where
d ∈ {10, 20}, k ∈ {4, 8, 16}, and train with a small GPT-2. We again recap the data setting for the
2-layer MLP, where the in-context examples of CoT prompt are in the form of (x, s, y). Given that
filtering happens, we make first and second layer predictions following Section 4.1 and results are
presented in Fig. 12(a) and Fig. 12(c), respectively. These results show the performances of the
filtered CoT prompts. Next, we need to compare the performance with separate ICL training. To
achieve this goal, we train a small GPT-2 model using ICL method with prompt containing (x, s)
pairs (first layer). The test results are shown in Fig. 12(b). Additionally, in Fig. 12(d), we train another
small GPT-2 model using ICL but with prompts containing (s, y) pairs (second layer). By comparing
Fig. 12(a) and 12(b), as well as Fig. 12(c) and 12(d), we observe that after filtering, CoT-I/O achieves
similar performance as individually training a single-step problem through the ICL phase.

C.5 CoT across Different Sizes of GPT-2

In Figure 5, we have demonstrated that larger models help in improving performance due to their
ability of solving more complex function sets. However, since tiny, small and standard GPT-2 models
scale the layer number, head number and embedding dimension simultaneously, it is difficult to
determine which component has the greatest impact on performance. Therefore in this section, we
investigate how different components of transformer model affect the resulting performance by run
CoT-I/O on various GPT-2 architectures.

We maintain the same setting as in Section 4.2, fix d = 10 and k = 8, and consider a base GPT-2
model (small GPT-2) with 6 attention layers, 4 heads in each layer and 128-dimensional embeddings.
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Figure 14: Fig. 14(a): compare transformer results (solid) with gradient descent optimizer (dashed)
when solving first layer of 2-layer MLPs; Fig. 14(b): compare transformer result (solid) with least
squares optimizer (dashed) when solving the second layer of 2-layer MLPs.

In Fig. 13(a), we fix the number of heads at 4 and the embedding dimension at 128, while varying
the number of layers in {3, 6, 12}. Similarly, we explore different models with different numbers of
heads and embedding dimensions, and the results are respectively presented in Fig. 13(b) and 13(c).
Comparing them, we can observe the following: 1) once the problem is sufficiently solved, increasing
the model size does not significantly improve the prediction performance (see Fig. 13(b)&13(c)); 2)
the number of layers influences model expressivity, particularly for small GPT-2 architecture (see
Fig. 13(a)).

C.6 Comparison of Transformer Prediction and Linear Regression

We also provide experimental findings to verify Assumption 1 in this section. Previous work [Giannou
et al., 2023, Akyürek et al., 2022] has theoretically proven that TF can perform similar to gradient
descent, and empirical evidence from [Dai et al., 2022, Garg et al., 2022, Li et al., 2023c] suggests
that TF can even be competitive with Bayes optimizer in certain scenario. To this end, we first repeat
the same first/layer predictions from Figure 4 in Figure 14, where d = 10 and blue, orange and green
solid curves represent the performances of k = 4, 16, 64 using pretrained small GPT-2 models. We
also display the evaluations of gradient descent/least square solutions in dashed curves. Specifically,
in Fig. 14(a) , we solve problem

ŵn = argmin
w

1

n

n∑
i=1

∥(w⊤xi)+ − yi∥2 where xi ∼ N (0, Id), yi = (w⋆⊤xi)+

for some w⋆ ∼ N (0, 2Id) and n is the training sample size. Then the normalized test risks are
computed by L(n) = Ew⋆,x[∥(ŵ⊤

n x)+ − y∥2]/d, and we show point-to-point results for n ∈ [N ] in
black dashed curve in Fig. 14(a)7. As for the second layer, we solve least squares problems as follows

v̂n = S†y where S ∈ Rn×k, S[i] = (W ⋆xi)+, y[i] = v⋆⊤S[i], xi ∈ N (0, Id)

for some W ⋆ ∈ Rk×d ∼ N (0, 2/k) and v⋆ ∼ N (0, Ik). Here, † represents the pseudo-inverse
operator. Then we calculate the normalized test risk of least square solution (given n training samples)
as L(n) = EW ⋆,v⋆,x[∥v̂⊤

n s− y∥2]/d where s = (W ⋆x)+ and y = v⋆⊤s. The results are presented
in Fig. 14(b) where blue, orange and green dashed curves correspond to solving the problem using
different values of k ∈ {4, 16, 64}. In this figure, the curves for k = 4, 16 are aligned with GPT-2
risk curves, which indicates that TF can efficiently solve linear regression as a least squares optimizer.
However, the curve for k = 64 does not align, which can be attributed to the increased complexity of
the function set with higher dimensionality (k = 64). Learning such complex functions requires a
larger TF model.

7To mitigate the bias introduced by ReLU activation, we subtract the mean value during prediction, i.e.,
L(n) = Ew⋆,x[∥(ŵ⊤

n x)+ − y − (Ex[(ŵ
⊤
n x)+ − y])∥2]/d.
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