
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CMIMP: EFFORTLESSLY ACHIEVING DIVERSE POPU-
LATION TRAINING FOR ZERO-SHOT COORDINATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Zero-shot coordination has recently become a hot topic in reinforcement learn-
ing research recently. It focuses on the generalization ability of agents, requiring
them to coordinate well with collaborators that are not seen before without any
fine-tuning. Population-based training has been proven to provide good zero-shot
coordination performance; nevertheless, existing algorithms exhibit inefficiency,
as the training cost scales linearly with the population size. To address this issue,
this paper proposes the Conditional Mutual Information Maximized Population
(CMIMP), an efficient training framework comprising two key components: a
meta-agent that efficiently realizes a population by selectively sharing parameters
across agents, and a mutual information regularizer that guarantees population di-
versity. To empirically validate the effectiveness of CMIMP, this paper evaluates
it along with representational frameworks in Hanabi and confirms its superiority.

1 INTRODUCTION

Over these years, Multi-Agent Reinforcement Learning (MARL) has achieved remarkable success
in various tasks, such as UAV navigation (Han et al., 2020), traffic signal control (Calvo & Dus-
paric, 2018) and resource allocation (Lin et al., 2018). To overcome the instability of reinforcement
learning in multi-agent scenarios, researchers commonly adopt the strategy of self-play (Lowe et al.,
2017), where a fixed group of agents are trained and tested together. This training paradigm endows
agents with the capability to rapidly learn cooperative strategies, while posing the risk of overfitting
to the training partners.

In order to improve generalization performance of cooperative agents, Hu et al. (2020) propose
the problem of Zero-Shot Coordination (ZSC), which requires agents to coordinate with unknown
agents without prior knowledge. One solution to this problem is reasoning about the task or partners
(Shih et al., 2021; Li et al., 2023). Such solutions help agents learn consensus at the algorithm level,
i.e. agents trained by the same framework can zero-shot coordinate well, but the agents still cannot
coordinate well with agents trained by other types of algorithms (Lucas & Allen, 2022). Population-
based training is another popular solution, which allows for training a best-response agent against
a population of agents (Charakorn et al., 2022). One crucial advantage of these methods is that
they can directly improve agents’ zero-shot coordination performance with a population filled with
diverse agents striving toward the same objective but exhibiting different behaviors. However, train-
ing a diverse population of agents significantly increases the computational cost. Simultaneously,
there lack a robust and direct constraint to ensure that different agents act in distinct styles, while
existing representative methods (Zhao et al., 2023) prefer to incorporate the average entropy of pop-
ulation actions carrying the risk of being misled by an agent exhibiting a random style. Besides,
some population-training frameworks can only accommodate policies that output differentiable ac-
tion distributions (Guo et al., 2024), hindering their practicality

Consequently, a new paradigm of population training for ZSC is needed that reduces computational
costs while maintaining population diversity to achieve an efficient and diverse population. Meta-
learning is an approach that enhances network’s generalization ability through multi-task training.
Inspired by that traditional meta-learning and multi-task learning (Tang et al., 2020; Kim & Sung,
2023) manage to train a single network with the ability of quickly adapting to various tasks while
population training can also be treated as a multi task learning process, agent should also be able to
perform various policies through a meta-policy and different task related adapters, thereby simulat-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Main

Agent
Partner

Agent 1

Environment

Common Population Training

Environment

Hierarchical Meta-Agent

Based Population Training

Agent 1

Agent 2

Environment

Self-Play

cooperate with

cooperate

with

one of Main

Agent

cooperate

with

one of

Meta Policy

Sub-

Decision 1

…
Partner

Agent N Sub-

Decision N
…

Figure 1: The diagram of different training paradigms.

ing different agents with diverse policies in the population. Thus, a population can be constructed
with a single meta-agent performing different policies to replace various population agents used in
traditional methods, significantly reducing the computational costs for training diverse population
agents while still providing various actions from diverse policies within the meta-agent.

Motivated by the aforementioned issues and studies, this paper introduces an efficient population-
based training framework called Conditional Mutual Information Maximized Population (CMIMP).
Within this framework, CMIMP leverages a meta-agent with hierarchical architecture, allowing
multiple agents to share parameters for processing observations and history information, while us-
ing distinct sub-decision modules for action generation. This reduces the number of parameters and
computational complexity by enabling N agents to generate actions in one single forward calcu-
lation. To ensure distinct behaviors among sub-decision modules, CMIMP maximizes the mutual
information between actions and the sub-decision modules’ index, conditioned on observations.
Since some reinforcement learning (RL) frameworks cannot output differentiable action distribu-
tions, CMIMP optimizes an alternative objective: maximizing differences in preference values (e.g.,
Q-values or action selection probabilities) between sub-decision modules, which theoretically in-
creases mutual information.

To empirically illustrate the effectiveness of CMIMP, we conduct experiments on Hanabi, a coop-
erative card game commonly used for zero-shot coordination research. For more comprehensive
evaluation, we present two metrics: intra-algorithm cross-play scores (Hu et al., 2020) and one-
sided zero-shot coordination cross-play scores (Lucas & Allen, 2022). CMIMP is evaluated along
with several representative frameworks designed for zero-shot coordination and demonstrates supe-
riority. Furthermore, we conduct additional experiments to explore the impact of specific settings
on population training, including the pairing mode and population size.

Our contributions are summarized below:

• We analyze the necessity of population-based methods for zero-shot coordination and the
limitations of existing methods in terms of computational complexity and population di-
versity. By comparing the similarities between population frameworks and meta-RL, we
suggest that meta-RL can be employed to achieve an efficient population framework. In
line with our motivation, we explore the application of meta-RL within this domain.

• We propose CMIMP, a novel zero-shot coordination framework consisting of a meta-agent
with hierarchical architecture to realize a population and a conditional mutual informa-
tion maximized scheme that guarantees population diversity by maximize the conditional
mutual information of different action modules in meta-agent.

• We empirically validate the superiority of the proposed CMIMP over existing approaches
in Hanabi. In comparison, our method achieves better zero-shot coordination performance,
significantly enhances training efficiency, and reduces resource consumption. Moreover,
we conduct ablation studies to investigate how different training modes affect the perfor-
mance of population training.

2 RELATED WORK

Self-play (Yu et al., 2022) is a commonly-used technique in MARL, being able to quickly train
a fixed group of cooperative agents while falling short in zero-shot coordination. To address this

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of different training paradigms
Self-Play Reasoning-based Population-based CMIMP (ours)

ZSC Performance bad medium good good
Training Speed fast slow ∼ fast slow fast

Versatility bad ∼ good bad ∼ good medium good

issue, some researchers make agents reason about the task or partners. Related frameworks include
breaking symmetries of the task to keep agents from learning specified strategies (Hu et al., 2020;
Treutlein et al., 2021; Muglich et al., 2022), conducting multi-level reasoning to get higher-level
consensus (Cui et al., 2021; Hu et al., 2021) and requiring agents to predict partners’ actions (Lucas
& Allen, 2022; Yan et al., 2024). The core disadvantage of the above solutions is that agents might
form an algorithm-level consensus or overfit to several partners.

Another kind of mainstream solution is population-based training. This solution improves the gen-
eralization ability of a main agent by requiring it to cooperate well with all partner agents in a
population. Consequently, improving the divergence of the population becomes a primary objective.
Typical frameworks include reducing the collaboration scores of different partner agents within the
population to make them behave differently (Charakorn et al., 2022; Rahman et al., 2023), improv-
ing trajectory diversity of different agents (Lupu et al., 2021) and increasing policy entropy of the
population (Zhao et al., 2023). However, this kind of framework may face heavy computational load
or limited usage. For example, most population training frameworks train distinct neural network
parameters for agents in a population, which is time-consuming; Several frameworks (Lupu et al.,
2021; Zhao et al., 2023) require agents to output differentiable action distribution, while some im-
portant RL frameworks such as value-based methods may not meet the requirement. In comparison,
our proposed CMIMP utilizes a meta-agent to efficiently achieve population training, and designs a
generic mutual information term to guarantee population divergence. A brief feature comparison of
the aforementioned solutions are presented in Table 1.

Notably, the meta-agent in CMIMP is different from the agents in meta-RL (Nagabandi et al., 2018;
Gupta et al., 2018). Traditional meta-RL aims to train agents that can quickly adapt to various tasks,
the diversity of which is innate and invariable. In contrast, CMIMP’s meta-agent is designed to
exhibit various policies, the diversity of which is variable and what we seek to augment.

3 CONDITIONAL MUTUAL INFORMATION MAXIMIZED POPULATION
FRAMEWORK

In order to achieve efficient and versatile population training for zero-shot coordination, we propose
a novel CMIMP framework consisting of a hierarchical meta-agent that efficiently realizes popula-
tion and a conditional mutual information maximization term that guarantees population diversity.
Notably, the term is versatile since it does not require agents to output differentiable action distribu-
tions like some related works (Lupu et al., 2021) do. The details of CMIMP are presented below.

3.1 HIERARCHICAL META-AGENT FOR EFFICIENT POPULATION

One major drawback of population training is that it has to train multiple agents, which is time-
consuming. Considering that meta-RL techniques manage to train meta-agents with the ability of
quickly adapting to various tasks, selectively sharing parameters across different agents in a popula-
tion is feasible: those task-related parameters (correspond to modules that process observation and
keep history memory) can be shared, and those behavior-related parameters (correspond to modules
used for decision-making) can be individually optimized.

Based on the aforementioned idea, we design a meta-agent with hierarchical architectures to real-
ize a population. It consists of several neural-network-based modules, including an observation
encoder fo that processes observations, an LSTM f l that keeps historical information and up-
dates hidden states, a value head fv that outputs state value vt, and several sub-decision modules
fa1, fa2, ..., faK that output vectors qta1, q

t
a2, ..., q

t
aK used for choosing actions. Here qtai is treated

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as the policy output for the i-th agent in the population, and K is the population size. Besides,
the meta-agent is compatible with value-based and policy-gradient-based training paradigms, and
the corresponding outputs of sub-decision modules are Q-values or action distributions. The above
calculation is formulated below:

ht, ct = f l(ht−1, ct−1, fo(ot))

vt = fv(ht)

qtai = fai(ht) ∀i ∈ {1, 2, ...,K}
(1)

As can be seen, the hierarchical architecture of the meta-agent greatly reduces the parameters that
need to be optimized (N complete sets→ 1 complete sets + N subsets), thereby reducing the number
of required interactions with the environment and accelerating training.

3.2 CONDITIONAL MUTUAL INFORMATION MAXIMIZATION

If all the agents in a population have similar policies, the best-response agent can only learn to co-
operate with partners of one kind of policy, and in this way the advantage of population training
disappears (See Sec. 4.4 for details). Therefore, increasing the diversity of population (i.e. different
agents in the population behave variously) has always been a key concern in this research area. It is
noteworthy that a diverse population means different agents in the population act differently, and this
can be achieved by making the meta-agent output distinct actions with different sub-decision mod-
ules given an observation and history trajectory. This operation can be formulated as maximizing
the conditional mutual information:

I(A;U |H) =

∫ ∫ ∫
p(a, u, h) log

p(h)p(a, u, h)

p(u, h)p(a, h)
dudsda (2)

where H represents observation input (containing current observation and historical trajectory used
for decision), U represents the index of sub-decision module that outputs action A, and p(a, u, h)
is the joint probability density function. Considering that reinforcement learning frameworks com-
monly estimate integrals using the Monte Carlo method, that is, sampling transitions from replay
buffer to calculate, the unbiased estimation of mutual information Î(A;U |H) can be written as:

Î(A;U |H) =
1

N

N∑
j=1

log
p(aj |uj , hj)

p(aj |hj)

=
1

N

N∑
j=1

[
log p(aj |uj , hj)− log

K∑
i=1

p(ui|hj)p(aj |ui, hj)

] (3)

where K is the total number of sub-decision modules, N is the number of transitions, aj , uj , hj are
action, sub-decision module index and observation input of the j-th transition, and p(aj |uj , hj) is
the conditional probability that an agent takes action aj given uj , hj . For brevity, use Ij to denote
the j-th term in Î(A;U |H):

Ij := log p(aj |uj , hj)− log

K∑
i=1

p(ui|hj)p(aj |ui, hj) (4)

Notably, directly maximizing Î(A;U |H) with gradient-based methods is not a preferable choice
for two reasons. Firstly, The posterior probability p(ui|hj) is hard to calculate. Secondly, the
gradient of p(aj |ui, hj) is almost always equal to zero for many RL policies. For example, value-
based policies commonly output actions that maximize the action-value function Q(a, u, h) (or use
ϵ-greedy for exploration). In this way, the value of p(aj |ui, hj) is determined only by whether
aj = argmaxa Q(a, ui, hj). Consequently, the derivatives of p(aj |ui, hj) with respect to the neural
network parameters are equal to zero.

We propose to optimize an alternative objective Ī(A;U |H), which have the following two proper-
ties:

1. Ī(A;U |H) provides gradients that can be used for neural network training, whether the
meta-agent makes decisions by outputting action distributions or maximizing Q-functions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2. Increasing Ī(A;U |H) also increases Î(A;U |H).

The definition of Ī(A;U |H) is given below:

Ī(A;U |H) = − 1

N

N∑
j=1

K∑
i=1,i̸=j

F (ui, hj , aj) (5)

where F (ui, hj , aj) represents the favor of the meta-agent for aj given ui, hj and is required to be
the direct output of a neural network so that its gradients can be used for gradient-based training.
Below are several possible forms of F (ui, hj , aj):

1. If the neural network used for decision directly outputs action distribution (common for
policy-gradient-based methods such as PPO (Schulman et al., 2017)), then F (ui, hj , aj)
represents the probability of choosing aj given ui, hj , which is p(aj |ui, hj);

2. If the neural network used for decision outputs advantage functions (or Q-values, common
for value-based methods such as Dueling-DQN (Wang et al., 2016)), then F (ui, hj , aj) =
A(ui, hj , aj) (or Q(ui, hj , aj)).

Moreover, we provide certain theoretical guarantee for maximizing Ī(A;U |H).
Theorem 1. Given F (uj , hj , aj), if F is update to F ′ such that:

∃v s.t. argmax
a

F (uv, hj , a) = aj ∧ F ′(uv, hj , aj) < F (uv, hj , aj)

∀i ̸= v, F ′(ui, hj , aj) = F (ui, hj , aj)
(6)

then the corresponding term Ij in Î(A;U |H) is updated to I ′j and satisfies I ′j ≥ Ij .

The proof is presented in the Appendix.

Calculating Ī(A;U |H) requires obtaining the action outputs of all the agents in the population
under the same observation input, which can be efficiently done with the meta-agent: only one
forward calculation provides the required outputs. In comparison, this operation will be quite time-
consuming in typical population training as N forward calculations are needed, especially given that
LSTM forward propagation is slow.

We would like to emphasize that the two components of CMIMP operate in a complementary man-
ner. The meta-agent constitutes the fundamental network architecture, laying a good foundation
for efficient computation of mutual information and training. Concurrently, the conditional mutual
information term serves as an imperative guiding force throughout the training process, ensuring the
production of a diverse meta-agent.

3.3 INSTANTIATION

CMIMP only specifies how to build an efficient and diverse population, and is compatible with
multiple base RL frameworks that optimize agent policies. Our instantiation is based on an value-
based approach because it is confirmed that this kind of method is suitable for our experimental
task Hanabi (Hu & Foerster, 2019; Bard et al., 2020). The main agent only needs to cooperate well
with all the agents in the population (which are realized using the partner meta-agent), and thus it is
required to minimize the base TD-error (Van Hasselt et al., 2016):

Lm =
1

N

N∑
j=1

rj + γmax
a

Qθ′
m
(h′

j , uj , a)−Qθm(hj , uj , aj) (7)

where θm and θ′m represent the parameters in the online Q-net and target Q-net of the main agent
respectively. Notably, the main agent has the same neural network architecture as a normal agent
shown in Fig. 1. In comparison, the meta-agent not only needs to learn coordination, but also
needs to become diverse by maximizing Ī(A;U |H). Consequently, Ī(A;U |H) is added to the base
TD-loss with a weight α, which controls the balance between cooperation ability and population
diversity:

Lp =
1

N

N∑
j=1

rj + γmax
a

Qθ′
p
(uj , h

′
j , a)−Qθp(uj , hj , aj) + α

K∑
i=1,i̸=j

Qθp(ui, hj , aj)

 (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Feasible population training modes
Index Act Group Optimization Objective for πm Optimization Objective for πpi

I MP
∑N

i=1 J(πm, πpi) J(πm, πpi)

II MM,MP J(πm, πm) +
∑N

i=1 J(πm, πpi) J(πm, πpi)

III MP,PP
∑N

i=1 J(πm, πpi) J(πpi, πpi)

IV MM,MP,PP J(πm, πm) +
∑N

i=1 J(πm, πpi) J(πpi, πpi)

V MP,PP
∑N

i=1 J(πm, πpi) J(πpi, πpi) + J(πm, πpi)

VI MM,MP,PP J(πm, πm) +
∑N

i=1 J(πm, πpi) J(πpi, πpi) + J(πm, πpi)

where θp represent the parameters in the online Q-net of the partner meta-agent. To accelerate
convergence, prioritized replay (Schaul et al., 2015) and dueling-net (Wang et al., 2016) is also
utilized.

Another key component of instantiation is the training mode, which specifies the kind of pairs of
agents are used to interact with the environment and corresponding transitions used for training
agents. Table 2 summarizes six feasible training modes and details are presented in the Appendix.
Take Mode-III as an example: it has act groups MP,PP , which means agents interact with the
environment and generate transitions in two groups: [main agent, partner agent] and [partner agent,
partner agent]. Besides, the training objectives require the main agent to cooperate well with the
partner agent, while the partner agent only needs to optimize self-play scores and needs not to adapt
to the main agent. Each training mode has its own emphasis, and we investigate the performance of
different training modes in Sec. 4.5.

4 EXPERIMENTS

4.1 EXPERIMENTAL ENVIRONMENT

We conduct experiments on Hanabi (Bard et al., 2020), a card game which requires players to co-
operatively play cards of different colors and ranks in order. Playing cards wrongly leads to the
loss of life tokens, and the shared team score is the number of cards that have been correctly played
at the end of the game. Notably, players can only view the cards of the collaborators, yet lack the
capacity to observe the cards in their own hands. Due to this setting, players have to reason others’
intention as well as convey information through actions. Therefore, self-play agents can easily get
high scores for they are familiar with each other, while cooperating with strangers gets quite hard,
making Hanabi a popular benchmark for zero-shot coordination research.

4.2 EVALUATION CRITERIA FOR ZERO-SHOT COORDINATION

Zero-shot coordination requires agents to cooperate well with collaborators that are not seen before,
namely “strangers”. Since “strangers” does not refer to specific datasets or agents, the corresponding
evaluation criteria are slightly different from those of normal MARL. Below we give a formulaic
representation in two-agent scenarios.

Use J(π1, π2) to denote the expected cumulative discounted return obtained by the collaboration
of π1 and π2. Use πM

i to denote the policy obtained with training framework M and random seed
i. The earliest metric to evaluate zero-shot cooperation performance is intra-algorithm cross-play
(abbreviated as Intra-XP) score (Hu et al., 2020):

Sintra−XP (M) = E[J(πM
i , πM

j)|i ̸= j] (9)

Cross-play score represents how well agents cooperate with partners that are trained by the same
framework but different seeds. This metric is easily accessible and relatively objective, but has a
strong assumption on the “strangers”. Besides, considering that testing partners are trained with the
same algorithm, the main test agent has a little prior information about them, therefore, it is not
rigorous to judge zero-shot coordination performance based on this metric alone.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Zero-shot coordination performance of different frameworks
SP OP OBL TrajeDi MEP CMIMP

Intra-XP 3.96±0.49 14.94±0.67 23.80±0.03 12.95±1.25 20.48±0.16 21.05±0.05
1ZSC-XP 7.68±0.39 13.48±0.19 3.80±0.07 12.92±0.36 14.76±0.11 15.73±0.03

Table 4: Training costs of different population-based training frameworks with population size 5
TrajeDi MEP CMIMP

Training time of 500 epochs(days) 5.40 5.23 0.92
Memory usage(GB) 158.38±2.07 161.18±1.31 54.93±2.76

In order to address the deficiencies of the aforementioned metric, Lucas & Allen (2022) propose
one-sided zero-shot coordination (abbreviated as 1ZSC-XP) score:

S1ZSC−XP (M) = E[J(πM , πMt)] (10)

where Mt refers to a set of algorithms that are not specially designed for zero-shot coordination.
The shortcoming of this criterion is that πMt still cannot represent all feasible “strangers”, and the
results may be biased.

Neither of the metrics is perfect, hence the following sections display the above two metrics for
more comprehensive evaluation.

4.3 COMPARATIVE EXPERIMENTS

To empirically validate the superiority of CMIMP, we test it along with the following frameworks:

SP(Self-Play): The baseline self-play training with parameter sharing which acts as a baseline.

OP (Hu et al., 2020): A classical framework that improves zero-shot coordination by breaking
symmetries in self-play training.

OBL (Hu et al., 2021): A representational framework that trains policies with multi-level cognitive
reasoning and thus avoids over-fitting to certain training partners.

TrajeDi (Lupu et al., 2021): A population-based training framework that improves the trajectory
diversity of agents in the population.

MEP (Zhao et al., 2023): A population-based framework that improves diversity by maximizing the
average policy entropy of the population.

For all population-based methods (TrajeDi, MEP and CMIMP), the population is realized using
our proposed meta-agent with population size 5 for ease of comparison while we also replicate the
common population frameworks of TrajeDi and MEP for comparative analysis of training efficiency.
Besides, TrajeDi and MEP require agents to output differentiable action distribution and thus act in
a Boltzmann way1 instead of the conventional ϵ-greedy way.

To enhance the credibility of the evaluation, we train five models with different random seeds under
each framework, and test Intra-XP and 1ZSC-XP scores introduced in Sec.4.2. Specifically, 1ZSC-
XP scores are obtained by pairing the tested zero-shot coordination agents with 40 non-ZSC agents
obtained with four kinds of self-play frameworks: IQL (Tan, 1993), VDN (Sunehag et al., 2018),
SAD and SAD+AUX (Hu & Foerster, 2019).

Tab. 3 shows the mean and standard error of the evaluation while Tab. 4 compare the training cost
of different representative population-based training methods. It can be concluded that CMIMP
has the best zero-shot coordination performance and shows significantly efficiency and lightweight
performance improvement: it scores the highest in 1ZSC-XP, and its Intra-XP score is only second
to OBL. But this does not imply that OBL has better zero-shot coordination performance for the
1ZSC-XP score of OBL is significantly lower than the Intra-XP score, which may because OBL

1Sampling actions from a distribution obtained with SoftMax(Q).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Tr
aj
eD

i
M
EP

C
M
IM

P

Figure 2: Detailed pair-wise 1ZSC-XP scores of TrajeDi, MEP and CMIMP. Deeper colors represent
higher scores and each row represents the coordination scores of testing a main agent pairing with
40 non-ZSC agent, thus forming a 5× 40 heat-map.

1 3 5 8
Population Size

0

200

400

600

800

1000

1200

1400

1600

(a)

Time Consuming (s/Epoch)
TrajeDi
MEP
CMIMP

1 3 5 8
Population Size

0

50

100

150

200

(b)

Resource Consumption(Memory/GB)
TrajeDi
MEP
CMIMP

TrajeDi MEP CMIMP
Methods

0

500

1000

1500

2000

2500

3000

(c)

Total 1-ZSC-XP score
TrajeDi
MEP
CMIMP

Figure 3: Comparison of different population-based frameworks : (a) training time consuming with
population size increase; (b) resource consumption with population size increase; (c) total score of
pair-wise 1ZSC-XP scores from Fig. 2.

forms an algorithm-level consensus to some extent, making OBL agents incompatible with agents
trained with other algorithms.The polarized performance of OBL on these two metrics also supports
our previous analysis on the inadequacy of only using the Intra-XP metric. OP, TrajeDi and MEP
can more or less improve zero-shot coordination compared to the baseline SP, but are all inferior to
CMIMP. Compared to training efficiency and resource requirement in the condition of population
size 5, CMIMP achieves 5.77 times the training efficiency and only require one-third of the memory
resources, which can demonstrate the significant improvement in addressing the huge resource con-
sumption of existing methods while improving zero-shot coordination performance among agents.

Besides, Fig. 2 visualizes the detailed pair-wise 1ZSC-XP cooperation scores of CMIMP using a
heat-map. For ease of comparison, Fig. 3(c) shows the total score of heat-maps. The heat-maps

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

of three compared population-based methods are presented along for reference, and the heat-maps
of other frameworks are presented in the Appendix. In each sub-figure, each row represents the
coordination scores of a testing main agent pairing with all non-ZSC agents, and deeper colors
represent higher scores. Different rows in a sub-figure correspond to agents trained with different
random number seeds under the same framework. There are two phenomena worth noting: Firstly,
the differences between columns are consistent for these two frameworks. The reason is that some
non-ZSC agents are relatively easy to cooperate with (e.g. column 7,8), while some others are not
(e.g. column 2,3). Secondly, the performance stability of CMIMP is good: 1ZSC-XP scores of
CMIMP models with different random seeds vary little, while TrajeDi and MEP demonstrate certain
instability.

To further compare the performance and efficiency of these three methods, among these three meth-
ods, Fig. 3 illustrates the differences in training duration and resource consumption as the pop-
ulation size increases between TrajeDi, MEP using the original framework, and CIMIP utilizing
a meta-agent population. The results indicate that CIMIP is largely unaffected by the population
size, demonstrating its flexibility to adapt to complex tasks requiring larger population scales(i.e.
tasks with huge action space). In contrast, traditional population frameworks exhibit a nearly lin-
ear increase in training costs with the growth of population size, rendering them less feasible for
large-scale population training.

4.4 ABLATION STUDY

As is stated in (8), the training objective for the meta-agent has a weighted mutual-information term
that makes the sub-decision modules of the meta-agent act differently. Then how will this term affect
the training process? Fig. 4 shows the variation curves of the following four metrics over training
epochs under different training modes:

MM Score: The self-play score of the main agent;

MP Score: The cooperation score of the main agent and the partner agent, one of the key objectives
of population training;

PP Score: The self-play score of the partner agents;

Diff Prob: The probability of different partner agents in the population choosing the same actions
under the same observation input. This metric for a diverse population should be relatively low.

As is shown in Fig. 4, when the mutual information term Ī(A;U |H) is ignored (i.e. α = 0), Diff
Prob quickly rises to 1, meaning that the partner agents in the population act similarly. As a result,
the generalization performance of the main agent is reduced (low XP scores during testing) despite
that the training process goes smoothly (high MM/MP/PP scores during training). When α is set to
a proper value (α = 1), Diff Prob maintains relatively low, indicating a diverse population. When α
is set to a large value (α = 10), the population diversity does not further increase, and what’s worse,
the self-play score of partner agents (PP score) goes low. This indicates that the rationality of the
partner behavior may be affected due to large α, and the coordination performance of the main agent
is also hampered. To sum up, Ī(A;U |H) can help build a diverse population and thereby improve
the zero-shot coordination, while assigning it a too large weight might have negative effect.

0 100 200 300 400 500
Epoch

0

3

6

9

12

15

18

21

24

Sc
or

e

α=0

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MM Score
MP Score
PP Score
Diff Prob

Intra-XP: 13.44±2.02
1ZSC-XP: 13.08±0.33

0 100 200 300 400 500
Epoch

0

3

6

9

12

15

18

21

24

Sc
or

e

α=1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MM Score
MP Score
PP Score
Diff Prob

Intra-XP: 21.05±0.05
1ZSC-XP: 15.73±0.03

0 100 200 300 400 500
Epoch

0

3

6

9

12

15

18

21

24

Sc
or

e

α=10

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MM Score
MP Score
PP Score
Diff Prob

Intra-XP: 12.88±1.06
1ZSC-XP: 10.68±0.27

Figure 4: Training curves and testing scores of CMIMP with different α.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Zero-shot coordination performance evaluation of different training modes
I II III IV V VI

Intra-XP 1.10±0.13 21.05±0.05 8.58±1.76 12.56±1.37 12.31±1.65 19.18±0.30
1ZSC-XP 5.72±0.16 15.73±0.03 10.41±0.36 12.19±0.24 12.41±0.28 15.10±0.04

0 100 200 300 400 500
Epoch

0

3

6

9

12

15

18

21

24

Sc
or

e

Type-I Training

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MM Score
MP Score
PP Score
Diff Prob

0 100 200 300 400 500
Epoch

0

3

6

9

12

15

18

21

24

Sc
or

e

Type-II Training

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MM Score
MP Score
PP Score
Diff Prob

0 100 200 300 400 500
Epoch

0

3

6

9

12

15

18

21

24

Sc
or

e

Type-III Training

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MM Score
MP Score
PP Score
Diff Prob

0 100 200 300 400 500
Epoch

0

3

6

9

12

15

18

21

24

Sc
or

e

Type-IV Training

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MM Score
MP Score
PP Score
Diff Prob

0 100 200 300 400 500
Epoch

0

3

6

9

12

15

18

21

24

Sc
or

e

Type-V Training

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MM Score
MP Score
PP Score
Diff Prob

0 100 200 300 400 500
Epoch

0

3

6

9

12

15

18

21

24

Sc
or

e

Type-VI Training

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MM Score
MP Score
PP Score
Diff Prob

Figure 5: Training curves of different training modes.

4.5 COMPARISON OF DIFFERENT TRAINING MODES

Table 2 introduces six feasible training modes for population-based training. Then which mode
is the best? We present training curves of different modes in Fig. 5. It can be seen that Diff Prob
and MP Score exhibit consistent trends across all training modes, indicating that different modes are
consistent in optimizing the primary objective (J(πm, πp)) and enhancing diversity. However, Tab. 5
confirms that zero-shot coordination performance of different training modes varies a lot, and such
differences are brought by the settings of secondary objectives. Mode-I is the worst, indicating that
only optimizing the primary objective (J(πm, πp)) is not enough. Mode-II is the best, confirming
the necessity of adding the self-play objective for the main agent. Notably, Mode-IV and Mode-VI
additionally require increasing self-play scores for partner agents on the basis of Mode-II, and this
operation is of no benefit judging from the results.

5 CONCLUSION

In this paper, we discuss the necessity of population training for the zero-shot coordination and high-
light the logical commonalities between population training and meta-RL or multi-task learning,
which can address the inefficiencies of existing population-based zero-shot coordination methods
due to outdated training frameworks. Driven by this motivation, we propose an efficient population-
based zero-shot coordination framework, called CMIMP, to achieve a simulation of diverse pop-
ulations of any population size through a single parameter adjustment, while incurring almost no
additional training costs compared to training a single agent. Experiments conducted in Hanabi
validate the outstanding performance of our proposed method in zero-shot coordination capabil-
ities, efficiency, and low resource requirements. Additionally, our proposed training framework
demonstrates promising potential for large-scale population training, as its training is unaffected by
population size, allowing for the implementation of extremely large-scale population training, which
could further enhance zero-shot coordination capabilities.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Jeancarlo Arguello Calvo and Ivana Dusparic. Heterogeneous multi-agent deep reinforcement learn-
ing for traffic lights control. In AICS, pp. 2–13, 2018.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Generating diverse coop-
erative agents by learning incompatible policies. In The Eleventh International Conference on
Learning Representations, 2022.

Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. K-level reasoning for zero-shot
coordination in hanabi. Advances in Neural Information Processing Systems, 34:8215–8228,
2021.

Hao Guo, Zhen Wang, Junliang Xing, Pin Tao, and Yuanchun Shi. Cooperation and coordination
in heterogeneous populations with interaction diversity. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems, pp. 752–760, 2024.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. Advances in neural information pro-
cessing systems, 31, 2018.

Ruihua Han, Shengduo Chen, and Qi Hao. Cooperative multi-robot navigation in dynamic envi-
ronment with deep reinforcement learning. In IEEE International Conference on Robotics and
Automation, pp. 448–454, 2020.

Hengyuan Hu and Jakob N Foerster. Simplified action decoder for deep multi-agent reinforcement
learning. In International Conference on Learning Representations, 2019.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, Noam Brown, and Jakob Foerster. Off-belief
learning. In International Conference on Machine Learning, pp. 4369–4379. PMLR, 2021.

Woojun Kim and Youngchul Sung. Parameter sharing with network pruning for scalable multi-agent
deep reinforcement learning. arXiv preprint arXiv:2303.00912, 2023.

Yang Li, Shao Zhang, Jichen Sun, Yali Du, Ying Wen, Xinbing Wang, and Wei Pan. Coopera-
tive open-ended learning framework for zero-shot coordination. In International Conference on
Machine Learning, pp. 20470–20484. PMLR, 2023.

Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-scale fleet management via
multi-agent deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1774–1783, 2018.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Keane Lucas and Ross E Allen. Any-play: An intrinsic augmentation for zero-shot coordination. In
Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems,
pp. 853–861, 2022.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International Conference on Machine Learning, pp. 7204–7213. PMLR, 2021.

Darius Muglich, Christian Schroeder de Witt, Elise van der Pol, Shimon Whiteson, and Jakob Foer-
ster. Equivariant networks for zero-shot coordination. Advances in Neural Information Processing
Systems, 35:6410–6423, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In International Conference on Learning Representations, 2018.

Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, and Stefano V Albrecht. Generating teammates
for training robust ad hoc teamwork agents via best-response diversity. Transactions on Machine
Learning Research, 2023.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Andy Shih, Arjun Sawhney, Jovana Kondic, Stefano Ermon, and Dorsa Sadigh. On the critical role
of conventions in adaptive human-ai collaboration. arXiv preprint arXiv:2104.02871, 2021.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087, 2018.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. Progressive layered extraction (ple):
A novel multi-task learning (mtl) model for personalized recommendations. In Proceedings of
the 14th ACM Conference on Recommender Systems, pp. 269–278, 2020.

Johannes Treutlein, Michael Dennis, Caspar Oesterheld, and Jakob Foerster. A new formalism,
method and open issues for zero-shot coordination. In International Conference on Machine
Learning, pp. 10413–10423. PMLR, 2021.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An efficient end-
to-end training approach for zero-shot human-ai coordination. Advances in Neural Information
Processing Systems, 36, 2024.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Wei
Yang. Maximum entropy population-based training for zero-shot human-ai coordination. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6145–6153, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

Proof. In consideration of the relationship between F (u, h, a) and p(u, h, a), there are two cases to
be addressed.

Case 1 F (u, h, a) = p(a|u, h)
With the condition stated in (6), only p(aj |uv, hj) will be changed among all the terms in Ij . Con-
sequently,

I ′j − Ij = log

p(uv|hj)p(aj |uv, hj) +

K∑
i=1,i̸=v

p(ui|hj)p(aj |ui, hj)

− log

p(uv|hj)p
′(aj |uv, hj) +

K∑
i=1,i̸=v

p(ui|hj)p(aj |ui, hj)

 (11)

Since p′(aj |uv, hj) < p(aj |uv, hj) and p(uv|hj) ≥ 0, I ′j ≥ Ij .

Case 2 F (u, h, a) = A(u, h, a)

In this case, p(a|u, h) = 1 if a = argmaxQ(u, h, a) where Q(u, h, a) = A(u, h, a) + V (u, h),
else p(a|u, h) = 0 2.

According to (6), only Q(uv, hj , aj) changes, and this leads to three possible outcomes:

1. aj ̸= argmaxQ(uv, hj , a) and aj ̸= argmaxQ′(uv, hj , a). In this situation, p(aj |uv, hj)
remains the same, and I ′j = Ij .

2. aj = argmaxQ(uv, hj , a) and aj = argmaxQ′(uv, hj , a). Similarly, I ′j = Ij .

3. aj = argmaxQ(uv, hj , a) and aj ̸= argmaxQ′(uv, hj , a). In this situation,
p(aj |uv, hj) = 1 and p′(aj |uv, hj) = 0. As is proved before, p′(aj |uv, hj) < p(aj |uv, hj)
leads to I ′j ≥ Ij .

B IMPLEMENTATION DETAILS

Hardware and software settings We experiment on a server with 2 x Tesla P100 and a Intel Xeon
Platium CPU (12 cores), and training one models takes around 15 hours. The experimental codes
are modified based on the open source codes of OBL (Hu et al., 2021).

Neural network hyper parameters (1) formulates the decision process, and below introduces the
hyper parameters of each module. fo is a linear transform with output size 512. LSTM f l has two
layers with hidden dim 512. fv is a linear transform with output size 1, and fai are linear transform
matrix with output size equaling action dim.

Training hyper parameters All the models are training 500 epochs with replay buffer size 50000
and batch size 128. Parameters are updated via Adam optimizer with learning rate 6.25e-5. Discount
factor γ is set to 0.999.

2If the meta-agent uses an ϵ-greedy strategy for exploration, then the corresponding value is 1 − ϵ and
ϵ/(|A| − 1). This difference has no impact on the proof.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C DETAILED INTRODUCTION OF DIFFERENT TRAINING MODES

Table. 2 presents several population training modes, and the following content takes Mode IV as an
example to introduce the meaning of each column:

• Act Group: MM, MP, PP.: There are three kinds of act groups will be used for interacting
with the environment and generating transitions: [Main agent, Main agent], [Main agent,
Partner agent] and [Partner agent, Partner agent]. Consequently,

• Optimization Objective for πm: J(πm, πm) +
∑N

i=1 J(πm, πpi): The main agent is re-
quired to cooperate well with itself and partner agents. This influences the transitions used
for training main agent: it has two kinds of transitions, which are playing records with
another main agent and playing records with a partner agent, and both of them are used for
calculating main agent loss defined in (7).

• Optimization Objective for πp: J(πpi, πpi): The partner agents are only required to co-
operate well with itself. Notably, it has two kinds of transitions, which are playing records
with another partner agent and playing records with a main agent, and only the first will be
used for calculating partner agent loss defined in (8). In contrast, in Mode VI, two kinds of
transitions are both used for training due to the different optimization objective for πp.

Algorithm 1 introduces the training process.

Algorithm 1 Training process of CMIMP with Mode IV
INPUT: Mutual information term weight α, batch size Nb, replay buffers A, B;

1: Initialize θ ← random, θp ← random;
2: Define action groups: G1 = [Main agent,Main agent], G2 = [Main agent,Partner agent], G3 =

[Partner agent,Partner agent];
3: while not reached maximum iterations do
4: for G ∈ {G1, G2, G3} do
5: Reset environment if necessary;
6: ot1, o

t
2 ← Observe(G);

7: ht
1, h

t
2 ← Update_hidden_states(ot1, o

t
2);

8: at1 ← πθ(h
t
1), a

t
2 ← πθ(h

t
2);

9: rt1, r
t
2 ← Environment_rewards(at1, a

t
2);

10: if G = G1 then
11: Store (ot1, h

t
1, a

t
1, r

t
1, o

t+1
1) and (ot2, h

t
2, a

t
2, r

t
2, o

t+1
2) ∈ A;

12: end if
13: if G = G2 then
14: Store (ot1, h

t
1, a

t
1, r

t
1, o

t+1
1) ∈ A;

15: end if
16: if G = G3 then
17: Store (ot1, h

t
1, a

t
1, r

t
1, o

t+1
1) and (ot2, h

t
2, a

t
2, r

t
2, o

t+1
2) ∈ B;

18: end if
19: end for
20: Update networks:
21: Sample Nb transitions from A, update θ using loss from (7);
22: Sample Nb transitions from B, update θp using loss from (8);
23: end while

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D DETAILED RESULTS

O
P

O
BL

Tr
aj
eD

i
M
EP

C
M
IM

P

Figure 6: Detailed pair-wise 1ZSC-XP scores of all the testing frameworks.

15

	Introduction
	Related Work
	Conditional Mutual Information Maximized Population Framework
	Hierarchical Meta-Agent For Efficient Population
	Conditional Mutual Information Maximization
	Instantiation

	Experiments
	Experimental Environment
	Evaluation Criteria for Zero-Shot Coordination
	Comparative Experiments
	Ablation Study
	Comparison of Different Training Modes

	Conclusion
	Proof of Theorem 1
	Implementation Details
	Detailed introduction of different training modes
	Detailed results

