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ABSTRACT

Zero-shot coordination has recently become a hot topic in reinforcement learn-
ing research recently. It focuses on the generalization ability of agents, requiring
them to coordinate well with collaborators that are not seen before without any
fine-tuning. Population-based training has been proven to provide good zero-shot
coordination performance; nevertheless, existing algorithms exhibit inefficiency,
as the training cost scales linearly with the population size. To address this issue,
this paper proposes the Conditional Mutual Information Maximized Population
(CMIMP), an efficient training framework comprising two key components: a
meta-agent that efficiently realizes a population by selectively sharing parameters
across agents, and a mutual information regularizer that guarantees population di-
versity. To empirically validate the effectiveness of CMIMP, this paper evaluates
it along with representational frameworks in Hanabi and confirms its superiority.

1 INTRODUCTION

Over these years, Multi-Agent Reinforcement Learning (MARL) has achieved remarkable success
in various tasks, such as UAV navigation (Han et al., 2020), traffic signal control (Calvo & Dus-
paric, 2018) and resource allocation (Lin et al., 2018). To overcome the instability of reinforcement
learning in multi-agent scenarios, researchers commonly adopt the strategy of self-play (Lowe et al.,
2017), where a fixed group of agents are trained and tested together. This training paradigm endows
agents with the capability to rapidly learn cooperative strategies, while posing the risk of overfitting
to the training partners.

In order to improve generalization performance of cooperative agents, Hu et al. (2020) propose
the problem of Zero-Shot Coordination (ZSC), which requires agents to coordinate with unknown
agents without prior knowledge. One solution to this problem is reasoning about the task or partners
(Shih et al., 2021; Li et al., 2023). Such solutions help agents learn consensus at the algorithm level,
i.e. agents trained by the same framework can zero-shot coordinate well, but the agents still cannot
coordinate well with agents trained by other types of algorithms (Lucas & Allen, 2022). Population-
based training is another popular solution, which allows for training a best-response agent against
a population of agents (Charakorn et al., 2022). One crucial advantage of these methods is that
they can directly improve agents’ zero-shot coordination performance with a population filled with
diverse agents striving toward the same objective but exhibiting different behaviors. However, train-
ing a diverse population of agents significantly increases the computational cost. Simultaneously,
there lack a robust and direct constraint to ensure that different agents act in distinct styles, while
existing representative methods (Zhao et al., 2023) prefer to incorporate the average entropy of pop-
ulation actions carrying the risk of being misled by an agent exhibiting a random style. Besides,
some population-training frameworks can only accommodate policies that output differentiable ac-
tion distributions (Guo et al., 2024), hindering their practicality

Consequently, a new paradigm of population training for ZSC is needed that reduces computational
costs while maintaining population diversity to achieve an efficient and diverse population. Meta-
learning is an approach that enhances network’s generalization ability through multi-task training.
Inspired by that traditional meta-learning and multi-task learning (Tang et al., 2020; Kim & Sung,
2023) manage to train a single network with the ability of quickly adapting to various tasks while
population training can also be treated as a multi task learning process, agent should also be able to
perform various policies through a meta-policy and different task related adapters, thereby simulat-
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Figure 1: The diagram of different training paradigms.

ing different agents with diverse policies in the population. Thus, a population can be constructed
with a single meta-agent performing different policies to replace various population agents used in
traditional methods, significantly reducing the computational costs for training diverse population
agents while still providing various actions from diverse policies within the meta-agent.

Motivated by the aforementioned issues and studies, this paper introduces an efficient population-
based training framework called Conditional Mutual Information Maximized Population (CMIMP).
Within this framework, CMIMP leverages a meta-agent with hierarchical architecture, allowing
multiple agents to share parameters for processing observations and history information, while us-
ing distinct sub-decision modules for action generation. This reduces the number of parameters and
computational complexity by enabling N agents to generate actions in one single forward calcu-
lation. To ensure distinct behaviors among sub-decision modules, CMIMP maximizes the mutual
information between actions and the sub-decision modules’ index, conditioned on observations.
Since some reinforcement learning (RL) frameworks cannot output differentiable action distribu-
tions, CMIMP optimizes an alternative objective: maximizing differences in preference values (e.g.,
Q-values or action selection probabilities) between sub-decision modules, which theoretically in-
creases mutual information.

To empirically illustrate the effectiveness of CMIMP, we conduct experiments on Hanabi, a coop-
erative card game commonly used for zero-shot coordination research. For more comprehensive
evaluation, we present two metrics: intra-algorithm cross-play scores (Hu et al., 2020) and one-
sided zero-shot coordination cross-play scores (Lucas & Allen, 2022). CMIMP is evaluated along
with several representative frameworks designed for zero-shot coordination and demonstrates supe-
riority. Furthermore, we conduct additional experiments to explore the impact of specific settings
on population training, including the pairing mode and population size.

Our contributions are summarized below:

• We analyze the necessity of population-based methods for zero-shot coordination and the
limitations of existing methods in terms of computational complexity and population di-
versity. By comparing the similarities between population frameworks and meta-RL, we
suggest that meta-RL can be employed to achieve an efficient population framework. In
line with our motivation, we explore the application of meta-RL within this domain.

• We propose CMIMP, a novel zero-shot coordination framework consisting of a meta-agent
with hierarchical architecture to realize a population and a conditional mutual informa-
tion maximized scheme that guarantees population diversity by maximize the conditional
mutual information of different action modules in meta-agent.

• We empirically validate the superiority of the proposed CMIMP over existing approaches
in Hanabi. In comparison, our method achieves better zero-shot coordination performance,
significantly enhances training efficiency, and reduces resource consumption. Moreover,
we conduct ablation studies to investigate how different training modes affect the perfor-
mance of population training.

2 RELATED WORK

Self-play (Yu et al., 2022) is a commonly-used technique in MARL, being able to quickly train
a fixed group of cooperative agents while falling short in zero-shot coordination. To address this
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Table 1: Performance comparison of different training paradigms
Self-Play Reasoning-based Population-based CMIMP (ours)

ZSC Performance bad medium good good
Training Speed fast slow ∼ fast slow fast

Versatility bad ∼ good bad ∼ good medium good

issue, some researchers make agents reason about the task or partners. Related frameworks include
breaking symmetries of the task to keep agents from learning specified strategies (Hu et al., 2020;
Treutlein et al., 2021; Muglich et al., 2022), conducting multi-level reasoning to get higher-level
consensus (Cui et al., 2021; Hu et al., 2021) and requiring agents to predict partners’ actions (Lucas
& Allen, 2022; Yan et al., 2024). The core disadvantage of the above solutions is that agents might
form an algorithm-level consensus or overfit to several partners.

Another kind of mainstream solution is population-based training. This solution improves the gen-
eralization ability of a main agent by requiring it to cooperate well with all partner agents in a
population. Consequently, improving the divergence of the population becomes a primary objective.
Typical frameworks include reducing the collaboration scores of different partner agents within the
population to make them behave differently (Charakorn et al., 2022; Rahman et al., 2023), improv-
ing trajectory diversity of different agents (Lupu et al., 2021) and increasing policy entropy of the
population (Zhao et al., 2023). However, this kind of framework may face heavy computational load
or limited usage. For example, most population training frameworks train distinct neural network
parameters for agents in a population, which is time-consuming; Several frameworks (Lupu et al.,
2021; Zhao et al., 2023) require agents to output differentiable action distribution, while some im-
portant RL frameworks such as value-based methods may not meet the requirement. In comparison,
our proposed CMIMP utilizes a meta-agent to efficiently achieve population training, and designs a
generic mutual information term to guarantee population divergence. A brief feature comparison of
the aforementioned solutions are presented in Table 1.

Notably, the meta-agent in CMIMP is different from the agents in meta-RL (Nagabandi et al., 2018;
Gupta et al., 2018). Traditional meta-RL aims to train agents that can quickly adapt to various tasks,
the diversity of which is innate and invariable. In contrast, CMIMP’s meta-agent is designed to
exhibit various policies, the diversity of which is variable and what we seek to augment.

3 CONDITIONAL MUTUAL INFORMATION MAXIMIZED POPULATION
FRAMEWORK

In order to achieve efficient and versatile population training for zero-shot coordination, we propose
a novel CMIMP framework consisting of a hierarchical meta-agent that efficiently realizes popula-
tion and a conditional mutual information maximization term that guarantees population diversity.
Notably, the term is versatile since it does not require agents to output differentiable action distribu-
tions like some related works (Lupu et al., 2021) do. The details of CMIMP are presented below.

3.1 HIERARCHICAL META-AGENT FOR EFFICIENT POPULATION

One major drawback of population training is that it has to train multiple agents, which is time-
consuming. Considering that meta-RL techniques manage to train meta-agents with the ability of
quickly adapting to various tasks, selectively sharing parameters across different agents in a popula-
tion is feasible: those task-related parameters (correspond to modules that process observation and
keep history memory) can be shared, and those behavior-related parameters (correspond to modules
used for decision-making) can be individually optimized.

Based on the aforementioned idea, we design a meta-agent with hierarchical architectures to real-
ize a population. It consists of several neural-network-based modules, including an observation
encoder fo that processes observations, an LSTM f l that keeps historical information and up-
dates hidden states, a value head fv that outputs state value vt, and several sub-decision modules
fa1, fa2, ..., faK that output vectors qta1, q

t
a2, ..., q

t
aK used for choosing actions. Here qtai is treated
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as the policy output for the i-th agent in the population, and K is the population size. Besides,
the meta-agent is compatible with value-based and policy-gradient-based training paradigms, and
the corresponding outputs of sub-decision modules are Q-values or action distributions. The above
calculation is formulated below:

ht, ct = f l(ht−1, ct−1, fo(ot))

vt = fv(ht)

qtai = fai(ht) ∀i ∈ {1, 2, ...,K}
(1)

As can be seen, the hierarchical architecture of the meta-agent greatly reduces the parameters that
need to be optimized (N complete sets→ 1 complete sets + N subsets), thereby reducing the number
of required interactions with the environment and accelerating training.

3.2 CONDITIONAL MUTUAL INFORMATION MAXIMIZATION

If all the agents in a population have similar policies, the best-response agent can only learn to co-
operate with partners of one kind of policy, and in this way the advantage of population training
disappears (See Sec. 4.4 for details). Therefore, increasing the diversity of population (i.e. different
agents in the population behave variously) has always been a key concern in this research area. It is
noteworthy that a diverse population means different agents in the population act differently, and this
can be achieved by making the meta-agent output distinct actions with different sub-decision mod-
ules given an observation and history trajectory. This operation can be formulated as maximizing
the conditional mutual information:

I(A;U |H) =

∫ ∫ ∫
p(a, u, h) log

p(h)p(a, u, h)

p(u, h)p(a, h)
dudsda (2)

where H represents observation input (containing current observation and historical trajectory used
for decision), U represents the index of sub-decision module that outputs action A, and p(a, u, h)
is the joint probability density function. Considering that reinforcement learning frameworks com-
monly estimate integrals using the Monte Carlo method, that is, sampling transitions from replay
buffer to calculate, the unbiased estimation of mutual information Î(A;U |H) can be written as:

Î(A;U |H) =
1

N

N∑
j=1

log
p(aj |uj , hj)

p(aj |hj)

=
1

N

N∑
j=1

[
log p(aj |uj , hj)− log

K∑
i=1

p(ui|hj)p(aj |ui, hj)

] (3)

where K is the total number of sub-decision modules, N is the number of transitions, aj , uj , hj are
action, sub-decision module index and observation input of the j-th transition, and p(aj |uj , hj) is
the conditional probability that an agent takes action aj given uj , hj . For brevity, use Ij to denote
the j-th term in Î(A;U |H):

Ij := log p(aj |uj , hj)− log

K∑
i=1

p(ui|hj)p(aj |ui, hj) (4)

Notably, directly maximizing Î(A;U |H) with gradient-based methods is not a preferable choice
for two reasons. Firstly, The posterior probability p(ui|hj) is hard to calculate. Secondly, the
gradient of p(aj |ui, hj) is almost always equal to zero for many RL policies. For example, value-
based policies commonly output actions that maximize the action-value function Q(a, u, h) (or use
ϵ-greedy for exploration). In this way, the value of p(aj |ui, hj) is determined only by whether
aj = argmaxa Q(a, ui, hj). Consequently, the derivatives of p(aj |ui, hj) with respect to the neural
network parameters are equal to zero.

We propose to optimize an alternative objective Ī(A;U |H), which have the following two proper-
ties:

1. Ī(A;U |H) provides gradients that can be used for neural network training, whether the
meta-agent makes decisions by outputting action distributions or maximizing Q-functions.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2. Increasing Ī(A;U |H) also increases Î(A;U |H).

The definition of Ī(A;U |H) is given below:

Ī(A;U |H) = − 1

N

N∑
j=1

K∑
i=1,i̸=j

F (ui, hj , aj) (5)

where F (ui, hj , aj) represents the favor of the meta-agent for aj given ui, hj and is required to be
the direct output of a neural network so that its gradients can be used for gradient-based training.
Below are several possible forms of F (ui, hj , aj):

1. If the neural network used for decision directly outputs action distribution (common for
policy-gradient-based methods such as PPO (Schulman et al., 2017)), then F (ui, hj , aj)
represents the probability of choosing aj given ui, hj , which is p(aj |ui, hj);

2. If the neural network used for decision outputs advantage functions (or Q-values, common
for value-based methods such as Dueling-DQN (Wang et al., 2016)), then F (ui, hj , aj) =
A(ui, hj , aj) (or Q(ui, hj , aj)).

Moreover, we provide certain theoretical guarantee for maximizing Ī(A;U |H).
Theorem 1. Given F (uj , hj , aj), if F is update to F ′ such that:

∃v s.t. argmax
a

F (uv, hj , a) = aj ∧ F ′(uv, hj , aj) < F (uv, hj , aj)

∀i ̸= v, F ′(ui, hj , aj) = F (ui, hj , aj)
(6)

then the corresponding term Ij in Î(A;U |H) is updated to I ′j and satisfies I ′j ≥ Ij .

The proof is presented in the Appendix.

Calculating Ī(A;U |H) requires obtaining the action outputs of all the agents in the population
under the same observation input, which can be efficiently done with the meta-agent: only one
forward calculation provides the required outputs. In comparison, this operation will be quite time-
consuming in typical population training as N forward calculations are needed, especially given that
LSTM forward propagation is slow.

We would like to emphasize that the two components of CMIMP operate in a complementary man-
ner. The meta-agent constitutes the fundamental network architecture, laying a good foundation
for efficient computation of mutual information and training. Concurrently, the conditional mutual
information term serves as an imperative guiding force throughout the training process, ensuring the
production of a diverse meta-agent.

3.3 INSTANTIATION

CMIMP only specifies how to build an efficient and diverse population, and is compatible with
multiple base RL frameworks that optimize agent policies. Our instantiation is based on an value-
based approach because it is confirmed that this kind of method is suitable for our experimental
task Hanabi (Hu & Foerster, 2019; Bard et al., 2020). The main agent only needs to cooperate well
with all the agents in the population (which are realized using the partner meta-agent), and thus it is
required to minimize the base TD-error (Van Hasselt et al., 2016):

Lm =
1

N

N∑
j=1

rj + γmax
a

Qθ′
m
(h′

j , uj , a)−Qθm(hj , uj , aj) (7)

where θm and θ′m represent the parameters in the online Q-net and target Q-net of the main agent
respectively. Notably, the main agent has the same neural network architecture as a normal agent
shown in Fig. 1. In comparison, the meta-agent not only needs to learn coordination, but also
needs to become diverse by maximizing Ī(A;U |H). Consequently, Ī(A;U |H) is added to the base
TD-loss with a weight α, which controls the balance between cooperation ability and population
diversity:

Lp =
1

N

N∑
j=1

rj + γmax
a

Qθ′
p
(uj , h

′
j , a)−Qθp(uj , hj , aj) + α

K∑
i=1,i̸=j

Qθp(ui, hj , aj)

 (8)
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Table 2: Feasible population training modes
Index Act Group Optimization Objective for πm Optimization Objective for πpi

I MP
∑N

i=1 J(πm, πpi) J(πm, πpi)

II MM,MP J(πm, πm) +
∑N

i=1 J(πm, πpi) J(πm, πpi)

III MP,PP
∑N

i=1 J(πm, πpi) J(πpi, πpi)

IV MM,MP,PP J(πm, πm) +
∑N

i=1 J(πm, πpi) J(πpi, πpi)

V MP,PP
∑N

i=1 J(πm, πpi) J(πpi, πpi) + J(πm, πpi)

VI MM,MP,PP J(πm, πm) +
∑N

i=1 J(πm, πpi) J(πpi, πpi) + J(πm, πpi)

where θp represent the parameters in the online Q-net of the partner meta-agent. To accelerate
convergence, prioritized replay (Schaul et al., 2015) and dueling-net (Wang et al., 2016) is also
utilized.

Another key component of instantiation is the training mode, which specifies the kind of pairs of
agents are used to interact with the environment and corresponding transitions used for training
agents. Table 2 summarizes six feasible training modes and details are presented in the Appendix.
Take Mode-III as an example: it has act groups MP,PP , which means agents interact with the
environment and generate transitions in two groups: [main agent, partner agent] and [partner agent,
partner agent]. Besides, the training objectives require the main agent to cooperate well with the
partner agent, while the partner agent only needs to optimize self-play scores and needs not to adapt
to the main agent. Each training mode has its own emphasis, and we investigate the performance of
different training modes in Sec. 4.5.

4 EXPERIMENTS

4.1 EXPERIMENTAL ENVIRONMENT

We conduct experiments on Hanabi (Bard et al., 2020), a card game which requires players to co-
operatively play cards of different colors and ranks in order. Playing cards wrongly leads to the
loss of life tokens, and the shared team score is the number of cards that have been correctly played
at the end of the game. Notably, players can only view the cards of the collaborators, yet lack the
capacity to observe the cards in their own hands. Due to this setting, players have to reason others’
intention as well as convey information through actions. Therefore, self-play agents can easily get
high scores for they are familiar with each other, while cooperating with strangers gets quite hard,
making Hanabi a popular benchmark for zero-shot coordination research.

4.2 EVALUATION CRITERIA FOR ZERO-SHOT COORDINATION

Zero-shot coordination requires agents to cooperate well with collaborators that are not seen before,
namely “strangers”. Since “strangers” does not refer to specific datasets or agents, the corresponding
evaluation criteria are slightly different from those of normal MARL. Below we give a formulaic
representation in two-agent scenarios.

Use J(π1, π2) to denote the expected cumulative discounted return obtained by the collaboration
of π1 and π2. Use πM

i to denote the policy obtained with training framework M and random seed
i. The earliest metric to evaluate zero-shot cooperation performance is intra-algorithm cross-play
(abbreviated as Intra-XP) score (Hu et al., 2020):

Sintra−XP (M) = E[J(πM
i , πM

j )|i ̸= j] (9)

Cross-play score represents how well agents cooperate with partners that are trained by the same
framework but different seeds. This metric is easily accessible and relatively objective, but has a
strong assumption on the “strangers”. Besides, considering that testing partners are trained with the
same algorithm, the main test agent has a little prior information about them, therefore, it is not
rigorous to judge zero-shot coordination performance based on this metric alone.

6
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Table 3: Zero-shot coordination performance of different frameworks
SP OP OBL TrajeDi MEP CMIMP

Intra-XP 3.96±0.49 14.94±0.67 23.80±0.03 12.95±1.25 20.48±0.16 21.05±0.05
1ZSC-XP 7.68±0.39 13.48±0.19 3.80±0.07 12.92±0.36 14.76±0.11 15.73±0.03

Table 4: Training costs of different population-based training frameworks with population size 5
TrajeDi MEP CMIMP

Training time of 500 epochs(days) 5.40 5.23 0.92
Memory usage(GB) 158.38±2.07 161.18±1.31 54.93±2.76

In order to address the deficiencies of the aforementioned metric, Lucas & Allen (2022) propose
one-sided zero-shot coordination (abbreviated as 1ZSC-XP) score:

S1ZSC−XP (M) = E[J(πM , πMt)] (10)

where Mt refers to a set of algorithms that are not specially designed for zero-shot coordination.
The shortcoming of this criterion is that πMt still cannot represent all feasible “strangers”, and the
results may be biased.

Neither of the metrics is perfect, hence the following sections display the above two metrics for
more comprehensive evaluation.

4.3 COMPARATIVE EXPERIMENTS

To empirically validate the superiority of CMIMP, we test it along with the following frameworks:

SP(Self-Play): The baseline self-play training with parameter sharing which acts as a baseline.

OP (Hu et al., 2020): A classical framework that improves zero-shot coordination by breaking
symmetries in self-play training.

OBL (Hu et al., 2021): A representational framework that trains policies with multi-level cognitive
reasoning and thus avoids over-fitting to certain training partners.

TrajeDi (Lupu et al., 2021): A population-based training framework that improves the trajectory
diversity of agents in the population.

MEP (Zhao et al., 2023): A population-based framework that improves diversity by maximizing the
average policy entropy of the population.

For all population-based methods (TrajeDi, MEP and CMIMP), the population is realized using
our proposed meta-agent with population size 5 for ease of comparison while we also replicate the
common population frameworks of TrajeDi and MEP for comparative analysis of training efficiency.
Besides, TrajeDi and MEP require agents to output differentiable action distribution and thus act in
a Boltzmann way1 instead of the conventional ϵ-greedy way.

To enhance the credibility of the evaluation, we train five models with different random seeds under
each framework, and test Intra-XP and 1ZSC-XP scores introduced in Sec.4.2. Specifically, 1ZSC-
XP scores are obtained by pairing the tested zero-shot coordination agents with 40 non-ZSC agents
obtained with four kinds of self-play frameworks: IQL (Tan, 1993), VDN (Sunehag et al., 2018),
SAD and SAD+AUX (Hu & Foerster, 2019).

Tab. 3 shows the mean and standard error of the evaluation while Tab. 4 compare the training cost
of different representative population-based training methods. It can be concluded that CMIMP
has the best zero-shot coordination performance and shows significantly efficiency and lightweight
performance improvement: it scores the highest in 1ZSC-XP, and its Intra-XP score is only second
to OBL. But this does not imply that OBL has better zero-shot coordination performance for the
1ZSC-XP score of OBL is significantly lower than the Intra-XP score, which may because OBL

1Sampling actions from a distribution obtained with SoftMax(Q).

7
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Figure 2: Detailed pair-wise 1ZSC-XP scores of TrajeDi, MEP and CMIMP. Deeper colors represent
higher scores and each row represents the coordination scores of testing a main agent pairing with
40 non-ZSC agent, thus forming a 5× 40 heat-map.
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Figure 3: Comparison of different population-based frameworks : (a) training time consuming with
population size increase; (b) resource consumption with population size increase; (c) total score of
pair-wise 1ZSC-XP scores from Fig. 2.

forms an algorithm-level consensus to some extent, making OBL agents incompatible with agents
trained with other algorithms.The polarized performance of OBL on these two metrics also supports
our previous analysis on the inadequacy of only using the Intra-XP metric. OP, TrajeDi and MEP
can more or less improve zero-shot coordination compared to the baseline SP, but are all inferior to
CMIMP. Compared to training efficiency and resource requirement in the condition of population
size 5, CMIMP achieves 5.77 times the training efficiency and only require one-third of the memory
resources, which can demonstrate the significant improvement in addressing the huge resource con-
sumption of existing methods while improving zero-shot coordination performance among agents.

Besides, Fig. 2 visualizes the detailed pair-wise 1ZSC-XP cooperation scores of CMIMP using a
heat-map. For ease of comparison, Fig. 3(c) shows the total score of heat-maps. The heat-maps
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of three compared population-based methods are presented along for reference, and the heat-maps
of other frameworks are presented in the Appendix. In each sub-figure, each row represents the
coordination scores of a testing main agent pairing with all non-ZSC agents, and deeper colors
represent higher scores. Different rows in a sub-figure correspond to agents trained with different
random number seeds under the same framework. There are two phenomena worth noting: Firstly,
the differences between columns are consistent for these two frameworks. The reason is that some
non-ZSC agents are relatively easy to cooperate with (e.g. column 7,8), while some others are not
(e.g. column 2,3). Secondly, the performance stability of CMIMP is good: 1ZSC-XP scores of
CMIMP models with different random seeds vary little, while TrajeDi and MEP demonstrate certain
instability.

To further compare the performance and efficiency of these three methods, among these three meth-
ods, Fig. 3 illustrates the differences in training duration and resource consumption as the pop-
ulation size increases between TrajeDi, MEP using the original framework, and CIMIP utilizing
a meta-agent population. The results indicate that CIMIP is largely unaffected by the population
size, demonstrating its flexibility to adapt to complex tasks requiring larger population scales( i.e.
tasks with huge action space). In contrast, traditional population frameworks exhibit a nearly lin-
ear increase in training costs with the growth of population size, rendering them less feasible for
large-scale population training.

4.4 ABLATION STUDY

As is stated in (8), the training objective for the meta-agent has a weighted mutual-information term
that makes the sub-decision modules of the meta-agent act differently. Then how will this term affect
the training process? Fig. 4 shows the variation curves of the following four metrics over training
epochs under different training modes:

MM Score: The self-play score of the main agent;

MP Score: The cooperation score of the main agent and the partner agent, one of the key objectives
of population training;

PP Score: The self-play score of the partner agents;

Diff Prob: The probability of different partner agents in the population choosing the same actions
under the same observation input. This metric for a diverse population should be relatively low.

As is shown in Fig. 4, when the mutual information term Ī(A;U |H) is ignored (i.e. α = 0), Diff
Prob quickly rises to 1, meaning that the partner agents in the population act similarly. As a result,
the generalization performance of the main agent is reduced (low XP scores during testing) despite
that the training process goes smoothly (high MM/MP/PP scores during training). When α is set to
a proper value (α = 1), Diff Prob maintains relatively low, indicating a diverse population. When α
is set to a large value (α = 10), the population diversity does not further increase, and what’s worse,
the self-play score of partner agents (PP score) goes low. This indicates that the rationality of the
partner behavior may be affected due to large α, and the coordination performance of the main agent
is also hampered. To sum up, Ī(A;U |H) can help build a diverse population and thereby improve
the zero-shot coordination, while assigning it a too large weight might have negative effect.
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Figure 4: Training curves and testing scores of CMIMP with different α.
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Table 5: Zero-shot coordination performance evaluation of different training modes
I II III IV V VI

Intra-XP 1.10±0.13 21.05±0.05 8.58±1.76 12.56±1.37 12.31±1.65 19.18±0.30
1ZSC-XP 5.72±0.16 15.73±0.03 10.41±0.36 12.19±0.24 12.41±0.28 15.10±0.04
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Figure 5: Training curves of different training modes.

4.5 COMPARISON OF DIFFERENT TRAINING MODES

Table 2 introduces six feasible training modes for population-based training. Then which mode
is the best? We present training curves of different modes in Fig. 5. It can be seen that Diff Prob
and MP Score exhibit consistent trends across all training modes, indicating that different modes are
consistent in optimizing the primary objective (J(πm, πp)) and enhancing diversity. However, Tab. 5
confirms that zero-shot coordination performance of different training modes varies a lot, and such
differences are brought by the settings of secondary objectives. Mode-I is the worst, indicating that
only optimizing the primary objective (J(πm, πp)) is not enough. Mode-II is the best, confirming
the necessity of adding the self-play objective for the main agent. Notably, Mode-IV and Mode-VI
additionally require increasing self-play scores for partner agents on the basis of Mode-II, and this
operation is of no benefit judging from the results.

5 CONCLUSION

In this paper, we discuss the necessity of population training for the zero-shot coordination and high-
light the logical commonalities between population training and meta-RL or multi-task learning,
which can address the inefficiencies of existing population-based zero-shot coordination methods
due to outdated training frameworks. Driven by this motivation, we propose an efficient population-
based zero-shot coordination framework, called CMIMP, to achieve a simulation of diverse pop-
ulations of any population size through a single parameter adjustment, while incurring almost no
additional training costs compared to training a single agent. Experiments conducted in Hanabi
validate the outstanding performance of our proposed method in zero-shot coordination capabil-
ities, efficiency, and low resource requirements. Additionally, our proposed training framework
demonstrates promising potential for large-scale population training, as its training is unaffected by
population size, allowing for the implementation of extremely large-scale population training, which
could further enhance zero-shot coordination capabilities.
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A PROOF OF THEOREM 1

Proof. In consideration of the relationship between F (u, h, a) and p(u, h, a), there are two cases to
be addressed.

Case 1 F (u, h, a) = p(a|u, h)
With the condition stated in (6), only p(aj |uv, hj) will be changed among all the terms in Ij . Con-
sequently,

I ′j − Ij = log

p(uv|hj)p(aj |uv, hj) +

K∑
i=1,i̸=v

p(ui|hj)p(aj |ui, hj)


− log

p(uv|hj)p
′(aj |uv, hj) +

K∑
i=1,i̸=v

p(ui|hj)p(aj |ui, hj)

 (11)

Since p′(aj |uv, hj) < p(aj |uv, hj) and p(uv|hj) ≥ 0, I ′j ≥ Ij .

Case 2 F (u, h, a) = A(u, h, a)

In this case, p(a|u, h) = 1 if a = argmaxQ(u, h, a) where Q(u, h, a) = A(u, h, a) + V (u, h),
else p(a|u, h) = 0 2.

According to (6), only Q(uv, hj , aj) changes, and this leads to three possible outcomes:

1. aj ̸= argmaxQ(uv, hj , a) and aj ̸= argmaxQ′(uv, hj , a). In this situation, p(aj |uv, hj)
remains the same, and I ′j = Ij .

2. aj = argmaxQ(uv, hj , a) and aj = argmaxQ′(uv, hj , a). Similarly, I ′j = Ij .

3. aj = argmaxQ(uv, hj , a) and aj ̸= argmaxQ′(uv, hj , a). In this situation,
p(aj |uv, hj) = 1 and p′(aj |uv, hj) = 0. As is proved before, p′(aj |uv, hj) < p(aj |uv, hj)
leads to I ′j ≥ Ij .

B IMPLEMENTATION DETAILS

Hardware and software settings We experiment on a server with 2 x Tesla P100 and a Intel Xeon
Platium CPU (12 cores), and training one models takes around 15 hours. The experimental codes
are modified based on the open source codes of OBL (Hu et al., 2021).

Neural network hyper parameters (1) formulates the decision process, and below introduces the
hyper parameters of each module. fo is a linear transform with output size 512. LSTM f l has two
layers with hidden dim 512. fv is a linear transform with output size 1, and fai are linear transform
matrix with output size equaling action dim.

Training hyper parameters All the models are training 500 epochs with replay buffer size 50000
and batch size 128. Parameters are updated via Adam optimizer with learning rate 6.25e-5. Discount
factor γ is set to 0.999.

2If the meta-agent uses an ϵ-greedy strategy for exploration, then the corresponding value is 1 − ϵ and
ϵ/(|A| − 1). This difference has no impact on the proof.
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C DETAILED INTRODUCTION OF DIFFERENT TRAINING MODES

Table. 2 presents several population training modes, and the following content takes Mode IV as an
example to introduce the meaning of each column:

• Act Group: MM, MP, PP.: There are three kinds of act groups will be used for interacting
with the environment and generating transitions: [Main agent, Main agent], [Main agent,
Partner agent] and [Partner agent, Partner agent]. Consequently,

• Optimization Objective for πm: J(πm, πm) +
∑N

i=1 J(πm, πpi): The main agent is re-
quired to cooperate well with itself and partner agents. This influences the transitions used
for training main agent: it has two kinds of transitions, which are playing records with
another main agent and playing records with a partner agent, and both of them are used for
calculating main agent loss defined in (7).

• Optimization Objective for πp: J(πpi, πpi): The partner agents are only required to co-
operate well with itself. Notably, it has two kinds of transitions, which are playing records
with another partner agent and playing records with a main agent, and only the first will be
used for calculating partner agent loss defined in (8). In contrast, in Mode VI, two kinds of
transitions are both used for training due to the different optimization objective for πp.

Algorithm 1 introduces the training process.

Algorithm 1 Training process of CMIMP with Mode IV
INPUT: Mutual information term weight α, batch size Nb, replay buffers A, B;

1: Initialize θ ← random, θp ← random;
2: Define action groups: G1 = [Main agent,Main agent], G2 = [Main agent,Partner agent], G3 =

[Partner agent,Partner agent];
3: while not reached maximum iterations do
4: for G ∈ {G1, G2, G3} do
5: Reset environment if necessary;
6: ot1, o

t
2 ← Observe(G);

7: ht
1, h

t
2 ← Update_hidden_states(ot1, o

t
2);

8: at1 ← πθ(h
t
1), a

t
2 ← πθ(h

t
2);

9: rt1, r
t
2 ← Environment_rewards(at1, a

t
2);

10: if G = G1 then
11: Store (ot1, h

t
1, a

t
1, r

t
1, o

t+1
1 ) and (ot2, h

t
2, a

t
2, r

t
2, o

t+1
2 ) ∈ A;

12: end if
13: if G = G2 then
14: Store (ot1, h

t
1, a

t
1, r

t
1, o

t+1
1 ) ∈ A;

15: end if
16: if G = G3 then
17: Store (ot1, h

t
1, a

t
1, r

t
1, o

t+1
1 ) and (ot2, h

t
2, a

t
2, r

t
2, o

t+1
2 ) ∈ B;

18: end if
19: end for
20: Update networks:
21: Sample Nb transitions from A, update θ using loss from (7);
22: Sample Nb transitions from B, update θp using loss from (8);
23: end while
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D DETAILED RESULTS
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Figure 6: Detailed pair-wise 1ZSC-XP scores of all the testing frameworks.
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