
Consistency models with learned idempotent boundary conditions

Gianluigi Silvestri 1 2 Luca Ambrogioni 2

Abstract
Consistency Models have recently emerged as an
alternative to Diffusion Models, being capable of
generating high-quality data while keeping the
computational cost low, often requiring only one
or two network evaluations. At their core, Consis-
tency Models learn to approximate an ODE flow,
and their architecture is constrained to respect the
boundary conditions of such ODE. In this work,
we propose a novel method to train Consistency
Models by learning the boundary conditions, re-
sulting in a model that acts as an identity only
for inputs that are on the support of the data, be-
coming an idempotent function. We compare our
method with Consistency Models on simple tabu-
lar and image benchmarks, showing competitive
sample quality and confirming the potential of the
introduced training technique.

1. Introduction
Generative models synthesize data by learning a mapping
between noise and the data distribution. Among various
methods, Diffusion Models (DMs) (Ho et al., 2020; Song
et al., 2020b) have achieved state-of-the-art performance in
several domains, such as images (Dhariwal & Nichol, 2021),
video (Ho et al., 2022) and audio (Kong et al., 2020). How-
ever, a drawback of DMs is the need for several sampling
steps, resulting in a slow and computationally intensive data
generation procedure. Since the introduction of DMs, many
works have proposed strategies to speed up the sampling
process while retaining the same generation capabilities
(Song et al., 2020a; Salimans & Ho, 2021; Liu et al., 2021).
In particular, faster sampling can be achieved by converting
the generative stochastic process into deterministic dynam-
ics described by a system of ordinary differential equations

1OnePlanet Research Center, imec-the Netherlands; 2Donders
Institute for Brain, Cognition and Behaviour, Radboud Uni-
versity;. Correspondence to: Gianluigi Silvestri <gian-
luigi.silvestri@imec.nl>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at 41 st International Conference on
Machine Learning, Vienna, Austria. PMLR Vol Number, 2024.
Copyright 2024 by the author(s).

ODE trajectories

Data Noise

Figure 1. A schematic representation of Idempotent Consistency
Models. As in Consistency Models, a neural network is trained to
map adjacent points on the same Probability Flow trajectory to the
same initial conditions. However, here the boundary conditions are
not enforced but are learned with the same network, which results
in an idempotent function (purple arrows) that maps points to the
support of the data, while acting as the identity for points that are
already on the support.

(ODEs) (Song et al., 2020b). In a variance-exploding setting,
the system of ODEs is

ẋt = −σ2(t) sθ(xt, t) , (1)

where sθ(xt, t) denotes the learned score function and σ2(t)
determines the instantaneous noise schedule. Note that
the generative dynamics evolve backwards in time, which
explains the negative sign in front of the score.

1.1. Consistency models

More recently, Consistency Models (CMs) have been pro-
posed in (Song et al., 2023; Song & Dhariwal, 2023) as
an alternative to DMs capable of generating high-quality
samples in one or few function evaluations. Instead of using
a network to learn the score function (i.e. the vector field of
the ODE), the architecture of a CMs learns to approximate
the ODE flow, which directly maps the noisy state xt to the
end point of the time-reversed generative process:

fθ(xt, t) = xϵ , (2)

where fθ(xt, T ) is a trained approximation of the ODE
flow parameterized by θ. In this expression, xϵ is defined

1



Submission and Formatting Instructions for GRaM Workshop at ICML 2024

as the starting point of the unique ODE trajectory passing
through xt and time t. From the definition, it is easy to
see that, when two points xt1 and xt2 are on the same
ODE trajectory, the network should respect the following
consistency property:

fθ(xt1 , t1) = fθ(xt2 , t2) , (3)

which leads to the following (partial) loss function:

Lct(θ) = d(fθ−(xt1 , t1),fθ(xt2 , t2)) (4)

where d(·, ·) is a divergence function and the minus sign in
θ− indicates that the gradient is not propagated along this
branch of the computation graph. In this form, the loss can
only be evaluated when pairs of points on the same ODE
trajectory are available, which is the case when distilling an
existing DM (Song et al., 2023). However, it is also possible
to show that the loss is unbiased when xt1 = x + σ(t1)z
and xt2 = x+ σ(t2)z at the limit of t2 − t1 → 0, where x
is a sample from the dataset and z is sampled noise. This
observation leads to pure consistency training, where the
consistency map is learned without using a pre-trained score
function.

The resulting training scheme works by bootstrapping the
data x forward in time from the t = ϵ to t = T along the
ODE trajectories, where ϵ is a small boundary time. In order
to work, this requires that initial conditions are enforced
through the following parameterization:

fθ(x, t) = cskip(t)x+ cout(t)Fθ(x, t) (5)

Where cskip and cout are differentiable functions such that
cskip(ϵ) = 1 and cout(ϵ) = 0, and Fθ is an unconstrained
neural network.

2. The geometric inconsistency of the
boundary condition

In this section, we will show that the boundary constrain
given in Eq. 5 is incorrect for any value of ϵ when x lies
outside of the support of the data. Consider the simple
scenario where the dataset consists of a single data point y.
In this case, the score s(x) is simply (y − x)/σ2(t), which
diverges for t→ 0. Moreover, the ODE flow is given by the
constant function fθ(x, t) = y, which does not reduce to
Eq. 5 for ϵ→ 0 for any x different from y. More generally,
if the data is supported on a m-dimensional manifold, the
score will diverge for any point outside of the manifold,
leading to a divergence from the constrained boundary for
any point outside of the manifold.

3. Contributions
In this paper, we relax the boundary conditions by re-
placing the architectural boundary constrains with addi-
tional loss terms inspired by the principle of idempotency

(Shocher et al., 2023). A function g(·) is said to be idem-
potent when g(g(x)) = g(x). A variation of this prop-
erty approximately applies to consistency models since
f(f(x, t), ϵ) ≈ f(x, t) for small values of ϵ, where f is the
true consistency function. This is the case because f(x, t) is
by definition in the support of the distribution, and therefore
the initial condition in Eq. 5 applies. Following (Shocher
et al., 2023), we use this principle as additional loss, to-
gether with another loss term that enforces the identity at
the boundary.

4. Method
Our method, Idempotent Consistency Models (ICM), con-
sists of training consistency models by learning the bound-
ary conditions (Figure 1), rather than enforcing them as
commonly done in CMs. In the following, we refer to fθ as
an unconstrained neural network. First, we can replace the
hard-coded boundary condition with a boundary loss

Lbc(θ) = d(fθ(xϵ, ϵ),xϵ) (6)

where xϵ is sampled from the dataset and perturbed with
small noise (see Algorithm 1). While this loss may at first
seem equivalent to the hard-coded condition in Eq. 5, it
is only applied in the support of the data and it therefore
does not introduce the geometric inconsistencies discussed
in section 2.

We supplement this loss with an idempotency loss, which
directs the consistency networks towards the support of the
data:

Lid(θ) = d(fθ−(fθ(xt, t), ϵ),fθ(xt, t)) (7)

When fθ(xt, t) correctly maps the noisy state to the support
of the data, the idempotency loss will be low as a conse-
quence of the boundary loss. On the other hand, the loss will
generally be high outside of the support of the data as in our
model the boundary condition is not enforced in this range.
By combining all the loss terms, we obtain the following
total loss:

L = λbcLbc + λctLct + λidLid, (8)

where λbc, λct, λid are scalar scaling factors. The pseu-
docode for this modified training procedure is reported in
Algorithm 1. The algorithm for sampling remains the same
as for CMs (Song et al., 2023) and is reported in Algorithm
2.

5. Experiments
We test the performance of ICM against CT on 2D toy
datasets as well as on the image datasets: MNIST, Fashion-
Mnist, and the more complex Cifar10 and CelebA (32×32).

2



Submission and Formatting Instructions for GRaM Workshop at ICML 2024

Algorithm 1 Idempotent Consistency Training
Input: datasetD, initial model parameter θ, learning rate
η, step schedule N(·), EMA rate µ, d(·, ·), λ(·), scalars
λbc, λct, λid

θEMA ← θ and k ← 0
repeat

Sample x ∼ D and n ∼ U [1, N(k)− 1]
Sample z ∼ N(0, I)
xϵ ← x+ ϵz
xtn′ ← x+ tn+1z
xtn ← x+ tnz
Lct(θ)← λ(tn)d(fθ(xtn′ , tn+1),fθ−(xtn, tn))
Lid(θ)← d(fθ(xtn′ , tn+1),fθ−(fθ(xtn′ , tn+1), ϵ))
Lbc(θ)← d(fθ(xϵ, ϵ),xϵ)
L(θ)← λctLct + λidLid + λbcLbc

θ ← θ − η∇θL(θ)
θEMA ← stopgrad(µθEMA + (1− µ)θ)
k ← k + 1

until convergence

Algorithm 2 Multistep Consistency Sampling
Input: Consistency model fθ, sequence of time points
τ1 > τ2 > · · · > τN−1, initial noise x̂T

x← fθ(x̂T , T )
for n = 1 to N − 1 do

Sample z ∼ N (0, I)
x̂τn ← x+

√
τ2n − ϵ2z

x← fθ(x̂τn , τn)
end for
Output: x

Both the baseline CM and ICM use the same settings as in
(Song & Dhariwal, 2023) unless differently specified. In this
work, we consider only Consistency Training, i.e. without
using a pre-trained score model.

5.1. Toy Data

As a simple benchmark, we choose three 2D datasets,
namely Circle, 8Dots and Moons. In all these experiments,
λbc = 1, while λct = 0.1, λid = 0.1 for Circle and 8Points
and λct = 0.01, λid = 0.01 for Moons. We also test ICM
with λid = 0, to evaluate the effect of the idempotency
loss. We report the results in Wasserstein Distance in table
1, and show samples in figure 2. ICM outperform CM, and
the results highlight the effectiveness of the idempotency
loss term. These simple benchmarks suggest that learning
the boundary condition and adding the idempotency loss is
more beneficial when the data live in a lower dimensional
manifold.

Circle 8Points Moons

ICM 0.00062 0.0132 0.0082

ICM (λid = 0) 0.00145 0.0284 0.0092

CM 0.0023 0.0309 0.0084

Table 1. Results in Wasserstein Distance (lower is better) for one-
step sampling. The best entry is highlighted in bold.

True Data ICM ICM (λid = 0) CM

Figure 2. 1-Step samples on the 2D datasets, compared to the
ground truth. The datasets are Circle, 8Points and Moons, from
top to bottom.

5.2. Image Datasets - MNIST and F-MNIST

To assess the performance of ICM on more complex settings,
we train the model on MNIST and Fashion MNIST. For all
the ICM models we use λbc = 1, λct = 0.1 and either λid =
0.1 or λid = 0. We used these values as they provided
promising results on the 2D experiments, but we did not
tune them to the image datasets. The results in FID score
are reported in table 2, while samples from the models
are reported in figure 3. ICM outperforms CM on both
datasets, and the best performance is achieved when using
the idempotency loss.

MNIST F-MNIST

ICM 1.943 4.084

ICM (λid = 0) 3.484 5.513

CM 7.823 5.855

Table 2. FID scores (lower is better) for one-step generation. The
best entry is highlighted in bold.

5.3. Image Datasets - Cifar10 and CelebA

We additionally train the models on the higher-dimensional
image datasets Cifar10 (Krizhevsky, 2009) and CelebA (Liu
et al., 2021), using the same loss scaling factors as for
MNIST. For CelebA, we preprocess the images by taking
the center crop and rescaling them to the 32 × 32 resolu-
tion. For these datasets, we introduce an additional baseline,

3



Submission and Formatting Instructions for GRaM Workshop at ICML 2024

ICM ICM (λid = 0) CM

Figure 3. 1-Step samples on the MNIST (top) and Fashion MNIST
(bottom) datasets.

where we use standard consistency training but with the
simple boundary condition fθ(xϵ, ϵ) = xϵ, which enforces
the identity only at time t = ϵ and uses the unconstrained
network otherwise. We name this baseline CM-S. The best
FID for 1-step generation for all the models is reported in
table 3, while the samples from the models are shown in
figures 4 and 5. CM outperforms the other models on both
datasets, even though by just a small margin on CelebA. In-
terestingly, ICM with and without idempotency loss perform
significantly better than CM-S, confirming the usefulness of
learning the boundary condition in this case.

Cifar10 CelebA

ICM 8.031 2.912

ICM (λid = 0) 8.402 3.197

CM 7.062 2.832

CM-S 12.795 6.467

Table 3. FID scores (lower is better) for one-step generation. The
best entry is highlighted in bold.

5.4. Training details

On the 2D experiments, we use a residual MLP with two
residual blocks, Positional Embedding for the scale parame-
ter, EMA rate µ = 0.9999 and train all the models for 200k
iterations with batch size 512. All the datasets consist of
20k sampled points. For the MNIST and F-MNIST, we use
the NCSN++ architecture as in (Song & Dhariwal, 2023), by
changing the following parameters: model channels = 96,
channel mult = [2, 2, 2], and num blocks = 2, batch
size 256 and EMA rate µ = 0.9999. For Cifar10 and
CelebA, we use the same settings used for Cifar10 in (Song
& Dhariwal, 2023), but total batch size 128. We set the
dropout rate to 0 for all the experiments, while the remain-

ICM ICM (λid = 0)

CM CM-S

Figure 4. 1-Step samples on the Cifar10 datasets.

ing hyperparameters and training techniques are the same
as in (Song & Dhariwal, 2023).

6. Related Work
CMs were introduced in (Song et al., 2023) and further
improved in (Song & Dhariwal, 2023), and showed to be a
valid alternative to DMs in terms of sample quality while
requiring significantly less network evaluations. Our work
reuses the building blocks from (Song & Dhariwal, 2023)
while investigating the benefits of learning the boundary
conditions.

The works from (Kim et al., 2023; Heek et al., 2024) focus
on improving multi-step sample quality, by mapping points
between arbitrary time steps of the ODE flow, or by employ-
ing a different training and sampling procedures similar to
DDIM (Song et al., 2020a). The contribution from our work
is rather focused on improving the performance with one
sampling step for CMs, and can be seen as an orthogonal
contribution.

A different family of models that share similarities with our
method is Idempotent Generative Networks (IGN) (Shocher
et al., 2023), where a neural network is trained to be idempo-
tent on manifold, i.e. F (x) = x, ∀x ∈ p(x). Our boundary
and idempotency losses are similar to the losses proposed
in IGN, but IGN differs from our method as it maps noise
to data in an unstructured way, and it relies on an additional
adversarial-style loss to prevent the estimated manifold from

4



Submission and Formatting Instructions for GRaM Workshop at ICML 2024

ICM ICM (λid = 0)

CM CM-S

Figure 5. 1-Step samples on the CelebA datasets.

expanding.

7. Conclusion and Future Work
In this work, we introduced ICM, a novel method to train
CMs by learning the boundary conditions, which leads to
a novel loss formulation that can guide the model output
towards the support of the data during training. We demon-
strated the effectiveness of ICM on several 2D and image
benchmarks, as well as providing a theoretical explana-
tion for the improved performance. To further develop the
method, a careful tuning of the loss scales and training
procedure can result in improved performances. However,
ICM did not outperform standard CM on higher resolution
image datasets, and further research is required to verify
whether such a model can scale to complex datasets, and
to understand in which cases ICM should be the preferred
solution.

References
Dhariwal, P. and Nichol, A. Diffusion models beat gans

on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Heek, J., Hoogeboom, E., and Salimans, T. Multistep con-
sistency models. arXiv preprint arXiv:2403.06807, 2024.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-

bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. Advances in
Neural Information Processing Systems, 35:8633–8646,
2022.

Kim, D., Lai, C.-H., Liao, W.-H., Murata, N., Takida, Y., Ue-
saka, T., He, Y., Mitsufuji, Y., and Ermon, S. Consistency
trajectory models: Learning probability flow ode trajec-
tory of diffusion. In The Twelfth International Conference
on Learning Representations, 2023.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis.
In International Conference on Learning Representations,
2020.

Krizhevsky, A. Learning multiple layers of features from
tiny images. 2009.

Liu, L., Ren, Y., Lin, Z., and Zhao, Z. Pseudo numerical
methods for diffusion models on manifolds. In Interna-
tional Conference on Learning Representations, 2021.

Salimans, T. and Ho, J. Progressive distillation for fast sam-
pling of diffusion models. In International Conference
on Learning Representations, 2021.

Shocher, A., Dravid, A. V., Gandelsman, Y., Mosseri, I.,
Rubinstein, M., and Efros, A. A. Idempotent generative
network. In The Twelfth International Conference on
Learning Representations, 2023.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2020a.

Song, Y. and Dhariwal, P. Improved techniques for train-
ing consistency models. In The Twelfth International
Conference on Learning Representations, 2023.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations, 2020b.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. In International Conference on Machine
Learning, pp. 32211–32252. PMLR, 2023.

5


