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Abstract

With the recent expanding attention of machine learning researchers and practi-
tioners to fairness, there is a void of a common framework to analyze and compare
the capabilities of proposed models in deep representation learning. In this paper,
we evaluate different fairness methods trained with deep neural networks on a
common synthetic dataset to obtain a better insight into the working of these
methods. In particular, we train about 2000 different models in various setups,
including unbalanced and correlated data configurations, to verify the limits of the
current models and better understand in which setups they are subject to failure.
In doing so we present a dataset, a large subset of proposed fairness metrics in
the literature, and rigorously evaluate recent promising debiasing algorithms in a
common framework hoping the research community would take this benchmark as
a common entry point for fair deep learning.

1 introduction

The emergence of deep learning models has brought up questions on the fairness of these models
with respect to sensitive attributes. There have been studies on the reliability and bias of deep
learning approaches, such as the bias of the learning algorithms due to matching a data distribution
in adversarial models (Cohen et al., 2018), visual question answering (Agrawal et al., 2018), image
search setups (Kay et al., 2015), and gender classification (Buolamwini & Gebru, 2018). Recent
approaches (Madras et al., 2018; Zhao et al., 2020; Creager et al., 2019; Zhang et al., 2018) address
the bias in deep learning models and propose fair models that better guarantee fairness criterion while
maintaining accuracy. The general idea in these models is applying a fairness learning technique
either on the learned latent representation (Madras et al., 2018; Zhao et al., 2020; Creager et al., 2019)
or the output eligibility criterion (Zhang et al., 2018), given an input.

Adversarial learning techniques (Goodfellow et al., 2014; Ganin & Lempitsky, 2015) have been
extensively used to learn the data distribution of interest, such as learning disentangled latent space
(Kim &Mnih, 2018; Chen et al., 2018; 2016), or subtraction of a feature from the latent space (Lample
et al., 2017; Denton et al., 2017). Adversarial learning has also been used in fairness models to either
remove sensitive information from the latent space (Madras et al., 2018; Zhao et al., 2020; Zhang
et al., 2018) or disentangle latent features into sensitive and non-sensitive attributes (Creager et al.,
2019). The goal in these approaches is to remove the sensitive information, such as gender, from the
latent space that is later used for other tasks, such as eligibility classification. In this paper, we aim to
verify whether well-performing and ubiquitous models can effectively reduce bias when evaluated
using well-established fairness metrics. Here we focus on deep learning models for classification and
their adversarial bias mitigation counterparts.

The difficulty of a task is determined by the distribution of the dataset, which in turn, is a function of
the label imbalance, features imbalance, dependency of sensitive attributes to the rest of features,
and distribution shift from training to development phase to name a few. In addition, in the current
state of fairness community problems with reproducibility and inconsistency in the experimentation
and dataset setups makes comparison difficult. Given the importance and possibly tangible impact
of proposed algorithms when in production, we advocate for a rigorous and unified evaluation of
the capabilities of debiasing models. We argue the need for a systematic analysis that would assess
different bias mitigation approaches under the perspective of different fairness metrics. This would
help elucidate the most promising research contributions.
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To analyse debiasing models we propose a dataset that facilitates creation of different biased setups,
such as data imbalance or correlation among eligibility and sensitive or non-sensitive attributes. In
particular, contrary to real datasets where the intensity of each feature cannot be controlled, this dataset
allows changing only one component while keeping all other components unchanged, something that
allows study of different variations of biased setups.

To evaluate models under different biased setups, we provide an in-depth analysis of baselines and
recently proposed bias mitigation models in the literature. In particular, we evaluate three promising
debiasing models (six variants) together with a baseline model using a unified set of fairness metrics
and report results by carrying extensive hyper-parameter search in all cases, ensuring that the drawn
conclusions can be attributed to modeling or loss choices. In doing so, we evaluate these models
under different setups by training about 2000 models, in which we transition from balanced setups
towards challenging unbalanced and correlated setups, where eligibility criterion is correlated with
sensitive or non-sensitive attributes. Given the importance of fairness and the serious implications of
their misuse, we intentionally try to push these models to their breaking point using extreme settings
from our dataset. We consider different ratios for each sensitive group to create “unfair datasets”.
This is noteworthy that our analysis is not to undermine the effectiveness of any of these methods,
rather setting the expectations and boundaries for different use cases and encouraging the community
to follow. To summarize, our contributions are:

• We show when there is a correlation between eligibility and the sensitive attribute, models
exploit it for prediction of accuracy and use it even in test cases when such correlation does
not exist, which leads to unfair predictions.

• We show that even when there are non-sensitive attributes in the dataset or small visual
features in the input image that correlate with eligibility, models can still exploit it and hence
be biased.

• We demonstrate that the choice of seed can affect the results significantly and different
models show a considerable variation of performance given the seed.

• We provide a deep learning codebase composed of six debiasing models and a baseline to
the fairness community for research and evaluation of fairness models.

• We provide a dataset with different controllable sets of features and correlation among them,
to facilitate research on fairness models in different unfair setups.

2 Related Works

There is an increasing literature studying how biased datasets can bias learning algorithms to
discriminate (Bolukbasi et al., 2016; Cohen et al., 2018; Agrawal et al., 2018). These studies have led
researchers to propose new evaluation tools and datasets (Buolamwini & Gebru, 2018), with the goal
of identifying potential machine learning error rate gaps among different groups. To remedy this
issue, numerous contributions have emerged in order to probe machine learning systems at different
levels and reduce discrimination from the perspective of modeling. Friedler et al. (2019) evaluate the
fairness of pre-processing, in-processing, and post-processing machine learning approaches; however,
no deep learning model is evaluated in their study. Moreover, the models are not evaluated while
changing the level of dataset bias or correlation among features. Kamishima et al. (2012) propose
a regularization approach for models with probabilistic discriminative nature and evaluate it on
logistic regression models; (Zafar et al., 2017a) proposes a flexible mechanism to optimize accuracy
in the presence of non-convex fairness constraints (or vice-versa, optimize fairness with accuracy
constraints) and evaluate it on logistic regressions and support vector machines.

In addition, several contributions have attempted to leverage adversarial learning to mitigate biases
in learned representations or in classifiers. Adversarial learning was originally introduced within
the framework of Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)and it has
been leveraged in the bias mitigation frameworks to make different groups indistinguishable from
one another with respect to a sensitive attribute. In particular, (Edwards & Storkey, 2016) learns
adversarially to debias encoded features to be used in classification tasks, while being fair with respect
to demographic parity. Madras et al. (2018) adopt a group normalized `1 loss and adapt it for each
fairness metric of interest. Beutel et al. (2017) debias the encoded features using an adversarial
training procedure for classification tasks to achieve equality of opportunity. Zhang et al. (2018)
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directly pass the classifier’s output, rather than the encoded features, to a discriminator to debias the
classifier with respect to different fairness metrics.

Despite the recent progress in fair deep learning models, the comparison of bias mitigation algorithms
in a common setup is not straightforward, especially in biased and correlated dataset setups. Verma &
Rubin (2018) evaluate how fair an off-the-shelf logistic regression model is, given a set of fairness
metric definitions. In this work, we evaluate some of the most recent and promising deep learning
models in a common deep representation setup.

Adversarial techniques can be categorized into three main approaches: (i) applying debiasing through
adversarial training directly on the class label, where the class label is an indicator of eligibility
(Zhang et al., 2018), (ii) mitigating bias through enforcing group-fairness on the learned latent space
where it is directly used for classification of eligibility (Beutel et al., 2017; Madras et al., 2018;
Zhao et al., 2020), and (iii) discarding sensitive representation features for downstream tasks after
disentangling learned latent space into sensitive and non-sensitive ones (Creager et al., 2019; Träuble
et al., 2020). This line of research is motivated by recent development in disentangled representation
learning (Kim & Mnih, 2018; Chen et al., 2018; Locatello et al., 2019). In this paper, we take some
of the promising models from the above-mentioned categories and assess their merits in challenging
scenarios, in particular, in under-represented and correlated dataset setups. This exercise is not to
undermine the applicability or achievements of these models but rather to understand the robustness
and boundaries of these models under a variety of settings.

3 Models

In this study, we empirically analyze the performance of a baseline MLP (multi-layer perceptron)
model without any bias mitigation learning criteria and compare it with LAFTR (Madras et al.,
2018), which applies adversarial learning to achieve group fairness, CFAIR (Zhao et al., 2020) which
performs conditional alignment of representations to achieve a better accuracy-fairness trade-off, and
finally, FFVAE (Creager et al., 2019), which disentangles latent representation into sensitive and
non-sensitive attributes.

For simplicity, we introduce the following shorthand notation. We denote by X ⊆ Rd and Y = {0, 1}
the set of inputs and outputs, respectively. Two sets of random variables X and Y take associated
values x ∈ X and y ∈ Y . Variable y determines eligibility which in our MNIST-based dataset refers
to a digit is even or odd. We denote the sensitive binary variable by S taking values s ∈ {0, 1}.
Moreover, p indicates the output probability of the classifier as a real number and Ŷ is the class
predicted random variable based on p, which takes values ŷ ∈ {0, 1} using a threshold. For each s
and y, the term Dy

s is the conditional distribution of the joint distribution D over X × Y × S, given
Y = y, S = s.

Baseline Model. We use an MLP as our baseline model, which given an input image x, predicts the
probability p of the input being odd or even. This probability is then transformed into a classification
prediction ŷ. This model does not leverage any bias mitigation algorithm and is meant to show how
fair a base deep learning model would perform under different fairness criteria.

Learning Adversarially Fair and Transferable Representations (LAFTR). LAFTR (Madras et al.,
2018) is an adversarial based bias mitigation algorithm within the scope of representation learning. In
the supervised version of LAFTR, given an input image x, it first learns a latent encoded representation
z that is passed to the discriminator to be debiased. The learned representation is then passed to a
classifier to predict the task of interest y. The discriminator is trained by minimizing

Ex,y,s∈DLS(D(z, y), s) (1)

where y is only passed in debiasing models aimed for equality of odds and equality of opportunity.
The encoder and classifier are trained jointly by minimizing

Ex,y,s∈DLY(C(z), y)− γLS(D(z, y), s) (2)

where z = E(x) is the encoded feature, which is passed to both the classifier C and the discriminator
D. The first term measures the classification loss and the second term gets the adversarial gradients
from the discriminator regarding the sensitive attribute s.
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Following the original paper, we considered four variants of this model. LAFTR-DP objective is
defined as

Ex,s∈DLDP
S (D(z), s) = 1−

∑
s∈{0,1}

Ex,s∈Ds |D(z)− s| (3)

and LAFTR-EqOpp0 objective is considered as

Ex,y,s∈DLEqOpp0
S (D(z, y), s) = 1−

∑
s∈{0,1},y=0

Ex,s∈Dy
s
|D(z)− s| (4)

LEqOpp1
S is obtained by replacing y = 1 in Eq. (4) and LEqOdd

S is the sum of LEqOpp0
S and LEqOpp1

S .

Conditional Learning of Fair Representations (CFAIR). Proposed by (Zhao et al., 2020) this
model leverages two adversarial networks h0 and h1, predicting sensitive attribute s respectively for
class labels Y = 0 and Y = 1. CFAIR depends on an objective function called the balanced error
rate (BER) (Feldman et al., 2015; Menon & Williamson, 2018), which guarantees small joint error
across demographic groups. The BER represents the sum of false positive rate and false negative rate.
Therefore, it is equal to minimizing the below two conditional errors. BERD(Ŷ ‖Y ) is defined as

BERD(Ŷ ‖Y ) ∝ p(Ŷ = 1|Y = 0) + p(Ŷ = 0|Y = 1). (5)

and BERD(Ŝ‖S) is defined similarly, where Ŝ is the predicted sensitive random variable. CFAIR is
optimized based on the following min-max formulation.

min
C,E

max
h0,h1

BERD(C(E(X))‖Y )− γ (BERDy=0 (h0(E(X))‖S) + BERDy=1 (h1(E(X))‖S))
(6)

This approach proposes that using the balanced error rate along with the conditional alignment helps
in achieving equalized odds across the groups without impacting demographic parity.

Flexibly Fair Representation Learning by Disentanglement (FFVAE). Inspired by FactorVAE
(Kim & Mnih, 2018), FFVAE (Creager et al., 2019) performs disentanglement by factorizing latent
space. It learns a disentangled representation of the inputs, which is flexibly fair in the sense that it
can be easily modified at test time to achieve demographic parity across various groups.

In our setup, x is the input image, which is considered to implicitly contain both sensitive and
non-sensitive attributes. Moreover, a = (a1, . . . , aN ), b = (b1, . . . , bN ), and z are the sensitive
attribute, the sensitive latent, and non-sensitive latent of x, respectively, withN indicating the number
of sensitive or non-sensitive features, depending on the dataset.

FFVAE trains an encoder q(z, b|x), a decoder p(x|z, b), as well as an adversarial network. The
latent representation is disentangled into sensitive and non sensitive latent attributes by encouraging
bothMI(b, z) andMI (bi, aj) ,∀i 6= j to be low, whereMI represents mutual information. FFVAE
objective is defined as

LFFVAE(p, q) = Eq(z,b|x)[log p(x | z, b) + α log p(a | b)]]−DKL−FFVAE (7)

where
DKL−FFVAE = γDKL(q(z, b)‖q(z)

∏
j

q (bj)) +DKL(q(z, b | x)‖p(z, b)) (8)

The first term of Eq. (7) consists of a reconstruction term (on left) and a predictiveness term
p(a | b), which aligns sensitive attributes to its respective sensitive latents. Eq.(8) has two terms; the
disentanglement term on the left decorrelates the sensitive latent representation b from z using an
adversarial network and the second term is the Kullback–Leibler divergence between the prior and
the latent distribution.

In addition to the above-mentioned models, we also did experiments with (Zhang et al., 2018) (based
on the code released by authors), however, the model was very unstable on our dataset configurations
even after extensive hyper-parameter search. We hypothesize that this is due to the application of
adversarial training directly to the class labels, which makes the model unstable, as indicated by the
authors. Due to unstable results, we dropped this model from our evaluation.
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Figure 1: We show the conversion process
used to generate our dataset and add our
dataset attributes in the last 3 columns to the
resized image. e-o-ratio affects the number
of lines observed on the image. g1/g2 and
gw respectively affect the location and size
of the green pixels (small vertical lines on
top-left of the image).

4 Setup

Machine learning algorithms have attracted much attention and found application in a wide range of
highly risky domains such as medical tests and criminal justice. It is important to make sure that the
unfairness present in datasets (Cohen et al., 2018; Agrawal et al., 2018; Kay et al., 2015; Buolamwini
& Gebru, 2018), is not learned and later inferred by powerful deep learning models used for decision
making (Barocas & Selbst, 2016; Berk et al., 2018; of the President, 2016). One way to achieve this
goal is to measure the ability of the current prominent debiasing models in ignoring the correlation
existing in the datasets and evaluate these models in setups where we have a mechanism to control the
correlations among dataset features.

Colored-MNIST. In order to evaluate the debiasing models in challenging setups and be capable
of controlling different dataset configurations, we design a variant of the MNIST dataset (LeCun &
Cortes, 2010), called Colored-MNIST, where we introduce different types of correlations between
sensitive attribute, dataset features, and eligibility criterion. For an input image x, the label y ∈ {0, 1}
indicates eligibility or ineligibility, given x is even or odd. We use the background colors as the
protected or sensitive attribute s ∈ {0, 1}, where blue indicates the unprivileged group and red
indicates the privileged group. The task of interest is to classify whether, given an input image
x, the class label y is odd or even. While a model improves its classification accuracy, we aim
at observing its performance given different fairness metrics. We would like to also observe how
the model’s classification accuracy and fairness measures change in different dataset scenarios. A
common practice is to show reasonable performance on a few standard datasets. These, however, do
not cover the majority of possible distributions of a dataset that a model can encounter in real-world
development and production. Here we are using this dataset as a benchmarking tool that will allow
control over these factors to give a better sense of what a model is capable of in different challenging
setups.

4.1 Dataset features

Label (y): The label indicates whether the digit is even or odd. In our dataset, even is eligible (y = 1)
and odd is ineligible (y = 0).

Background color (bck): It refers to the background color (sensitive attribute) which is various
shades of blue and red colors.

clr-ratio: shown in pair (be, bo), be(bo) refers to the ratio of the even (odd) digits with blue
backgrounds and the rest of the digits will have red backgrounds. Using this feature we control the
correlation between the sensitive attribute and the eligibility.

e-o-ratio: This feature indicates the number of drawn lines on the digit. e-ratio (o-ratio) refers to the
ratio of even (odd) digits that contain 6 to 20 lines. The rest of the digits have between 2 to 6 lines.
Using e-o-ratio, we can completely correlate (1, 0) or completely decorrelate (0.5, 0.5) the number
of lines on the digit (as a non-sensitive attribute) with the eligibility.

Green width (gw): This value indicates the number of green pixels (either 1 or 5) in the image and is
visualized as a small vertical line (see Figures 1 and 5). The location of green pixels is indicated by
g1 and g2.

g1: This variable indicates the location of the first green column in the image and is set to one of
{2, 22}. For each given even (odd) digit, the location of the first green column is randomly drawn in the
range of [0, g1/2) ([g1/2, g1)). Hence, if g1 = 2, the location of the green column is an easy-to-spot
indicator of eligibility since the same pixel location (0 or 1) indicates eligibility/ineligibility, while if
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g1 = 22, the model needs to observe over many cases, hence it requires a stronger analysis across
different cases.

g2: This variable indicates the location of the second green column in the image and is set to
g1 + digit where digit varies from 0 to 9. We used g2 in all our experiments along with g1.

By using g1, g2, and gw, we evaluate the following: when we have features that are visually small (1
or 5 pixels big), can models exploit the correlation between g1 and eligibility, in an easy-to-spot case
(g1 = 2) and a more challenging case (g1 = 22)?

4.2 Fairness Metrics

We use the same set of fairness metrics, as reported in LAFTR, CFAIR, and FFVAE, to evaluate the
debiasing models. Table 1 presents the fairness metrics as well as their mathematical notations and
abbreviations. In Table 2 we provide a comprehensive list of fairness metrics in the literature, which
we have implemented in our framework and will release to the community. Due to the limit of space
and more widespread usage of the metrics presented in Table 1, we only report on these metrics. The
provided tool by (Friedler et al., 2019) is used to compute all of the metrics.

Fairness Criteria Formulation Abbreviation
Demographic Parity 1− |p(Ŷ = 1|S = Protected)− p(Ŷ = 1|S = Unprotected)| DP
Equality of Opportunity w.r.t y = 1 1− |p(Ŷ = 1|Y = 1, S = Unprotected)− p(Ŷ = 1|Y = 1, S = Protected)| EqOpp1
Equality of Opportunity w.r.t y = 0 1− |p(Ŷ = 1|Y = 0, S = Unprotected)− p(Ŷ = 1|Y = 0, S = Protected)| EqOpp0
Equality of Odds 0.5× [EqOpp0+ EqOpp1] EqOdd
unprotected-accuracy p(Ŷ = y|Y = y, S = Unprotected) up-acc
protected-accuracy p(Ŷ = y|Y = y, S = Protected) p-acc
accuracy 0.5× [up-acc+ p-acc] acc

Table 1: X,Y, S denote the input sample, ground truth label, and the sensitive attribute. Ŷ and p are the model’s
prediction and the output probability of the model. For all metrics, 1 indicates the perfect and 0 the worst value.

5 Experimental Results

In this section, we evaluate the baseline MLP model as well as the debiasing models (LAFTR-DP,
LAFTR-EqOpp0, LAFTR-EqOpp1, LAFTR-EqOdd, CFAIR, and FFVAE) on the Colored-MNIST
dataset and evaluate their performance on different fairness metrics. The goal is to provide an
evaluation baseline for different debiasing models and meanwhile measure how fair they remain
in unbalanced and biased situations. In particular, we change the dataset from a balanced setup to
different unbalanced setups. In the balanced setup, the ratio of unprivileged (blue) and privileged
(red) background is at 50% for both eligible and ineligible groups, giving clr-ratio of (0.5, 0.5), and
the data features and eligibility are uncorrelated with e-o-ratio being (0.5, 0.5). In the unbalanced
cases, while we deviate from the balanced setup during training, at test time, we evaluate the models
in a balanced setup, meaning the dataset is at 50% for eligible and ineligible groups as well as for
privileged and unprivileged groups. This way, we report the model’s performance on a balanced setup
of different sub-groups. Experimental and model details are provided in Section B.

Impact of reducing representation of unprivileged group. In this experiment, we change clr-
ratio from the balanced setup of (0.5, 0.5) to unbalanced cases of (0.1, 0.1), (0.01, 0.01), and
(0.001, 0.001). In these setups, the unprivileged group with the blue background is less and less
represented in both eligible and ineligible groups, hence evaluating the models where the unprivileged
groups are under-represented, but represented equally in both eligible and ineligible groups. Figure
2 compares two models side-by-side, Figure 6 and Tables 4 to 10 in the Supplementary in Section
C.1 show all models and give detailed results. We initially averaged metrics over three seeds, then
for each metric, the best value is reported, meaning the performance of the best-performing model
on the fairness metric (chosen across hyper-parameters on the validation set) is reported on the test
set. This would allow us to report the best performance on each metric, without choosing how to
compromise between accuracy and a fairness metric (which usually have a trade-off and improving
one deteriorates the other). We want to show that there exists a bias even when the best variation
of the model is considered. Note that this is even in favor of the models as the best possible result
is reported. Hence in each column we report the best obtained result, which can correspond to a
different hyper-parameter or early-stopping point. As observed in the results, through the transition
from balanced to unbalanced setups, both accuracy and fairness metrics drop. While LAFTR models
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maintain better fairness metrics compared to other models, they perform poorly on accuracy metrics.
After LAFTR, FFVAE and then CFAIR, can less and less preserve fairness metrics while in the same
order they improve on accuracy. The baseline model (MLP), without any debiasing, as expected
performs the best on the accuracy, while fails more than other models in maintaining fairness.

Figure 2: Comparing different models while decreasing minority representation.

Impact of correlation of sensitive attribute with eligibility. In this setup, we change clr-ratio
from the balanced setup of (0.5, 0.5) to unbalanced cases of (0.1, 0.9) and (0.01, 0.99), where
the unprivileged group is under-represented in the eligible and over-represented in the ineligible
groups. In unbalanced settings, the resistance of models to the correlation between sensitive attribute
(background color) and the eligibility metric is evaluated. The goal is to evaluate the following: when
such cases arise, do models perform fairly in test setups, where everything is completely balanced?
and hence can they avoid carrying the correlation of training to test setups? Figure 3 compares two
models side-by-side, Figure 7 and Tables 11 to 17 in Section C.2 of Supplementary show all models
and detailed results. In this setup, FFVAE preserves better the fairness metrics compared to other
models. LAFTR and CFAIR models perform similarly or sometimes even worse than the baseline
model on fairness metrics, while the baseline model preserves better the accuracy. Missing bars in
the plots imply zero metric values and biased predictions on the balanced test set. The results show
that even though debiasing models are provided with the sensitive attribute during training, they still
fail to decorrelate the sensitive attribute from eligibility in highly correlated setups.

Figure 3: Comparing different models while shifting correlation of sensitive attribute (bck) and the eligibility.

Impact of correlation of non-sensitive attribute with eligibility. In this setup, we keep clr-ratio at
(0.5, 0.5), however, change e-o-ratio from balanced setting of (0.5, 0.5) to unbalanced settings of
(0.9, 0.1). This would make the number of lines on the digits correlated with eligibility. The goal is
to evaluate the following: to what extent a model can exploit the correlation between a non-sensitive
attribute and the eligibility criterion and hence be biased at test time? Figure 8 and Tables 18 to
24 in Section C.3 show results for all models. While MLP, CFAIR, and FFVAE do not show much
change in this setup, LAFTR models show more deviation, indicating they are more sensitive to
such correlations. For example, LAFTR-DP dropped in fairness measures, while LAFTR-EqOpp0’s
performance improved. As we show later, this is mainly due to the high variance of this model under
different seeds.

Impact of small features in the input images. In this setup, we change g1 from 22, where the
location of the green pixel has a more complex relation with eligibility, to 2, where the location of the
green pixel (0 for eligibility and 1 for ineligibility) is an easy-to-spot indicator of eligibility that can
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be more easily learned by models and hence induce bias. The question is whether models find such
small but non-trivial correlated features with eligibility? If the answer is yes, then information even
in the small portion of the input can cause biased performance of the model. In this setup we run
an experiment where for each one of g1 = 2 and g1 = 22 we consider two cases with gw = 1 and
gw = 5, respectively showing only 1 and 5 green pixels in the image. This setup would verify whether
the model observes the green part of the image and if yes how much impact the size of that region
will have. Figure 4 shows two models, Figure 9 and Tables 25 to 31 show two extra models and give
detailed results for all models. While models like MLP, CFAIR, and FFVAE show a small difference
in two setups, LAFTR models become less fair in the biased setup of g1 = 2, indicating this model is
more prone to pick up on such small details, when it can spot it. Results with gw = 5 show very close
performance to gw = 1, indicating even one pixel can be enough for models to extract small details
from the images. The results show that when there are small and sometimes not-noticeable features in
the dataset, they can cause bias in the learning algorithm.

Figure 4: Impact of small visual components on different models’ performance.

6 Discussion

6.1 Sources of Bias

In our experiments, we have considered four different sources of bias.

1. Small percentage of the unprivileged group. This case causes bias due to the small ratio
of the unprivileged group compared to the privileged group. In this case, the bias can be
two-fold, one is due to the imbalance between the two groups, another can be due to rareness
of the data from the unprivileged group. While the clr-ratios (0.1, 0.1), (0.01, 0.01), and
(0.001, 0.001), all are subject to group imbalance, the latter two cases have 250 and 25
samples from the unprivileged group, compared to 24,750, and 24,975 samples respectively
from the privileged group. So, the model has to also handle the secondary aspect of the bias,
which is different.

2. Correlation of a feature with eligibility. In some data the unprivileged group might be
less eligible, e.g. due to historic reasons of lack of access to facilities or limited resources
compared to privileged group. Such correlations in the data can be picked up by the model
and cause bias at inference.

3. Impact of size of the correlated visual features. While large features that correlated with
eligibility and cause bias can be easily observed by a model, small visual features can also
have correlations with eligibility. Given the size of the correlated features, some models can
act more fair while others might remain biased.

4. Impact of unnoticed and small features. The debiasing algorithms work based on the
assumption that the sensitive or biased attributes are known a-priori and hence can be
addressed by knowing these features and removing them from the learned representation.
However, some features, especially small ones, might not be noticed by the model or the
annotator. For example, wearing earrings, can correlate with gender, or glasses with age.
Such cases might not be observed and addressed properly by the debiasing model, if they are
not know a-priori.

We have studied the impact of the four above-mentioned sources of bias, and have observed a stronger
level of bias in the first two cases. Specially, the correlation of big visual sensitive attributes with
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eligibility, and imbalance among the privileged and unprivileged groups lead to a higher bias. This
trend was observed in all models. We observed smaller visual components that are correlated with
eligibility cause less bias, as the model can more easily get rid of them. Some models such as LAFTR
suffered still in these cases. We believe study of such sources of bias can help better evaluate the
debiasing models and advocate their study in future works.

6.2 Model Stability

Variation due to seed. In deep learning models, seed is a great source of variation due to initialization
of the model parameters and the sampling done during training, which can converge the model to
different solutions in the course of training. To observe its impact, we evaluated how much standard
deviation changes when the seed used for a model differs. The results for three seeds considered are
shown in Figure 10 for all of the setups described in our experiments. We observed the choice of seed
can impact some models more than others. In particular, LAFTR was the least stable model in terms
of variation of results given different seeds. We advocate verification of any debiasing method under
different seeds, as this indicates how much the model is susceptible to small training variations and
hence not suitable for bias mitigation. This is complementary to other studies of stability, such as
cross-validation, studied in Friedler et al. (2019).

Correlation between dataset features andmodel’s prediction. If a model’s prediction is correlated
with dataset features, it indicates it can rely on biases in data in its predictions and hence be unfair
when applied. To verify this, for each model, we measured the correlation between dataset features
and fairness metrics using Spearman correlation matrices, measured over all of the experiments
presented in this section. The results are presented in Figure 11 for the 64-dim architecture. On
average the models that capture less correlation between dataset features and fairness metrics act
fairer in the experiments, as we also observe from results presented above.

Instability due to the debiasing method. Debiasing algorithm can cause instability due to the way
the model mitigates bias. In particular, adversarial models can be unstable in practice and caution
needs to be made in properly using them. We found Mubal (Zhang et al., 2018) to be the least stable
model, as it applies the adversarial loss directly onto the class label. Applying the adversarial loss
to the learned latent space, as done in LAFTR, made this process more stable. However, even this
approach performed poorly in many setups and was subject to high variations with a small change in
the dataset. Even among different LAFTR variants, the LAFTR model with a given fairness criteria
introduced into its objective function, was not always the LAFTR variant performing the best on that
particular metric. We believe this is due to application of both accuracy and adversarial loss to the
same latent space, which causes a competition between the two losses. CFAIR has a more stable
learning due to using two adversarial networks for two eligibility classes and using a balanced error
rate as its loss function. Finally, FFVAE, obtained the most stable performance due to disentangling of
attributes into sensitive and non-sensitive and also decoding features, which helps the model capture
all of the information of the input image.

7 Conclusion

With representation learning algorithms getting more accepted as automatic decision-making tools,
we propose an evaluation scenario to better understand the limits of these methods. We systematically
compare and analyze a few of the better-known models using our proposed dataset, where we
control the correlation in-between different dataset components. Although these models proved their
effectiveness to the community and can solve and improve upon some of our dataset variants, we
show that we can purposefully push them to their breaking point. Our results indicate that in different
setups the models can learn and hence induce a bias when correlations in the dataset exist. This
suggests that not all models are suitable for all scenarios and using unsuited models for certain tasks
could cause unwanted consequences. We also note that with the abundance of fairness metrics, there
exists room for improvement when it comes to model selection as we cannot pinpoint a single metric
that works best across all the metrics. This becomes imperative as specifically, practitioners need
to be fair across more than one metric and find a trade-off between fairness and accuracy. Finally,
we will release our dataset and codebase to the community in order to provide a framework for the
evaluation of deep fairness models.
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