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ABSTRACT

Accurately predicting protein-ligand binding affinity is a critical challenge in drug
discovery, crucial for understanding drug efficacy. While existing models typically
rely on atom-level interactions, they often fail to capture the complex, higher-order
interactions, resulting in noise and computational inefficiency. Transitioning to
modeling these interactions at the cluster level is challenging because it is diffi-
cult to determine which atoms form meaningful clusters that drive the protein-
ligand interactions. To address this, we propose CheapNet, a novel interaction-
based model that integrates atom-level representations with hierarchical cluster-
level interactions through a cross-attention mechanism. By employing differen-
tiable pooling of atom-level embeddings, CheapNet efficiently captures essential
higher-order molecular representations crucial for accurate binding predictions.
Extensive evaluations demonstrate that CheapNet not only achieves state-of-the-
art performance across multiple binding affinity prediction tasks but also main-
tains prediction accuracy with reasonable computational efficiency.

1 INTRODUCTION

Predicting protein-ligand binding affinity—the quantitative measure of interaction strength between
a protein and a ligand—is a fundamental challenge in drug discovery with major implications for
therapeutic development. This measure, often expressed as the dissociation constant (Kd) or inhibi-
tion constant (Ki), directly determines drug efficacy. Traditional wet-lab methods, though accurate,
are time-consuming, costly, and difficult to scale (Schirle & Jenkins, 2016; Lee & Lee, 2016; Yang
et al., 2022), necessitating the development of computational approaches as faster, scalable alterna-
tives in the drug discovery pipeline. However, computational modeling of binding affinity remains
highly challenging due to the intricate and variable nature of molecular interactions, presenting sig-
nificant hurdles for deep learning approaches (Dhakal et al., 2022).

Recent advances in deep learning have shown promise in predicting binding affinity by learning
atom-level representations of proteins and ligands (Öztürk et al., 2018; Yang et al., 2022; Jiang
et al., 2021; Townshend et al., 2020; Yang et al., 2023; Feng et al., 2024), modeling their interac-
tions as sets of atom-to-atom relationships. While this atom-centric approach captures fine-grained
details of local interactions, it has notable limitations. Modeling solely at the atom level results in
excessive computational complexity, as many atom pairs contribute negligibly to overall binding
affinity (Nguyen et al., 2023; Tan et al., 2024; Abdelkader et al., 2023). Moreover, treating all atoms
equally introduces noise, as irrelevant atoms can interfere with accurate predictions (Jin et al., 2023;
Shen et al., 2024).

Beyond the limitations of atom-level modeling, binding mechanisms often involve hierarchical re-
lationships that atom-level approaches alone cannot fully capture. Clusters of atoms often interact
collectively with specific protein regions, such as aromatic rings targeting binding pockets to in-
hibit HIV protease (see Figure 1). These clusters exemplify the importance of identifying groups of
atoms that act synergistically, a key factor in established binding paradigms like the lock-and-key
and induced fit models (Du et al., 2016; Zhao et al., 2021; Fatmi et al., 2009; Schatz et al., 2021;
Liu et al., 2017a). The primary challenge lies in developing a mechanism that identifies meaningful
clusters dynamically and ensures their relevance to the binding process.
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Figure 1: Protein-ligand complex (PDB ID:
1HVR) of HIV protease and its inhibitor. The
ligand’s aromatic ring and its corresponding con-
tact region on the protein are highlighted in match-
ing colors. Cyan dashed lines represent all contact
points between the ligand and protein.

Effectively addressing this challenge involves
learning subgraphs—substructures within the
protein-ligand complex—that encode both lo-
cal and global structural features (Yuan & Ji,
2020). Unlike traditional methods that focus
exclusively on atom-level interactions or pre-
defined clusters with geometric constraints (Du
et al., 2024; Kong et al., 2024), this requires
a model capable of adaptively identifying rel-
evant clusters based on their contributions to
binding interactions. Such a model should aim
to learn these clusters through end-to-end training, capturing both local interactions and their broader
structural context to provide a comprehensive understanding of protein-ligand binding.

To address these limitations, we propose CheapNet, a novel interaction-based model that dynami-
cally identifies cluster-level representations of protein-ligand complexes through end-to-end train-
ing. By leveraging a differentiable pooling mechanism, CheapNet aggregates atom-level embed-
dings into higher-level clusters, reducing noise and computational complexity while focusing on
groups of atoms that contribute significantly to binding interactions. Next, a cross-attention mecha-
nism is applied between protein and ligand clusters, enabling the model to focus on the most relevant
inter-molecular interactions, thereby improving prediction accuracy and computational efficiency. In
summary, the key contributions of CheapNet are as follows:

• We propose a hierarchical model that integrates atom-level and cluster-level interactions,
improving the representation of protein-ligand complexes.

• Our model incorporates a cross-attention mechanism between protein and ligand clusters,
focusing on relevant binding interactions in the cluster-level.

• CheapNet achieves state-of-the-art performance across multiple binding affinity prediction
tasks while maintaining computational efficiency.

2 RELATED WORKS

Protein-ligand binding affinity prediction has traditionally focused on atom-level approaches. Re-
cently, cluster-level frameworks have emerged, emphasizing the importance of capturing higher-
level interactions. Additional details on representative methods are provided in the Appendix A.1.

2.1 ATOM-LEVEL PROTEIN-LIGAND BINDING AFFINITY PREDICTION

Atom-level approaches to protein-ligand binding affinity prediction are categorized as interaction-
free or interaction-based. Interaction-free models, while computationally efficient, treat proteins and
ligands independently, failing to capture critical interdependent interactions (Öztürk et al., 2018;
Nguyen et al., 2021; Yang et al., 2021; Rifaioglu et al., 2021; Huang et al., 2021; Yang et al., 2022;
Yuan et al., 2022). Interaction-based models address this by modeling atomic-level relationships
using 3D structural data (Townshend et al., 2020; Jiang et al., 2021; Yazdani-Jahromi et al., 2022;
Yang et al., 2023; Wang et al., 2023; Nguyen et al., 2023; Feng et al., 2024), but they often overlook
hierarchical mechanisms, such as group-level or cluster-level interactions. Our model fills this gap
by integrating a cluster-attention mechanism, capturing interactions at both atom and cluster levels
for a more comprehensive representation.

2.2 CLUSTER-LEVEL PROTEIN-LIGAND BINDING AFFINITY PREDICTION

Recent studies, including GemNet (Gasteiger et al., 2021), Equiformer (Liao & Smidt, 2022), LEFT-
Net (Du et al., 2024), and GET (Kong et al., 2024), have leveraged geometric and hierarchical repre-
sentations to enhance protein-ligand binding affinity prediction. GemNet and Equiformer focus on
local and global molecular interactions using geometric and equivariant features. LEFTNet and GET
build on this by incorporating hierarchical frameworks that integrate block-level and atomic details.
However, these models often depend on predefined clusters or geometric constraints. CheapNet

2
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Figure 2: Architecture of CheapNet for protein-ligand binding affinity prediction. (a) A graph
encoder learns atom-level embeddings of the protein-ligand complex. (b) A differentiable pooling
mechanism clusters the embeddings into cluster-level representations. (c) A cross-attention mecha-
nism is applied between the protein and ligand clusters to capture key interactions.

addresses these limitations with a data-driven approach, utilizing soft clustering of atoms based on
learned embeddings and cross-attention to dynamically model diverse protein-ligand interactions.

3 METHODS

In this section, we present the architecture of CheapNet, a model designed for protein-ligand binding
affinity prediction. CheapNet first employs a graph encoder to learn atom-level embeddings of the
protein-ligand complex (Figure 2(a)). Subsequently, a differentiable pooling mechanism is used
to aggregate atom-level embeddings into cluster-level representation (Figure 2(b)). Next, a cross-
attention mechanism is introduced between the protein and ligand clusters, allowing the model to
focus on the most relevant interactions for binding affinity prediction (Figure 2(c)).

3.1 PROBLEM DEFINITION

In this study, we aim to predict the binding affinity of protein-ligand complexes. Each complex is
represented as a graph G = (V,E) = (Vl ∪ Vp, El ∪ Ep ∪ Elp), where Vl and Vp denote the set of
nodes corresponding to atoms in the ligand and protein, respectively. Each node vi ∈ V is associated
with a feature vector xi ∈ Rd, representing atomic properties (which may vary across datasets), and
a 3D coordinate ri ∈ R3. The edge sets El and Ep represent intra-molecular covalent bonds within
the ligand and protein, while Elp denotes inter-molecular, non-covalent interactions between ligand
and protein atoms within a distance of 5Å. The target variable, y ∈ R, represents the binding affinity
of the complex, expressed as − log(Kd) or − log(Ki), where Kd and Ki are the dissociation and
inhibition constants, respectively. The objective is to train a predictive model f that estimates the
binding affinity ŷ = f(G) by minimizing the error between ŷ and the true affinity y.

3.2 ATOM-LEVEL EMBEDDING VIA GRAPH ENCODING

Before clustering the atoms, we first update the embeddings of the protein and ligand nodes to
capture both local atomic properties and interactions within the protein-ligand complex. For each
node vi ∈ V , representing an atom in either the protein or ligand, we employ an interaction-based
graph neural network with geometric information (GIGN) (Yang et al., 2023). This model updates
node embeddings by aggregating information from neighboring nodes, incorporating both structural
and geometric data while ensuring translation and rotation invariance in the 3D coordinate space.
hi = GNN(xi, ri,N (vi)) where hi ∈ Rd is the updated embedding for the node vi, N (vi) de-
notes the set of neighboring nodes, and d is the embedding dimension. While this work utilizes
GIGN, other graph neural networks, such as GCN (Kipf & Welling, 2016), or SE(3)-equivariant
encoders like EGNN (Satorras et al., 2021) and SE(3)-Transformer (Fuchs et al., 2020), can also be
applied. The embeddings hi produced in this step serve as inputs for the subsequent cluster-level
representations, ensuring that both local and global interaction patterns are effectively captured.
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3.3 CLUSTER-ATTENTION FOR PROTEIN-LIGAND COMPLEX

Traditional models often focus on atom-level interactions, which can lead to excessive computational
complexity. To address this, we propose a novel cluster-attention mechanism that clusters atoms
using a differentiable pooling mechanism and applies cross-attention at the cluster level.

3.3.1 CLUSTER-LEVEL PROTEIN-LIGAND INTERACTION

In protein-ligand complexes, it is often unclear which atoms interact most significantly. To address
this, we employ a differentiable pooling method (Ying et al., 2018) to group atoms into clusters,
capturing interaction patterns at a higher level of abstraction. By learning soft cluster assignment
matrices and generating cluster embeddings, we reduce the complexity of the graph while preserving
critical structural and interaction information.

First, a soft cluster assignment is performed separately for the ligand and protein atoms. This allows
the model to aggregate atoms with similar representations. The soft cluster assignment matrices for
the ligand and protein, Sl ∈ R|Vl|×cl and Sp ∈ R|Vp|×cp , are computed as:

Sl = softmax(GNNθl)(Hl, El) Sp = softmax(GNNθp)(Hp, Ep) (1)

where Hl ∈ R|Vl|×d and Hp ∈ R|Vp|×d are the atom-level embeddings for the ligand and protein,
respectively, with El and Ep as their intra-molecular edges. cl and cp denote the numbers of clusters
for the ligand and protein.

Once the cluster assignments are obtained, we compute the high-level cluster representations by
aggregating the atom embeddings within each cluster. The cluster-level embeddings for the ligand
and protein are given by:

Zl = STl Hl, Zp = STp Hp (2)

where Zl ∈ Rcl×d and Zp ∈ Rcp×d represent the cluster embeddings for the ligand and protein,
respectively. The cluster adjacency matrices, which capture the interactions between clusters, are
updated based on the original graph structure as follows:

Ãl = STl AlSl, Ãp = STpApSp (3)

where Al and Ap denote the adjacency matrix of El and Ep, respectively. Ãl ∈ Rcl×cl and Ãp ∈
Rcp×cp represent the cluster-level adjacency matrices for the ligand and protein, respectively.

Next, we finally update the cluster-level embeddings based on the cluster representations and clus-
ter adjacency matrices. Formally, the final cluster representations for the ligand and protein are
computed as follows:

Zfinal
l = GNNψl

(Zl, Ãl), Zfinal
p = GNNψp

(Zp, Ãp) (4)

where Zfinal
l ∈ Rcl×d and Zfinal

p ∈ Rcp×d denote the final cluster-level feature representations for
the ligand and protein, respectively.

3.3.2 CROSS-ATTENTION MECHANISMS ON CLUSTERS

After obtaining cluster-level representations, we apply a cross-attention mechanism (Vaswani, 2017;
Chen et al., 2021; Lin et al., 2022) between the protein and ligand clusters to capture the critical inter-
molecular interactions. This mechanism serves not only to capture key interactions between clusters
but also to filter out irrelevant or noisy clusters, allowing the model to focus on the most biologically
meaningful binding interactions. By dynamically adjusting the attention weights, CheapNet effec-
tively selects the clusters that are most predictive of the binding affinity, thereby enhancing both
efficiency and accuracy.

We first compute the query, key, and value matrices for the ligand-to-protein (L2P) and protein-to-
ligand (P2L) attention mechanisms. For the L2P attention, the query, key, and value matrices are
given by (for simplicity, we omit the superscript final).:

Ql2p = WQl2p
Zl, Kl2p = WKl2p

Zp, Vl2p = WVl2p
Zp (5)

where WQl2p
, WKl2p

, and WVl2p
are learnable weight matrices. Similarly, for the P2L attention,

Qp2l = WQp2l
Zp, Kp2l = WKp2l

Zl, Vp2l = WVp2l
Zl (6)

4
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The attention weights and representations for both directions are computed using the scaled dot-
product attention:

Zl2p = softmax(
Ql2pK

T
l2p√

d
)Vl2p, Zp2l = softmax(

Qp2lK
T
p2l√

d
)Vp2l (7)

The representations of ligand-to-protein Zl2p and protein-to-ligand Zp2l are combined to form the
final representation Zcomplex of the complex with multi-layer perceptron (MLP) and residual con-
nection:

Zcomplex = MLP (

cl∑
i=1

Z
(i,:)
l2p +

cp∑
j=1

Z
(j,:)
p2l ) +

cl∑
i=1

Z
(i,:)
l +

cp∑
j=1

Z(j,:)
p (8)

Finally, this combined representation is passed through a MLP-based classifier fclf to predict the
binding affinity: ŷ = fclf (Zcomplex).

3.4 PERMUTATION INVARIANCE OF CLUSTER ORDER FOR CROSS ATTENTION

An essential property of the proposed cluster-level cross-attention mechanism is its permutation in-
variance with respect to cluster ordering, ensuring consistent model outputs regardless of the order
of ligand and protein clusters. This property enhances the robustness and reliability in processing
cluster-level representations. The detailed proof is provided in Appendix A.3. Additionally, Cheap-
Net’s modularity allows for the integration of SE(3)-equivariant encoders, enabling CheapNet to
address a broader range of symmetries in protein-ligand interactions.

3.5 LOSS FUNCTION FOR OPTIMIZATION

To optimize our model, we employ the mean squared error (MSE) loss function, which quantifies
the L2 distance between the predicted binding affinity and the actual value. The MSE loss is defined
as: LMSE = 1

n

∑n
i=1(ŷi−yi)

2 where ŷi represents the predicted binding affinity for the i-th protein-
ligand complex, yi is the corresponding ground-truth value and n is the total number of samples.

We explore incorporating additional loss functions, such as link prediction and entropy regular-
ization losses proposed by Ying et al. (2018), to guide clustering based on geometric proximity.
However, ablation studies in Appendix A.11 show no significant performance improvements. This
suggests that clustering atoms based on geometric proximity does not align with our goal of dynam-
ically identifying biologically meaningful clusters. Thus, we retain the MSE loss for its simplicity
and effectiveness in optimizing binding affinity predictions.

4 EXPERIMENTS

In this section, we evaluate our CheapNet on various protein-ligand affinity tasks including ligand
binding affinity (LBA) prediction, ligand efficacy prediction (LEP). Detailed hyperparameter setting
and experimental setup are provided in Appendix A1. We provide comprehensive comparisons
with state-of-the-art methods, as well as ablation studies to assess the contributions of individual
components. The code is available at https://anonymous.4open.science/r/CheapNet-C837/.

4.1 LIGAND BINDING AFFINITY

Task. The Ligand Binding Affinity (LBA) task aims to predict the strength of interaction between a
protein and a ligand. This regression task estimates the binding affinity of a protein-ligand complex.

Dataset & Evaluation. We evaluate CheapNet on the widely-used PDBbind dataset (Liu et al.,
2017b), which contains 3D structures of protein-ligand complexes with experimentally measured
binding affinities. For a fair comparison, we follow the experimental settings, including data splits,
used in existing works. CheapNet is evaluated in two settings:

• Cross-dataset evaluation: Following the protocol in GIGN (Yang et al., 2023), we train
and validate CheapNet on the PDBbind v2016 general set and test it on three independent
datasets: PDBbind v2013 core set, v2016 core set, and v2019 holdout set. This configura-
tion assesses CheapNet’s generalization across different dataset versions.

5
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Table 1: Performance comparison of CheapNet and baselines on the cross-dataset evaluation with
parameter counts. The top results are shown in bold, and the second-best are underlined, respec-
tively. The complete results, including all baselines with standard deviations are at Appendix A.6.

Model Params # v2013 core set v2016 core set v2019 holdout set
RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑

Interaction-free
DeepDTA (Öztürk et al., 2018) 1.93M 1.639 0.718 1.357 0.785 1.485 0.586
GraphDTA-GAT-GCN (Nguyen et al., 2021) 4.75M 1.645 0.711 1.434 0.754 1.705 0.474
MGraphDTA (Yang et al., 2022) 3.05M 1.680 0.696 1.439 0.753 1.553 0.538

Interaction-based
PotentialNet (Feinberg et al., 2018) 0.08M 1.607 0.773 1.503 0.772 1.514 0.564
SchNet (Schütt et al., 2017) 0.28M 1.570 0.754 1.390 0.787 1.522 0.560
GNN-DTI (Lim et al., 2019) 0.22M 1.533 0.767 1.384 0.779 1.446 0.614
IGN (Jiang et al., 2021) 1.66M 1.428 0.807 1.269 0.821 1.410 0.630
EGNN (Satorras et al., 2021) 1.59M 1.498 0.782 1.289 0.816 1.399 0.628
GIGN (Yang et al., 2023) 0.62M 1.380 0.821 1.190 0.840 1.393 0.641

Interaction-based (attention mechanism)
AttentionSiteDTI (Yazdani-Jahromi et al., 2022) 42.66M 1.444 0.792 1.352 0.784 1.539 0.563
CAPLA (Jin et al., 2023) 0.31M 1.409 0.816 1.206 0.841 - -
GAABind (Tan et al., 2024) 17.95M 1.488 0.772 1.297 0.803 - -
DEAttentionDTA (Chen et al., 2024) 2.32M 1.470 0.800 1.266 0.827 - -

Interaction-based (cluster-attention mechanism)
CheapNet (ours) 1.33M 1.262 0.857 1.107 0.870 1.343 0.665

• Diverse Protein evaluation: As in Atom3D (Townshend et al., 2020), the PDBbind v2019
refined set (Liu et al., 2017b) is divided based on protein sequence identity thresholds
of 30% (LBA 30%) and 60% (LBA 60%), ensuring that the test proteins have reduced
similarity to those in the training set. This setup is designed to assess the model’s robustness
to structurally diverse proteins.

The number of clusters for both protein and ligand is predefined as a constant through hyperpa-
rameter tuning, with the median number of nodes in the training set chosen to balance overfitting
and generalizability (see Appendix A.10). We report RMSE and Pearson correlation coefficient for
both settings, with the addition of Spearman correlation in the diverse protein evaluation. Each
experiment is conducted three times with different random seeds for reliability.

Baselines. We compare CheapNet against a diverse range of baselines of interaction-free methods
and interaction-based methods. We also include pre-training models that are trained on large-scale
data with significantly larger model parameters; interaction-free models (e.g., DeepDTA (Öztürk
et al., 2018), GraphDTA (Nguyen et al., 2021)), interaction-based models (e.g., IGN (Jiang et al.,
2021), GIGN (Yang et al., 2023)), cluster-level models (e.g., LEFTNet (Du et al., 2024), GET (Kong
et al., 2024)), and pre-training models (e.g., BindNet (Feng et al., 2024)).

Performances. Tables 1 and 2 summarize the results for the LBA task. CheapNet demon-
strates significant improvements across both evaluation settings, outperforming interaction-free,
interaction-based, and even pre-trained models. Notably, CheapNet achieves the best results in
terms of RMSE and Pearson correlation coefficient for the cross-dataset evaluation, showcasing its
ability to capture complex protein-ligand interactions. For the diverse protein evaluation, although
CheapNet achieved a comparable result on the LBA 60% dataset, slightly trailing BindNet, it is
particularly noteworthy that it demonstrates exceptional first-place performance on the more chal-
lenging LBA 30% dataset, where there is lower similarity between the training and test sets. Despite
using far fewer parameters and requiring no pre-training, CheapNet consistently outperforms more
complex models, highlighting its efficiency and robustness.

4.2 LIGAND EFFICACY PREDICTION

Task. Ligand Efficacy Prediction (LEP) is a binary classification task that predicts whether a ligand
activates or inactivates a target protein. This task is crucial in drug discovery, as it helps identify
potential drug candidates that either enhance or inhibit protein activity.

6
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Table 2: Performance comparison of CheapNet and baselines on the diverse protein evaluation with
parameter counts. The top results are shown in bold, and the second-best are underlined, respec-
tively. The complete results, including all baselines with standard deviations are at Appendix A.6.

Model Params # LBA 30% LBA 60%
RMSE ↓ Pearson ↑ Spearman ↑ RMSE ↓ Pearson ↑ Spearman ↑

Interaction-free
DeepDTA (Öztürk et al., 2018) 1.93M 1.866 0.472 0.471 1.762 0.666 0.663
SSA (Bepler & Berger, 2019) 48.8M 1.985 0.165 0.152 1.891 0.249 0.275
TAPE (Rao et al., 2019) 93.0M 1.890 0.338 0.286 1.633 0.568 0.571

Interaction-based
Atom3D-GNN (Townshend et al., 2021) 0.38M 1.601 0.545 0.533 1.408 0.743 0.743
IEConv (Hermosilla et al., 2021) 5.80M 1.554 0.414 0.428 1.473 0.667 0.675
ProNet (Wang et al., 2023) 1.39M 1.463 0.551 0.551 1.343 0.765 0.761

Cluster-level
GemNet (Gasteiger et al., 2021)a 1.37M OOM - - -
Equiformer (Liao & Smidt, 2022)a 1.10M OOM - - -
LEFTNet (Du et al., 2024)a 0.85M 1.366 0.592 0.580 - - -
GET (Kong et al., 2024) 0.69M 1.327 0.620 0.611 - - -

Pre-training
EGNN-PLM (Wu et al., 2023) 650M 1.403 0.565 0.544 1.559 0.644 0.646
Uni-Mol (Zhou et al., 2023) 47.61M 1.434 0.565 0.540 1.357 0.753 0.750
ProFSA (Gao et al., 2024) >47.61Mb 1.377 0.628 0.620 1.377 0.764 0.762
BindNet (Feng et al., 2024) >47.61Mb 1.340 0.632 0.620 1.230 0.793 0.788

Interaction-based (cluster-attention)
CheapNet (ours) 1.39M 1.311 0.642 0.639 1.238 0.794 0.789
a Adapted from GET (Kong et al., 2024), which used hierarchical approaches from atom-level to block-level.
b Accurate parameter estimation for ProFSA and BindNet is not possible due to the unavailability of the pre-training model checkpoints. However, their

parameter count is likely higher than that of Uni-Mol, as both models are based on it.

Dataset & Evaluation. For a fair comparison, we evaluate CheapNet using the LEP dataset and
experimental setting derived from the Atom3D benchmark (Townshend et al., 2020). The dataset
contains protein-ligand complexes labeled for activation or inactivation. For evaluation, we report
Area Under the Receiver Operating Characteristic Curve (AUROC) and Area Under the Precision-
Recall Curve (AUPRC). Each experiment is run independently with different random seeds.

Table 3: Comparison results of CheapNet and
baselines on LEP datasets. The top results
are shown in bold, and the second-best are
underlined, respectively. The complete results,
including all baselines with standard devia-
tions are at Appendix A.7.

Model AUROC ↑ AUPRC ↑
Interaction-free
DeepDTA (Öztürk et al., 2018) 0.696 -

Interaction-based
Atom3D-GNN (Townshend et al., 2021) 0.681 0.598
GVP-GNN (Jing et al., 2021) 0.628 -
ProNet-All-Atom (Wang et al., 2023) 0.692 -

Cluster-level
SchNet (Schütt et al., 2017)a 0.736 0.731
EGNN (Satorras et al., 2021)a 0.724 0.720
GET (Kong et al., 2024)a 0.761 0.751

Pre-training
GeoSSL (Liu et al., 2022) 0.776 0.694
Uni-Mol (Zhou et al., 2023) 0.823 0.787
ProFSA (Gao et al., 2024) 0.840 0.806
BindNet (Feng et al., 2024) 0.882 0.870

Interaction-based (cluster-attention)
CheapNet (ours) 0.935 0.924
a Adapted from GET (Kong et al., 2024), which used hierarchical approaches

from atom-level to block-level.

Baselines. We compare CheapNet against a
range of models, including interaction-free meth-
ods such as DeepDTA (Öztürk et al., 2018);
interaction-based methods such as ProNet (Wang
et al., 2023); cluster-level approach such as
GET (Kong et al., 2024); pre-treining methods
such as BindNet (Feng et al., 2024).

Performances. As shown in Table 3, CheapNet
achieves state-of-the-art performance on the LEP
task, significantly outperforming all baselines, in-
cluding larger pre-training models. For AUROC,
CheapNet achieves a score of 0.935, surpassing the
previous best by BindNet (0.882), as well as other
models like Uni-Mol (0.823) and GeoSSL (0.776).
For AUPRC, CheapNet also achieves the best score
of 0.924, outperforming BindNet (0.870). This
performance is attributed to CheapNet’s cluster-
attention mechanism, which effectively captures
complex protein-ligand relationships.

4.3 ABLATION STUDIES

To demonstrate the effectiveness of CheapNet components, we conduct ablation studies: (1) adapt-
ability of cluster-attention, (2) hierarchical representations and attention mechanism, (3) number of
clusters, (4) auxiliary loss function, (5) atom selection & grouping approaches. Due to the limited
space, experimental results of (3)-(5) are reported in Appendix A.10, A.11, and A.12, respectively.
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Table 4: Ablation study results showing RMSE, Pearson correlation coefficient, and performance
improvement (∆) for different graph encoders on the PDBbind v2013 core set, v2016 core set,
and v2019 holdout set. The top results are shown in bold, and the second-best are underlined,
respectively. Standard deviations are at Appendix A.8.

Model v2013 core set v2016 core set v2019 holdout set
RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑

GCN (Kipf & Welling, 2016) 1.395 0.819 1.295 0.809 1.460 0.593
CheapNet-GCN 1.368 0.820 1.246 0.823 1.391 0.635

∆(%) +1.935 +0.122 +3.784 +1.731 +4.726 +7.083

EGNN (Satorras et al., 2021) 1.498 0.782 1.289 0.811 1.399 0.628
CheapNet-EGNN 1.321 0.843 1.161 0.856 1.343 0.664

∆(%) +11.816 +7.801 +9.930 +5.549 +4.003 +5.732

GIGN (Yang et al., 2023) 1.380 0.821 1.190 0.840 1.393 0.641
CheapNet-GIGN 1.262 0.857 1.107 0.870 1.343 0.665

∆(%) +8.551 +4.385 +6.975 +3.571 +3.589 +3.744

Table 5: Ablation study results for the effect of using hierarchical representations (Hierarchical), and
type of attention mechanism (Attention) on the PDBbind v2013 core set, v2016 core set, and v2019
holdout set. The top results are shown in bold, and the second-best are underlined, respectively.
Standard deviations are at Appendix A.9.

Hierarchical Attention v2013 core set v2016 core set v2019 holdout set
RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑

✗ ✗ 1.345 0.844 1.189 0.851 1.360 0.652
✗ Self 1.305 0.850 1.166 0.854 1.367 0.650
✗ Cross 1.293 0.853 1.151 0.857 1.362 0.653
✓ ✗ 1.330 0.840 1.161 0.853 1.348 0.662
✓ Self 1.327 0.841 1.168 0.853 1.348 0.662
✓ Cross 1.262 0.857 1.107 0.870 1.343 0.665

4.3.1 ADAPTABILITY OF CHEAPNET WITH DIFFERENT GRAPH ENCODER

In this section, we demonstrate the adaptability of CheapNet by evaluating its performance when
combined with different graph encoders. Specifically, we assess how adding CheapNet’s cluster-
level attention mechanisms impacts models using GCN, EGNN, and GIGN as base encoders.

Table 4 shows that CheapNet consistently improves performance across all encoders, regardless of
the underlying architecture. While GIGN achieves the highest overall performance, both EGNN
and GCN also benefit from notable improvements when paired with CheapNet’s hierarchical repre-
sentation and cluster-level attention mechanisms. Notably, GCN, which does not use 3D structural
information, achieves substantial gains, demonstrating CheapNet’s flexibility in enhancing atom-
level encoders and improving accuracy across datasets.

4.3.2 HIERARCHICAL REPRESENTATIONS AND ATTENTION MECHANISMS

We perform an ablation study to evaluate the impact of hierarchical representations (Cluster) and
cross-attention mechanisms on CheapNet’s performance. Table 5 presents the RMSE and Pearson
correlation coefficient across the PDBbind v2013 core set, v2016 core set, and v2019 holdout set.

The results show that both cluster-level representations and cross-attention enhance performance.
Specifically, the cluster-level representations with cross-attention (✓(=Cluster), Cross) achieves the
best performance across all datasets, with an RMSE of 1.262 and Pearson correlation coefficient of
0.857 on the 2013 core set, and consistent improvements on the 2016 and 2019 datasets.

Cross-attention enables CheapNet to focus on biologically meaningful interactions by filtering out
irrelevant clusters, which is reflected in the sharp performance drop when this component is re-
moved. Additionally, cluster-level representations are particularly effective on the v2019 holdout
set, where larger protein-ligand complexes benefit from reduced computational complexity and bet-
ter interaction modeling at higher scales (see Appendix A.5 for details)
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In summary, hierarchical representations and cross-attention work together to improve CheapNet’s
performance: the former captures interactions at appropriate scales for larger complexes, while the
latter prioritizes the most relevant clusters across datasets.

4.4 EVALUATION ON EXTERNAL BENCHMARKS

To demonstrate CheapNet’s robustness and generalization, we evaluate its performance on three ex-
ternal benchmarks: the CSAR NRC-HiQ dataset (Dunbar Jr et al., 2013), the CASF-2016 dataset (Su
et al., 2018), virtual screening on DUD-E dataset (Mysinger et al., 2012). These benchmarks assess
the model’s predictive power on unseen, structurally diverse protein-ligand complexes, testing its
real-world applicability. Due to the limited space, the evaluations of the CASF-2016 dataset and the
DUD-E dataset are presented in the Appendix A.14 and A.15.

4.4.1 CSAR NRC-HIQ DATASET

Table 6: Performance comparison of Cheap-
Net on the CSAR NRC-HiQ dataset. The top
results are shown in bold, and the second-best
are underlined, respectively. Standard devia-
tions are at Appendix A.13.

Model RMSE ↓ Pearson ↑
Interaction-based
PotentialNet (Feinberg et al., 2018) 1.730 0.718
GNN-DTI (Lim et al., 2019) 1.675 0.855
IGN (Jiang et al., 2021) 1.647 0.846
EGNN (Satorras et al., 2021) 1.640 0.866
GIGN (Yang et al., 2023) 1.827 0.766

Interaction-based (cluster-attention mechanism)
CheapNet (ours) 1.381 0.901

We evaluate CheapNet on the CSAR NRC-HiQ
dataset (Dunbar Jr et al., 2013), an external bench-
mark for protein-ligand binding affinity prediction.
After removing complexes that RDKit could not
process and overlaps with the training data, 14
samples remained for evaluation. Table 6 compares
CheapNet with other interaction-based methods.

CheapNet achieve the best performance, with an
RMSE of 1.381 and a Pearson correlation coef-
ficient of 0.901, outperforming all other models.
These results highlight CheapNet’s ability to han-
dle complex protein-ligand interactions, especially
in the external dataset.

4.5 MEMORY FOOTPRINT ANALYSIS
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Figure 3: Memory footprint analysis. Com-
parison of CheapNet, GAABind, and DEAtten-
tionDTA across different batch sizes for small
(50–100 atoms) and large (400–450 atoms) com-
plexes. ‘OOM’ indicates out-of-memory.

Figure 3 compares the memory usage of
CheapNet with other attention-based models,
GAABind (Tan et al., 2024) and DEAtten-
tionDTA (Chen et al., 2024), across different
batch sizes and complex sizes.

GAABind, which uses atom-level all-pairwise
attention, consumes substantial memory
and can only handle small batch sizes for
small complexes, quickly encountering
out-of-memory (OOM) errors as batch size
increases. In contrast, DEAttentionDTA is
more memory-efficient with residue-level
protein representations but still requires sig-
nificant memory for larger complexes due to
residue-to-atom attention calculations.

In comparison, CheapNet maintains consis-
tently low memory usage across varying batch and complex sizes, even handling large protein-ligand
interactions efficiently without OOM issues. This efficiency underscores the advantage of Cheap-
Net’s cluster-level attention mechanism, which captures the essential binding interactions without
the memory overhead typical of atom-level approaches. These results highlight CheapNet’s scala-
bility and suitability for handling large, complex interactions. Detailed experimental setups can be
found in Appendix A.16.
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(b)(a)
PDB ID: 4kz6

True: 3.10

CheapNet: 3.12

GIGN: 2.75

protein

ligand

Figure 4: Visualization of CheapNet interpretation and cross-attention map of protein-ligand
complex (PDB ID: 4kz6). (a) The high-attended pairs of ligand and protein atoms are highlighted
in the red box, with yellow dashed lines representing interactions. (b) Cross-attention map between
ligand and protein atoms. The high-attention regions marked in yellow within the red box.

4.6 INTERPRETABILITY OF CHEAPNET

In this section, we analyze the interpretability of CheapNet using the protein-ligand complex (PDB
ID: 4kz6). Figure 4 provides key insights into how CheapNet focuses attention on critical binding
regions. This complex is part of the PDBbind v2016 core set, where the actual binding affinity is
3.10. GIGN predicted the binding affinity of this complex as 2.75, while CheapNet achieved a highly
accuracte prediction of 3.12. We address the following two key questions to evaluate CheapNet’s
effectiveness in visualizing protein-ligand interactions.

Q1. How does CheapNet’s cluster-attention mechanism enhance the interpretability of
protein-ligand binding predictions? CheapNet’s cluster-attention mechanism enables the iden-
tification of significant interactions between ligand and protein, by focusing on the most relevant
clusters involved in binding. As seen in Figure 4, CheapNet assigns higher attention to clusters that
are known to be critical for binding, while assigning low attention weights to less relevant clusters,
thereby demonstrating its ability to filter out noise.

Q2. How does CheapNet’s focus on significant regions enhance its applicability in drug discov-
ery? CheapNet’s ability to focus on the functionally critical interactions contributes to its superior
binding affinity predictions. By accurately capturing key atomic interactions through its cluster-
attention mechanism, CheapNet not only achieves near-perfect binding affinity predictions but also
offers clear visual evidence of the interactions driving these affinities. This interpretability makes
CheapNet a powerful tool for understanding the molecular mechanisms behind protein-ligand bind-
ing, which is crucial for drug discovery applications.

5 CONCLUSION & DISCUSSION

In this paper, we propose CheapNet, a novel interaction-based model that captures protein-ligand
binding affinity by integrating hierarchical cluster-level representations with cross-attention mech-
anisms. By leveraging a differentiable pooling approach, CheapNet effectively balances capturing
intricate inter-molecular interactions with computational efficiency. Extensive evaluations demon-
strate state-of-the-art performance across diverse datasets, suggesting that hierarchical modeling of
molecular interactions is a promising direction for enhancing binding affinity prediction.

Although CheapNet achieves strong results, several directions remain for further exploration. Its
performance benefits from strong protein and ligand encoders, and integrating SE(3)-equivariant
encoders could enhance its ability to handle global and local 3D symmetries. While CheapNet can
operate without 3D structural data (as shown in Table 4), optimal performance relies on 3D informa-
tion. Advances like AlphaFold3 (Abramson et al., 2024) now provide access to predicted structures,
and CheapNet could be further developed to remain robust even with noise in these predictions (see
Appendix A.18). Finally, extending the use of 3D information to cluster-level attention or adopting
dual-awareness framework that combine atom- and cluster-level features offers exciting potential
for future work (see Appendix A.19).
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Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. Advances in neural information processing systems, 30, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ao Shen, Mingzhi Yuan, Yingfan Ma, Jie Du, and Manning Wang. Pgbind: pocket-guided explicit
attention learning for protein–ligand docking. Briefings in Bioinformatics, 25(5):bbae455, 2024.

Vignesh Ram Somnath, Charlotte Bunne, and Andreas Krause. Multi-scale representation learning
on proteins. Advances in Neural Information Processing Systems, 34:25244–25255, 2021.

Marta M Stepniewska-Dziubinska, Piotr Zielenkiewicz, and Pawel Siedlecki. Development and
evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics,
34(21):3666–3674, 2018.

Minyi Su, Qifan Yang, Yu Du, Guoqin Feng, Zhihai Liu, Yan Li, and Renxiao Wang. Comparative
assessment of scoring functions: the casf-2016 update. Journal of chemical information and
modeling, 59(2):895–913, 2018.

Huishuang Tan, Zhixin Wang, and Guang Hu. Gaabind: a geometry-aware attention-based network
for accurate protein–ligand binding pose and binding affinity prediction. Briefings in Bioinfor-
matics, 25(1):bbad462, 2024.

Philipp Thölke and Gianni De Fabritiis. Torchmd-net: equivariant transformers for neural network
based molecular potentials. arXiv preprint arXiv:2202.02541, 2022.
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A APPENDIX

A.1 ADDITIONAL EXPLANATIONS OF RELATED WORKS.

In this section, we briefly introduce several representative approaches including interaction-free,
interaction-based, cluster-level, and pre-training models for protein-ligand binding affinity predic-
tion.

A.1.1 INTERACTION-FREE MODELS

• DeepDTA (Öztürk et al., 2018) uses convolutional neural networks (CNNs) to analyze
SMILES representations of molecules. This approach demonstrates the potential of deep
learning to capture molecular features effectively. Instead, the focus is primarily on learning
molecular representations independently for proteins and ligands.

• GraphDTA (Nguyen et al., 2021) and MGraphDTA (Yang et al., 2022) extend DeepDTA by
representing molecules as graphs, using various graph neural network (GNN) architectures
such as Graph Convolutional Networks (GCN), Graph Isomorphism Networks (GIN), and
Graph Attention Networks (GAT). These approaches capture the structural information of
molecules more effectively compared to SMILES-based representations.

A.1.2 INTERACTION-BASED MODELS

• IGN (Jiang et al., 2021) introduce a significant advancement by employing both intra-graph
and inter-graph convolutions to capture pairwise atomic interactions. This allow the model
to account for both local and global interactions within the protein-ligand complex, leading
to more accurate binding affinity predictions.

• Equivariant Graph Neural Networks (EGNN) (Satorras et al., 2021) addresses a critical
challenge in molecular modeling, ensuring that predictions are invariant to changes in the
orientation or position of the protein-ligand complex. This geometric invariance ensures
that predictions remain physically meaningful, regardless of how the complex is rotated or
translated.

• Geometric Interaction Graph Neural Networks (GIGN) (Yang et al., 2023) further advances
this concept by incorporating both intra- and inter-molecular geometric information, al-
lowing the model to capture complex 3D spatial relationships within the protein-ligand
complex.

A.1.3 CLUSTER-LEVEL MODELS

• GemNet (Gasteiger et al., 2021) employs directional message passing to capture both local
and global molecular interactions using geometric features such as distances and angles. It
focuses on fine-grained spatial relationships, achieving high accuracy in molecular property
prediction tasks.

• Equiformer (Liao & Smidt, 2022) combines Transformer architecture with SE(3)/E(3)-
equivariant features to handle 3D molecular graphs. It integrates spherical harmonics and
tensor products to represent complex interactions while preserving rotational and transla-
tional symmetry.

• LEFTNet (Du et al., 2024) introduces hierarchical representations for 3D molecular graphs,
utilizing predefined clusters (e.g., residues or motifs) to encode higher-order interactions.
It emphasizes computational efficiency while maintaining expressiveness.

• GET (Kong et al., 2024) models molecular complexes as geometric graphs of sets using
a bilevel design. It captures block-level sparsity and atom-level density through bilevel
attention mechanisms, ensuring adaptability across diverse molecular domains.

A.1.4 PRE-TRAINING MODELS

• GeoSSL (Liu et al., 2022) introduces a 3D coordinate denoising pretraining framework de-
signed to model the dynamic behavior of 3D molecules, where their continuous movement
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within the 3D Euclidean space generates a smooth potential energy surface. Extensive ex-
periments, including quantum mechanics and force prediction as well as binding affinity
prediction, validate the effectiveness and robustness of this proposed method.

• ProFSA (Gao et al., 2023) introduces a novel pocket pretraining approach that harnesses
knowledge from high-resolution atomic protein structures, supported by effective pre-
trained small molecule representations. By segmenting protein structures into drug-like
fragments and corresponding pockets, ProFSA simulates ligand-receptor interactions, gen-
erating over 5 million complexes. The pocket encoder is then trained contrastively to align
with pseudo-ligand representations from pretrained small molecule encoders.

• BindNet (Feng et al., 2024) emphasizes discerning intricate binding patterns from fine-
grained interactions. This self-supervised learning problem is formulated as predicting the
final binding complex structure given a pocket and ligand through a Transformer-based
interaction module, which naturally emulates the binding process. To ensure the represen-
tation of rich binding information, two pretraining tasks are introduced: atomic pairwise
distance map prediction and masked ligand reconstruction, comprehensively modeling fine-
grained interactions in both structural and feature spaces.

A.2 PSEUDOCODE OF CHEAPNET

In this section, we provide the detailed pseudocode for CheapNet, which outlines the step-by-step
process for predicting protein-ligand binding affinity (Algorithm 1). The algorithm starts by initial-
izing atom-level embeddings for both the protein and ligand components.

1. Initialization: The initialization process of the atom representation follows that of
GIGN (Yang et al., 2023) for Cross-Dataset Evaluation, and Atom3D (Townshend et al.,
2020) for Diverse Protein Evaluation and Ligand Efficacy Prediction. Both methods initial-
ize each node’s features using one-hot encoding based on atom types (e.g., elements like
C, H, O, etc.). In addition, for GIGN, the degree of an atom, hybridization, and number of
valence electrons are considered. For Atom3D, co-crystallized metals are considered (e.g.,
elements like Zn, Na, Fe, etc.) for proteins. Finally, linear layers are applied to obtain the
initial embedding, refining the atom representation.

2. Atom-Level Embedding: Each atom’s embeddings are updated using a Graph Neural Net-
work (GNN), capturing intricate local interactions within the protein and ligand structures.

3. Cluster-Level Representation: Soft cluster assignment matrices are computed using the
GNN outputs, enabling the model to form hierarchical, cluster-level representations. This
step allows CheapNet to capture more abstract, functionally relevant features beyond the
atom level. Finally, using the soft cluster assignments, cluster-level representations and
adjacency matrices are derived. These cluster embeddings are further refined via a GNN,
incorporating higher-level structural information.

4. Cross-Attention Mechanism: The core of CheapNet involves a cross-attention mechanism
that models interactions between the protein and ligand clusters. The model computes
query, key, and value matrices to perform scaled dot-product attention, ensuring that critical
inter-molecular interactions are accurately captured. This step also filters out irrelevant
clusters by focusing on those with higher attention weights.

5. Final Representation: The output of the cross-attention mechanism is combined and
pooled to form a comprehensive representation of the protein-ligand complex, which is
then passed through an MLP to predict binding affinity.

A.3 PERMUTATION INVARIANCE OF CLUSTERS FOR CROSS ATTENTION

An important aspect of the proposed cross-attention mechanism on cluster-level representations is
the permutation invariance of clusters. This property ensures that the model’s output remains con-
sistent regardless of the order of ligand and protein clusters. Maintaining this invariance is crucial
for the robustness of the model, as it prevents the network from being sensitive to arbitrary orderings
of atoms or clusters, which should not influence the physical properties of the complex. By ensuring
that the model’s predictions are unaffected by cluster permutations, we preserve the reliability of our
cluster-attention mechanism.
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Algorithm 1 CheapNet for Protein-Ligand Binding Affinity Prediction
Require: Protein-ligand complex graph G = (Vl ∪ Vp, El ∪ Ep ∪ Elp)
Ensure: Predicted binding affinity ŷ

1: Initialization: Atom embeddings Hl ∈ R|Vl|×d, Hp ∈ R|Vp|×d, obtained by one-hot encoding
followed by a linear transformation.

2: Atom-Level Embedding:
3: for each node vi ∈ Vl ∪ Vp do
4: hi = GNN(xi, ri,N (vi))
5: end for

6: Cluster-Level Representation:
7: Compute soft cluster assignment matrices

▷ dynamically group together atoms by their embeddings

Sl = softmax(GNNθl)(Hl, El), Sp = softmax(GNNθp)(Hp, Ep)

8: Obtain cluster-level representations:

Zl = S⊤
l Hl, Zp = S⊤

p Hp

9: Obtain cluster-level adjacency matrices:

Ãl = STl AlSl, Ãp = STpApSp

10: Final update the cluster-level embeddings:
▷ learn cluster-level interactions for each ligand and protein before cluster-attention

Zfinal
l = GNNψl

(Zl, Ãl), Zfinal
p = GNNψp

(Zp, Ãp)

11: Cross-Attention Mechanism:
12: For ligand-to-protein attention, compute query, key, value matrices:

Ql2p = WQZ
final
l , Kl2p = WKZfinal

p , Vl2p = WVZ
final
p

13: Apply scaled dot-product attention:
▷ filters out irrelevant clusters by focusing on those with higher attention weights

Zl2p = softmax

(
Ql2pK

⊤
l2p√

d

)
Vl2p

14: For protein-to-ligand attention, perform similar computations L12-13:

Zp2l = softmax

(
Qp2lK

⊤
p2l√

d

)
Vp2l

15: Final Representation:
16: Combine outputs:

Zcomplex = MLP(
cl∑
i=1

Z
(i,:)
l2p +

cp∑
j=1

Z
(j,:)
p2l ) +

cl∑
i=1

Z
(i,:)
l +

cp∑
j=1

Z(j,:)
p

17: Prediction:
ŷ = MLP(Zcomplex)

Consider the ligand-to-protein attention mechanism (for simplicity, we omit the subscript l2p). As-
sume permutation matrices Pϕ and Pρ for the ligand and protein, respectively. The permuted cluster-
level representations of the ligand and protein are given by:

Zϕ
l = PϕZl, Zρ

p = PρZp (9)
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The corresponding permuted query, key, and value matrices are then:

Qϕ = WQZ
ϕ
l = WQPϕZl = PϕWQZl = PϕQ (10)

Kρ = WKZρ
p = WKPρZp = PρWKZp = PρK (11)

V ρ = WVZ
ρ
p = WV PρZp = PρWVZp = PρV (12)

The attention weights for the permuted representations, denoted by αϕ,ρ, are computed as:

αϕ,ρ = softmax(
Qϕ(Kρ)T√

d
) = softmax(

PϕQ(PρK)T√
d

)

= softmax(Pϕ
QKT

√
d

P T
ρ )

(13)

Since Pϕ and Pρ are permutation matrices, they simply reorder the rows and columns of the attention
matrix. The softmax function is applied row-wise and is invariant to row permutations. Therefore:

αϕ,ρ = Pϕ softmax(
QKT

√
d

)P T
ρ (14)

Next, the attention output is computed as:

Zϕ,ρ = αϕ,ρV ρ = Pϕ softmax(
QKT

√
d

)P T
ρ PρV

= Pϕ softmax(
QKT

√
d

)V = PϕZ

(15)

Finally, we apply sum pooling over the cluster dimension cl. Since the summation is invariant to the
order of the elements, the sum pooling of the permuted attention output is:

cl∑
i=1

Zϕ,ρ,(i,:) =

cl∑
i=1

Z(i,:) (16)

Thus, the output of the sum pooling for the ligand-to-protein attention is permutation-invariant with
respect to the ligand clusters.

The same reasoning applies to the protein-to-ligand attention mechanism. Therefore, since both the
ligand-to-protein and protein-to-ligand outputs are pooled in a permutation-invariant manner, the
final representation Zcomplex will remain unchanged regardless of the order in which the ligand or
protein clusters are arranged.

A.4 DETAILS OF HYPERPARAMETERS & EXPERIMENT SETTINGS

In table A1, we present the hyperparameter search space used to optimize CheapNet’s performance
across cross-dataset evaluation, diverse protein evaluation (LBA 30%, LBA 60%), and LEP. For LEP
task, to combine the results of CheapNet for active and inactive complexes, we applied a multi-layer
perceptron (MLP) and trained models using binary cross-entropy (BCE) loss. All experiments were
conducted on two separate NVIDIA RTX 3090 GPUs (24GB each), with each model running on a
single GPU. Each model was trained with early stopping based on validation RMSE.

A.5 STATISTICS OF THE DATASETS

Table A2 provides detailed statistics of the datasets used for cross-dataset evaluation, diverse protein
evaluation (LBA 30%, LBA 60%), and ligand efficacy prediction (LEP). The table summarizes the
total number of complexes, as well as the quartiles (Q1-Q4), averages, and standard deviations for
the number of atoms in proteins, ligands, and overall complexes across these datasets.

For cross-dataset evaluation, the PDBbind v2016 general set is used as the training and validation
dataset, while the v2013 core set, v2016 core set, and v2019 holdout set serve as test datasets.
Among these test sets, the v2019 holdout set contains the largest and most diverse complexes, with
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Table A1: The search space of hyperparameters for cross-dataset, LBA 30%, LBA 60%, LEP task.
The optimal hyperparameters are shown in bold.

Hyperparameters Cross-dataset LBA 30% LBA 60% LEP
Activation function SiLU, GELU, Mish Mish Mish Mish
Batch size 64, 128 8, 16 8, 16 4, 8
Cutoff-intra - 3Å 3Å 3Å
Cutoff-inter 5Å 5Å 5Å 5Å
Dropout rate 0, 0.1, 0.2, 0.3 0, 0.1 0, 0.1 0, 0.1
Epoch 800 10, 15 500, 600 10, 15
Hidden dim 64, 256 64, 256 64, 256 64, 256
Learning rate 5e-3, 1e-4, 1.5e-4 5e-3, 1e-4, 1.5e-4 5e-3, 1e-4, 1.5e-4 5e-3, 1e-4, 1.5e-4
LR scheduler ReduceLROnPlateau - ReduceLROnPlateau -
Optimizer Adam, AdamW Adam, AdamW Adam, AdamW Adam, AdamW
Weight decay 1e-7, 1e-6, 1e-5, 1e-4 1e-6 1e-6 1e-6
Number of clusters
Protein 156 372 362 312
Ligand 28 25 24 49

Number of layers
Message Passing 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3
Diffentiable pooling 1, 2 1, 2 1, 2 1, 2
Prediction MLP 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3

an average of 191.36 atoms per complex and a standard deviation of 48.31, indicating a wide variety
in protein-ligand sizes.

For diverse protein evaluation, the PDBbind v2019 refined set is used, with the LBA 30% and LBA
60% datasets split based on protein sequence identity thresholds of 30% and 60%, respectively.
These datasets, along with LEP dataset consist of larger and more diverse ligands and proteins com-
pared to the cross-dataset evaluation sets. For example, the average number of atoms in protein struc-
tures in the LBA 30% and LBA 60% dataset is 371.63, and in the LEP dataset, it’s 327.96, reflecting
the complex and varied nature of these datasets. These characteristics highlight the challenging and
comprehensive nature of the evaluation benchmarks used to assess CheapNet’s performance.

Table A2: Dataset statistics for cross-dataset evaluation, diverse protein evaluation (LBA 30%, LBA
60%), and LEP. The table summarizes total number of complexes, as well as Q1-Q4 quantiles,
averages, and standard deviations for the number of atoms in proteins, ligands, and complexes across
the datasets.

Statistics Cross-dataset Diverse protein LEP
v2016 general set v2013 core set v2016 core set v2019 holdout set LBA 30% LBA 30%

# of complex 12904 107 285 4366 4463 518

Protein Atom #

Q1 130 129 126 127 260 282
Q2 156 159 152 153.5 360 325
Q3 186 186.5 178 183 462 372
Q4 500 280 280 454 1021 650

Avg 160.84 160.87 153.53 157.77 371.63 327.96
Std 47.78 41.27 38.20 48.34 139.48 71.25

Ligand Atom #

Q1 20 16 17 21 17 42
Q2 28 24 23 28 24 51
Q3 37 31 30 37 32 59
Q4 177 67 67 161 71 147

Avg 32.65 25.41 24.55 33.59 25.43 51.47
Std 21.61 11.20 9.81 21.97 11.24 15.24

Complex Atom #

Q1 154 149.5 147 153 286 324
Q2 186 186 173 184 383 378
Q3 224 218 205 220 488 430
Q4 595 332 332 533 1085 796

Avg 193.50 186.28 178.08 191.36 397.06 379.43
Std 60.51 49.34 45.10 61.29 145.22 83.21
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A.6 PERFORMANCE OF CHEAPNET ON LBA TASKS WITH PARAMETER COUNTS AND
STANDARD DEVIATIONS

Tables A3 and A4 provide a detailed breakdown of the parameter counts and standard deviations
for all models evaluated on the LBA tasks in both the cross-dataset and diverse protein evaluations.
These tables reinforce the efficiency of CheapNet, as it consistently delivers superior performance
with a significantly smaller parameter count compared to other models, especially pre-trained mod-
els like BindNet, which utilize orders of magnitude more parameters.

Moreover, CheapNet demonstrates smaller standard deviations in its predictions across all datasets,
indicating greater stability and reliability. This consistency is particularly noteworthy given that
CheapNet does not rely on large-scale pre-training, further emphasizing its robustness in handling
diverse protein-ligand interactions. These findings affirm that CheapNet achieves state-of-the-art
performance with a reasonable computational footprint, making it a highly practical and effective
solution for protein-ligand binding affinity prediction tasks.

To measure the statistical significance of performance differences between models, we used Z-tests,
as paired t-tests were not feasible due to relying on reported results from previous studies. With the
available means, standard deviations, and sample sizes, Z-tests provided a suitable alternative.

We compared CheapNet’s performance against the second-best model in terms of RMSE, Pearson
correlation coefficient, and Spearman correlation coefficient on the LBA task. The p-values corre-
sponding to the Z-statistics are indicated at the end of the table. The results show that CheapNet’s
improvements over the second-best model are statistically significant (p-value < 0.001) or compa-
rable.

Table A3: Performance comparison of CheapNet and baselines with parameter counts and standard
deviations on the cross-dataset evaluation. The top results are shown in bold, and the second-best
are underlined, respectively.

Model Params # v2013 core set v2016 core set v2019 holdout set
RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑

Interaction-free
DeepDTA (Öztürk et al., 2018) 1.93M 1.639 ± 0.026 0.718 ± 0.014 1.357 ± 0.015 0.785 ± 0.007 1.485 ± 0.023 0.586 ± 0.012
GraphDTA-GCN (Nguyen et al., 2021) 2.06M 1.749 ± 0.062 0.662 ± 0.032 1.513 ± 0.048 0.719 ± 0.023 1.763 ± 0.039 0.439 ± 0.021
GraphDTA-GAT (Nguyen et al., 2021) 1.46M 2.043 ± 0.029 0.476 ± 0.022 1.748 ± 0.019 0.594 ± 0.010 1.663 ± 0.027 0.432 ± 0.016
GraphDTA-GIN (Nguyen et al., 2021) 1.30M 1.691 ± 0.124 0.694 ± 0.059 1.470 ± 0.065 0.743 ± 0.027 1.676 ± 0.032 0.472 ± 0.021
GraphDTA-GAT-GCN (Nguyen et al., 2021) 4.75M 1.645 ± 0.085 0.711 ± 0.036 1.434 ± 0.064 0.754 ± 0.025 1.705 ± 0.075 0.474 ± 0.028
MGraphDTA (Yang et al., 2022) 3.05M 1.680 ± 0.093 0.696 ± 0.046 1.439 ± 0.047 0.753 ± 0.022 1.553 ± 0.028 0.538 ± 0.013

Interaction-based
Pafnucy (Stepniewska-Dziubinska et al., 2018) - 1.517 ± 0.014 0.783 ± 0.005 1.450 ± 0.047 0.769 ± 0.019 1.438 ± 0.016 0.612 ± 0.014
OnionNet (Zheng et al., 2019) 1.80M 1.583 ± 0.079 0.741 ± 0.037 1.399 ± 0.076 0.770 ± 0.027 1.510 ± 0.034 0.573 ± 0.014
PotentialNet (Feinberg et al., 2018) 0.08M 1.607 ± 0.027 0.773 ± 0.010 1.503 ± 0.033 0.772 ± 0.007 1.514 ± 0.028 0.564 ± 0.014
SchNet (Schütt et al., 2017) 0.28M 1.570 ± 0.029 0.754 ± 0.030 1.390 ± 0.023 0.787 ± 0.016 1.522 ± 0.071 0.560 ± 0.028
GNN-DTI (Lim et al., 2019) 0.22M 1.533 ± 0.084 0.767 ± 0.040 1.384 ± 0.013 0.779 ± 0.008 1.446 ± 0.006 0.614 ± 0.007
IGN (Jiang et al., 2021) 1.66M 1.428 ± 0.020 0.807 ± 0.001 1.269 ± 0.030 0.821 ± 0.013 1.410 ± 0.015 0.630 ± 0.008
EGNN (Satorras et al., 2021) 1.59M 1.498 ± 0.025 0.782 ± 0.015 1.289 ± 0.021 0.816 ± 0.011 1.399 ± 0.013 0.628 ± 0.010
GIGN (Yang et al., 2023) 0.62M 1.380 ± 0.009 0.821 ± 0.003 1.190 ± 0.017 0.840 ± 0.007 1.393 ± 0.007 0.641 ± 0.006

Interaction-based (attention mechanism)
AttentionSiteDTI (Yazdani-Jahromi et al., 2022) 42.66M 1.444 ± 0.037 0.792 ± 0.014 1.352 ± 0.022 0.784 ± 0.008 1.539 ± 0.015 0.563 ± 0.004
CAPLA (Jin et al., 2023) 0.31M 1.409 0.816 1.206 0.841 - -
GAABind (Tan et al., 2024) 17.95M 1.488 0.772 1.297 0.803 - -
DEAttentionDTA (Chen et al., 2024) 2.32M 1.470 0.800 1.266 0.827 - -

Interaction-based (cluster-attention mechanism)
CheapNet (ours) 1.33M 1.262 ± 0.017 0.857 ± 0.004 1.107 ± 0.011 0.870 ± 0.002 1.343 ± 0.007 0.665 ± 0.003
Statistical Significance (p-value) *** *** *** ***a *** ***
a Statistical test was performed assuming zero standard due to the unavailability of the standard deviation.
*** : p-value < 0.001

A.7 PERFORMANCE OF CHEAPNET ON LEP TASK WITH PARAMETER COUNTS AND
STANDARD DEVIATIONS

Table A5 provides a comparison of CheapNet and baseline models on the LEP task, including stan-
dard deviations for AUROC and AUPRC metrics. Notably, only GeoSSL, Uni-Mol, and ProFSA
report standard deviations based on repeated experiments. Consistent with its performance on the
LBA tasks, CheapNet demonstrates smaller standard deviations compared to other methods, re-
flecting its stable and reliable performance across multiple runs. These results further emphasize
CheapNet’s efficiency and robustness in modeling ligand efficacy, making it an effective solution
for capturing complex protein-ligand interactions. Z-tests were also performed as in Appendix A.6
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Table A4: Performance comparison of CheapNet and baselines with parameter counts and standard
deviations on the diverse protein evaluation. The top results are shown in bold, and the second-best
are underlined, respectively.

Model Params # LBA 30% LBA 60%
RMSE ↓ Pearson ↑ Spearman ↑ RMSE ↓ Pearson ↑ Spearman ↑

Interaction-free
DeepDTA (Öztürk et al., 2018) 1.93M 1.866 ± 0.080 0.472 ± 0.022 0.471 ± 0.024 1.762 ± 0.261 0.666 ± 0.012 0.663 ± 0.015
SSA (Bepler & Berger, 2019) 48.8M 1.985 ± 0.006 0.165 ± 0.006 0.152 ± 0.024 1.891 ± 0.004 0.249 ± 0.006 0.275 ± 0.008
TAPE (Rao et al., 2019) 93.0M 1.890 ± 0.035 0.338 ± 0.044 0.286 ± 0.124 1.633 ± 0.016 0.568 ± 0.033 0.571 ± 0.021

Interaction-based
Atom3D-3DCNN (Townshend et al., 2020) 2.22M 1.416 ± 0.021 0.550 ± 0.021 0.553 ± 0.009 1.621 ± 0.025 0.608 ± 0.020 0.615 ± 0.028
Atom3D-ENN (Townshend et al., 2020) 0.06M 1.568 ± 0.012 0.389 ± 0.024 0.408 ± 0.021 1.620 ± 0.049 0.623 ± 0.015 0.633 ± 0.021
Atom3D-GNN (Townshend et al., 2020) 0.38M 1.601 ± 0.048 0.545 ± 0.027 0.533 ± 0.033 1.408 ± 0.069 0.743 ± 0.022 0.743 ± 0.027
IEConv (Hermosilla et al., 2021) 5.80M 1.554 ± 0.016 0.414 ± 0.053 0.428 ± 0.032 1.473 ± 0.024 0.667 ± 0.011 0.675 ± 0.019
MaSIF (Gainza et al., 2020) 0.62M 1.484 ± 0.018 0.467 ± 0.020 0.455 ± 0.014 1.426 ± 0.017 0.709 ± 0.001 0.701 ± 0.001
Holoprot-Full Surface (Somnath et al., 2021) 1.44M 1.464 ± 0.006 0.509 ± 0.002 0.500 ± 0.005 1.365 ± 0.038 0.749 ± 0.014 0.742 ± 0.011
Holoprot-Superpixel (Somnath et al., 2021) 1.76M 1.491 ± 0.004 0.491 ± 0.014 0.482 ± 0.032 1.416 ± 0.022 0.724 ± 0.011 0.715 ± 0.006
ProNet-Amino Acid (Wang et al., 2023) 1.38M 1.455 ± 0.009 0.536 ± 0.012 0.526 ± 0.012 1.397 ± 0.018 0.741 ± 0.008 0.734 ± 0.009
ProNet-Backbone (Wang et al., 2023) 1.39M 1.458 ± 0.003 0.546 ± 0.007 0.550 ± 0.008 1.349 ± 0.019 0.764 ± 0.006 0.759 ± 0.001
ProNet-All-Atom (Wang et al., 2023) 1.39M 1.463 ± 0.001 0.551 ± 0.005 0.551 ± 0.008 1.343 ± 0.025 0.765 ± 0.009 0.761 ± 0.003
SchNet (Schütt et al., 2017)a 0.21M 1.370 ± 0.028 0.590 ± 0.017 0.571 ± 0.028 - - -
GemNet (Gasteiger et al., 2021)a 1.37M OOM - - -
Equiformer (Liao & Smidt, 2022)a 1.10M OOM - - -
TorchMD-Net (Thölke & De Fabritiis, 2022)a 0.30M 1.383 ± 0.009 0.580 ± 0.008 0.564 ± 0.004 - - -
MACE (Batatia et al., 2022)a 3.91M 1.372 ± 0.021 0.612 ± 0.010 0.592 ± 0.010 - - -
LEFTNet (Du et al., 2024)a 0.85M 1.366 ± 0.016 0.592 ± 0.014 0.580 ± 0.011 - - -
GET (Kong et al., 2024) 0.69M 1.327 ± 0.005 0.620 ± 0.004 0.611 ± 0.003 - - -

Pre-training
DeepAffinity (Karimi et al., 2019) - 1.893 ± 0.650 0.415 0.426 - - -
SMT-DTA (Pei et al., 2022) - 1.574 0.458 0.447 1.347 0.758 0.754
GeoSSL (Liu et al., 2022) - 1.451 ± 0.030 0.577 ± 0.020 0.572 ± 0.010 - - -
ProtTrans (Elnaggar et al., 2021) 2.4M 1.544 ± 0.015 0.438 ± 0.053 0.434 ± 0.058 1.641 ± 0.016 0.595 ± 0.014 0.588 ± 0.009
EGNN-PLM (Wu et al., 2023) 650M 1.403 ± 0.010 0.565 ± 0.020 0.544 ± 0.010 1.559 ± 0.020 0.644 ± 0.020 0.646 ± 0.020
Uni-Mol (Zhou et al., 2023) 47.61M 1.434 0.565 0.540 1.357 0.753 0.750
ProFSA (Gao et al., 2024) >47.61Mb 1.377 ± 0.010 0.628 ± 0.010 0.620 ± 0.010 1.377 ± 0.010 0.764 ± 0.000 0.762 ± 0.010
BindNet (Feng et al., 2024) >47.61Mb 1.340 0.632 0.620 1.230 0.793 0.788

Interaction-based (cluster-attention mechanism)
CheapNet (ours) 1.39M 1.311 ± 0.003 0.642 ± 0.001 0.639 ± 0.010 1.238 ± 0.005 0.794 ± 0.002 0.789 ± 0.001
Statistical Significance (p-value) *** ***c ***c ns ns *
a Adapted from GET (Kong et al., 2024), which used hierarchical approaches from atom-level to block-level.
b Accurate parameter estimation for BindNet is not possible due to the unavailability of the pre-training model checkpoint, but it is likely higher than Uni-Mol since it is based on

Uni-Mol.
c Statistical test was performed assuming zero standard due to the unavailability of the standard deviation.
* : p-value < 0.05
** : p-value < 0.01
*** : p-value < 0.001
ns : non-significant

to compare CheapNet’s performance against the second-best performing model in terms of AU-
ROC and AURPC on the LEP task. The results demonstrate that CheapNet’s improvement over the
second-best model is statistically significant (p-value < 0.001).

A.8 ABLATION STUDIES (1): ADAPTABILITY OF CHEAPNET WITH PARAMETER COUNTS
AND STANDARD DEVIATIONS

Table A6 presents the detailed results of the ablation study with standard deviations for RMSE and
Pearson correlation coefficients across the PDBbind v2013 core set, v2016 core set, and v2019 hold-
out set. Despite only a modest increase in the number of parameters, CheapNet combined with vari-
ous graph encoders (GCN, EGNN, and GIGN) demonstrates consistent and substantial performance
improvements across all datasets. This highlights CheapNet’s ability to enhance predictive accuracy
effectively while maintaining parameter efficiency, making it a scalable choice for protein-ligand
binding affinity tasks.

A.9 ABLATION STUDIES (2): HIERARCHICAL REPRESENTATIONS AND ATTENTION
MECHANISMS WITH PARAMETER COUNTS AND STANDARD DEVIATIONS

Table A7 shows CheapNet’s performance under various configurations for RMSE and Pearson cor-
relation coefficients across the PDBbind v2013 core set, v2016 core set, and v2019 holdout set,
showing the effects of hierarchical representations and cross-attention mechanisms. The results
show that the combination of cluster-level representations and cross-attention yields the best perfor-
mance, highlighting the significant improvements achieved by integrating both components.
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Table A5: Comparison results of CheapNet and baselines on LEP datasets. The top results are
shown in bold, and the second-best are underlined, respectively.

Model Params # AUROC ↑ AUPRC ↑
Interaction-free
DeepDTA (Öztürk et al., 2018) - 0.696 -

Interaction-based
Atom3D-3DCNN (Townshend et al., 2020) 97.51M 0.589 0.483
Atom3D-ENN (Townshend et al., 2020) - 0.663 0.551
Atom3D-GNN (Townshend et al., 2020) 1.21M 0.681 0.598
GVP-GNN (Jing et al., 2021) - 0.628 -
ProNet-Amino Acid (Wang et al., 2023) - 0.646 -
ProNet-Backbone (Wang et al., 2023) - 0.687 -
ProNet-All-Atom (Wang et al., 2023) - 0.692 -
SchNet (Schütt et al., 2017)a 0.20M 0.736 ± 0.020 0.731 ± 0.048
EGNN (Satorras et al., 2021)a 0.17M 0.724 ± 0.027 0.720 ± 0.056
TorchMD-NET (Thölke & De Fabritiis, 2022)a 0.29M 0.717 ± 0.033 0.724 ± 0.055
GET (Kong et al., 2024) 1.60M 0.761 ± 0.012 0.751 ± 0.012

Pre-training
GeoSSL (Liu et al., 2022) - 0.776 ± 0.030 0.694 ± 0.060
Uni-Mol (Zhou et al., 2023) 47.61M 0.782 ± 0.020 0.695 ± 0.070
ProFSA (Gao et al., 2024) >47.61Mb 0.840 ± 0.040 0.806 ± 0.040
BindNet (Feng et al., 2024) >47.61Mb 0.882 0.870

Interaction-based (cluster-attention)
CheapNet (ours) 1.45M 0.935 ± 0.002 0.924 ± 0.000
Statistical Significance (p-value) ***c ***c

a Adapted from GET (Kong et al., 2024), which used hierarchical approaches from atom-level to block-level.
b Accurate parameter estimation for BindNet is not possible due to the unavailability of the pre-training

model checkpoint, but it is likely higher than Uni-Mol since it is based on Uni-Mol.
c Statistical test was performed assuming zero standard due to the unavailability of the standard deviation.
*** : p-value < 0.001

Table A6: Ablation study results showing RMSE, Pearson correlation coefficient, and performance
improvement (∆) for different graph encoders with parameter counts and standard deviations on the
PDBbind v2013 core set, v2016 core set, and v2019 holdout set. The top results are shown in bold,
and the second-best are underlined, respectively.

Model Params # v2013 core set v2016 core set v2019 holdout set
RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑

GCN (Kipf & Welling, 2016) 0.25M 1.395 ± 0.033 0.819 ± 0.013 1.295 ± 0.014 0.809 ± 0.004 1.460 ± 0.009 0.593 ± 0.002
CheapNet-GCN 1.09M 1.368 ± 0.039 0.820 ± 0.012 1.246 ± 0.034 0.823 ± 0.014 1.391 ± 0.018 0.635 ± 0.010

∆(%) +1.935 +0.122 +3.784 +1.731 +4.726 +7.083

EGNN (Satorras et al., 2021) 1.59M 1.498 ± 0.025 0.782 ± 0.015 1.289 ± 0.021 0.816 ± 0.011 1.399 ± 0.013 0.628 ± 0.010
CheapNet-EGNN 2.43M 1.321 ± 0.027 0.843 ± 0.012 1.161 ± 0.010 0.856 ± 0.000 1.343 ± 0.009 0.664 ± 0.004

∆(%) +11.816 +7.801 +9.930 +5.549 +4.003 +5.732

GIGN (Yang et al., 2023) 0.62M 1.380 ± 0.009 0.821 ± 0.003 1.190 ± 0.017 0.840 ± 0.007 1.393 ± 0.007 0.641 ± 0.006
CheapNet-GIGN 1.33M 1.262 ± 0.017 0.857 ± 0.004 1.107 ± 0.011 0.870 ± 0.002 1.343 ± 0.007 0.665 ± 0.003

∆(%) +8.551 +4.385 +6.975 +3.571 +3.589 +3.744

Table A7: Ablation study results for the effect of using hierarchical representations (Hierarchical),
and type of attention mechanism (Attention) with parameter counts and standard deviations on the
PDBbind v2013 core set, v2016 core set, and v2019 holdout set. The top results are shown in bold,
and the second-best are underlined, respectively.

Hierarchical Attention Params # v2013 core set v2016 core set v2019 holdout set
RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑

✗ ✗ 0.49M 1.345 ± 0.017 0.844 ± 0.003 1.189 ± 0.005 0.851 ± 0.001 1.360 ± 0.001 0.652 ± 0.001
✗ Self 1.02M 1.305 ± 0.030 0.850 ± 0.004 1.166 ± 0.003 0.854 ± 0.002 1.367 ± 0.003 0.650 ± 0.002
✗ Cross 1.02M 1.293 ± 0.022 0.853 ± 0.002 1.151 ± 0.003 0.857 ± 0.001 1.362 ± 0.011 0.653 ± 0.004
✓ ✗ 0.81M 1.330 ± 0.017 0.840 ± 0.006 1.161 ± 0.012 0.853 ± 0.002 1.348 ± 0.005 0.662 ± 0.005
✓ Self 1.33M 1.327 ± 0.044 0.841 ± 0.015 1.168 ± 0.003 0.853 ± 0.001 1.348 ± 0.004 0.662 ± 0.002
✓ Cross 1.33M 1.262 ± 0.017 0.857 ± 0.004 1.107 ± 0.011 0.870 ± 0.002 1.343 ± 0.007 0.665 ± 0.003

A.10 ABLATION STUDIES (3): EFFECTS OF NUMBER OF CLUSTERS

We investigate how varying the number of clusters, defined by quantiles of the number of complex
nodes (Q1–Q4), affects CheapNet’s performance. The model uses a differentiable pooling mecha-
nism to cluster atoms based on functional similarity, and the number of clusters can influence both
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Table A8: Ablation study results of CheapNet for different number of clusters with parameter counts
and standard deviations on the PDBbind v2013 core set, v2016 core set, and v2019 holdout set. The
top results are shown in bold, and the second-best are underlined, respectively.

Cluster size Params # v2013 core set v2016 core set v2019 holdout set
RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑

Q1 1.32M 1.303 ± 0.016 0.850 ± 0.005 1.153 ± 0.015 0.856 ± 0.004 1.356 ± 0.009 0.657 ± 0.006
Q2 1.33M 1.262 ± 0.017 0.857 ± 0.004 1.107 ± 0.011 0.870 ± 0.002 1.343 ± 0.007 0.665 ± 0.003
Q3 1.34M 1.274 ± 0.029 0.862 ± 0.011 1.142 ± 0.025 0.863 ± 0.007 1.340 ± 0.008 0.665 ± 0.004
Q4 1.46M 1.314 ± 0.032 0.847 ± 0.011 1.147 ± 0.002 0.859 ± 0.002 1.334 ± 0.009 0.669 ± 0.005

Table A9: Ablation study results of CheapNet for auxiliary loss with standard deviations on the
PDBbind v2013 core set, v2016 core set, and v2019 holdout set. The top results are shown in bold,
and the second-best are underlined, respectively.

auxilliary loss v2013 core set v2016 core set v2019 holdout set
RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑

✗ 1.262 ± 0.017 0.857 ± 0.004 1.107 ± 0.011 0.870 ± 0.002 1.343 ± 0.007 0.665 ± 0.003
✓ 1.288 ± 0.017 0.858 ± 0.003 1.143 ± 0.007 0.861 ± 0.004 1.348 ± 0.002 0.661 ± 0.001

accuracy and efficiency. To evaluate this, we experimented with four different cluster sizes (Q1, Q2,
Q3, Q4) and summarized the results in Table A8.

The results show that cluster size q2 consistently provides the best balance between RMSE and
Pearson correlation coefficient across the datasets. While q4 shows slightly better results on the
v2019 holdout set, q2 performs optimally on the v2013 and v2016 core sets. This suggests that q2
strikes the best balance between computational efficiency and capturing key molecular interactions,
making it the most suitable cluster size for most applications in CheapNet.

A.11 ABLATION STUDIES (4): EFFECTS OF ADDITIONAL AUXILIARY LOSS

We considered incorporating auxiliary losses, including a link prediction loss and an entropy
regularization loss, as proposed by Ying et al. (2018). The link prediction loss is defined as
LLP = ∥A − SST ∥F , where ∥ · ∥ means Frobenius norm. The entropy regularization loss is
given by LE = 1

n

∑n
i=1 H(Si), where H is the entropy function, and Si represents the i-th row of

S.

As shown in Table A9, the use of auxiliary loss does not consistently improve performance. While
it provides a marginal boost in Pearson correlation coefficient on a smaller dataset such ac v2013
core set, it tends to degrade results on larger datasets. This indicates that clustering atoms based on
geometric positions is less effective compared to clustering based purely on features, particularly
when used with cross-attention mechanisms.

A.12 ABLATION STUDIES (5): COMPARISON OF ATOM SELECTION & GROUPING
APPROACHES AND CLUSTER-ATTENTION MECHANISM OF CHEAPNET

To further analyze the impact of soft-clustering approaches in CheapNet, we evaluate different atom
selection or grouping approaches by replacing CheapNet’s differential pooling method with alter-
native strategies. Specifically, we tested hard node selection methods such as TopKPooling (Gao
& Ji, 2019) and structure-based pooling methods like ASAPooling (Ranjan et al., 2020) and SAG-
Pooling (Lee et al., 2019). As presented in Table A10, CheapNet consistently demonstrated superior
performance in the LBA 30% dataset on the Diverse Protein Evaluation. Unlike hard selection or
structure-based clustering approaches, CheapNet’s cluster-attention mechanism prioritizes cluster-
ing by atom embeddings, rather than relying on geometric properties, offering a complementary
perspective on clustering.
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Table A10: Ablation study results for the effect of using various pooling methods compared to the
differential pooling of CheapNet with parameter counts and standard deviations on the LBA 30%
dataset of Diverse Protein Evaluation.

Model Params # RMSE ↓ Pearson ↑ Spearman ↑
TopKPooling (Gao & Ji, 2019) 1.03M 1.478 ± 0.048 0.578 ± 0.013 0.574 ± 0.030
ASAPooling (Ranjan et al., 2020) 1.16M 1.419 ± 0.040 0.592 ± 0.017 0.594 ± 0.020
SAGPooling (Gao et al., 2024) 1.03M 1.514 ± 0.020 0.582 ± 0.013 0.590 ± 0.007
CheapNet (ours) 1.39M 1.311 ± 0.003 0.642 ± 0.001 0.639 ± 0.010

Table A11: Performance comparison of CheapNet and various interaction-based models with pa-
rameter counts and standard deviations on the CSAR NRC-HiQ dataset. The top results are shown
in bold, and the second-best are underlined, respectively, with standard deviations.

Model Params # RMSE ↓ Pearson ↑
Interaction-based
PotentialNet (Feinberg et al., 2018) 0.08M 1.730 ± 0.119 0.718 ± 0.056
GNN-DTI (Lim et al., 2019) 0.22M 1.675 ± 0.256 0.855 ± 0.123
IGN (Jiang et al., 2021) 1.66M 1.647 ± 0.265 0.846 ± 0.052
EGNN (Satorras et al., 2021) 1.59M 1.640 ± 0.068 0.866 ± 0.031
GIGN (Yang et al., 2023) 0.62M 1.827 ± 0.166 0.766 ± 0.086

Interaction-based (cluster-attention mechanism)
CheapNet 1.33M 1.381 ± 0.089 0.901 ± 0.016

A.13 PERFORMANCE OF CHEAPNET ON CSAR NRC-HIQ DATASET WITH PARAMETER
COUNTS AND STANDARD DEVIATIONS

Table A11 summarizes the detailed performance of CheapNet and various interaction-based models
on the CSAR NRC-HiQ dataset, including parameter counts and standard deviations. CheapNet not
only achieves the best RMSE and Pearson correlation coefficient but also exhibits the smallest stan-
dard deviations across both metrics (except RMSE of EGNN), indicating its consistent and reliable
performance. Despite using more parameters than some models, CheapNet’s cluster-attention mech-
anism offers significant improvements, demonstrating its robustness in handling complex protein-
ligand interactions.

A.14 PERFORMANCE OF CHEAPNET ON CASF-2016 DATASET

We assess the ranking power and scoring power of CheapNet using the CASF-2016 dataset (Su
et al., 2018). To evaluate ranking power, we calculate the Spearman correlation coefficient for 5
ligands, averaged over 57 complexes. As shown in Figure A1(a), CheapNet ranked first with a
correlation of 0.761, outperforming all other models. For the scoring test, we assess the Pearson
correlation coefficient for 285 complexes. As illustrated in Figure A1(b), CheapNet is the best-
performing model among those evaluated. These excellent results demonstrate CheapNet’s potential
to significantly advance protein-ligand ranking in pharmaceutical research.

A.15 APPLICATION TO REAL-WORLD SCENARIO: EXAMPLE OF VIRTUAL SCREENING TASK

In drug discovery, accurately predicting whether a ligand will bind to a receptor protein—a process
known as virtual screening—is essential. To demonstrate the effectiveness of CheapNet in capturing
the relationship between a protein and a ligand, we curated a dataset from the well-established DUD-
E dataset (Mysinger et al., 2012) and processed its 3D structures using RDKit. For each active
ligand, pockets were extracted, and corresponding graphs were constructed. Undersampled decoys
were then generated in equal numbers, resulting in 11,109 actives and 10,987 decoys. The number of
target proteins is 52. With CheapNet, we compared GCN (Kipf & Welling, 2016), EGNN (Satorras
et al., 2021), GIGN (Yang et al., 2023), and AttentionSiteDTI (Yazdani-Jahromi et al., 2022) as
baselines. A 3-fold cross-validation was applied, and the averaged results are reported. For fair
comparison, a hidden dimension of 35 is adopted.
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(a) (b)

Figure A1: Comparison of (a) ranking power and (b) scoring power of CheapNet and various
other models based on Spearman correlation coefficient and Pearson correlation coefficient.

Table A12: Performance comparison of models with and without the cluster-attention mechanism
on the DUD-E dataset. The integration of the cluster-attention mechanism significantly improves
performance with fewer parameters. The top results are shown in bold, and the second-best are
underlined, respectively.

Model Params # AUROC ↑ EF0.5% ↑ EF1% ↑ EF2% ↑ EF5% ↑
GCN (Kipf & Welling, 2016) 0.08M 0.677 ± 0.030 9.951 ± 0.694 5.062 ± 0.353 4.148 ± 0.865 3.269 ± 0.626
EGNN (Satorras et al., 2021) 0.03M 0.771 ± 0.017 11.368 ± 5.423 9.202 ± 4.079 7.393 ± 2.714 5.534 ± 1.418
GIGN (Yang et al., 2023) 0.01M 0.780 ± 0.017 11.079 ± 5.019 8.659 ± 5.039 7.492 ± 3.757 5.693 ± 1.538
AttentionSiteDTI (Yazdani-Jahromi et al., 2022) 42.59M 0.820 ± 0.012 13.985 ± 7.580 11.694 ± 7.418 9.447 ± 5.861 6.846 ± 2.635

CheapNet (ours) 0.03M 0.826 ± 0.011 24.646 ± 10.922 16.249 ± 7.617 12.549 ± 5.032 8.109 ± 2.144

Table A12 clearly shows that CheapNet notably enhances performances of the virtual screening task.
Importantly, this improvement is achieved with greater parameter efficiency, as the cluster-attention
mechanism boosts performance while reducing the parameter count.

Furthermore, to demonstrate the interpretability of CheapNet, we performed a case study using the
Tyrosine Protein Kinase SRC protein (SRC) with one of its active ligands from the DUD-E dataset.
SRC is a disease-causing protein that promotes the growth of cancer cells, making it an important
target for cancer treatments (Luo et al., 2022).

As shown in Figure A2, CheapNet showed high confidence in the activity of the ligand with SRC,
with a predicted score of 0.9998. Notably, the interpretability of CheapNet in this scenario was
impressive, as it successfully pinpointed the regions of critical interaction between the ligand and
the protein. Using cluster-level cross attention, CheapNet effectively identified key molecular in-
teractions, demonstrating its potential to enhance AI-based drug development by improving both
accuracy and interpretability.

A.16 DETAILS OF MEMORY FOOTPRINT ANALYSIS

The memory usage in attention-based models is significantly influenced by the number of atoms in a
protein-ligand complex, due to the quadratic complexity of attention matrices. To assess CheapNet’s
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Protein: SRC

True: 1

CheapNet: 0.9998

Figure A2: Visualization of CheapNet’s applicability in a active ligand-SRC complex in DUD-
E dataset. The most attended pairs of protein and ligand atoms are highlighted, with cyan lines
representing interactions. An object connected with yellow lines is ligand, the other with red is
protein, This figure demonstrates CheapNet’s effectiveness in capturing key binding regions which
correspond to cross-attention maps.

memory efficiency, we compared it against GAABind and DEAttentionDTA using varying numbers
of atoms and batch sizes.

We divided the PDBbind v2016 core set based on the number of atoms in the complexes, ranging
from 50 to 450 in increments of 50. For each interval, 128 complexes were randomly sampled to en-
sure fair comparison. For the smaller atom interval (50–100 atoms, “small complex”), experiments
were conducted with batch sizes of 2 and 4. For the larger interval (400–450 atoms, “large com-
plex”), batch sizes of 32, 64, and 128 were used. Although we tested a wider range of intervals and
batch sizes, Figure 3 in the main text focuses on representative settings to highlight the differences
in memory efficiency.

Each model was trained for 20 epochs, with memory usage monitored via nvidia-smi. CheapNet
consistently required less GPU memory compared to GAABind and DEAttentionDTA, owing to
its cluster-attention mechanism, which reduces the burden of large attention matrices by leveraging
hierarchical representations. Notably, CheapNet’s memory usage remained stable even with larger
batch sizes, demonstrating its scalability for protein-ligand binding predictions.

A.17 FURTHER VISUALIZATION OF CHEAPNET’S INTERPRETABILITY

We further explored other cases that show CheapNet’s ability of interpretability at Figure A3. To
fully utilize CheapNet’s soft assignment and cross-attention mechanism, we summarize the atten-
tion scores across both ligand and protein clusters. The attention score between ligand and protein
atoms is computed by considering the cross-attention between ligand-to-protein (Ql2p, Kl2p) and
protein-to-ligand (Qp2l, Kp2l) attention scores, along with the assignment matrices for ligand (Sl)
and protein (Sp) atoms. The overall attention score can be expressed as:

A = Sl

(
softmax

(
Ql2pK

⊤
l2p√

d

)
+ softmax

(
Qp2lK

⊤
p2l√

d

))
STp (17)

The visualization result on 4 samples of PDBbind v2016 core set in Figure A3 further illustrate
CheapNet’s ability to capture meaningful interactions between ligand and protein atoms. Across
the cases, the higher attention score regions of cross-attention map indicate key binding regions.
CheapNet closely predicts the true binding affinity and performs comparably to GIGN, CheapNet’s
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(c)

PDB ID: 1r5y

True: 6.46

CheapNet: 6.53

GIGN: 6.84

(a)

PDB ID: 3arv

True: 5.64

CheapNet: 5.63

GIGN: 5.89

(b)

PDB ID: 1uto

True: 2.27

CheapNet: 2.34

GIGN: 2.90

(d)

PDB ID: 4agq

True: 5.01

CheapNet: 5.01

GIGN: 4.35

ligand

protein

ligand

protein

ligandprotein

ligand

protein

Figure A3: Visualization of CheapNet’s interpretability in various protein-ligand complexes
(PDB ID: (a) 3arv, (b) 1uto, (c) 1r5y, (d) 4agq). The most attended pairs of protein and ligand
atoms are highlighted in red boxes, with yellow dashed lines representing interactions. This figure
demonstrates CheapNet’s effectiveness in capturing key binding regions which correspond to cross-
attention maps, offering valuable insights into protein-ligand interactions.

baseline model. Leveraging the cluster-attention mechanism to identify critical interactions, Cheap-
Net achieves higher accuracy to predict protein-ligand binding affinity. These findings demonstrate
CheapNet’s strength in providing interpretable insights into protein-ligand interactions through its
cluster-attention mechanism.

A.18 SIMULATION ON LACK OF THREE-DIMENSIONAL HIGH-QUALITY DATA

In real-world applications, high-quality data such as three-dimensional crystallized protein struc-
tures, as used in this study, may not always be available. In such cases, predicted structures gener-
ated by tools like AlphaFold 3 (Abramson et al., 2024) provide a viable alternative. However, these
predicted structures often contain noise, which can negatively impact model performance.
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Table A13: Ablation study results for the effect of using hierarchical representations to control
additional noise with performance decline (∆), parameter counts, and standard deviations on the
PDBbind v2013 core set, v2016 core set, and v2019 holdout set.

Model Noise Params # v2013 core set v2016 core set v2019 holdout set
RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑ RMSE ↓ Pearson ↑

GCN (Kipf & Welling, 2016) ✗ 0.25M 1.395 ± 0.033 0.819 ± 0.013 1.295 ± 0.014 0.809 ± 0.004 1.460 ± 0.009 0.593 ± 0.002
✓ 1.502 ± 0.039 0.773 ± 0.010 1.337 ± 0.036 0.793 ± 0.014 1.510 ± 0.018 0.570 ± 0.004

∆(%) -7.670 -5.617 -3.243 -1.978 -3.425 -3.879

IGN (Jiang et al., 2021) ✗ 1.66M 1.428 ± 0.020 0.807 ± 0.001 1.269 ± 0.030 0.821 ± 0.013 1.410 ± 0.015 0.630 ± 0.008
✓ 1.474 ± 0.014 0.786 ± 0.003 1.332 ± 0.020 0.795 ± 0.009 1.437 ± 0.023 0.620 ± 0.008

∆(%) -3.221 -2.602 -4.964 -3.167 -1.915 -1.587

EGNN (Satorras et al., 2021) ✗ 1.59M 1.498 ± 0.025 0.782 ± 0.015 1.289 ± 0.021 0.816 ± 0.011 1.399 ± 0.013 0.628 ± 0.010
✓ 1.507 ± 0.006 0.780 ± 0.009 1.300 ± 0.021 0.812 ± 0.015 1.402 ± 0.019 0.629 ± 0.007

∆(%) -0.601 -0.256 -0.853 -0.490 -0.214 +0.159

CheapNet (w/o cross-attention) ✗ 0.81M 1.330 ± 0.017 0.840 ± 0.006 1.161 ± 0.012 0.853 ± 0.002 1.348 ± 0.005 0.662 ± 0.005
✓ 1.352 ± 0.041 0.827 ± 0.013 1.190 ± 0.025 0.842 ± 0.007 1.386 ± 0.014 0.649 ± 0.008

∆(%) -1.654 -1.548 -2.498 -1.290 -2.819 -1.964

Table A14: Ablation study results for the effect of varying error levels to noise coordinate with
standard deviations on the LBA 30% dataset of Diverse Protein Evaluation.

Model Error Level (Å) RMSE ↓ Pearson ↑ Spearman ↑

CheapNet

0.0 1.311 ± 0.003 0.642 ± 0.001 0.639 ± 0.010
0.1 1.325 ± 0.011 0.631 ± 0.005 0.625 ± 0.003
0.5 1.340 ± 0.010 0.616 ± 0.005 0.601 ± 0.005
1.0 1.348 ± 0.003 0.608 ± 0.007 0.600 ± 0.007
2.0 1.364 ± 0.014 0.603 ± 0.010 0.585 ± 0.009

CheapNet-EGNN

0.0 1.416 ± 0.006 0.548 ± 0.007 0.532 ± 0.013
0.1 1.420 ± 0.011 0.545 ± 0.011 0.542 ± 0.016
0.5 1.418 ± 0.019 0.548 ± 0.020 0.544 ± 0.013
1.0 1.418 ± 0.011 0.545 ± 0.013 0.530 ± 0.014
2.0 1.435 ± 0.002 0.532 ± 0.004 0.522 ± 0.021

To evaluate the robustness of CheapNet’s clustering mechanism in handling noisy data, we con-
ducted an ablation study by adding Gaussian noise η ∼ N (0, 1), to the initialized atom embeddings
in Algorithm 1. This experiment aimed to assess how clustering helps group meaningful atoms
while filtering out irrelevant information, mitigating the effects of noise. To isolate the contribution
of clustering, we disabled the cross-attention mechanism in CheapNet for this evaluation, focusing
solely on hierarchical representations.

Table A13 summarizes the results of the study. CheapNet, when using hierarchical representations,
exhibited less performance decline compared to other models, demonstrating its robustness in noisy
environments. While SE(3)-equivariant EGNN exhibited even smaller performance declines un-
der noisy conditions, CheapNet maintained superior overall performance across all datasets. This
highlights the value of CheapNet’s clustering mechanism for noise reduction and flexible feature
extraction, which is especially beneficial for handling noisy predicted structures in practical appli-
cations.

Furthermore, inspired by GET (Kong et al., 2024), we evaluated CheapNet’s performance under
varying levels of coordinate noise to simulate imperfect real-world conditions. As shown in Ta-
ble A14, CheapNet maintains stable performance under low noise levels but experiences a grad-
ual decline as noise increases, likely due to the GIGN encoder (Yang et al., 2023), which is only
translation and rotation invariant. To address this, we replaced GIGN with EGNN (Satorras et al.,
2021), which is translation-, rotation-, and permutation-equivariant. The resulting model, CheapNet-
EGNN, demonstrated more robust performance under higher noise levels. This highlights the mod-
ularity of CheapNet’s architecture, allowing the GNN encoder to be easily replaced to better suit
data quality requirements.
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Algorithm 2 Pseudo Code for Distance-Driven Cluster Interaction Weighting
Require: Ligand atoms {lai}, Protein atoms {paj}, Atom positions {rlai , rpaj}, Distance thresh-

old dthreshold, Soft cluster assignments Mcl,la and Mcp,pa

Ensure: Cluster-level weights Edist
cluster(cl, cp)

1: Step 1: Compute Atom-Level Distance Edges
2: for each ligand atom lai and protein atom paj do
3: Compute Edist

atom(lai, paj):

Edist
atom(lai, paj) =

{
1 if ∥rlai − rpaj∥ ≤ dthreshold

0 otherwise.

4: end for
5: Step 2: Aggregate Atom-Level Edges to Cluster-Level Weights
6: for each ligand cluster cl and protein cluster cp do
7: Compute Edist

cluster(cl, cp):

Edist
cluster(cl, cp) =

∑
lai

∑
paj

Mcl,lai ·Mcp,paj · Edist
atom(lai, paj)

8: end for
9: Step 3: Integrate into Cross-Attention Mechanism

10: Modify cross-attention computation as:

Attention(Q,K, V ) = softmax
(
QKT + αEdist

cluster√
d

)
V

A.19 EXTENDING 3D INFORMATION TO CLUSTER-LEVEL ATTENTION AND
DUAL-AWARENESS FRAMEWORK

While CheapNet currently learns interactions during the graph encoding stage through atom em-
bedding computation, these interactions could be explicitly incorporated in later stages, such as the
cross-attention mechanism.

As outlined in Algorithm 2, one potential approach involves pre-computing atom-level edges based
on distances between ligand and protein atoms within a threshold (e.g., 5 Å). These edges can then
be aggregated into cluster-level weights using the soft clustering assignments of atoms to clusters.
The resulting cluster-level weights, representing interaction likelihoods based on atom-level proxim-
ity, could serve as biases in the cross-attention mechanism to guide attention scores. This preserves
CheapNet’s end-to-end differentiability while embedding biologically meaningful priors into inter-
action modeling.

To explore a dual-awareness framework that utilizes both atom- and cluster-level representations,
we conducted experiments with atom selectors such as TopKPooling (Gao & Ji, 2019), which con-
siders individual node embeddings, and ASAPooling (Ranjan et al., 2020), which aggregates local
cluster representations. Additionally, we combined TopKPooing or ASAPooling with CheapNet to
implement the dual-awareness framework.

Table A15 shows that integrating TopKPooling or ASAPooling with CheapNet (Dual-) improves
performance compared to using atom selectors alone. Notably, CheapNet alone achieves the best
overall results, but the dual-awareness framework demonstrates promising potential for future work.

A.20 LIMITATIONS

While CheapNet demonstrates strong performance and efficiency in protein-ligand binding affinity
prediction, there are some limitations. First, the cluster-level attention mechanism may not capture
all nuances of atom-level interactions, especially for complexes where fine-grained atomic interac-
tions are crucial. Second, although our model achieves lower memory usage, its performance is
dependent on the quality of the differentiable pooling and cross-attention mechanisms, which may
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Table A15: Results for the dual-awareness framework of CheapNet with parameter counts and stan-
dard deviations on the LBA 30% dataset of Diverse Protein Evaluation.

Model Params # RMSE ↓ Pearson ↑ Spearman ↑
TopKPooling (Gao & Ji, 2019) 1.03M 1.478 ± 0.048 0.578 ± 0.013 0.574 ± 0.030
ASAPooling (Ranjan et al., 2020) 1.16M 1.419 ± 0.040 0.592 ± 0.017 0.594 ± 0.020

Dual-TopKPooling (Gao & Ji, 2019) 1.46M 1.417 ± 0.007 0.589 ± 0.012 0.587 ± 0.010
Dual-ASAPooling (Ranjan et al., 2020) 1.59M 1.394 ± 0.032 0.618 ± 0.013 0.619 ± 0.017

CheapNet (ours) 1.39M 1.311 ± 0.003 0.642 ± 0.001 0.639 ± 0.010

require fine-tuning for optimal results across diverse datasets. Lastly, CheapNet’s efficiency and
scalability have not been extensively tested on extremely large protein-ligand complexes, which
could impact its applicability in some real-world scenarios. Future work will aim to address these
challenges, potentially by integrating more sophisticated clustering techniques or exploring multi-
scale representations.
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