
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPLICIT BIAS OF HESSIAN APPROXIMATION IN
REGULARIZED RANDOMIZED SR1 METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Quasi-Newton methods have recently been shown to demonstrate
dimension-independent convergence rate outperforming vanilla gradient
descent (GD) in modern high-dimensional problems. By examining the spectrum
of the Hessian approximation throughout the iterative process, we analyze a
regularized quasi-Newton algorithm based on the standard randomized symmetric
rank-one (SR1) update. The evolution of the spectrum reveals an implicit bias
introduced by the Hessian learning, which promotes a preferential reduction of
certain eigenvalues. This observation precisely captures the quality of Hessian
approximation. Incorporating the implicit effect of Hessian update, we show that
the regularized randomized SR1 method achieves a convergence rate of Õ

(
d2
eff

k2

)
for standard self-concordant objective functions, where deff is the effective
dimension of Hessian. In specific high-dimensional settings, which are common
in practice, this method preserves convergence speeds comparable to accelerated
gradient descent (AGD) while maintaining similar computational complexity
per iteration. This work highlights the impact of implicit bias and offers a new
theoretical perspective on the efficiency of quasi-Newton methods.

1 INTRODUCTION

We are interested in using quasi-Newton methods to solve the following unconstrained convex
optimization problem:

min
x∈Rd

f(x). (1)

The convergence properties have been widely studied since the 1970s in the asymptotic regime
(Broyden, 1970; BROYDEN et al., 1973; Dennis & More, 1973; Khalfan et al., 1993). Recently,
a series of breakthrough works such as Rodomanov & Nesterov (2022); Jin & Mokhtari (2023)
have obtained explicit non-asymptotic convergence rates for quasi-Newton methods for quadratic
objectives and local problems of general objectives. These initial results have been refined through
further research (Krutikov et al., 2023; Rodomanov, 2024; Jin et al., 2025a;b) and have offered
insights guiding the development of algorithmic design (Liu & Luo, 2022; Jin et al., 2022).

In these analyses, non-asymptotic local convergence after the k-th iteration is given by, for example,(
ed/k lnκ − 1

)k/2
, (dκ/k)

k
, (d log κ/k)

k, where d is the problem dimension and κ the condition
number. This implies that superlinear convergence is achieved when k = Ω̃(d), but no meaningful
rate is guaranteed for k = O(d). The requirement of k = Ω(d) arises because accurate
Hessian approximation across all dimensions is necessary for superlinear convergence in regions
where the Hessian remains stable. Since quasi-Newton methods update the Hessian approximation
with constant-rank strategies, their convergence inherently depends on d. The high dependence
of the convergence rate on the dimension d significantly limits its interpretability in practical
high-dimensional optimization problems, which is a central challenge in modern learning context.

However, quasi-Newton algorithms, served as intermediate methods between gradient descent
methods, which have dimension-independent convergence properties, and Newton’s methods, which
are renowned for their rapid convergence rates, are expected to demonstrate dimension-independent
convergence and also surpass the performance of vanilla gradient descent even in high dimensions.
Empirical studies (Goldfarb et al., 2020; Berahas et al., 2022; Yousefi & Martínez, 2023) also

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) a9a, d = 123 (b) w8a, d = 300

Figure 1: Early-stage convergence behavior of regularized SR1 versus GD and AGD methods in
linear regression tasks. Experimental results on a9a and w8a datasets reveal that the regularized SR1
algorithm matches the rapid initial convergence speed of AGD, while outperforming standard GD.

substantiate this performance advantage, demonstrating that quasi-Newton methods and their
variants (such as limited-memory versions) are more efficient than vanilla gradient descent in
high-dimensional problems. Thus, it becomes important to examine the convergence behavior of
quasi-Newton methods through the lens of complexity theory with the following naturally raised
question: how do quasi-Newton methods differentiate from gradient descent in high-dimensional
settings through the lens of complexity theory?

A key factor behind the success of modern machine learning algorithms is implicit bias, which states
that distinct optimization trajectories, despite converging to the same target (e.g. minimizing the
empirical loss), preferentially select certain trajectories over others. This preference can significantly
impact their practical effectiveness (Gunasekar et al., 2017; Arora et al., 2019; Li et al., 2022).
In particular, the condition associated with implicit bias, low effective dimension of Hessian,
is ubiquitous and naturally arises in high-dimensional machine learning problems (Cai & Hall,
2006; Liang & Rakhlin, 2020). This condition has been empirically substantiated (Sagun et al.,
2018; Ghorbani et al., 2019) and serves as a fundamental theoretical assumption (Silin & Fan,
2022). In the context of Hessian approximation, when interpreting the quasi-Newton method as
online learning processes targeting Hessian matrix approximation, while the update rules eventually
achieve full Hessian approximation and guarantee superlinear convergence, they inherently prioritize
specific dimensional approximations before the superlinearly converging phase. This work aims to
characterize such implicit preference and sheds light on how to enhance optimization efficiency in
high-dimensional problems, thereby establishing a theoretically guaranteed convergence rate.

In this study, we build upon the framework of randomized symmetric rank-one (SR1) algorithms
(Davidon, 1991; Lin et al., 2022), a specific quasi-Newton method chosen for its simple update
rule, best local theoretical guarantees, and broad prior study in the recent non-asymptotic
convergence result (Liu & Luo, 2021; Ye et al., 2023; Liu et al., 2024a). Concretely, we first
quantify the implicit bias of Hessian approximation in terms of its trace. Then, utilizing this
implicit preference, we demonstrate that regularization, a widely employed practical and analytical
technique in Newton-type methods (Moré, 1978), enables quasi-Newton algorithms to achieve
improved convergence rates. Finally, we illustrate the empirically observed global effectiveness
of quasi-Newton methods in high-dimensional optimization under a specific setting. This setting is
applicable across a broad spectrum of optimization problems.

Organization. The rest of the paper is organized as follows. Section 2 discusses our work with
related literature. Section 3 provides necessary background for our algorithm to be analyzed. Section
4 presents our main result for Hessian approximation and a proof sketch. Section 5 applies the main
result to regularized SR1 method and rigorously establishes global convergence rates of Õ(1/k2),
as well as its application in high-dimensional optimization. Section 6 gives experiments on our
framework compared with other methods and Section 7 summarizes the paper and points out its
limitation and future direction.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Hessian approximation methods. In addition to traditional quasi-Newton updates and its variants,
other approximation techniques involves low-dimensional subspace Newton methods (Gower et al.,
2019; Qu et al., 2016; Doikov et al., 2018; Hanzely et al., 2020; Jiang et al., 2024), and a various
of stochastic QN methods (Bordes et al., 2009; Byrd et al., 2016; Gower et al., 2016). Doikov et al.
(2024) noted the importance of spectral preconditioning and analyzed the influence of Hessian’s
spectrum to regularized QN methods. Our result fully consider the evolution of spectrum but does
not rely on its specific structure.

Cubic regularization methods. Regularized Newtons method stabilizes iterations in singular
curvatures (Li et al., 2004; Burger & Kaltenbacher, 2006), with asymptotic quadratic convergence
proven by Polyak (2009). Adaptive variants, like Nesterovs cubic regularization (Nesterov &
Polyak, 2006) (implicitly adjusting regularization via step size) and gradient norm regularization
(Mishchenko, 2023a; Doikov & Nesterov, 2024), achieve Õ(1

k2) rates under Hessian Lipschitz
conditions. However, these methods require exact Hessians, requiring high computational
complexity. To reduce the computational cost, Benson & Shanno (2018); Ghadimi et al. (2017);
Kamzolov et al. (2023b); Scieur (2024) proposed cubic regularized inexact Newton methods. Some
of them (Kamzolov et al., 2023b; Jiang et al., 2024) also achieved global convergence rate O

(
1
k2

)
,

but they were based on either assumptions on Hessian approximation quality, or Hessian’s low-rank
structure. Note that they still introduced cubic acceleration strategies including solving a non-trivial
sub-problem in each iteration, which are beyond the scope of this paper. Our framework is much
simpler, more general, and easier to implement than theirs.

Quasi-Newton methods. The quasi-Newton method approximates Hessian information via secant
equations, with different forms including DFP (Davidon, 1991), BFGS (Shanno, 1970), and SR1
(Davidon, 1991). Recent work by Rodomanov & Nesterov (2021b) established non-asymptotic
rates for greedy quasi-Newton updates, followed by analyses of classical (Rodomanov & Nesterov,
2022; 2021a; Rodomanov, 2024; Ye et al., 2023; Jin & Mokhtari, 2023) and modified methods (Lin
et al., 2022; Liu et al., 2024b; Liu & Luo, 2021). Among these analyses, the greedy or randomized
SR1 achieves the fastest rate O((1− 1

d)
k(k−1)

2) (Lin et al., 2022) but requires O(d) iterations to enter
the convergence phase. These methods have been extended to non-linear equations (Ye et al., 2021;
Liu et al., 2023), saddle-point problems (Xiao et al., 2024; Liu & Luo, 2021), and other settings
(Ranganath et al., 2025; Benson & Shanno, 2018; Du & You, 2024).

3 PRELIMINARIES

3.1 NOTATION AND PROBLEM SETUP

We consider the problem in Euclidean space Rd. Denote λmax(A) = λ1(A) ≥ · · · ≥ λd(A) as the
eigenvalues of a real symmetric matrix A ∈ Rd×d. For any x, y ∈ Rd and function g, if ∇2g(y) ⪰ 0,
we denote ∥x∥y =

√
x⊤∇2g(y)x and g∗ as the minimum of g. Throughout the paper, we will make

assumptions on the objective function f(x) as followed:
Assumption 1 (Bounded level sets). The diameter of the level set at the initial point x0,

L(x0)
def
=
{
x ∈ Rd : f(x) ≤ f(x0)

}
is bounded by a constant D, then ∥x0 − x∗∥2 ≤ D.

Assumption 2 (Gradient Lipschitz). There exist a constant L such that for all x, y ∈ Rd, we have
∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.

Assumption 3 (Self-concordancy). The objective function f ∈ C2(Rd) is convex and there exists a
constant M such that for all x, y ∈ Rd and ∥y − x∥x < 1

M , we have

(1−M∥y − x∥x)
2∇2f(x) ⪯ ∇2f(y) ⪯ 1

(1−M∥y − x∥x)2
∇2f(x). (2)

Assumption 3 is a standard assumption in the convergence of Newton method (Nesterov &
Nemirovskii, 1994; Nesterov, 2018) and the recent non-asymptotic convergence analysis of
quasi-Newton methods (Rodomanov & Nesterov, 2021b; Lin et al., 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 METHODOLOGY

Randomized SR1 update. The Hessian update in quasi-Newton methods can be viewed as an online
learning process which iteratively refines the approximation to the current Hessian matrix. The
SR1 update can be categorized into different versions. The classical SR1 methods find the Hessian
approximation Bk+1 for the next iteration using the moving direction and the secant equation. The
recent progress on non-asymptomatic analysis originates from other types of SR1 update:

Bk+1 = SR1(A,Bk, sk)
def
= Bk +

(A−Bk)sks
⊤
k (A−Bk)

s⊤k (A−Bk)sk
, (3)

where A ∈ Rd×d is the target Hessian matrix at the current iteration, Bk ∈ Rd×d is the current
Hessian approximation, and sk ∈ Rd is the update direction vector for the rank-one correction,
selected by a greedy or random strategy. Rodomanov & Nesterov (2021b) established the first
superlinear convergence of quasi-Newton method utilizing the greedy update, and was later extended
to randomized update (Lin et al., 2022) and secant equation update (Rodomanov & Nesterov, 2021a).
This paper primarily focuses on the algorithm bias of (3) from randomized update direction. To be
specific, given a distribution µ defined on the real line R that satisfies

Ex∼µ [x] = 0, Ex∼µ

[
x2
]
= 1, Ex∼µ

[
x4
]
= C1 < +∞, (4)

We draw a sample vector uk whose coordinates are independently generated from µ.

Regularized Newton’s method. Regularization techniques, also referred to as the
Levenberg-Marquardt regularization (Moré, 1978), are commonly used to stabilize Newton-type
algorithms. They interpolate between Newton’s method and gradient descent through a damping
factor αk > 0 and perform the update:

xk+1 = xk − (Gk + αkId)
−1 ∇f(xk), (5)

where Gk represents the second order information (typically Hessian matrix (Mishchenko, 2023b)
or its quasi Newton approximation (Kamzolov et al., 2023a)). Large αk biases the method towards
the gradient descent direction, which promotes stability in singular curvature, while small αk permits
fast Newton-type local convergence when the local geometry is well-conditioned. As a consequence,
implementations of regularized Newton’s method progressively reduce αk, leading to a transition
from the unstable global exploration to the local faster convergence.

4 SPECTRAL ANALYSIS FOR A−Bk

4.1 MOTIVATION AND MAIN RESULT

In this section, we start the analyses with the theoretical guarantees of SR1 approximating a positive
semi-definite matrix A ∈ Rd×d. Given an initial matrix B0 ⪯ A, the randomized SR1 updates the
approximation as (3) where sk is randomly sampled from a distribution satisfying (4).

To illustrate the implicit preference of the update rule (3), we first provide a heuristic analysis
through a deterministic analogy of the update (3). While the simplified deterministic analogy lacks
mathematical rigor, it offers valuable insight into the algorithm.

In the deterministic analogy of (3): (1) the denominator s⊤k (A−Bk)sk is replaced by a deterministic
scalar cden, suggested by the concentration of high-dimensional vectors; (2) the rank-one sks

⊤
k is

replaced by its expectation Id. Then, we can write the evolution of A−Bk under the deterministic
update as:

(A−Bk+1) = (A−Bk)−
1

cden
(A−Bk)

2 (6)

Without loss of generality, consider a diagonal A = diag(λ1, λ2, . . . , λd) with λ1 ≥ λ2 ≥ · · · ≥
λd > 0, and initialize B0 = 0. Under these conditions, all iterates in (6) remain diagonal. For each
eigenvalue λi of A, we analyze the evaluation of the corresponding error component [A−Bk]ii by
its continuous-time approximation x(i)(k) evolving as:

dx(i)

dt
= − 1

cden
[x(i)(t)]2, x(i)(0) = λi.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Randomized SR1 Update

1: Requires: Initial matrix B0 ∈ Rd×d, 0 ⪯ B0 ⪯ A, distribution D.
2: for k = 0, 1, 2 . . . do
3: Sample a random vector sk ∼ D which satisfies (4).
4: Compute Bk+1 = SR1(A,Bk, sk).
5: end for

The flow admits the closed-form solution x(i)(t) = λi

1+λit/cden
. In fact, this solution exhibits distinct

convergence behaviors depending on the magnitude of the initial eigenvalues:

• For λi ≫ cden/t, the error decreases rapidly as x(i)(t) ≈ cden/t;

• For λi ≪ cden/t, the error remains nearly unchanged: x(i)(t) ≈ λi.

Thus, this demonstrates that the update rule (6) prioritizes components with large initial eigenvalues.

The following theorem, originating from this implicit preference for large eigenvalues, provides
an upper bound on the approximation error in terms of the ℓ2-norm. Minimizing the ℓ2-norm
equivalently imposes a uniform constraint on all eigenvalues of the error matrix, which confirms
the algorithms implicit bias on the spectrum: the SR1 update prioritizes error reduction in large
eigenspaces while having limited impact on small eigenspaces.

Theorem 1. Suppose that 0 ⪯ B0 ⪯ A, Bk is produced by Algorithm 1, then for every r ≥ 3, 0 <
p < 1, there exists K ∈ N∗ satisfying K = O(r(ln r)3 + ln 1

p), such that with probability at least
1− p, we have

∥A−BK∥2 ≤ Tr(A−B0)

r
. (7)

Theorem 1 shows that, with high probability, ∥A−Bk∥2 = Õ(Tr(A)k−1).

The uniform bound of matrix ℓ2-norm is more challenging in the proof technically, which is
corroborated in the related fields. Previous works on SR1 approximation have primarily focused on
aggregate eigenvalue measurements, such as the trace function (Lin et al., 2022), the log-determinant
barrier function (Ye et al., 2023), and the Frobenius norm (Jin & Mokhtari, 2023).

4.2 PROOF SKETCH OF THEOREM 1

Without loss of generality, in the proof we can set Tr(A−B0) = 1 by normalization. The difficulty
of proving Theorem 1 arises from the uniform bound nature of the ℓ2- norm and the online algorithm
nature of the SR1 update. These lead to one prominent challenge: the uniform spectral bound
∥A−Bk∥2 is not guaranteed to decrease sufficiently in one single iteration, regardless of sk’s
selection. This challenge necessitates an analysis of the decrease at each individual eigenvalue. In
fact, our proof investigates this fine-grained spectral analysis, and moreover, considers two different
phases in the iteration with different decrease patterns.

To illustrate this, Figure 2 shows how the largest 5 eigenvalues of the approximation error matrix
A −Bk evolve empirically over iterations of SR1. This example considers the specific case where
the initial matrix has multiple identical largest eigenvalues, as presented in 2 (a).

In this case, the largest eigenvalue does not decrease during the earlier steps. Besides, the spectrum
distribution exhibits two stages during the iteration:
Stage 1:(2(b), Dispersion) Spectral gap emerges between large eigenvalues - the largest eigenvalue
remains while the subsequent eigenvalues decrease;
Stage 2:(2(c), Normalization) The largest eigenvalue is reduced to achieve the uniform spectral
decay.

This two-stage phenomenon results from that a rank-one update cannot simultaneously reduce
multiple large eigenvalues in the approximation matrix. In fact, this case serves as the worst-case
scenario in our analysis, and our proof also divides into two stages as the empirical results in
Figure 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) k = 0 (b) k = 6 (c) k = 10

Figure 2: Top 5 Eigenvalues of A−Bk. X-axis: eigenvalue index, Y-axis: eigenvalue magnitude.

First, the following lemma formalizes the different decay rates of eigenvalues in Stage 1.
Lemma 1 (Informal version of Lemma 5). Under the conditions in Theorem 1, the i-th eigenvalue
of the approximation error matrix enjoys a rate of Õ(1/

√
ik) with high probability.

In particular, focusing on the k-th eigenvalue demonstrates that λk(A − Bt) ≤ 1
4k after t = Õ(k)

iterations with high probability. However, this result does not establish the desired Õ(1/k) rate in
Theorem 1. To improve this result, we consider two situations as below:
Situation 1: After Õ(k) iterations, the top k eigenvalues are relatively close in magnitude. In other
words, λ1/λk is bounded and the largest eigenvalue λ1 is thereby bounded.
Situation 2: After Õ(k) iterations, the top k eigenvalues are not uniformly distributed. In other
words, there exist non-negligible gaps among the top k eigenvalues.

Stage 2 exactly characterizes the reduction effect in the second situation: Using several iterations
after stage 1, the SR1 update notably reduces large eigenvalues, while the left, which have already
been reduced a lot, remains nearly the same. This stage inspires us to accelerate the decay rate of
the dominant eigenvalue, based on the existence of gaps among the top eigenvalues. We prove the
following lemma that quantifies the rate in detail:
Lemma 2 (Informal version of Lemma 6). Under the conditions corresponding to Theorem 1, for
any m ≤ s ∈ N∗, 0 < u < 1, r > 0, and under mild conditions, there exists K = Õ(s2r

m2u), such
that λm(A−BK) will be smaller than max{(1+u)λs(A−B0),

1
r} iterations with high probability.

Note that the conclusion in Lemma 2 can be applied to any starting matrix Bk and corresponding
Bk+K , because the SR1 update is an online learning process, and Bk satisfies tr(A − Bk) ≤
tr(A−B0) ≤ C0 (the condition in Theorem 1), it is only the matter of indices.

In particular, for any r > 0, if m = Θ(s), 1
u = Õ(1) and we have already reduced λs(A −Bk) to

the level of 1
r(1+u) for some k ∈ N∗, then λm(A−Bk+K) ≤ 1

r where K = Õ(ru) = Õ(r) ·Õ(1) =

Õ(r). Note that using Lemma 1 we need Õ(r2

m2) iterations.

Theorem 1 is established by combining Lemma 1 and Lemma 2. First, by Lemma 1, λ⌊r⌋(A −
BK0

) ≤ 1
4r within K0 = Õ(r) iterations with high probability. Then Lemma 2 enables an

induction:
λ⌊r⌋(A−BK0

), λ⌊r/2⌋(A−BK0+K1
), · · · , λ1(A−BK0+K1+···+Kt

)

are all smaller than 1
r with high probability by induction, where t = ⌊log2 r⌋,Ki = Õ(r).

The induction process is as follows. Take u = 1
log2 r , s = ⌊r/2i⌋,m = ⌊r/2i+1⌋ in Lemma 2. Once

λs(A−BK0+···+Ki
) ≤ 1

4r (1+
1

log2 r)
i, then we have λm(A−BK0+···+Ki+1

) ≤ 1
4r (1+

1
log2 r)

i+1

with high probability and ultimately we have λ1 ≤ 1
4r (1 + 1

log2 r)
t ≤ 1

r . The total number of

iterations of this process is
t∑

i=0

Ki = (1 + t)Õ(r) = Õ(r). Then the proof of Theorem 1 is

complete.

The proof of Lemma 1 is based on the observation that if the i-th eigenvalue remains larger than
Õ(1/

√
ik), the trace would decrease at an accelerated rate. The proof of Lemma 2 involves a delicate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 A General Framework of Regularized SR1 Method

1: Requires: Initial point x0 ∈ Rd, matrix B0 ∈ Rd×d, distribution D, stepsize {rk}, l2
regularizer {ϵk} > 0, Hessian correction term {γk, dk}, subsequence {nk} ⊆ [N].

2: for k = 0, 1, 2 . . . N do
3: xk+1 = xk − (γkBk + (1

rk
+ ϵk)Id)

−1(∇f(xk) + ϵk(xk − x0))
4: Sample a vector sk ∼ D which satisfies (4)
5: Compute Bk+1 = dkSR1(∇2f(xnk

),Bk, sk)
6: end for

construction of rational functions for comparison based on the eigenvalue structure of A−Bk. For
formal lemmas and proof details, see Appendix B.

5 INSIGHT TOWARDS REGULARIZED SR1 METHOD

5.1 A REGULARIZED SR1 FRAMEWORK

We present the general framework of the regularized SR1 method in Algorithm 2. Our goal is to
theoretically analyze its convergence behavior and establish a principled approach for parameter
selection, leveraging the Hessian approximation efficiency results derived in Section 4. Algorithm 2
utilizes the following strategies common in practice:

1. Randomized SR1 and regularized Newton formulas, which forms the algorithm’s basis.

2. l2 regularization ϵk to enhance the stability of the algorithm.

3. Hessian correction term γk, dk to ensure γkdkBk ⪯ ∇2f(xk).

4. Lazy Hessian strategy nk which only uses part of the exact Hessian.

The Hessian correction step aligns with the previous quasi-Newton convergence analyses (Liu &
Luo, 2021; Rodomanov & Nesterov, 2021b). The l2 regularization is a commonly adopted practical
technique in optimization (Loshchilov & Hutter, 2019; Zhang et al., 2019). Note that Jiang &
Mokhtari (2024) used extra gradient similar to l2 regularization in their regularized quasi-Newton
method. Sequence {nk} satisfied either nk = nk−1 or nk = k, which means only changing the
target Hessian in certain steps and thus reducing the Hessian computational cost (Doikov et al.,
2023; Chen et al., 2025). We will show that with proper choice of parameters (could be decided in
advance), Algorithm 2 enjoys an explicit global convergence rate.

5.2 COMPUTATIONAL COMPLEXITY

We briefly discuss the computational complexity of the inverse step (Bk + ckId)
−1

vk. In
quasi-Newton regime, B0 is typically set to be easy to compute its inverse, usually B0 = cId. Since
Bk is constructed via a sequence of rank-one updates, it admits a factorization Bk = cId +UkU

⊤
k ,

where Uk ∈ Rd×k. Applying the Sherman-Morrison-Woodbury formula, the inverse operation is
reduced to inverting a k × k matrix, which costs O(k3), along with matrix-vector multiplications
costing O(kd). Thus, typically, the complexity in the k-th iteration is O(k3 + kd) , aligns with the
previous research. However, as we will see, in our parameters scheme, where ck only change in a
few steps, it is unnecessary to compute the inverse of a k × k matrix in every iteration. We will
show that we can achieve the overall complexity of Õ(k3 + k2d) in the first k iterations instead of
O(k4 + k2d). For details, we refer the readers to Appendix C.3.

5.3 CONVERGENCE ANALYSIS

Let us first consider the quadratic case to get inspiration. That is, f(x) = 1
2x

⊤Ax+b⊤x+c,A ⪰ 0.
The following lemma establishes an elementary one-step descent property of the iterative scheme.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Lemma 3 (Quadratic optimization). Suppose that ∇2f(x) ≡ A. In one step of Algorithm 2, if
0 ⪯ Bk ⪯ A and 0 ≤ rk ≤ 1

∥A−Bk∥2
, then we have

fϵk(xk+1)− f∗
ϵk

≤ 1

(1 + (µ+ ϵk)rk)2
(fϵk(xk)− f∗

ϵk
), (8)

where fϵk(x) = f(x) + ϵk
2 ∥x− x0∥22 and µ = λmin(A).

Given that ∥A−Bk∥2 decreases at a rate of Õ(Tr(A)k−1), a practical choice implied by Lemma
3 is accordingly increase rk ∼ Θ̃(k/Tr(A)). Let x∗ = argmin f . If rk does so and satisfies
the condition in Lemma 3, and ϵk ≡ ϵ > 0, γk ≡ 1, then after k = Ω̃(Tr(A)

1
2 ϵ−

1
2) iterations,

fϵ(xk) − f∗
ϵ starts to contract at least in a linear rate of 1 − Ω(ϵ

1
2 Tr(A)−

1
2). Hence, on one hand,

for quadratic convex problem, SR1 update leads fϵ to achieve an ϵ approximate minimizer within
Õ(Tr(A)

1
2 ϵ−

1
2) iterations. On the other hand, f∗

ϵ −f∗ ≤ fϵ(x
∗)−f∗ = ϵ

2 ∥x
∗∥22. Combining these

two we obtain Õ(Tr(A)k−2) convergence rate. The proof for Lemma 3 and both local and global
convergence for quadratic functions are postponed to Appendix C.1.

Now we shift our focus to general convex self-concordant functions. To clarify our motivation, for
the moment let Tr(∇2f(x)) ≤ 1 by normalizing. We regard Algorithm 2 as an approximation of
optimizing quadratic forms with Hessian ∇2f + ϵkId, where ϵkId is decaying l2 regularized factor.

The key observation is stated as below :

1. If f − f∗ ∼ O(ϵk), the Hessian perturbation will be no more than O(
√
ϵk).

2. If the Hessian’s perturbation is controlled at the level of
√
ϵk, the Hessian approximation

will satisfy ∥∇2f−Bk∥2 ∼ O(
√
ϵk) in at most Õ(ϵ

− 1
2

k)iterations. Then, Lemma 3 implies

f − f∗ ∼ O(ϵk) within at most Õ(ϵ
− 1

2

k) iterations.

This basically answers the question why regularized QN method could exhibit faster convergence
than vanilla gradient descent and inspires us to gradually decrease ϵk at a moderate linear rate to
maintain these two conditions in practical algorithm designs.

Guided by this observation, we can design an easy-to-practice parameter scheme and prove a global
convergence rate of Õ(d2effL

2M2D4/k2), where deff =
supTr(∇2f(x))
sup ∥∇2f(x)∥2

.

Theorem 2 (General convex optimization). Under Assumption 1, 2, 3, there exists an explicit
choice of parameters in Algorithm 2 such that for every ε > 0, we only need at most
Õ
(
deffL(M + 1)D2(M + ε−

1
2)
)

iterations in Algorithm 2 to obtain a solution z such that

f(z)− f∗ ≤ ε with high probability.

For details on how to choose parameters, we refer readers to Appendix C.2.4. The proof of Theorem
2 is postponed to Appendix C.2.

5.4 APPLICATION IN HIGH-DIMENSIONAL SCENARIOS

It is supported by both theoretical and empirical evidence that in many high-dimensional
optimization problems, the maximal Hessian’s trace T is guaranteed to be small, such as general
kernels (Terras, 1999; Gu & Gu, 2013; Zhang et al., 2015; Blanchard & Mücke, 2018), random
feature model (Rahimi & Recht, 2007; Bach, 2017), neural tangent kernel (Bietti & Bach, 2021; Hu
et al., 2021). In this situation, under Assumption 1, 3, Algorithm 2 can achieve a global convergence
rate of Õ(1/k2) where the constant does not explicitly depend on d.

A concrete example is the fundamental problem of empirical risk minimization problem over a
generalized linear model, with the objective f(x) = 1

n

∑n
i=1 fi(a

⊤
i x). Conventional assumptions

assumes that for each i ∈ {1, 2, · · · , n}, the data ai is normalized to ∥ai∥2 ≤ R2 (results from the
common data normalization processing) and fi ∈ C2 is convex and L0-smooth. Thus the Hessian
trace of f is bounded by

tr
(
∇2f(x)

)
=

1

n

n∑
i=1

f ′′
i (a

⊤
i x)tr(aia

⊤
i) ≤

n∑
i=1

L0

n
∥ai∥2 ≤ L0R

2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) a9a, ρ = 0.3, c = 0.1. (b) a9a, ρ = 0.9, c = 0.01. (c) w8a, ρ = 0.3, c = 0.1. (d) w8a,ρ = 0.9, c = 0.01.

Figure 3: Iteration numbers vs. f(x)− f(x∗).

In low-precise regime, when k ≪ d, the computational complexity of inverse step simplifies to
O(k2d). The gradient computation itself usually reaches O(kd2) (quadratic case) or O(knd) where
n is the number of samples. Therefore, the efficiency of regularized SR1 method is comparable to
AGD in high-dimensional problems with bounded Hessian traces.

6 EXPERIMENTS

In this section, we present illustrations on the efficiency of the SR1 methods in the regime before
superlinear convergence in the logistic regression tasks formulated by

min
x∈Rd

f(x) =
1

n

n∑
i=1

log
(
1 + exp(−bia

⊤
i x)

)
,

where d = 300, n = 49749 for w8a dataset and d = 123, n = 32561 for a9a dataset. We
conduct experiments on our regularized SR1 algorithm with randomized update (RSR1) and the
secant equation update (SSR1), gradient descent (GD), accelerated gradient descent (AGD) and
three classical quasi-newton methods (CSR1, CBFGS, CDFP, where ‘C’ refers to ‘classical’).

For data preprocessing, we normalize the feature vectors to improve the condition number of
the optimization problem. For GD and AGD, our parameters are selected through grid search.
Specifically, learning rates are chosen from the set {k × 10t : k = 1, 2, 5, t = −2,−1, 0, 1}, and
momentum coefficients are selected from {0.9, 0.95, 0.99, 0.999}. For three classical quasi-newton
methods, the learning rates are selected by exact line search. For Algorithm 2, our parameters
are set as described in the phase 3 of Table 1 regarding L = 1, where ε0 = 1, S0 = 0,
εt = ρtε0, St+1 − St = c/

√
εt, αt = 1, βt = (1 −

√
εt)

2, ηt = 1
4
√
εt

and c, ρ are tuning
hyper-parameters listed above. All experiments are repeated multiple times to ensure the stability of
Algorithm 2. To plot f(x)−f(x∗) as the vertical axis, we approximate f(x∗) by the loss at iteration
500 of the best-performing algorithm.

We run simulations with 100 iterations, which is fewer than the problem dimension; as a result, the
SR1 method does not enter the superlinear convergence regime. The results in Figure 3 demonstrate
the following several implications: (1) SR1 methods consistently outperform vanilla gradient
descent, confirming the effectiveness of Hessian approximation preconditioning even outside the
superlinear convergence regime; (2) the SR1 method achieves convergence rates comparable to or
better than AGD, supporting our worst-case guarantee of Õ

(
1
k2

)
.

7 DISCUSSION

This paper elucidates the mechanism underlying the global convergence of quasi-Newton (QN)
methods in high-dimensional settings. By characterizing the algorithmic bias in the spectral
evolution during Hessian approximation, we establish a favorable approximation quality under
randomized SR1 updates. Besides our proposed framework, we believe that the implicit bias
viewpoint could be taken into consideration in many other Hessian approximation methods, improve
local superlinear convergence rate by diminishing the dependence on the dimension and be applied
to a various of inexact Newton methods combining with other techniques such as cubic and
acceleration.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

Francis Bach. On the equivalence between kernel quadrature rules and random feature expansions.
Journal of machine learning research, 18(21):1–38, 2017.

H.Y. Benson and D.F. Shanno. Cubic regularization in symmetric rank-1 quasi-newton methods.
Mathematical Programming Computation, 10:457–486, 2018. doi: 10.1007/s12532-018-0136-7.

A. S. Berahas, M. Jahani, P. Richtárik, and M. Taká and. Quasi-newton methods for machine
learning: forget the past, just sample. Optimization Methods and Software, 37(5):1668–1704,
2022. doi: 10.1080/10556788.2021.1977806. URL https://doi.org/10.1080/
10556788.2021.1977806.

Alberto Bietti and Francis Bach. Deep equals shallow for reLU networks in kernel regimes. In
International Conference on Learning Representations, 2021.

Gilles Blanchard and Nicole Mücke. Optimal rates for regularization of statistical inverse learning
problems. Foundations of Computational Mathematics, 18(4):971–1013, 2018.

Antoine Bordes, Léon Bottou, and Patrick Gallinari. Sgd-qn: Careful quasi-newton stochastic
gradient descent. Journal of Machine Learning Research, 10(59):1737–1754, 2009. URL
http://jmlr.org/papers/v10/bordes09a.html.

C. G. Broyden. The convergence of single-rank quasi-Newton methods. Mathematics of
Computation, 24(110):365–382, 1970. doi: 10.1090/S0025-5718-1970-0271006-8.

C. G. BROYDEN, Jr. DENNIS, J. E., and JORGE J. MORÉ. On the local and superlinear
convergence of quasi-newton methods. IMA Journal of Applied Mathematics, 12(3):223–245,
12 1973. ISSN 0272-4960. doi: 10.1093/imamat/12.3.223. URL https://doi.org/10.
1093/imamat/12.3.223.

Martin Burger and Barbara Kaltenbacher. Regularizing newton–kaczmarz methods for nonlinear
ill-posed problems. SIAM Journal on Numerical Analysis, 44(1):153–182, 2006. doi: 10.1137/
040613779. URL https://doi.org/10.1137/040613779.

R. H. Byrd, S. L. Hansen, Jorge Nocedal, and Y. Singer. A stochastic quasi-newton method for
large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016. doi: 10.1137/
140954362. URL https://doi.org/10.1137/140954362.

T Tony Cai and Peter Hall. Prediction in functional linear regression. The Annals of Statistics, 34
(5):2159–2179, 2006.

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 2007.

Lesi Chen, Chengchang Liu, and Jingzhao Zhang. Second-order min-max optimization with lazy
hessians, 2025. URL https://arxiv.org/abs/2410.09568.

William C. Davidon. Variable metric method for minimization. SIAM Journal on Optimization, 1
(1):1–17, 1991. doi: 10.1137/0801001. URL https://doi.org/10.1137/0801001.

John E. Dennis and Jorge J. More. A characterization of superlinear convergence and its application
to quasi-newton methods. Technical report, USA, 1973.

Nikita Doikov and Yurii Nesterov. Gradient regularization of newton method with bregman
distances. Mathematical Programming, 204(1):1–25, 3 2024. ISSN 1436-4646. doi: 10.1007/
s10107-023-01943-7. URL https://doi.org/10.1007/s10107-023-01943-7.

Nikita Doikov, Peter Richtarik, and University of Edinburgh. Randomized block cubic Newton
method. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 1290–1298. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
doikov18a.html.

10

https://doi.org/10.1080/10556788.2021.1977806
https://doi.org/10.1080/10556788.2021.1977806
http://jmlr.org/papers/v10/bordes09a.html
https://doi.org/10.1093/imamat/12.3.223
https://doi.org/10.1093/imamat/12.3.223
https://doi.org/10.1137/040613779
https://doi.org/10.1137/140954362
https://arxiv.org/abs/2410.09568
https://doi.org/10.1137/0801001
https://doi.org/10.1007/s10107-023-01943-7
https://proceedings.mlr.press/v80/doikov18a.html
https://proceedings.mlr.press/v80/doikov18a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy hessians.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 8138–8161. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/doikov23a.html.

Nikita Doikov, Sebastian U Stich, and Martin Jaggi. Spectral preconditioning for gradient methods
on graded non-convex functions. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 11227–11252. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/doikov24a.html.

Yubo Du and Keyou You. Distributed adaptive greedy quasi-newton methods with explicit
non-asymptotic convergence bounds. Automatica, 165:111629, 2024. ISSN 0005-1098. doi:
https://doi.org/10.1016/j.automatica.2024.111629. URL https://www.sciencedirect.
com/science/article/pii/S0005109824001225.

Saeed Ghadimi, Han Liu, and Tong Zhang. Second-order methods with cubic regularization under
inexact information, 2017. URL https://arxiv.org/abs/1710.05782.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. CoRR, abs/1901.10159, 2019. URL http://arxiv.org/
abs/1901.10159.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training
deep neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 2386–2396. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf.

Robert Gower, Donald Goldfarb, and Peter Richtarik. Stochastic block bfgs: Squeezing more
curvature out of data. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 1869–1878, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/gower16.html.

Robert Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtarik. Rsn: Randomized subspace
newton. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bc6dc48b743dc5d013b1abaebd2faed2-Paper.pdf.

Chong Gu and Chong Gu. Smoothing spline ANOVA models, volume 297. Springer, 2013.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in Neural Information Processing
Systems, 30, 2017.

Filip Hanzely, Nikita Doikov, Yurii Nesterov, and Peter Richtarik. Stochastic subspace cubic
Newton method. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
4027–4038. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
hanzely20a.html.

Tianyang Hu, Wenjia Wang, Cong Lin, and Guang Cheng. Regularization matters: A nonparametric
perspective on overparametrized neural network. In International Conference on Artificial
Intelligence and Statistics, pp. 829–837. PMLR, 2021.

Ruichen Jiang and Aryan Mokhtari. Online learning guided quasi-newton methods with global
non-asymptotic convergence, 2024. URL https://arxiv.org/abs/2410.02626.

11

https://proceedings.mlr.press/v202/doikov23a.html
https://proceedings.mlr.press/v235/doikov24a.html
https://proceedings.mlr.press/v235/doikov24a.html
https://www.sciencedirect.com/science/article/pii/S0005109824001225
https://www.sciencedirect.com/science/article/pii/S0005109824001225
https://arxiv.org/abs/1710.05782
http://arxiv.org/abs/1901.10159
http://arxiv.org/abs/1901.10159
https://proceedings.neurips.cc/paper_files/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf
https://proceedings.mlr.press/v48/gower16.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/bc6dc48b743dc5d013b1abaebd2faed2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bc6dc48b743dc5d013b1abaebd2faed2-Paper.pdf
https://proceedings.mlr.press/v119/hanzely20a.html
https://proceedings.mlr.press/v119/hanzely20a.html
https://arxiv.org/abs/2410.02626

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ruichen Jiang, Parameswaran Raman, Shoham Sabach, Aryan Mokhtari, Mingyi Hong, and Volkan
Cevher. Krylov cubic regularized Newton: A subspace second-order method with dimension-free
convergence rate. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), Proceedings
of The 27th International Conference on Artificial Intelligence and Statistics, volume 238 of
Proceedings of Machine Learning Research, pp. 4411–4419. PMLR, 02–04 May 2024. URL
https://proceedings.mlr.press/v238/jiang24a.html.

Q. Jin and A. Mokhtari. Non-asymptotic superlinear convergence of standard quasi-newton methods.
Mathematical Programming, 200:425–473, 2023. doi: 10.1007/s10107-022-01887-4.

Qiujiang Jin, Alec Koppel, Ketan Rajawat, and Aryan Mokhtari. Sharpened quasi-newton methods:
Faster superlinear rate and larger local convergence neighborhood. In International Conference
on Machine Learning, pp. 10228–10250. PMLR, 2022.

Qiujiang Jin, Ruichen Jiang, and Aryan Mokhtari. Non-asymptotic global convergence analysis
of bfgs with the armijo-wolfe line search, 2025a. URL https://arxiv.org/abs/2404.
16731.

Qiujiang Jin, Ruichen Jiang, and Aryan Mokhtari. Non-asymptotic global convergence rates of bfgs
with exact line search, 2025b. URL https://arxiv.org/abs/2404.01267.

Dmitry Kamzolov, Klea Ziu, Artem Agafonov, and Martin Takác. Accelerated adaptive cubic
regularized quasi-newton methods. arXiv preprint arXiv:2302.04987, pp. 2, 2023a.

Dmitry Kamzolov, Klea Ziu, Artem Agafonov, and Martin Taká. Cubic regularization is the key!
the first accelerated quasi-newton method with a global convergence rate of O(k−2) for convex
functions, 2023b. URL https://arxiv.org/abs/2302.04987.

H. Fayez Khalfan, R. H. Byrd, and R. B. Schnabel. A theoretical and experimental study of the
symmetric rank-one update. SIAM Journal on Optimization, 3(1):1–24, 1993. doi: 10.1137/
0803001. URL https://doi.org/10.1137/0803001.

Vladimir Krutikov, Elena Tovbis, Predrag Stanimirovi, and Lev Kazakovtsev. On the convergence
rate of quasi-newton methods on strongly convex functions with lipschitz gradient. Mathematics,
11(23), 2023. ISSN 2227-7390. doi: 10.3390/math11234715. URL https://www.mdpi.
com/2227-7390/11/23/4715.

Dong-Hui Li, Masao Fukushima, Liqun Qi, and Nobuo Yamashita. Regularized newton methods
for convex minimization problems with singular solutions. Computational Optimization and
Applications, 28(2):131–147, 6 2004. ISSN 0926-6003. doi: 10.1023/B:COAP.0000026881.
96694.32.

Zhiyuan Li, Tianhao Wang, Jason D Lee, and Sanjeev Arora. Implicit bias of gradient descent
on reparametrized models: On equivalence to mirror descent. Advances in Neural Information
Processing Systems, 35:34626–34640, 2022.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel "ridgeless" regression can
generalize. The Annals of Statistics, 48(3):1329–1347, 2020.

Dachao Lin, Haishan Ye, and Zhihua Zhang. Explicit convergence rates of greedy and random
quasi-newton methods, 2022. URL https://arxiv.org/abs/2104.08764.

Chengchang Liu and Luo Luo. Quasi-newton methods for saddle point problems and beyond.
ArXiv, abs/2111.02708, 2021. URL https://api.semanticscholar.org/CorpusID:
242757644.

Chengchang Liu and Luo Luo. Quasi-newton methods for saddle point problems. Advances in
Neural Information Processing Systems, 35:3975–3987, 2022.

Chengchang Liu, Cheng Chen, Luo Luo, and John C.S. Lui. Block broyden's
methods for solving nonlinear equations. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing
Systems, volume 36, pp. 47487–47499. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
9417a5154519e370fd64e5a65e7dc59b-Paper-Conference.pdf.

12

https://proceedings.mlr.press/v238/jiang24a.html
https://arxiv.org/abs/2404.16731
https://arxiv.org/abs/2404.16731
https://arxiv.org/abs/2404.01267
https://arxiv.org/abs/2302.04987
https://doi.org/10.1137/0803001
https://www.mdpi.com/2227-7390/11/23/4715
https://www.mdpi.com/2227-7390/11/23/4715
https://arxiv.org/abs/2104.08764
https://api.semanticscholar.org/CorpusID:242757644
https://api.semanticscholar.org/CorpusID:242757644
https://proceedings.neurips.cc/paper_files/paper/2023/file/9417a5154519e370fd64e5a65e7dc59b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9417a5154519e370fd64e5a65e7dc59b-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chengchang Liu, Cheng Chen, and Luo Luo. Symmetric rank-k methods, 2024a. URL https:
//arxiv.org/abs/2303.16188.

Zhuanghua Liu, Luo Luo, and Bryan Kian Hsiang Low. Incremental quasi-newton methods
with faster superlinear convergence rates. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(13):14097–14105, Mar. 2024b. doi: 10.1609/aaai.v38i13.29319. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/29319.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=Bkg6RiCqY7.

Konstantin Mishchenko. Regularized newton method with global O(1/k2) convergence. SIAM
Journal on Optimization, 33(3):1440–1462, 2023a. doi: 10.1137/22M1488752. URL https:
//doi.org/10.1137/22M1488752.

Konstantin Mishchenko. Regularized newton method with global convergence. SIAM Journal on
Optimization, 33(3):1440–1462, 2023b.

Jorge J. Moré. The levenberg-marquardt algorithm: Implementation and theory. In G. A. Watson
(ed.), Numerical Analysis, pp. 105–116, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.
ISBN 978-3-540-35972-2.

Yurii Nesterov. Lectures on Convex Optimization. Springer Optimization and Its Applications.
Springer Cham, 2 edition, 2018. ISBN 978-3-319-91577-7. doi: 10.1007/978-3-319-91578-4.

Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming. Society for Industrial and Applied Mathematics, 1994. doi: 10.
1137/1.9781611970791. URL https://epubs.siam.org/doi/abs/10.1137/1.
9781611970791.

Yurii Nesterov and Boris T. Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 8 2006. ISSN 1436-4646. doi: 10.
1007/s10107-006-0706-8. URL https://doi.org/10.1007/s10107-006-0706-8.

Roman A. Polyak. Regularized newton method for unconstrained convex optimization.
Mathematical Programming, 120(1):125–145, 2009. ISSN 0025-5610. doi: 10.1007/
s10107-007-0159-8.

Zheng Qu, Peter Richtarik, Martin Takac, and Olivier Fercoq. Sdna: Stochastic dual newton
ascent for empirical risk minimization. In Maria Florina Balcan and Kilian Q. Weinberger
(eds.), Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pp. 1823–1832, New York, New York, USA, 20–22
Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/qub16.html.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Aditya Ranganath, Mukesh Singhal, and Roummel Marcia. Symmetric rank-one quasi-newton
methods for deep learning using cubic regularization, 2025. URL https://arxiv.org/
abs/2502.12298.

A. Rodomanov and Y. Nesterov. New results on superlinear convergence of classical quasi-Newton
methods. Journal of Optimization Theory and Applications, 188(3):744–769, 2021a. doi: 10.
1007/s10957-020-01805-8.

A. Rodomanov and Y. Nesterov. Rates of superlinear convergence for classical
quasi-Newton methods. Mathematical Programming, 194(1):159–190, 2022. doi:
10.1007/s10107-021-01622-5.

Anton Rodomanov. Global complexity analysis of bfgs, 2024. URL https://arxiv.org/
abs/2404.15051.

13

https://arxiv.org/abs/2303.16188
https://arxiv.org/abs/2303.16188
https://ojs.aaai.org/index.php/AAAI/article/view/29319
https://ojs.aaai.org/index.php/AAAI/article/view/29319
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1137/22M1488752
https://doi.org/10.1137/22M1488752
https://epubs.siam.org/doi/abs/10.1137/1.9781611970791
https://epubs.siam.org/doi/abs/10.1137/1.9781611970791
https://doi.org/10.1007/s10107-006-0706-8
https://proceedings.mlr.press/v48/qub16.html
https://arxiv.org/abs/2502.12298
https://arxiv.org/abs/2502.12298
https://arxiv.org/abs/2404.15051
https://arxiv.org/abs/2404.15051

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Anton Rodomanov and Yurii Nesterov. Greedy quasi-newton methods with explicit superlinear
convergence. SIAM Journal on Optimization, 31(1):785–811, 2021b.

Levent Sagun, Utku Evci, V. Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of
the hessian of over-parametrized neural networks, 2018. URL https://openreview.net/
forum?id=rJrTwxbCb.

Damien Scieur. Adaptive quasi-Newton and Anderson acceleration framework with explicit global
(accelerated) convergence rates. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.),
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, volume
238 of Proceedings of Machine Learning Research, pp. 883–891. PMLR, 02–04 May 2024. URL
https://proceedings.mlr.press/v238/scieur24a.html.

David F Shanno. Conditioning of quasi-Newton methods for function minimization. Mathematics
of computation, 24(111):647–656, 1970.

Igor Silin and Jianqing Fan. Canonical thresholding for non-sparse high-dimensional linear
regression. Annals of statistics, 50(1):460, 2022.

Audrey Terras. Fourier analysis on finite groups and applications. Number 43. Cambridge
University Press, 1999.

Minheng Xiao, Shi Bo, and Zhizhong Wu. Multiple greedy quasi-newton methods for saddle point
problems. In 2024 6th International Conference on Data-driven Optimization of Complex Systems
(DOCS), pp. 749–754, 2024. doi: 10.1109/DOCS63458.2024.10704381.

H. Ye, D. Lin, X. Chang, et al. Towards explicit superlinear convergence rate for sr1. Mathematical
Programming, 199(1):1273–1303, 2023. doi: 10.1007/s10107-022-01865-w.

Haishan Ye, Dachao Lin, and Zhihua Zhang. Greedy and random broyden’s methods with explicit
superlinear convergence rates in nonlinear equations, 2021. URL https://arxiv.org/
abs/2110.08572.

Mahsa Yousefi and Ángeles Martínez. Deep neural networks training by stochastic quasi-newton
trust-region methods. Algorithms, 16(10), 2023. ISSN 1999-4893. doi: 10.3390/a16100490.
URL https://www.mdpi.com/1999-4893/16/10/490.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger B. Grosse. Three mechanisms of weight
decay regularization. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=B1lz-3Rct7.

Haobo Zhang, Yicheng Li, and Qian Lin. On the optimality of misspecified spectral algorithms.
Journal of Machine Learning Research, 2024.

Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression:
A distributed algorithm with minimax optimal rates. Journal of Machine Learning Research, 16
(102):3299–3340, 2015.

14

https://openreview.net/forum?id=rJrTwxbCb
https://openreview.net/forum?id=rJrTwxbCb
https://proceedings.mlr.press/v238/scieur24a.html
https://arxiv.org/abs/2110.08572
https://arxiv.org/abs/2110.08572
https://www.mdpi.com/1999-4893/16/10/490
https://openreview.net/forum?id=B1lz-3Rct7
https://openreview.net/forum?id=B1lz-3Rct7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix
A NOTATION AND THEORY STRUCTURE

First, we provide the necessary notation that appears in the Appendix. Denote λmax(A) = λ1(A) ≥
· · · ≥ λd(A) as the eigenvalues of a real symmetric matrix A ∈ Rd×d. For a positive definite matrix
A, we can endow Rd with conjugate Euclidean norms:

∥x∥A
def
=

√
x⊤Ax, ∥x∥∗A

def
=

√
x⊤A−1x, x ∈ Rd.

The corresponding matrix norm for a matrix H is

∥H∥A
def
= max

x ̸=0

∥Hx∥A
∥x∥A

=
∥∥∥A 1

2HA− 1
2

∥∥∥
2
.

Throughout the paper, x0 is the initial point when optimizing (1). For any convex function g,
provided that there is no ambiguity with the reference function g, we denote x∗ as any minimizer of
g, g∗ = g(x∗) and for any εt > 0, denote gεt(x) = g(x) + εt

2 ∥x − x0∥22, which is strong convex
and has unique minimizer x∗

εt with gεt(x
∗
εt) = g∗εt . Moreover, for any x, y ∈ Rd, εt ∈ R, we denote

∥x∥y =
√

x⊤∇2g(y)x, ∥x∥εty =
√
x⊤∇2gεt(y)x.

In the Appendix, g could be the objective f or its scaling af . If f satisfies Assumption 2, 3, then we
know that sup ∥∇2f(x)∥2 ≤ L and we denote deff = sup (∇2f(x))/L. Denote C as the absolute
constant of the O(·) term of Theorem 1.

Next, we present the structure of proofs and lemmas that appear in the main body of the paper. Figure
4 shows the relations between main theorems and key lemmas. An arrow from block A to B means
that the proof of B needs A. Some technical lemmas that are not essential are not listed in figure 4.
Theorem 6 is the detailed version of the key part of Theorem 2. Theorem 4 is the formal version of
1. Lemma 5 and Lemma 6 are the formal versions of Lemma 1 and Lemma 2, respectively.

Theorem 6 Theorem 5

Lemma 3
Theorem 4

Lemma 6 Lemma 5

Lemma 9,
10, 11, 12

Lemma 8

Lemma
23,24

Lemma 7

Lemma
16, 19

Lemma
15, 18

Figure 4: Relations between the main results in Appendix.

B POSTPONED PROOFS IN SECTION 4

B.1 PRELIMINARIES

Before proving the Hessian approximation results in Section 4, we present some preliminary results
about the basic properties of SR1 update (Lemma 4) and a relaxation to our assumption (Theorem 3)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lemma 4 states a basic property of the SR1 update. The matrix approximations A − Bk exhibit
monotonically decreasing eigenvalues. Given Weyls inequality (Lemma 21), {λi(A − Bk)}k
monotonically decreases with respect to k, for all 1 ≤ i ≤ d.
Lemma 4 (Monotonically decreasing matrices). If A ⪰ B ⪰ 0, then for any u ∈ Rd such that
u⊤(A−B)u ̸= 0, we have

B ⪯ SR1(A,B,u) ⪯ A.

Proof of Lemma 4. For any v ∈ Rd, since A−B ⪰ 0, we have

v⊤SR1(A,B,u)v = v⊤Bv +
(v⊤(A−B)u)2

u⊤(A−B)u
≥ v⊤Bv.

On the other hand, by the Cauchy-Schwartz inequality, we have

v⊤(A−B)v · u⊤(A−B)u ≥ (v⊤(A−B)u)2.

Hence,

v⊤SR1(A,B,u)v ≤ v⊤Bv +
(u⊤(A−B)u)

u⊤(A−B)u
· v⊤(A−B)v ≤ v⊤Av.

The claimed result then follows from the above inequalities.

Theorem 3 below could be used to give a stronger version of Theorem 2: If a constant number of
eigenvalues are large while the sum of the rest is bounded, then the trace decreases to a constant
level within Õ(1) iterations.
Theorem 3. Suppose that B0, Bk is produced by Algorithm 1, then for every k ∈ N∗ and 0 < p < 1,

if
d∑

i=k+1

λi(A) ≤ Tk, then there exists K1 = O
(
k ln

(
trA
Tk

)
+ ln 1

p

)
, such that with probability at

least 1− p, we have
tr(A−BK1

) ≤ 2Tk.

Proof of Theorem 3. Denote Rt = A−Bt and tr(Rt) = bt for simplicity. Let Tk =
d∑

i=k+1

λi(R0).

Define

β
(j)
t =

j∑
i=1

λi(Rt)

bt
, 1 ≤ j ≤ d.

We only need to condition on the process when β
(k)
t ≥ 1

2 , 0 ≤ t ≤ K. Otherwise, for some t, we

have bt ≤ 2
d∑

i=k+1

λi(Rt) ≤ 2
d∑

i=k+1

λi(R0), then the proof is finished. Let

At
def
=

{
tr(Rt+1) ≤ tr(Rt)− C3

tr(R2
t)

tr(Rt)

}
, 0 ≤ t ≤ K.

By Lemma 7 we have P(At) ≥ C4. By Cauchy-Schwartz inequality, we have

tr(R2
t) ≥

1

k

(
k∑

i=1

λi(Rt)

)2

=
(β

(k)
t)2b2t
k

≥ b2t
4k

.

Therefore, if At is true, then

bt+1 ≤ bt −
C3

4k
bt.

Choose K = ⌈ 8
C4

max

{
k ln

b0
Tk

C3
, ln 1

p

}
⌉. Note that {bt} does not increase and if

| {0 ≤ t ≤ K : At is true} | ≥ C4K

2
≥

4k ln b0
Tk

C3
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(here |A| means the cardinality of a set A) then

bK ≤ b0

(
1− C3

4k

) 4k
C3

ln b0Tk

≤ Tk.

This implies tr(RK) ≤ Tk. Lemma 18 yields that

P
(
| {0 ≤ t ≤ K : At is true} | ≤ C4K

2

)
≤ e−

C4K
8 ≤ p.

Hence, with probability at least 1− p, we have tr(A−BK) ≤ 2Tk.

Since the relationship between A and Bk is invariant under simultaneous scaling by a constant
factor. We set tr(A − B0) ≤ 1 without loss of generality in the remaining proof of Appendix B.
Then the claimed upper bound in Theorem 4 can be obtained by rescaling a factor tr(A−B0).

B.2 FORMAL STATEMENT AND PROOFS

Below, we present the deferred proofs of Lemma 1 and Lemma 2. We begin by formally stating
Lemma 1.
Lemma 5 (Formal version of Lemma 1). Suppose that tr(A−B0) ≤ 1, then for every 1 ≤ k ≤ d,

m > 0, 0 < p < 1, there exists K = O
(
m lnm+ ln 1

p

)
∈ N such that with probability at least

1− p, λk(A−BK) ≤ 1√
km

.

Proof of Lemma 5. Denote Rt = A−Bt and tr(Rt) = bt for simplicity. Define

β
(j)
t =

j∑
i=1

λi(Rt)

bt
, 1 ≤ j ≤ d.

Since bt ≤ 1, we only need to condition on the process when β
(k)
t ≥

√
k
m , 0 ≤ t ≤ K. Otherwise,

for some t, we have λk(Rt) ≤ 1
k btβ

(k)
t ≤ 1√

km
, then the proof is finished. Let

At
def
=

{
tr(Rt+1) ≤ tr(Rt)− C3

tr(R2
t)

tr(Rt)

}
, 0 ≤ t ≤ K.

By Lemma 7 we have P(At) ≥ C4. By Cauchy-Schwartz inequality, we have

tr(R2
t) ≥

1

k

(
k∑

i=1

λi(Rt)

)2

=
(β

(k)
t)2b2t
k

≥ b2t
m
.

Therefore, if At is true, then

bt+1 ≤ bt −
C3

m
bt.

Choose K = ⌈ 8
C4

max
{

m lnm
4C3

, ln 1
p

}
⌉. Note that {bt} does not increase and if

| {0 ≤ t ≤ K : At is true} | ≥ C4K

2
≥ m lnm

C3
,

then

bK ≤ b0

(
1− C3

m

) m
C3

lnm

≤ 1

m
.

This implies λk(RK) ≤ 1
km ≤ 1√

km
. Lemma 18 yields that

P
(
| {0 ≤ t ≤ K : At is true} | ≤ C4K

2

)
≤ e−

C4K
8 ≤ p.

Hence, with probability at least 1− p, we have λk(A−BK) ≤ 1√
km

.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

In the following, we formally state Lemma 2, which proves the improved decay rate of the
eigenvalues based on the eigengaps.
Lemma 6 (Formal version of Lemma 2). Suppose that tr(A−B0) ≤ 1, for any 1 ≤ m < s < d, if

λm(A−B0) ≤ 1
s+1 , then for every r > 0, p, u ∈ (0, 1), there exists K = O

(
s2r
um2 ln

s
u + ln 1

p

)
∈

N such that with probability at least 1− p, one of the following statements must hold:

λm(A−BK) ≤ 1

r
, (9)

∃1 ≤ i ≤ K,λm(A−Bi) ≤ (1 + u)λs+1(A−Bi). (10)

Proof of Lemma 6. We only need to condition on the process that satisfies for all 1 ≤ k ≤ K,
λm(A − Bk) > (1 + u)λs+1(A − Bk), otherwise (10) holds, and we finish the proof. Then by
Lemma 8, there exist constant C5, C6 > 0 such that for each 1 ≤ k ≤ K, with probability at least
C5, we have

tr(A−Bk+1)s ≤ tr(A−Bk)s −
umC6

s2 ln s
u

(tr(A−Bk)s)
2
, (11)

where tr(H)s means the sum of the top s eigenvalues of H.

Choose K = ⌈ 8
C5

max
{

s2r
4um2C6

ln s
u , ln

1
p

}
⌉ and let

Bk
def
=

{
tr(A−Bk+1)s ≤ tr(A−Bk)s −

umC6

s2 ln s
u

(tr(A−Bk)s)
2

}
, 1 ≤ k ≤ K.

Lemma 18 yields that

P
(
| {0 ≤ t ≤ K : At is true} | ≤ C5K

2

)
≤ e−

C5K
8 ≤ p.

Hence, with probability at least 1− p, we have

| {0 ≤ t ≤ K : Bt is true} | ≥ C5K

2
≥ s2r

um2C6
ln

s

u
.

Note that tr(A−Bk)s does not increase, as a result of Lemma 15, we have

λm(A−BK) ≤ 1

m
tr(A−BK)s ≤

1

m
· 1

C5K
2

umC6

s2 ln s
u

≤ 1

m
· m
r

≤ 1

r
.

By leveraging Lemma 5 and Lemma 6, we can complete the proof of Theorem 1. Concretely , we
prove the following generalized version of Theorem 1.
Theorem 4 (General version of Theorem 1). Suppose that 0 ⪯ B0 ⪯ A, Bk is produced by
Algorithm 1, then for every δ, p, u ∈ (0, 1), r ≥ 3, there exists K ∈ N satisfying

K = O
(

1

δu
(1 + u)

4
δ r1+δ ln

r

u
+ ln

1

δp

)
,

such that with probability at least 1− p, we have

∥A−BK∥2 ≤ tr(A−B0)

r
. (12)

Specifically, choose δ = u = 1
ln r , then K = O

(
r (ln r)

3
+ ln 1

p

)
.

Proof of Theorem 4. First, let us assume C0 = 1. We use Lemma 5 to give an initial bound. Let L1

be the constant term in Lemma 5. Set m → L1

(
4(1 + u)

4
δ r1+δ ln r

u + ln 3r
p

)
in Lemma 5. Then

for each 1 ≤ k ≤ r, with probability at least 1− p
2r , we have

λk(A−Bm) ≤ 1

2(1 + u)
2
δ

√
kr1+δ

. (13)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Thus, with probability at least 1 − p
2r , (13) holds for all 1 ≤ k ≤ r. Denote t = ⌈ δ

2⌉, for all
1 ≤ i ≤ t, i ∈ N, define

ri
def
= (1 + u)t+1−ir, si

def
= ⌈r1−

(1+i)δ
2 ⌉,mi

def
= si+1, Qi

def
=

s2i ri
um2

i

ln
si
u

+ ln
2t

p
.

We consider the following non-negative integer-valued random variables:

K0 = m,Ki
def
= min

{
k ∈ N, k ≥ Ki−1 : λmi

(A−BKi
) ≤ 1

ri+1

}
, 1 ≤ i ≤ t.

We claim that there exists a constant C7, such that conditioned on (13), for each 1 ≤ i ≤ t, with
probability at least 1− p

2t , we have Ki −Ki−1 ≤ C7Qi. The proof of this claim is as follows.

1. Step 1: First, Let’s check that λmi
(A−BKi−1

) ≤ 1
1+si

. Since Ki−1 ≥ m, we have

λmi(A−BKi−1) ≤ λmi(A−Bm) ≤ 1

2
√

mir1+δ
.

It suffices to prove that
2
√
mir1+δ ≥ 1 + si.

Taking the value of mi, si into the above inequality, we only need to prove

2r1−
i
4 δ ≥ 1 + 1 + r1−

i+1
2 δ.

It holds since i
4 ≤ 1+i

2 for all i ∈ N.

2. Step 2: Utilize Lemma 6 to prove our claim. Let C7 be the constant term in Lemma 6. Set

K → C7Qi, r → ri, s → si,m → mi, p → p

2t
in Lemma 6. Then with probability at least 1− p

2t , we have either

λmi
(A−BKi−1+K) ≤ 1

ri
≤ 1

ri+1
,

or

∃1 ≤ i ≤ K,λmi(A−BKi−1+i) ≤ (1 + u)λsi+1(A−BKi−1+i) ≤
1 + u

ri
=

1

ri+1
.

In both cases, we have λmi
(A−BKi−1+K) ≤ 1

ri+1
. Therefore, Ki ≤ Ki−1 +K and this

leads to our claim.

From our claim we know that with probability at least 1− p
2 −

t∑
i=1

p
2t = 1− p, we have

Kt ≤ K0 + C7

t∑
i=1

Qi ≤ K0 + tC7 max
1≤i≤t

{
s2i ri
um2

i

ln
si
u

+ ln
2t

p

}
≤ K0 + tC7

(
⌈rδ⌉r
u

ln
r

u
+ ln

2t

p

)
≤ K0 + C7⌈

2

δ
⌉
(
⌈r1+δ⌉

u
ln

r

u
+ ln

2 + δ

δp

)
Choose C = max {L1, C7} and then we finish the proof when C0 = 1. For general cases, by
rescaling then the proof is complete.

Corollary 1. Denote Tk =
d∑

i=k+1

λi(A − B0). Suppose that 0 ⪯ B0 ⪯ A, Bk is produced by

Algorithm 1, then for every p ∈ (0, 1), r ≥ 3, 0 ≤ k ≤ d, there exists K ∈ N satisfying

K = O
(
k ln

T0

Tk
+ r (ln r)

3
+ ln

1

p

)
,

such that with probability at least 1− p, we have

∥A−BK∥2 ≤ Tk

r
. (14)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. By Theorem 3, after K1 = O
(
k ln T0

Tk
+ ln 2

p

)
iterations, we have tr(A − BK1

) ≤ 2Tk

with probability at least 1 − p
2 . Restart from K1, by Theorem 4, after K2 = O

(
r (ln r)

3
+ ln 2

p

)
iterations, we have ∥A − BK1+K2

∥2 ≤ tr(A−BK1
)

2r ≤ Tk

r with probability at least 1 − p
2 . Then

taking K = K1 +K2 finishes the proof.

C POSTPONED PROOFS IN SECTION 5

C.1 PROOF OF CONVERGENCE RATE FOR QUADRATIC FUNCTIONS

Proof of Lemma 3. First consider the case when ϵk = 0. Since f is quadratic, we have

f(x) =
1

2
(x− x∗)⊤A(x− x∗) + c0,∇f(x) = A(x− x∗).

Hence, xk+1 − x∗ = xk − x∗ − (Bk +
1
rk
Id)

−1A(xk − x∗), and take norm on both sides we have

∥xk+1 − x∗∥A ≤

∥∥∥∥∥Id −
(
Bk +

1

rk
Id

)−1

A

∥∥∥∥∥
A

∥xk − x∗∥A

=

∥∥∥∥∥Id −A
1
2

(
Bk +

1

rk
Id

)−1

A
1
2

∥∥∥∥∥
2

∥xk − x∗∥A.

Since 1
rk

≥ ∥A−Bk∥2, we have Bk + 1
rk
Id ⪰ A. As a result, A

1
2 (Bk + 1

rk
Id)

−1A
1
2 ⪯ Id. This

indicates that∥∥∥∥Id −A
1
2 (Bk +

1

rk
Id)

−1A
1
2

∥∥∥∥
2

= λmax

(
Id −A

1
2 (Bk +

1

rk
Id)

−1A
1
2

)
= 1− λmin

(
A

1
2 (Bk +

1

rk
Id)

−1A
1
2

)
= 1− λ−1

max

(
A− 1

2 (Bk +
1

rk
Id)A

− 1
2

)
≤ 1− λ−1

max

(
A− 1

2 (A+
1

rk
Id)A

− 1
2

)
=

1

1 + µrk
.

The inequality above follows from the fact that Bk ⪯ A. Note that f(x)− f∗ = 1
2∥x− x∗∥2A, then

the proof is complete for ϵk = 0. For any ϵk > 0, this iteration can be seen as one step for quadratic
fϵk with its Hessian A+ ϵkId and Hessian approximation Bk + ϵkId. It can be proved similarly as
above.

Theorem 5. Suppose that the update in Algorithm 2 has an initial approximation matrix B0 such
that 0 ⪯ B0 ⪯ A and tr(A − B0) ≤ T0. Then for every 1

4T0
> ε > 0, there exists absolute

constants C > 0, k0 = Õ(T
− 1

2
0 ε−

1
2), such that if we set

ϵk = T0ε,
1

T0rk
=

1 k ≤ 8C
(
1 + ln C

p

)
,

8C(ln k)3

k k > 8C
(
1 + ln C

p

)
,

with probability at least 1− p, for all k ≥ k0, we have

fT0ε(xk+1)− f∗
T0ε ≤ (1−

√
T0ε)

2(k−k0)(fT0ε(x0)− f∗
T0ε). (15)

And for k = 2k0, we also have
f(x2k0)− f(x∗) ≤ εT0D

2. (16)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Proof of Theorem 5. First suppose that T0 = 1. From Theorem 1 we know that there exists a
constant C ≥ 3 such that for every r > 0,

∥∥∥A−B⌊Cr(ln r)3+C ln k2

p ⌋

∥∥∥
2
≤ 1

r with probability

at most 1 − p
k2 . A straightforward calculation shows that k > C ln k2

p when k ≥ 8C
(
1 + ln C

p

)
.

Hence, if k ≥ 8C
(
1 + ln C

p

)
, then there exists a unique r > 1 such that C

(
r (ln r)

3
+ ln k2

p

)
= k.

From Theorem 1 we have with probability at least 1− p
k2 , ∥A−Bk∥2 ≤ 1

r . Now we evaluate r in
the form of k. Since r ≤ k, we have r(ln k)3 + ln k2

p ≥ k
C . This means that

r ≥
k
C − 2 ln k − ln 1

p

(ln k)3
.

By k ≥ 8C
(
1 + ln C

p

)
and performing a basic calculation we can see that

k

C
− 2 ln k − ln

1

p
≥ k

8C
.

Therefore, with probability at least 1 −
k0∑
k≥2

p
k2 ≥ 1 − p, we have for all k ≥ 8C

(
1 + ln C

p

)
,

∥A−Bk∥2 ≤ 8C(ln k)3

k , which implies rk ≤ 1
∥A−Bk∥2

. Then Lemma 3 tells us that

∥xk+1 − x∗
ε∥A+εId

≤ 1

1 + εrk
∥xk − x∗

ε∥A+εId
, ∀k ≥ 8C

(
1 + ln

C

p

)
. (17)

Note that tr(A−B0) ≤ 1, so A−B0 ⪯ Id, so for k such that rk = 1, we have Bk +(1
rk

+ ε)Id ⪰
A+ εId and rk ≤ 1

∥A−Bk∥2
. Using Lemma 3 again we have

∥xk+1 − x∗
ε∥A+εId

≤ ∥xk − x∗
ε∥A+εId

, ∀k ≤ 8C

(
1 + ln

C

p

)
. (18)

Combining (17), (18), and fε(xk)− f∗
ε = 1

2∥xk − x∗
ε∥

2
A+εId

, recursively, we have

fε(xk+1)− f∗
ε ≤

k∏
t=t0

(1 + rtε)
−2(fε(x0)− f∗), t0 = ⌈8C

(
1 + ln

C

p

)
⌉. (19)

Note that if t = Ω̃(ε−
1
2), rt = Ω(ε−

1
2). As a result, (19) leads to (15) directly.

For general T0, consider the function g(x) = f(x)/T0. Then Algorithm 2 is equivalent to

xk+1 = xk −
(
T0Bk + T0

(
1

T0rk
+ ε

)
Id

)−1

(T0∇g + T0ε(xk − x0)).

Hence, using the above result to g and notice that gε = fT0ε/T0, we know that (17), (18) still hold.
Thereafter, we have

fT0ε(xk+1)− f∗
T0ε ≤

k∏
t=t0

(1 + T0rtε)
−2(fT0ε(x0)− f∗). (20)

If t = Ω̃(T
− 1

2
0 ε−

1
2), then T0rtε = Ω(T

1
2
0 ε

1
2). As a result, (20) leads to (15) directly.

Choose k0 = Θ̃(T
− 1

2
0 ε−

1
2) such that k0 ≥ 1

2
√
T0ε

ln
fT0ε(x0)−f∗

T0ε

εTD2 , then (15) implies that

fT0ε(x2k0
)− f∗

T0ε
≤ εT0D

2

2 . Hence,

f(x2k0
)− f∗ ≤ fT0ε(x2k0

)− f∗
T0ε +

εT0∥x∗ − x0∥2

2
≤ εT0D

2.

Then the proof is complete, showing that the convergence rate is Õ(T0D
2/k2).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 3 Phase 1 of Algorithm 2

1: Requires: Initial point x0 ∈ Rd, stepsize 1
L , l2 regularizer ϵ0 > 0.

2: for k = 0, 1, 2 . . . S1 − 1 do
3: xk+1 = xk − 1

L+ϵ0
(∇f(xk) + ϵk(xk − x0))

4: end for

From Lemma 3, we can also derive a superlinear convergence rate for µ strong convex quadratic
functions as stated in the following corollary.
Corollary 2. Suppose that the choice of parameters in Algorithm 2 is the same as in Theorem 5
except for ϵk. If A ⪰ µId and we choose ϵk = 0, then for all k ≥ t0 = ⌈8C

(
1 + ln C

p

)
⌉, we have

f(xk+1)− f∗ ≤
k∏

t=t0

(
1 +

kµ

8CT0(ln k)3

)−2

(f(x0)− f∗) (21)

with probability at least 1− p.

C.2 PROOF OF THEOREM 2

It may be confusing if we directly state how to choose the parameters. Therefore, We will first break
down the process of Algorithm 2 into 3 phases, add requirement on the parameters in each phase step
by step, give convergence analysis respectively and at last combine the result in different phases.

In Algorithm 2, we require {nk} to satisfy either nk = nk−1 or nk = k. This induces another
sub-sequence {St} ⊂ [N], where St is the t-th integer such that nSt

= St. Hence, for k ∈
[St, St+1), we have nk = St.

Divide the algorithm into 3 phases:

• Phase 1: (Gradient descent) k ∈ [0, S1);
• Phase 2: (Hessian approximation) k ∈ [S1, S2);
• Phase 3: (Quasi-Newton iteration) k ∈ [S2, N].

The first and second phases are for preprocessing. They aim to give a rough estimation for the
minimizer of fε0(x) and the Hessian ∇2f(x∗

ε0), which only cost a constant number of iterations. The
last phase is the key step, exhibiting Õ(1/k2) convergence rate under proper choice of parameters
and preprocessing.

C.2.1 ANALYSIS FOR PHASE 1

Parameter requirement for phase 1: For k ∈ [0, S1), set nk = γk = dk = 0, ϵk = ε0, rk = 1
L .

Algorithm 3 shows the first phase of Algorithm 2 under the above requirement. It is actually
minimizing a ε0 strong convex function fε0(x) = f(x) + ε0

2 ∥x − x0∥22. As a consequence, it
exhibits a linear convergence rate.
Proposition 1. Under Assumption 1, 2, in Algorithm 3 we have

∥xS1
− x∗

ε0∥2 ≤ 2e−
ε0S1

L+2ε0 D. (22)

Proof. Let g(x) = f(x) + ε0
2 ∥x− x0∥22. Then phase one is equivalent to iterating as

xk+1 = xk − 1

Lg
∇g(xk),

where Lg = L+ ε0 ≥ sup ∥∇2g(x)∥2. It is well-known that for a m strong convex function which
is L1 gradient Lipschitz, if the stepsize α ∈ (0, 2

m+L1
), then we have

∥xk − x∗∥22 ≤
(
1− α

2mL1

m+ L1

)k

∥x0 − x∗∥22.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 4 Phase 2 of Algorithm 2

1: Requires: Initial point xS1 ∈ Rd, matrix BS1 ∈ Rd×d, distribution D.
2: for k = S1, S1 + 1, . . . S2 − 1 do
3: xk+1 = xk

4: Sample a vector sk ∼ D which satisfies (4)
5: Compute Bk+1 = SR1(∇2f(xk),Bk, sk)
6: end for

In our case, m = ε0, L1 = Lg, α = 1
Lg

. Hence,

∥xk − x∗∥2 ≤
(
1− 2ε0

ε0 + Lg

)k/2

∥x0 − x∗∥2 ≤ e−
kε0

L+2ε0 D.

Then the proof is complete.

Proposition 1 will help to satisfy the condition 2 in Theorem 6.

C.2.2 ANALYSIS FOR PHASE 2

Parameter requirement for phase 2: For k ∈ [S1, S2), set nk = S1, ϵk = rk = 0, γk = dk = 1.

Algorithm 4 shows the second phase of Algorithm 2 under the above requirement. It is simply
doing Hessian approximation to ∇2f(xS2

). Applying Theorem 1 we could evaluate the Hessian
approximation quality, which will help to verify the condition 2 in Theorem 6.
Proposition 2. Under Assumption 2, in Algorithm 4, if 0 ⪯ BS1

⪯ ∇2f(xS1
), then there exists an

absolute constant C, for every r > 3, 1 > p > 0 such that S2 − S1 ≥ C
(
r(ln r)3 + ln 1

p

)
, with

probability at least 1− p, we have

∥BS2 −∇2f(xS2)∥2 ≤ deffL

r
(23)

Proof. Let A = ∇2f(xS1
) and B0 refers to BS1

in Theorem 1 and apply this theorem we directly
finish the result.

C.2.3 ANALYSIS FOR PHASE 3

Let Nt = St+1 − St. We begin to consider the last phase, the most important one, in which ϵk is
relatively small (ϵk = O(1/M2D2)). We come up with the first requirement as follows:

Parameter requirement for phase 3: For all t ≥ 2 and k ∈ [St, St+1), there exist ηt, εt, αt, βt

such that 1
rk

= L
(

1
ηtαt

+ εt(1−αt)
αt

)
, ϵk = Lεt, and γk = α−1

t , dk = 1 for k ∈ [St, St+1 − 1),

γk = α−1
t , dk = (1 − βt)

2 for k = St+1 − 1. The specific values of ηt, εt, αt, βt should satisfy
conditions in Theorem 6.

From the above requirement, it can be checked that phase 3 are in the form of Algorithm 5. Note
that we write in the form of double loop. However, this is just for the convenience of proof. Our
proposed Algorithm 2 does not need it. The following theorem provides suitable conditions for
parameters in phase 3 and its convergence result.
Theorem 6. Under Assumption 1, 2, 3, suppose that in Algorithm 5, the following conditions are
satisfied:

1. For the initial point and Hessian approximation, we have

ε2 ≤ 1

121M2D2L
, BS2

⪯ ∇2f(xS2
);

∥∥xS2
− x∗

Lε2

∥∥Lε2

x∗
Lε2

≤ D
√
Lε2

33
√
2

,
∥∥BS2

−∇2f(xS2
)
∥∥
2
≤ 2Lmin{MD

√
L,

1

MD
√
L
}
√
ε2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 5 Phase 3 of Algorithm 2

1: Requires:
Initial point xS2 ∈ Rd, {εt} > 0, initial matrix BS2 ∈ Rd×d, correction parameters {βt}
Distribution D, stepsize {ηt}, factor {αt}.

2: for t = 2, 3, . . . do
3: for k = 0, 1, . . . , Nt − 1 do
4: xk+1+St

= xk+St
− αt(Bk+St

+ (L
ηt

+ Lεt)Id)
−1∇fLεt(xk+St

)

5: Sample sk+St ∼ D which satisfies (4)
6: Update: Bk+St+1 = SR1(∇2f(xSt),Bk+St , sk+St)
7: end for
8: Correct Hessian approximation: BSt+1

= (1− βt)
2BSt+1

9: end for

2. Denote c∗ = 1
4096 , for parameters, we have for all t ≥ 2,

εt =

(
1

1 + c∗

)t−2

ε2, αt =

(
1− 3MD

√
2Lεt

32

)2

;

βt =
MD

√
Lεt

4
,

3
√
εt

2MD
√
L

≤ 1

ηt
≤ 2

√
2εt

MD
√
L
.

3. When proceeding the inner loop as stated in Algorithm 6, we guarantee that∥∥xSt
− x∗

Lεt

∥∥Lεt

x∗
Lεt

≤ 21D

320

√
εt,

∥∥BSt
−∇2f(xSt−1

)
∥∥
2
≤ 19L

40
min{MD

√
L,

1

MD
√
L
}
√
εt.

Then for every ε > 0, to get a solution z such that f(z) − f∗ ≤ ε, with high probability, we only
need at most Õ(deffLMD2ε−

1
2) iterations in the 3rd phase of Algorithm 2.

Proof of Theorem 6. For simplicity, we first consider the function f such that L = 1. Then for
general f , the result can be derived from f/L by scaling.

For notation convenience, denote xt as xSt
and G̃t = BSt

, Ht = (1 − βt−1)
2BSt

. We aim to
give a uniform bound to the error measure in the form of εt in each sub-problem solving process.
The constants Ri, w that appear in the proof can be seen in Lemma 11. According to Lemma 11, if
for every t ≥ 2, all conditions in this lemma hold, then we can prove the convergence by induction.
From the description of Lemma 11, we only need to prove that:

1. For t = 2, (45),(46),(47) and H2 ⪯ ∇2f(xS2) hold.

2. For every t ≥ 3, (48) and
∥∥∥G̃t −∇2f(xt−1)

∥∥∥
2
≤ R4

√
εt hold.

The above two statements can be directly verified from our conditions in this theorem. Next, we give
an upper bound to the number of iterations in each inner loop. Take q = 1

16
√
2

in Lemma 10 and we
can check that our choice of parameters satisfies its conditions by using Lemma 12. Therefore, for
every k ∈ [St, St+1), we have∥∥xk+1 − x∗

εt

∥∥εt
x∗
εt

≤
(
1− qMD

2

√
εt

)∥∥xk − x∗
εt

∥∥εt
x∗
εt

, x0 = xt−1.

Note (52),(53) in the proof of Lemma 11 also give a bound to
∥∥xt−1 − x∗

εt

∥∥εt
xεt

, that is∥∥xt−1 − x∗
εt

∥∥εt
xεt

≤ 1

1−MR1
√
εt

(
w
√
εt +

R1
√
εt−1

1−Mw
√
εt

)
≤ D

4

√
εt.

Hence, for k − St ≥ 2 ln 4
qMD

√
εt

, we have

∥∥xk − x∗
εt

∥∥εt
x∗
εt

≤
(
1− qMD

2

√
εt

)k
D

4

√
εt ≤

21D

320

√
εt.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 1: Parameter settings for Algorithm 2 in different phases.

Parameter Phase 1: Phase 2: Phase 3:
k ∈ [0, S1) k ∈ [S1, S2) k ∈ [St, St+1), t ≥ 2

nk 0 S1 St

ϵk (11MD)−2 0 Lεt
rk

1
L 0 ηtαt

L(1+ηtεt(1−αt))

γk 0 1 α−1
t

dk 0 1 1 for k < St+1 − 1, (1− βt)
2 for k = St+1 − 1

Then (48) holds. By Theorem 1, with probability at least 1− p, we have

∥∥Gk −∇2f(xt−1)
∥∥
2
≤ 19

40MD

√
εt, k − St ≥ Cdeff

(
40MD

19
√
εt

(
ln

40CMD

19
√
εt

)3

+ ln
1

p

)
.

Thus, we only need to iterate Nt ∼ Θ̃
(

MD+M−1D−1
√
εt

)
times in each inner loop. Now we choose

m = ⌈4096 log2 1
M2ε⌉, then we have

εm ≤ ρmε0 ≤ 2M2ε · 1

2M2 ∥x∗ − x0∥22
≤ ε

2 ∥x∗ − x0∥22
.

Similar to the proof in Lemma 9, we have

f(xm)− f(x∗
εm) ≤ 1

(1−M
∥∥xm − x∗

εm

∥∥εm
x∗
εm

)2

(∥∥xm − x∗
εm

∥∥εm
x∗
εm

)2
≤ 10

9
· ∥x0 − x∗∥22

1000
εm ≤ ε

2
.

This implies

f(xm)− f(x∗) ≤ f(xm)− f(x∗
εm) + f(x∗

εm)− f(x∗) ≤ ε

2
+

εm
2

∥x∗∥22 ≤ ε.

Without the loss of generality, we can set MD ≥ 1, otherwise we can choose our M = D−1. Then
to obtain the solution xm, we only need at most m · Õ

(
deffMD√

εm

)
= Õ

(
deffMD2

√
ε

)
iterations in total.

Then we finish our proof for L = 1.

For general L, consider Algorithm 5 as a process to minimize g = f/L. For conditions in Theorem
6, note that the quantity MD

√
L remain the same after scaling, so the condition on ηt, εt, αt, βt

remains the same as well. Note also that ∇2g = ∇2f/L and B′
k = Bk/L where Bk is the Hessian

approximation for ∇2f , B′
k is the Hessian approximation for ∇2g using initial B′

0 = B0/L, so the
condition for Hessian approximation is consistent after scaling. Note also that

√
z⊤(∇2f + Lc)z =√

L
√
z⊤(∇2g + c)z and the x∗

Lc of f is the same as the x∗
c of g, so the conditions related to ∥x−y∥cz

is consistent after scaling.

Therefore, by our requirement on parameters, phase 3 equivalently performs the optimization on g
using parameters consistent with the case when L = 1. Hence, to find xm such that g(xm)−g∗ ≤ ε,
we need at most Õ

(
deffM

√
LD2

√
ε

)
iterations (the self-concordance coefficient for g is M

√
L) . This

means to find xm such that f(xm)− f∗ ≤ Lε, we need at most Õ
(

deffMLD2
√
Lε

)
iterations. Then the

proof is finished.

C.2.4 FINAL PROOF

First, we summarize the previous results and present the explicit form of parameters in Table 1, 2.

Combining the results in 3 phases, we can easily give a proof for Theorem 2.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 2: One example for the value of εt, αt, βt, ηt, St, t ≥ 2.

Parameter Values
εt

(
4096
4097

)t−2 1
121M2D2L

αt

(
1− 3MD

√
2Lεt

32

)2
βt

MD
√
Lεt

4

ηt
3
√
εt

2MD
√
L
≤ 1

ηt
≤ 2

√
2εt

MD
√
L

St S1 = L+2ε0
ε0

ln

(
66

√
2D

ε
1/2
0

)
S2 = S1 + C

(
r(ln r)3 + ln 1

p

)
, where r = 22deff max{1,M2D2L}

St+1 − St = Cdeff

(
40MD

√
L

19
√
εt

(
ln 40CMD

√
L

19
√
εt

)3
+ ln 1

p

)

Proof of Theorem 2. Suppose that the parameters satisfy the requirement in each phase, fix a
failure probability p, set ε0 = 1

121M2D2 , S1 = L+2ε0
ε0

ln 66
√
2D

ε0.50
= Õ(M2D2L), S2 = S1 +

C
(
r(ln r)3 + ln 1

p

)
, where r = 22deff max{1,M2D2L} = Õ(deffM

2D2L). Set

Nt = St+1 − St = Cdeff

40MD
√
L

19
√
εt

(
ln

40CMD
√
L

19
√
εt

)3

+ ln
1

p

 , t ≥ 2.

Then by Proposition 1, for ε ≥ 1
M2 , we need at most Õ(M2D2L) iterations. By Proposition 2 and

Theorem 6, for ε ≤ 1
M2 , we need at most Õ(deffM

2D2L+ deffLMD2ε−
1
2) = Õ(deffLMD2ε−

1
2)

iterations to let f − f∗ ≤ ε with probability at least 1−Õ(deffLMD2ε−
1
2)p. Combining two cases,

we finish the proof.

C.3 ANALYSIS OF COMPUTATIONAL COMPLEXITY

We now give a computational complexity analysis for Algorithm 2 in the parameter scheme
described in Table 1, 2. We first demonstrate the computational cost for a single iteration.
This efficiency stems from the low-rank nature of the Hessian approximation Bk. According to
Sherman-Morrison-Woodbury formula:(

A+UCV⊤)−1
= A−1 −A−1U

(
C−1 +V⊤A−1U

)−1
V⊤A−1

Note that in the scheme, our Hessian approximation, Bk, starts from BS1 = 0. Since each iteration
involves only a rank-one update, the rank of Bk is at most k. If we store the update vectors ui from

each step, then Bk =
k∑

i=1

uiu
⊤
i = UkU

⊤
k , where Uk = (u1,u2, · · · ,uk). For any ak > 0, by

setting A = akId, C = Ik, and V = U in the SMW formula, we derive:

(akId +UkU
⊤
k)

−1 = a−1
k Id − a−1

k Uk(Ik + a−1
k U⊤

k Uk)
−1U⊤

k · a−1
k Id.

Consequently, for any vector w, the term (akId +UkU
⊤
k)

−1w can be computed as:

(akId +UkU
⊤
k)

−1w = a−1
k w − a−1

k Uk(akIk +U⊤
k Uk)

−1U⊤
k w.

Let’s break down the computational costs:

• Calculating w1 = U⊤
k w costs O(kd).

• Assuming U⊤
k−1Uk−1 is already available, then U⊤

k Uk can be formed by:

U⊤
k Uk =

[
U⊤

k−1Uk−1 U⊤
k−1uk

u⊤
k Uk−1 u⊤

k uk

]
.

This only requires computing U⊤
k−1uk and u⊤

k uk, both costing O(kd).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• Inverting the k × k matrix (akIk +U⊤
k Uk) costs O(k3).

• Calculating w2 = (akIk +U⊤
k Uk)

−1w1 costs O(k2).
• Calculating w3 = Ukw2 costs O(kd).

• Finally, computing w4 = a−1
k w −w3 (the final result) costs O(d).

Therefore, the total computational complexity in the k-th iteration is O(k3 + kd).

However, if for k ∈ [St, St+1), ak are the same, then for k ∈ (St, St+1), we have

(akIk +U⊤
k Uk)

−1 =

[
ak−1Ik−1 +U⊤

k−1Uk−1 U⊤
k−1uk

u⊤
k Uk−1 ak + u⊤

k uk

]−1

=

[
X−1 + X−1bb⊤X−1

c−b⊤X−1b
− X−1b

c−b⊤X−1b

− b⊤X−1

c−b⊤X−1b
1

c−b⊤X−1b

]
,

where X = ak−1Ik−1 +U⊤
k−1Uk−1,b = U⊤

k−1uk, c = ak + u⊤
k uk. Since X−1 has already been

computed in the (k − 1) -th iteration, we only need to compute X−1b, which only costs O(k2).
Hence, the total computational complexity in the k-th iteration is O(k2 + kd) except for k = St.
Note that in our choice of St (see the proof of Theorem 2 in C.2.4), satisfies St − St−1 grows at
least linearly, so St ≤ k only for t ≤ O(ln k). The total computational cost in the first k iterations
is at most

k∑
l=1

O(l2 + ld) +O(ln k)O(k3 + kd) = Õ(k3 + k2d).

D USEFUL LEMMAS IN APPENDIX B

Lemma 7 depicts the decrease of trace during the SR1 update.
Lemma 7. Denote Rk = A−Bk, then there exist constants C3, C4 > 0 such that:

P
(
tr(Rk+1) ≤ tr(Rk)− C3

tr(R2
k)

tr(Rk)

)
≥ C4. (24)

Proof. Denote Rk = A−Bk, then by (3) we have

Rk+1 = Rk − Rksks
⊤
k Rk

s⊤k Rksk
. (25)

Taking the trace on both sides of (25), we have

tr(Rk+1) = tr(Rk)−
s⊤k R

2
ksk

s⊤k Rksk
. (26)

From (4) we can see that

E
[
s⊤k Rksk

]
= tr(Rk), E

[
s⊤k R

2
ksk
]
= tr(R2

k) (27)

By Markov inequality we have

P
(
s⊤k Rksk ≤ 8(3 + C1)E

[
s⊤k Rksk

])
≥ 1− 1

8(3 + C1)
. (28)

By Lemma 19 and Lemma 16 we have

P
(
s⊤k R

2
ksk ≥ 1

2
E
[
s⊤k R

2
ksk
]) (55)

≥
E
[
s⊤k R

2
ksk
]

4E
[
(s⊤k R

2
ksk)

2
]

(59)

≥ tr(R2
k)

2

4(3 + C1)tr(R2
k)

2

≥ 1

4(3 + C1)
. (29)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Combining (28) and (29) we have

P
(
tr(Rk+1) ≤ tr(Rk)−

tr(R2
k)

16(3 + C1)tr(Rk)

)
≥ 1

8(3 + C1)
. (30)

Lemma 8 is the key lemma to prove Lemma 6, which constructs a rational fraction to compare its
roots with the eigenvalues . We can show that the top eigenvalues after one iteration are smaller
than these roots respectively with a certain probability and quantify the amount of top eigenvalues’
reduction by the difference value between the previous step’s eigenvalues and these roots in each
iteration.
Lemma 8. Under the condition of Lemma 6, if (10) does not hold, then there exist constants
C5, C6 > 0 such that for all 0 ≤ k ≤ K, with probability at least C5, we have

tr(A−Bk+1)s ≤ tr(A−Bk)s −
umC6

s2 ln s
u

(tr(A−Bk)s)
2, (31)

where tr(H)s means the sum of top s eigenvalues of a matrix H.

Proof. For simplicity of notation, denote di = λi(A−Bk), λi = λi(A−Bk+1). We first assume
that di are distinct from each other. Let

A−Bk = UDU⊤

be the orthogonal decomposition of symmetric matrix A − Bk. Denote U = (uij)d×d, sk =
(s1, · · · , sd)⊤, Usk = v and v = (v1, · · · , vd)⊤, assume that vi ̸= 0 for all i, then we can rewrite
(3) as:

A−Bk+1 = U

(
D− Dvv⊤D

v⊤Dv

)
U⊤.

By Lemma 24, we know that λi are the roots of

q(x) =

d∑
i=1

d2i v
2
i

di − x
−

d∑
i=1

div
2
i .

Now we begin to progress our proof in the following steps.

1. Step 1: First, we find a special point in (dm, ds+1). We claim that the set

Q
def
=

{
x ∈ S

def
=

[
2dm
u+ 2

,
3dm
u+ 3

]
:

s+1∑
i=m

d2i
|x− di|

≤ 120

u
ln

30(1 + s)2

u

}
̸= ∅.

The proof of this claim is as follows. Let T =
s+1⋃
i=m

[
di − u

30d
2
i , di +

u
30d

2
i

]
, then the integral

∫
S\T

s+1∑
i=m

d2i
|x− di|

dx ≤ 2

s+1∑
i=m

d2i

∫ 1

ud2
i

30

1

x
dx

= 2

s+1∑
i=m

−d2i ln
u

30
d2i = 2

s+1∑
i=m

d2i ln
30

u
+ 4

s+1∑
i=m

d2i ln
1

di

(a)

≤ 2(s−m)d2m ln
30

u
+ 4dm

s+1∑
i=m

di ln
1

di

(b)

≤ 2(s−m)d2m ln
30

u
+ 4dm(s−m+ 1)dm ln

1

dm

≤ 2s

(
ln

30

u
s− 2 ln dm

)
d2m. (32)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Here (a) holds because di ≤ dm and (b) holds because di ln 1
di

≤ dm ln 1
dm

by Lemma 13.
Meanwhile, we have

|S\T | ≥ 3dm
u+ 3

− 2dm
u+ 2

− u

15

s+1∑
i=m

d2i ≥ udm
(u+ 3)(u+ 2)

− udm
15

≥ udm
60

. (33)

Combining (32)(33) we know that there exists z ∈ S\T such that
s∑

i=m

d2i
|z − di|

≤ 120s

u

(
ln

30

u
dm + 2dm ln

1

dm

)
≤ 120

u
(ln 30− lnu+ 2 ln(1 + s)) .

(34)
The last inequality in (34) can be derived from Lemma 13 and the condition that dm ≤
1

s+1 ≤ 1
e . Then we finish the proof of our claim.

2. Step 2: Next, we construct a rational fraction r(x) in order to compare with q(x) as follows.
Let m ≤ j ≤ s satisfy dj < z < dj+1, denote M = 8(3 + C1) and define

r(x)
def
=

j∑
i=1

d2i v
2
i

(di − x)
−

 d∑
i=j+1

d2i v
2
i

z − di
+

8M

u

d∑
i=1

di +

j∑
i=m+1

d2i v
2
i

di − z

 . (35)

Using Lemma 22, we can know that r(x) = 0 has j solutions µi, 1 ≤ i ≤ j such that

d1 > µ1 > d2 > · · · > dj > µj ,

and we have the following equation by (63)

j∑
i=1

(di − µi) =

j∑
i=1

d2i v
2
i

M1
, M1 =

d∑
i=j+1

d2i v
2
i

z − di
+

8M

u

d∑
i=1

di +

j∑
i=m+1

d2i v
2
i

di − z
. (36)

Note that for i ≤ m, di − z ≥ di − 3
u+3dm ≥ u

u+3di, therefore,

r(z) ≤
m∑
i=1

(
1 +

3

u

)
div

2
i +

j∑
i=m+1

d2i v
2
i

di − z
−M1. (37)

3. Step 3: Now we compare λi with µi. Since vi =
d∑

l=1

uilsl, we have E
[
v2i
]
= 1 and

E
[
v4i
]
= E

(d∑
p=1

uipsp

)4
 (c)

= E

 d∑
p=1

u4
ips

4
p + 6

∑
1≤p<q≤d

u2
ipu

2
iqs

2
ps

2
q


≤ (3 + C1)

(
d∑

p=1

u2
ip

)2

= 3 + C1.

The equality (c) holds for the same reason as (60). For each m ≤ l ≤ j, we define random
variables

X
def
=

d∑
i=1

div
2
i , Y

def
=

j∑
i=1

d2i v
2
i , Z

def
=

d∑
i=j+1

d2i v
2
i

z − di
+

j∑
i=m+1

d2i v
2
i

di − z
.

By Lemma 20 and Markov inequality, we have

P
(
A def

=

{
Y ≥ 1

2
E [Y] , X ≤ 2ME [X] , Z ≤ 2ME [Z]

})
≥ 1

M
. (38)

In the rest part of this step we condition on A, then by (37), we have

r(z) ≤
(
1 +

3

u

)
X +

j∑
i=m+1

d2i v
2
i

di − z
− 8M

u
E [X]−

j∑
i=m+1

d2i v
2
i

di − z
≤ 0.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Hence, µj ≥ z, and

q(µl) =

j∑
i=1

d2i v
2
i

(di − µl)
−

d∑
i=j+1

d2i v
2
i

µl − di
−X

(35)
= r(µl) +

 d∑
i=j+1

d2i v
2
i

z − di
+

8M

u

d∑
i=1

di +

j∑
i=m+1

d2i v
2
i

di − z

−
d∑

i=j+1

d2i v
2
i

µl − di
−X

µl≥z

≥ r(µl) +

 d∑
i=j+1

d2i v
2
i

µl − di
+

8M

u

d∑
i=1

di

−
d∑

i=j+1

d2i v
2
i

µl − di
−X

≥ 8M

u

d∑
i=1

di −X ≥ 8M

u
E [X]−X ≥ 0.

This implies λl ≤ µl. Therefore, dl −λl ≥ dl −µl. Since Z ≤ 2ME [Z] , Y ≥ 1
2E [Y], by

(36), we can bound
j∑

i=1

(di − µi) as follows

M1 ≤ 2ME [Z] +
8M

u
E [X]

(34)

≤ 2M

(
120

u

(
1

30
+ ln 30− lnu+ 2 ln(1 + s)

))
+M

(
d∑

i=s+2

d2i
z − di

)
(d)

≤ 2M

(
120

u

(
1

30
+ ln 30− lnu+ 2 ln(1 + s)

))
+M

(
1 +

2

u

)(d∑
i=s+2

di

)

≤ 2M

(
120

u
ln

32(1 + s)2

u
+ 1 +

2

u

)
. (39)

The inequality (d) holds due to the fact that

z − di ≥
2

u+ 2
dm − di ≥

2(1 + u)

u+ 2
di − di ≥

u

u+ 2
di.

Take C6 = 1
3000M , by (39) and some numerical calculation we have M1 ≤ 1

2uC6
ln s

u , thus,

j∑
i=1

(di − λi) ≥
j∑

i=1

(di − µi) ≥
Y

M1
≥

j∑
i=1

d2i

2M1
≥ uC6

ln s
u

j∑
i=1

d2i .

Note that m ≤ j ≤ s, so we have

j∑
i=1

d2i ≥ j

s

s∑
i=1

d2i ≥ j

s2

(
s∑

i=1

di

)2

≥ m

s2

(
s∑

i=1

di

)2

.

tr(A−Bk+1)s ≤ tr(A−Bk)s −
umC6

s2 ln s
u

(tr(A−Bk)s)
2
. (40)

Combining (38) and (40), we choose C5 = 1
M and then we finish the proof.

For the case when vi may be zero and di may not be distinct from each other, by Weyl’s inequality
(Lemma 21), the spectrum of Hermitian matrices is stable under perturbation. Hence, the conclusion
is true for the general case.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E USEFUL LEMMAS IN APPENDIX C.2

We need several additional lemmas to help proving Theorem 6 as listed below. All the Lemmas
in this section assume L = 1. (Though some do not use it.) Lemma 9 measures the deviation
between the exact solutions of the proximate inner loops. Lemma 10 proves a linear convergence
rate under proper conditions. Lemma 11 and Lemma 12 further measure the deviation between the
approximated solutions of proximate inner loops.
Lemma 9. Suppose that εt ≤ εt−1 ≤ 1

2M2∥x∗−x0∥2
2

, then∥∥x∗
εt − x∗∥∥

x∗ ≤
√
2εt∥x∗ − x0∥2, (41)∥∥∥x∗

εt−1
− x∗

εt

∥∥∥ε∗t
x∗
εt

≤
√
2(εt−1 − εt)∥x∗ − x0∥2. (42)

Proof of Lemma 9. Denote r = ∥x∗
εt − x∗∥x∗ , then by self-concordancy we have

∇2f
(
x∗ + t

(
x∗
εt − x∗)) ⪰ (1−Mrt)

2 ∇2f (x∗) for all t ≤ 1
Mr . Therefore,

f
(
x∗
εt

)
− f (x∗) =

(∫ 1

0

∇f
(
x∗ + t

(
x∗
εt − x∗)) dt)⊤ (

x∗
εt − x∗)

=

(∫ 1

0

(∫ 1

0

∇2f
(
x∗ + st

(
x∗
εt − x∗)) ds) t

(
x∗
εt − x∗) dt)⊤ (

x∗
εt − x∗)

=
(
x∗
εt − x∗)⊤(∫ 1

0

(∫ t

0

∇2f
(
x∗ + s

(
x∗
εt − x∗)) ds) dt

)(
x∗
εt − x∗)

=
(
x∗
εt − x∗)⊤(∫ 1

0

(1− t)∇2f
(
x∗ + t

(
x∗
εt − x∗)) dt)(x∗

εt − x∗)
≥

(∫ min{ 1
Mr ,1}

0

(1− t) (1−Mrt)
2
dt

)(
x∗
εt − x∗)⊤ ∇2f (x∗)

(
x∗
εt − x∗)

= r2 ·
{

1
3Mr − 1

12M2r2 Mr ≥ 1
1
12M

2r2 − 1
3Mr + 1

2 Mr < 1
.

On the other hand,

f
(
x∗
εt

)
− f (x∗) = f

(
x∗
εt

)
− fεt (x

∗) +
εt
2
∥x∗ − x0∥22

≤ fεt
(
x∗
εt

)
− fεt (x

∗) +
εt
2
∥x∗ − x0∥22

≤ εt
2
∥x∗ − x0∥22.

Combining these two inequalities we have:

min

{
r2

4
,

r

4M

}
≤ εt

2
∥x∗ − x0∥22.

Hence, either r ≤
√
2εt∥x∗ − x0∥2 or r ≤ 2Mεt∥x∗ − x0∥22. Since

√
2εt ≤ 1

M∥x∗−x0∥2
, we

must have r ≤
√
2εt∥x∗ − x0∥2. For the second conclusion in Lemma 9, note that fεt is also

self-concordant with constant M , and fεt−1
= fεt +

εt−1−εt
2 ∥x∗ − x0∥22, so we can use the same

argument on fεt−1
compared with fεt , then the result leads to (42).

We extract the inner loop for solving sub-problems in Algorithm 5 to Algorithm 6 as shown above.
Lemma 10. If we use Algorithm 6 to optimize the regularized objective function fεt , while satisfying
the following conditions:

1. There exists a constant q such that M
∥∥x1 − x∗

εt

∥∥εt
x∗
εt

≤ qMD
√
εt ≤ 1

30 .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 6 Inner loop of Algorithm 5

1: Requires: Initial point x0 ∈ Rd, regularizer εt, matrix G0 ∈ Rd×d, distribution D, parameter
sequence {ηk}, stepsize 0 < αt < 1.

2: for k = 0, 1, 2 . . . do

3: xk+1 = xk − αt

(
Gk +

(
1
ηk

+ εt

)
Id

)−1

∇fεt(xk)

4: Sample a random vector sk ∼ D and compute Gk+1 = SR1(∇2f(x1),Gk, sk).
5: end for

2. Gk +
(

1
ηk

+ εt

)
Id ⪰ ∇2fεt(x1), α = (1− 3qMD

√
εt)

2.

Then if for every k ≥ 1, we have 1
ηk

≤
√
εt

8qMD , the following inequality holds:

∥∥xk+1 − x∗
εt

∥∥εt
x∗
εt

≤
(
1− qMD

2

√
εt

)∥∥xk − x∗
εt

∥∥εt
x∗
εt

. (43)

Proof of Lemma 10. For simplicity, in this proof we replace ∥z∥εtx∗
εt

by ∥z∥∗. We denote

vk = ∥xk − x∗
εt∥∗, Jk =

∫ 1

0
∇2fεt

(
x∗
εt + t

(
xk − x∗

εt

))
dt. We use induction to prove that

∥xk+1 − x∗
εt∥∗ ≤ (1− qMD

√
εt/2) ∥xk − x∗

εt∥∗.

Suppose that we already have vs+1 ≤ vs for all s ≤ k − 1. Then we have

xk+1 − x∗
εt =

(
Id − αt

(
Gk +

1

ηk
Id + ε−1

t Jk

))(
xk − x∗

εt

)
.

Since vk ≤ v0 and Mv0 ≤ qMD
√
εt, we have

∥xk − x1∥x1
≤ 1

1−Mv0
∥xk − x1∥∗ ≤ 1

1−Mv0

(
∥xk − x∗

εt∥∗ + ∥x1 − x∗
εt∥∗

)
≤ 2v0

1−Mv0
.

Then for every t ∈ [0, 1] we have

∇2fεt
(
x∗
εt + t

(
xk − x∗

εt

))
⪯ 1(

1−M
(
t∥xk − x1∥x1 + (1− t) ∥x∗

εt − x1∥x1

))2∇2fεt (x1) .

This implies

∇2fεt
(
x∗
εt + t

(
xk − x∗

εt

))
⪯ 1(

1− 2Mv0

1−Mv0

)2∇2fεt (x0) .

Take integral for t over [0, 1] we have

Jk ⪯ 1(
1− 2Mv0

1−Mv0

)2∇2fεt (x0) ⪯
1(

1− 3qMD
√
εt
)2∇2fεt (x0) .

By the same reason we have

Jk ⪰ (1− 3qMD
√
εt)

2 ∇2fεt (x0) .

Since Gk + 1
ηk
Id ⪰ ∇2f (x0) and αt ≤

(
1− 3qMD

√
εt
)2

, we can see that Gk + 1
ηk
Id + εtId ⪰

αtJk, as a result,

λmin

(
Id − αt

(
Gk +

1

ηk
Id + εtId

)−1

Jk

)
≥ 0

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Also by SR1 update we have Gk + εtId ⪯ ∇2fεt (x0) ⪯ 1
(1−3qMD

√
εt)

2Jk, and by our assumption,
1
ηk

≤
√
εt

8qMD , so we can deduce that

λmax

(
Id − αt

(
Gk +

1

ηk
Id + εtId

)−1

Jk

)
≤ 1− αtλ

−1
max

(
1

ηk
J−1
k +

1(
1− 3qMD

√
εt
)2 Id

)
≤ 1− αt

2
ηkεt

+ 1
(1−3qMD

√
εt)

2

≤ 1−
(
1− 3qMD

√
εt
)2

1
4qMD

√
εt

+ 1
(1−3qMD

√
εt)

2

≤ 1− 2qMD (1− 3qMD
√
εt)

2 √
εt.

Hence,
∥xk+1 − x∗

εt∥Jk
≤ (1− 1.62qMD

√
εt) ∥xk − x∗

εt∥Jk
.

Since M∥xk − x∗
εt∥∗ ≤ qMD

√
εt, we have

∇2fεt
(
x∗
εt + t

(
xk − x∗

εt

))
⪯ 1

(1− tMvk)
2∇

2fεt
(
x∗
εt

)
.

This could imply ∥z∥Jk
∈
[√

1−Mrk∥z∥∗, 1√
1−Mrk

∥z∥∗
]
. At last, we can derive that

∥xk+1 − x∗
εt∥∗ ≤

1− 1.62qMD
√
εt

1− qMD
√
εt

∥xk − x∗
εt∥∗ ≤ (1− qMD

√
εt/2) ∥xk − x∗

εt∥∗.

Then we finish the proof by induction.

Lemma 11. Under the condition of Theorem 6 and follow the same notation. Denote constants

R0 =
D

4
, R1 =

21D

320
, R2 =

3MD

2
, R3 = 2

√
2MD,R4 =

19MD

40
, c∗ =

1

4096

if

εt < εt−1 ≤ (1 + c∗)εt ≤
1

121M2D2
,

and the approximate solution xt−2, xt−1 and matrix Ht−2, G̃t−1 satisfy Ht−2 ⪯ ∇2f(xt−2) and

∥xt−1 − xt−2∥xt−1
≤ R0

√
εt−1, (44)∥∥∥xt−1 − x∗

εt−1

∥∥∥εt−1

x∗
εt−1

≤ R1
√
εt−1, (45)∥∥∥G̃t−1 −∇2f(xt−1)

∥∥∥
2
≤ R2

√
εt−1. (46)

Choose βt−1 = MR0
√
εt−1, then the correction approximate matrix Ht−1 satisfies Ht−1 ⪯

∇2f(xt−1) and ∥∥Ht−1 −∇2f(xt−1)
∥∥
2
≤ R3

√
εt. (47)

Next, if the approximate solution xt satisfies∥∥xt − x∗
εt

∥∥εt
x∗
εt

≤ R1
√
εt, (48)

then
∥xt − xt−1∥xt

≤ R0
√
εt. (49)

Moreover, if
∥∥∥G̃t −∇2f(xt−1)

∥∥∥
2
≤ R4

√
εt, then we have∥∥∥G̃t −∇2f(xt)

∥∥∥
2
≤ R2

√
εt. (50)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Proof. First, we prove Ht−1 ⪯ ∇2f(xt−1) and (47). Since Ht−1 = (1− βt−1)
2G̃t−1, we have∥∥Ht−1 −∇2f(xt−1)

∥∥
2
≤ 2βt−1

∥∥∥G̃t−1

∥∥∥
2
+
∥∥∥G̃t−1 −∇2f(xt−1)

∥∥∥
2

≤ (2MR0 +R2)
√
εt−1

(66)

≤ R3
√
εt.

By the property of SR1 update we have G̃t−1 ⪯ ∇2f(xt−2). Using the self-concordancy we have

Ht−1 = (1− βt−1)
2G̃t−1 ⪯ (1− βt−1)

2∇2f(xt−2)

⪯ (1− βt−1)
2

(1−M∥xt−1 − xt−2∥xt−1
)2
∇2f(xt−1)

(44)

⪯ ∇2f(xt−1).

Second, let us bound ∥xt − xt−1∥xt
using the self-concordance property. We have

∥xt − xt−1∥εtxt
≤ 1

1−M
∥∥xt − x∗

εt

∥∥εt
x∗
εt

∥xt − xt−1∥εtx∗
εt

. (51)

We need to bound ∥xt − xt−1∥εtx∗
εt

, and we have

∥xt − xt−1∥εtx∗
εt

≤
∥∥xt − x∗

εt

∥∥εt
x∗
εt

+
∥∥∥x∗

εt − x∗
εt−1

∥∥∥εt
x∗
εt

+
∥∥∥x∗

εt−1
− xt−1

∥∥∥εt
x∗
εt

. (52)

By (48) and Lemma 9, we have∥∥xt − x∗
εt

∥∥εt
x∗
εt

≤ R1
√
εt,

∥∥∥x∗
εt − x∗

εt−1

∥∥∥εt
x∗
εt

≤
√
2(εt−1 − εt)∥x∗ − x0∥2.

Denote w =
√

2(εt−1−εt)
εt

∥x∗ − x0∥2, then the last term in (52) can be bounded by (45) and Lemma
9: ∥∥∥x∗

εt−1
− xt−1

∥∥∥εt
x∗
εt

≤

∥∥∥x∗
εt−1

− xt−1

∥∥∥εt
x∗
εt−1

1−M
∥∥∥x∗

εt−1
− x∗

εt

∥∥∥εt
x∗
εt

≤
R1

√
εt−1

1−Mw
√
εt

Hence, ∥xt − xt−1∥εtx∗
εt

≤ R1
√
εt + w

√
εt +

R1
√
εt−1

1−Mw
√
εt

, combining with (51) we have

∥xt − xt−1∥εtxt
≤ 1

1−MR1
√
εt

(
R1

√
εt + w

√
εt +

R1
√
εt−1

1−Mw
√
εt

)
. (53)

This leads to (49) by (67) in Lemma 25.

Finally, we use (47), (49) to prove (50). We have∥∥∥G̃t −∇2f(xt)
∥∥∥
2
≤
∥∥∥G̃t −∇2f(xt−1)

∥∥∥
2
+
∥∥∇2f(xt−1)−∇2f(xt)

∥∥
2

≤ R4
√
εt +

(
1− (1−M∥xt − xt−1∥xt

)4

(1−M∥xt − xt−1∥xt
)2

)∥∥∇2f(xt)
∥∥
2

(49)

≤ R4
√
εt +

1− (1−MR0
√
εt)

4

(1−MR0
√
εt)2

(68)

≤ R2
√
εt.

Lemma 12. Suppose that εt ≤ εt−1 ≤ 1
M2D2 and we already have∥∥∥x∗

εt−1
− x∗

εt

∥∥∥εt
x∗
εt

≤ D

32
√
2

√
εt,

∥∥∥xt−1 − x∗
εt−1

∥∥∥εt−1

x∗
εt−1

≤ D

33
√
2

√
εt.

Then we have ∥∥xt−1 − x∗
εt

∥∥εt
x∗
εt

≤ D

16
√
2

√
εt. (54)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Proof. Note that fεt(x) is self-concordant with constant M , so we have∥∥∥xt−1 − x∗
εt−1

∥∥∥εt
x∗
εt

≤ 1

1−M
∥∥∥x∗

εt−1
− x∗

εt

∥∥∥εt
x∗
εt−1

∥∥∥xt−1 − x∗
εt−1

∥∥∥εt
x∗
εt−1

≤ 1

1−M
D
√
εt

32
√
2

∥∥∥xt−1 − x∗
εt−1

∥∥∥εt
x∗
εt−1

≤ 32
√
2

32
√
2− 1

∥∥∥xt−1 − x∗
εt−1

∥∥∥εt−1

x∗
εt−1

≤ 32
√
2

32
√
2− 1

· D

33
√
2

√
εt ≤

D

32
√
2

√
εt.

Hence, ∥∥xt−1 − x∗
εt

∥∥εt
x∗
εt

≤
∥∥∥x∗

εt−1
− x∗

εt

∥∥∥εt
x∗
εt

+
∥∥∥xt−1 − x∗

εt−1

∥∥∥εt
x∗
εt

≤ D

16
√
2

√
εt.

F TECHNICAL LEMMAS

In this section, we present technical lemmas that are used in the previous proofs. Among these
lemmas, Lemma 16, Lemma 17, and Lemma 21 are well-known and can be found in classical
textbooks. As such, we do not provide their proofs.

Lemma 13. The function h(t) = t ln t decreases in the interval
(
0, 1

e

]
.

Proof. This simply follows from the h(t)’s derivative: h′(t) = 1 + ln(t) ≤ 0, for t ≤ 1
e .

Lemma 14. Let {an}n≥0 be a sequence of real positive numbers and c > 0 such that an+1 ≤
an − ca2n, then for all n ∈ N, we have an ≤ a0

cn+a0
.

Proof. Since an+1 ≤ an − ca2n, we have 1
an+1

≥ 1
an

+ c
1−can

. Hence, we get

1

an
≥

n−1∑
i=0

c

1− cai
+

1

a0
≥ nc+

1

a0
.

This implies an ≤ a0

cn+a0
.

Lemma 15. Let {an}n≥0 be a sequence of real positive numbers that do not increase. Let c > 0 be
a constant. For every n ∈ N, denote An =

{
k ∈ N, k ≤ n : ak+1 ≤ ak − ca2k

}
, then we have

an ≤ a0
a0 + c|An|

,

where |An| denotes the number of elements in the set An.

Proof. Construct the sequence {ank
} by ordering the elements of

+∞⋃
i=0

Ai according to their

subscripts in increasing order. Denote m = |An|, then anm
≥ an ≥ anm+1

. By Lemma 14,
anm

≤ a0

a0+cm . Therefore, an ≤ anm
≤ a0

a0+cm .

Lemma 16 (PaleyZygmund inequality). Let X ≥ 0 be a nonnegative random variable. Then for all
0 < θ < 1, we have

P (X ≥ θE [X]) ≥ (1− θ)2E [X]
2

E [X2]
. (55)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Lemma 17 (Chernoff bound for Bernoulli variables). Let X1, · · · , Xn
i.i.d∼ Bernoulli(1, p), then

for every 0 < δ < 1, we have

P

(
n∑

i=1

Xi ≤ (1− δ)np

)
≤ e−

δ2np
2 . (56)

Lemma 18 is our main tool for proving high-probability bounds. This lemma extends classical
Chernoff bounds to dependent processes by requiring only a one-sided lower bound on conditional
success probabilities. This allows deriving exponential concentration inequalities similar to the
independent case, making it particularly useful for analyzing adaptive algorithms and sequential
decision processes where independence assumptions fail but some probabilistic structure remains.
The result provides a powerful tool for establishing high-probability guarantees in dependent
settings.
Lemma 18 (Coupling). Consider a random process Xk, k ∈ N∗, where Xk is taken in {0, 1}.
Denote Fk as the σ-algebra generated by X1, · · · , Xk. Suppose that for all k ≥ 1, we have
P (Xk = 1|Fk−1) ≥ p, then for any k ≥ 0, t ≥ 0, we have

P(X1 + · · ·+Xk ≥ t) ≥ P(Y1 + · · ·+ Yk ≥ t),

where Y1, · · · , Yk
i.i.d∼ Bernoulli(1, p). Moreover, for every 0 < δ < 1, n ∈ N∗, we have

P

(
n∑

i=1

Xi ≤ (1− δ)np

)
≤ e−

δ2np
2 . (57)

Proof. We construct an auxiliary process {Zk}k∈N∗ with Zk ∈ {0, 1} as follows:

Since X1, . . . , Xk take on finitely many values, each event in Fk can be expressed as a union of
atomic events. For each atomic event A ∈ Fk−1 where P(Xk = 1 | A) = qA ≥ p, we define Zk|A
to be an independent Bernoulli random variable with parameter p

qA
, i.e., Zk|A ∼ Bernoulli

(
1, p

qA

)
,

independent of Xk|A. By repeating this construction for all atomic events in Fk−1, we obtain a
well-defined random variable Zk ∈ {0, 1} satisfying:

P(XkZk = 1 | Fk−1) = p.

Since Xk ≥ XkZk, it suffices to prove that

P(X1Z1 + · · ·+XkZk = t) = P(Y1 + · · ·+ Yk = t). (58)

Now we can prove (58) by induction. Suppose that (58) holds for k − 1, then we have

P(X1Z1 + · · ·XkZk = t)

= P(XkZk = 0|X1Z1 + · · ·Xk−1Zk−1 = t)P(X1Z1 + · · ·Xk−1Zk−1 = t)

+ P (XkZk = 1|X1Z1 + · · ·Xk−1Zk−1 = t− 1)P(X1Z1 + · · ·Xk−1Zk−1 = t− 1)

= (1− p)P(X1Z1 + · · ·Xk−1Zk−1 = t) + pP(X1Z1 + · · ·Xk−1Zk−1 = t− 1)

= (1− p)P(Y1 + · · ·Yk−1 = t) + pP(Y1 + · · ·Yk−1 = t− 1)

= P(Y1 + · · ·+ Yk = t).

Hence (58) holds for all k, t. This implies (58) and implies (57) by (58) and (56).

Lemma 19. Let A ∈ Rd×d,A ⪰ 0 and X be a random variable that satisfies (4). Let Xi
i.i.d∼ X

and X = (X1, · · · , Xd)
⊤. Then we have

E
[
(X⊤AX)2

]
≤ (3 + C1)tr(A)2. (59)

Proof. The left side of (59) is actually

E


∑

i,j

AijXiXj

2
 =

∑
i,j,k,l

AijAklE [XiXjXkXl] .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Denote
A1 = {(i, j, k, l) : i = j = k = l} ,

A2 = {(i, j, k, l) : i = j, k = l, i ̸= k or its permutation} .
Then the term E [XiXjXkXl] satisfies:

E [XiXjXkXl] =


C1 (i, j, k, l) ∈ A1

1 (i, j, k, l) ∈ A2

0 (i, j, k, l) ∈ (A1 ∪A2)
c

(60)

Hence,

E


∑

i,j

AijXiXj

2
 = C1

∑
i

A2
ii +

∑
1≤i<j≤d

(4A2
ij + 2AiiAjj)

≤ (2 + C1)∥A∥2F + tr(A)2 = (3 + C1)tr(A)2.

Lemma 20. Let X1, · · · , Xn be n random variables such that E
[
X2

i

]
= 1 and sup

1≤i≤n
E
[
X4

i

]
= M .

Then for any a1, · · · , an ≥ 0, we have

E

(n∑
i=1

aiX
2
i

)2
 ≤ M

(
n∑

i=1

ai

)2

. (61)

This implies

P

(
n∑

i=1

aiX
2
i ≥ 1

2

n∑
i=1

ai

)
≥ 1

4M
. (62)

Proof. By AM-GM inequality, E
[
X2

i X
2
j

]
≤ 1

2E
[
X4

i +X4
j

]
≤ M . Then the left-hand side of the

equation (61) is

n∑
i=1

a2iE
[
X4

i

]
+

∑
1≤i<j≤n

aiajE
[
X2

i X
2
j

]
≤ M

(
n∑

i=1

ai

)2

Hence, (61) holds and implies (62) by Lemma 16.

Lemma 21 (Weyl’s Inequality for Hermitian Matrices). Let A and B be n× n Hermitian matrices.
Denote their eigenvalues in non-increasing order as:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A),

λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B),

Then for any i, j ≥ 1 with i+ j − 1 ≤ n, we have:

λi+j−1(A+B) ≤ λi(A) + λj(B),

and for any i, j ≥ 1 with i+ j − 1 ≥ n, we have

λi(A) + λj(B) ≤ λi+j−n(A+B).

Remark. If B = −uu⊤ and u ̸= 0, then λn(B) < 0 and λi(B) = 0, i < n. In this case,
λi+1(A) ≤ λi(A −B) ≤ λi(A). Moreover, we have |λi(A) − λi(A +B)| ≤ ∥B∥2. Hence, the
spectrum of Hermitian matrices is stable under perturbation.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Lemma 22. Consider a rational fraction

f(x) =

m∑
i=1

ai
bi − x

, ai > 0, b1 > b2 > · · · > bm ≥ 0.

For any t > 0, the equation
f(x) = t

has m solutions x1 > x2 > · · · > xm such that xi ∈ (bi+1, bi) for 1 ≤ i ≤ m − 1 and xm ∈
(−∞, bm). Moreover,

m∑
i=1

xi =

m∑
i=1

bi −
1

t

m∑
i=1

ai. (63)

Proof. Let us consider each (bi+1, bi), note that

f ′(x) =

m∑
i=1

ai
(bi − x)2

> 0,

and lim
x→b+i+1

f(x) = −∞, lim
x→b−i

f(x) = +∞. Hence, by Intermediate Value Theorem, for any t ≥ 0,

the equation f(x) = t has a unique root in (bi+1, bi). Similarly, it has a unique root in (−∞, bm).

Multiplying
m∏
i=1

(bi − x) to the equation, they can be also seen as the roots of a polynomial

p(x) =

m∑
i=1

ai
∏
j ̸=i

(bj − x)− t

m∏
i=1

(bi − x).

And (63) follows directly by Vieta’s formula.

The next two lemmas (Lemma 23, Lemma 24) are well-known results in numerical algebra. Their
proofs can be found in any numerical algebra textbook. The famous Divide-and-Conquer algorithm
for solving eigenvalues of tridiagonal Hermitian matrices is based on the following theory.

Lemma 23. Let D = diag(d1, · · · , dn) be a diagonal matrix such that d1 > d2 > · · · > dn,
assume that ρ ̸= 0, u ∈ Rn and each coordinate of u ∈ Rn is non-zero. If v ∈ Rn and λ ∈ R
satisfy

(D+ ρuu⊤)v = λv,

then v⊤u ̸= 0, and D− λIn is invertible.

Proof. If v⊤u = 0, then Dv = λv,v ̸= 0, hence λ is the eigenvalue of D. Note that D’s diagonals
are different from each other, so there exists i such that di = λ and v = αei, α ̸= 0. Therefore, we
have 0 = v⊤u = αu⊤ei, contradicting the condition that each coordinate of u is non-zero.

Besides, if D− λIn is singular, then there exists i such that e⊤i (D− λIn) = 0 and thus we have

0 = e⊤i (D− λIn)v = −ρu⊤ve⊤i u,

but ρu⊤v ̸= 0, so e⊤i u = 0, a contradiction.

Lemma 24. Let D = diag(d1, · · · , dn) be a diagonal matrix such that d1 > d2 > · · · > dn,
u ∈ Rn, and suppose that each coordinate of u is non-zero and ρ > 0. Denote λ1 ≥ λ2 ≥ · · · ≥ λn

as the eigenvalues of D− ρuu⊤. Then λi are distinct and they are exactly the roots of

1− ρ

(
u2
1

d1 − λi
+ · · ·+ u2

n

dn − λi

)
= 0, (64)

where ui denotes the i-th component of u.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Proof. First, consider the case when di are distinct from each other. Denote vi as the unit
eigenvector with respect to λi. Then we have

(D− ρuu⊤)vi = λivi.

By Lemma 23, D− λiIn is invertible and u⊤vi ̸= 0. Therefore,

vi = ρu⊤vi(D− λiIn)
−1u.

Left multiply both sides by u⊤, note that u⊤vi ̸= 0, we have

1 = ρu⊤(D− λiIn)
−1u,

this is equivalent to

1− ρ

(
u2
1

d1 − λi
+ · · ·+ u2

n

dn − λi

)
= 0.

By Lemma 22, the above equation has exactly n roots, each belonging to
(d2, d1), (d3, d2), · · · , (−∞, dn) respectively. Thus the proof is complete.

Lemma 25. Under the condition of Lemma 11, we have the following inequalities:

w
def
=

√
2(εt−1 − εt)

εt
∥x∗ − x0∥2 ≤ D

32
. (65)

(2MR0 +R2)
√
εt−1 ≤ R3

√
εt. (66)

1

1−MR1
√
εt

(
R1

√
εt + w

√
εt +

R1
√
εt−1

1−Mw
√
εt

)
≤ R0

√
εt. (67)

R4
√
εt +

1− (1−MR0
√
εt)

4

(1−MR0
√
εt)2

≤ R2
√
εt. (68)

Proof. Since εt < εt−1 ≤ (1 + c∗)εt ≤ 1
121M2D2 , we have√

2(εt−1 − εt)

εt
∥x∗ − x0∥2 ≤

√
2c∗∥x∗ − x0∥2 ≤ D

32
√
2
,

this implies (65). The inequality (66) is equivalent to

(2M · 1

4M
+

3

2
)
√
εt−1 ≤ 2

√
2εt,

this is obvious because we have εt−1 ≤ 2εt by c∗ ≤ 1.

For (67), notice that w ≤ D
32 and R1 ≤ 21D

320 , we only need to prove

320

299

(
D

32

√
εt +

21D

320

√
εt +

32

31
· 21D
320

√
εt−1

)
≤ D

4

√
εt.

This can be done by numerical calculation.

Finally, let us prove (68). Since R0 ≤ D
4 , R4 = 19MD

40 , we only need to prove

19

40

√
εt +

1− (1− 0.25
√
εt)

4

(1− 0.25
√
εt)2

≤ 3

2

√
εt.

We can see that for x ∈
(
0, 1

44

)
, (1− x)2 ≥ 1− 2x, as a result,

1

(1− x)2
− (1− x)2 ≤ 1

1− 2x
− (1− 2x) =

2x

1− 2x
+ 2x ≤ 45

11
x.

Take x = 0.25
√
εt and then we finish the proof.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

G LIMITATIONS

Our results do not yet characterize the accelerated convergence resulting from faster eigenvalue
decay beyond a merely bounded trace. Although AGD and SR1 share the same worst-case
convergence rate, there exist classes of problems where SR1 converges more rapidly. This is also
supported by our experimental findings, where SR1-based methods demonstrate faster convergence
on problems with rapidly decaying Hessian eigenvalues. We hypothesize that this acceleration arises
from the larger eigengap induced by the faster eigenvalue decay. We think this can be proved by
obtaining a faster decay rate of the Hessian approximation’s trace and a more delicate analysis on
the regularized SR1 method that fully utilizes the benign property of self-concordant functions. We
leave this for future work.

H LLM USAGE

In the preparation of this paper, we employed Deepseek (a large language model) solely for the
purpose of refining language expression and correcting grammatical errors in the manuscript. The
LLM was not involved in any aspect of research ideation, data analysis, interpretation of results,
or substantive content generation. All intellectual contributions, including the formulation of
research questions, methodological design, empirical investigation, and critical discussion, originate
exclusively from the human authors. The use of the LLM was strictly limited to enhancing the clarity,
coherence, and grammatical accuracy of the text, and it did not contribute to the scholarly or creative
substance of the work.

40

	Introduction
	Related work
	Preliminaries
	Notation and problem setup
	Methodology

	Spectral analysis for A-Bk
	Motivation and main result
	Proof Sketch of Theorem 1

	Insight towards regularized SR1 method
	A regularized SR1 framework
	Computational complexity
	Convergence analysis
	Application in high-dimensional scenarios

	Experiments
	Discussion
	Notation and Theory Structure
	Postponed Proofs in Section 4
	Preliminaries
	Formal statement and proofs

	Postponed Proofs in Section 5
	Proof of convergence rate for quadratic functions
	Proof of Theorem 2
	Analysis for phase 1
	Analysis for phase 2
	Analysis for phase 3
	Final proof

	Analysis of computational complexity

	Useful Lemmas in Appendix B
	Useful Lemmas in Appendix C.2
	Technical Lemmas
	Limitations
	LLM Usage

