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ABSTRACT

Quasi-Newton methods have recently been shown to demonstrate
dimension-independent convergence rate outperforming vanilla gradient
descent (GD) in modern high-dimensional problems. By examining the spectrum
of the Hessian approximation throughout the iterative process, we analyze a
regularized quasi-Newton algorithm based on the standard randomized symmetric
rank-one (SR1) update. The evolution of the spectrum reveals an implicit bias
introduced by the Hessian learning, which promotes a preferential reduction of
certain eigenvalues. This observation precisely captures the quality of Hessian
approximation. Incorporating the implicit effect of Hessian update, we show that
the regularized randomized SR1 method achieves a convergence rate of Õ

(
d2
eff

k2

)
for standard self-concordant objective functions, where deff is the effective
dimension of Hessian. In specific high-dimensional settings, which are common
in practice, this method preserves convergence speeds comparable to accelerated
gradient descent (AGD) while maintaining similar computational complexity
per iteration. This work highlights the impact of implicit bias and offers a new
theoretical perspective on the efficiency of quasi-Newton methods.

1 INTRODUCTION

We are interested in using quasi-Newton methods to solve the following unconstrained convex
optimization problem:

min
x∈Rd

f(x). (1)

The convergence properties have been widely studied since the 1970s in the asymptotic regime
(Broyden, 1970; BROYDEN et al., 1973; Dennis & More, 1973; Khalfan et al., 1993). Recently,
a series of breakthrough works such as Rodomanov & Nesterov (2022); Jin & Mokhtari (2023)
have obtained explicit non-asymptotic convergence rates for quasi-Newton methods for quadratic
objectives and local problems of general objectives. These initial results have been refined through
further research (Krutikov et al., 2023; Rodomanov, 2024; Jin et al., 2025a;b) and have offered
insights guiding the development of algorithmic design (Liu & Luo, 2022; Jin et al., 2022).

In these analyses, non-asymptotic local convergence after the k-th iteration is given by, for example,(
ed/k lnκ − 1

)k/2
, (dκ/k)

k
, (d log κ/k)

k, where d is the problem dimension and κ the condition
number. This implies that superlinear convergence is achieved when k = Ω̃(d), but no meaningful
rate is guaranteed for k = O(d). The requirement of k = Ω(d) arises because accurate
Hessian approximation across all dimensions is necessary for superlinear convergence in regions
where the Hessian remains stable. Since quasi-Newton methods update the Hessian approximation
with constant-rank strategies, their convergence inherently depends on d. The high dependence
of the convergence rate on the dimension d significantly limits its interpretability in practical
high-dimensional optimization problems, which is a central challenge in modern learning context.

However, quasi-Newton algorithms, served as intermediate methods between gradient descent
methods, which have dimension-independent convergence properties, and Newton’s methods, which
are renowned for their rapid convergence rates, are expected to demonstrate dimension-independent
convergence and also surpass the performance of vanilla gradient descent even in high dimensions.
Empirical studies (Goldfarb et al., 2020; Berahas et al., 2022; Yousefi & Martínez, 2023) also
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(a) a9a, d = 123 (b) w8a, d = 300

Figure 1: Early-stage convergence behavior of regularized SR1 versus GD and AGD methods in
linear regression tasks. Experimental results on a9a and w8a datasets reveal that the regularized SR1
algorithm matches the rapid initial convergence speed of AGD, while outperforming standard GD.

substantiate this performance advantage, demonstrating that quasi-Newton methods and their
variants (such as limited-memory versions) are more efficient than vanilla gradient descent in
high-dimensional problems. Thus, it becomes important to examine the convergence behavior of
quasi-Newton methods through the lens of complexity theory with the following naturally raised
question: how do quasi-Newton methods differentiate from gradient descent in high-dimensional
settings through the lens of complexity theory?

A key factor behind the success of modern machine learning algorithms is implicit bias, which states
that distinct optimization trajectories, despite converging to the same target (e.g. minimizing the
empirical loss), preferentially select certain trajectories over others. This preference can significantly
impact their practical effectiveness (Gunasekar et al., 2017; Arora et al., 2019; Li et al., 2022).
In particular, the condition associated with implicit bias, low effective dimension of Hessian,
is ubiquitous and naturally arises in high-dimensional machine learning problems (Cai & Hall,
2006; Liang & Rakhlin, 2020). This condition has been empirically substantiated (Sagun et al.,
2018; Ghorbani et al., 2019) and serves as a fundamental theoretical assumption (Silin & Fan,
2022). In the context of Hessian approximation, when interpreting the quasi-Newton method as
online learning processes targeting Hessian matrix approximation, while the update rules eventually
achieve full Hessian approximation and guarantee superlinear convergence, they inherently prioritize
specific dimensional approximations before the superlinearly converging phase. This work aims to
characterize such implicit preference and sheds light on how to enhance optimization efficiency in
high-dimensional problems, thereby establishing a theoretically guaranteed convergence rate.

In this study, we build upon the framework of randomized symmetric rank-one (SR1) algorithms
(Davidon, 1991; Lin et al., 2022), a specific quasi-Newton method chosen for its simple update
rule, best local theoretical guarantees, and broad prior study in the recent non-asymptotic
convergence result (Liu & Luo, 2021; Ye et al., 2023; Liu et al., 2024a). Concretely, we first
quantify the implicit bias of Hessian approximation in terms of its trace. Then, utilizing this
implicit preference, we demonstrate that regularization, a widely employed practical and analytical
technique in Newton-type methods (Moré, 1978), enables quasi-Newton algorithms to achieve
improved convergence rates. Finally, we illustrate the empirically observed global effectiveness
of quasi-Newton methods in high-dimensional optimization under a specific setting. This setting is
applicable across a broad spectrum of optimization problems.

Organization. The rest of the paper is organized as follows. Section 2 discusses our work with
related literature. Section 3 provides necessary background for our algorithm to be analyzed. Section
4 presents our main result for Hessian approximation and a proof sketch. Section 5 applies the main
result to regularized SR1 method and rigorously establishes global convergence rates of Õ(1/k2),
as well as its application in high-dimensional optimization. Section 6 gives experiments on our
framework compared with other methods and Section 7 summarizes the paper and points out its
limitation and future direction.
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2 RELATED WORK

Hessian approximation methods. In addition to traditional quasi-Newton updates and its variants,
other approximation techniques involves low-dimensional subspace Newton methods (Gower et al.,
2019; Qu et al., 2016; Doikov et al., 2018; Hanzely et al., 2020; Jiang et al., 2024), and a various
of stochastic QN methods (Bordes et al., 2009; Byrd et al., 2016; Gower et al., 2016). Doikov et al.
(2024) noted the importance of spectral preconditioning and analyzed the influence of Hessian’s
spectrum to regularized QN methods. Our result fully consider the evolution of spectrum but does
not rely on its specific structure.

Cubic regularization methods. Regularized Newtons method stabilizes iterations in singular
curvatures (Li et al., 2004; Burger & Kaltenbacher, 2006), with asymptotic quadratic convergence
proven by Polyak (2009). Adaptive variants, like Nesterovs cubic regularization (Nesterov &
Polyak, 2006) (implicitly adjusting regularization via step size) and gradient norm regularization
(Mishchenko, 2023a; Doikov & Nesterov, 2024), achieve Õ( 1

k2 ) rates under Hessian Lipschitz
conditions. However, these methods require exact Hessians, requiring high computational
complexity. To reduce the computational cost, Benson & Shanno (2018); Ghadimi et al. (2017);
Kamzolov et al. (2023b); Scieur (2024) proposed cubic regularized inexact Newton methods. Some
of them (Kamzolov et al., 2023b; Jiang et al., 2024) also achieved global convergence rate O

(
1
k2

)
,

but they were based on either assumptions on Hessian approximation quality, or Hessian’s low-rank
structure. Note that they still introduced cubic acceleration strategies including solving a non-trivial
sub-problem in each iteration, which are beyond the scope of this paper. Our framework is much
simpler, more general, and easier to implement than theirs.

Quasi-Newton methods. The quasi-Newton method approximates Hessian information via secant
equations, with different forms including DFP (Davidon, 1991), BFGS (Shanno, 1970), and SR1
(Davidon, 1991). Recent work by Rodomanov & Nesterov (2021b) established non-asymptotic
rates for greedy quasi-Newton updates, followed by analyses of classical (Rodomanov & Nesterov,
2022; 2021a; Rodomanov, 2024; Ye et al., 2023; Jin & Mokhtari, 2023) and modified methods (Lin
et al., 2022; Liu et al., 2024b; Liu & Luo, 2021). Among these analyses, the greedy or randomized
SR1 achieves the fastest rate O((1− 1

d )
k(k−1)

2 ) (Lin et al., 2022) but requires O(d) iterations to enter
the convergence phase. These methods have been extended to non-linear equations (Ye et al., 2021;
Liu et al., 2023), saddle-point problems (Xiao et al., 2024; Liu & Luo, 2021), and other settings
(Ranganath et al., 2025; Benson & Shanno, 2018; Du & You, 2024).

3 PRELIMINARIES

3.1 NOTATION AND PROBLEM SETUP

We consider the problem in Euclidean space Rd. Denote λmax(A) = λ1(A) ≥ · · · ≥ λd(A) as the
eigenvalues of a real symmetric matrix A ∈ Rd×d. For any x, y ∈ Rd and function g, if ∇2g(y) ⪰ 0,
we denote ∥x∥y =

√
x⊤∇2g(y)x and g∗ as the minimum of g. Throughout the paper, we will make

assumptions on the objective function f(x) as followed:
Assumption 1 (Bounded level sets). The diameter of the level set at the initial point x0,

L(x0)
def
=
{
x ∈ Rd : f(x) ≤ f(x0)

}
is bounded by a constant D, then ∥x0 − x∗∥2 ≤ D.

Assumption 2 (Gradient Lipschitz). There exist a constant L such that for all x, y ∈ Rd, we have
∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.

Assumption 3 (Self-concordancy). The objective function f ∈ C2(Rd) is convex and there exists a
constant M such that for all x, y ∈ Rd and ∥y − x∥x < 1

M , we have

(1−M∥y − x∥x)
2∇2f(x) ⪯ ∇2f(y) ⪯ 1

(1−M∥y − x∥x)2
∇2f(x). (2)

Assumption 3 is a standard assumption in the convergence of Newton method (Nesterov &
Nemirovskii, 1994; Nesterov, 2018) and the recent non-asymptotic convergence analysis of
quasi-Newton methods (Rodomanov & Nesterov, 2021b; Lin et al., 2022).
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3.2 METHODOLOGY

Randomized SR1 update. The Hessian update in quasi-Newton methods can be viewed as an online
learning process which iteratively refines the approximation to the current Hessian matrix. The
SR1 update can be categorized into different versions. The classical SR1 methods find the Hessian
approximation Bk+1 for the next iteration using the moving direction and the secant equation. The
recent progress on non-asymptomatic analysis originates from other types of SR1 update:

Bk+1 = SR1(A,Bk, sk)
def
= Bk +

(A−Bk)sks
⊤
k (A−Bk)

s⊤k (A−Bk)sk
, (3)

where A ∈ Rd×d is the target Hessian matrix at the current iteration, Bk ∈ Rd×d is the current
Hessian approximation, and sk ∈ Rd is the update direction vector for the rank-one correction,
selected by a greedy or random strategy. Rodomanov & Nesterov (2021b) established the first
superlinear convergence of quasi-Newton method utilizing the greedy update, and was later extended
to randomized update (Lin et al., 2022) and secant equation update (Rodomanov & Nesterov, 2021a).
This paper primarily focuses on the algorithm bias of (3) from randomized update direction. To be
specific, given a distribution µ defined on the real line R that satisfies

Ex∼µ [x] = 0, Ex∼µ

[
x2
]
= 1, Ex∼µ

[
x4
]
= C1 < +∞, (4)

We draw a sample vector uk whose coordinates are independently generated from µ.

Regularized Newton’s method. Regularization techniques, also referred to as the
Levenberg-Marquardt regularization (Moré, 1978), are commonly used to stabilize Newton-type
algorithms. They interpolate between Newton’s method and gradient descent through a damping
factor αk > 0 and perform the update:

xk+1 = xk − (Gk + αkId)
−1 ∇f(xk), (5)

where Gk represents the second order information (typically Hessian matrix (Mishchenko, 2023b)
or its quasi Newton approximation (Kamzolov et al., 2023a)). Large αk biases the method towards
the gradient descent direction, which promotes stability in singular curvature, while small αk permits
fast Newton-type local convergence when the local geometry is well-conditioned. As a consequence,
implementations of regularized Newton’s method progressively reduce αk, leading to a transition
from the unstable global exploration to the local faster convergence.

4 SPECTRAL ANALYSIS FOR A−Bk

4.1 MOTIVATION AND MAIN RESULT

In this section, we start the analyses with the theoretical guarantees of SR1 approximating a positive
semi-definite matrix A ∈ Rd×d. Given an initial matrix B0 ⪯ A, the randomized SR1 updates the
approximation as (3) where sk is randomly sampled from a distribution satisfying (4).

To illustrate the implicit preference of the update rule (3), we first provide a heuristic analysis
through a deterministic analogy of the update (3). While the simplified deterministic analogy lacks
mathematical rigor, it offers valuable insight into the algorithm.

In the deterministic analogy of (3): (1) the denominator s⊤k (A−Bk)sk is replaced by a deterministic
scalar cden, suggested by the concentration of high-dimensional vectors; (2) the rank-one sks

⊤
k is

replaced by its expectation Id. Then, we can write the evolution of A−Bk under the deterministic
update as:

(A−Bk+1) = (A−Bk)−
1

cden
(A−Bk)

2 (6)

Without loss of generality, consider a diagonal A = diag(λ1, λ2, . . . , λd) with λ1 ≥ λ2 ≥ · · · ≥
λd > 0, and initialize B0 = 0. Under these conditions, all iterates in (6) remain diagonal. For each
eigenvalue λi of A, we analyze the evaluation of the corresponding error component [A−Bk]ii by
its continuous-time approximation x(i)(k) evolving as:

dx(i)

dt
= − 1

cden
[x(i)(t)]2, x(i)(0) = λi.

4
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Algorithm 1 Randomized SR1 Update

1: Requires: Initial matrix B0 ∈ Rd×d, 0 ⪯ B0 ⪯ A, distribution D.
2: for k = 0, 1, 2 . . . do
3: Sample a random vector sk ∼ D which satisfies (4).
4: Compute Bk+1 = SR1(A,Bk, sk).
5: end for

The flow admits the closed-form solution x(i)(t) = λi

1+λit/cden
. In fact, this solution exhibits distinct

convergence behaviors depending on the magnitude of the initial eigenvalues:

• For λi ≫ cden/t, the error decreases rapidly as x(i)(t) ≈ cden/t;

• For λi ≪ cden/t, the error remains nearly unchanged: x(i)(t) ≈ λi.

Thus, this demonstrates that the update rule (6) prioritizes components with large initial eigenvalues.

The following theorem, originating from this implicit preference for large eigenvalues, provides
an upper bound on the approximation error in terms of the ℓ2-norm. Minimizing the ℓ2-norm
equivalently imposes a uniform constraint on all eigenvalues of the error matrix, which confirms
the algorithms implicit bias on the spectrum: the SR1 update prioritizes error reduction in large
eigenspaces while having limited impact on small eigenspaces.

Theorem 1. Suppose that 0 ⪯ B0 ⪯ A, Bk is produced by Algorithm 1, then for every r ≥ 3, 0 <
p < 1, there exists K ∈ N∗ satisfying K = O(r(ln r)3 + ln 1

p ), such that with probability at least
1− p, we have

∥A−BK∥2 ≤ Tr(A−B0)

r
. (7)

Theorem 1 shows that, with high probability, ∥A−Bk∥2 = Õ(Tr(A)k−1).

The uniform bound of matrix ℓ2-norm is more challenging in the proof technically, which is
corroborated in the related fields. Previous works on SR1 approximation have primarily focused on
aggregate eigenvalue measurements, such as the trace function (Lin et al., 2022), the log-determinant
barrier function (Ye et al., 2023), and the Frobenius norm (Jin & Mokhtari, 2023).

4.2 PROOF SKETCH OF THEOREM 1

Without loss of generality, in the proof we can set Tr(A−B0) = 1 by normalization. The difficulty
of proving Theorem 1 arises from the uniform bound nature of the ℓ2- norm and the online algorithm
nature of the SR1 update. These lead to one prominent challenge: the uniform spectral bound
∥A−Bk∥2 is not guaranteed to decrease sufficiently in one single iteration, regardless of sk’s
selection. This challenge necessitates an analysis of the decrease at each individual eigenvalue. In
fact, our proof investigates this fine-grained spectral analysis, and moreover, considers two different
phases in the iteration with different decrease patterns.

To illustrate this, Figure 2 shows how the largest 5 eigenvalues of the approximation error matrix
A −Bk evolve empirically over iterations of SR1. This example considers the specific case where
the initial matrix has multiple identical largest eigenvalues, as presented in 2 (a).

In this case, the largest eigenvalue does not decrease during the earlier steps. Besides, the spectrum
distribution exhibits two stages during the iteration:
Stage 1:(2(b), Dispersion) Spectral gap emerges between large eigenvalues - the largest eigenvalue
remains while the subsequent eigenvalues decrease;
Stage 2:(2(c), Normalization) The largest eigenvalue is reduced to achieve the uniform spectral
decay.

This two-stage phenomenon results from that a rank-one update cannot simultaneously reduce
multiple large eigenvalues in the approximation matrix. In fact, this case serves as the worst-case
scenario in our analysis, and our proof also divides into two stages as the empirical results in
Figure 2.

5
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(a) k = 0 (b) k = 6 (c) k = 10

Figure 2: Top 5 Eigenvalues of A−Bk. X-axis: eigenvalue index, Y-axis: eigenvalue magnitude.

First, the following lemma formalizes the different decay rates of eigenvalues in Stage 1.
Lemma 1 (Informal version of Lemma 5). Under the conditions in Theorem 1, the i-th eigenvalue
of the approximation error matrix enjoys a rate of Õ(1/

√
ik) with high probability.

In particular, focusing on the k-th eigenvalue demonstrates that λk(A − Bt) ≤ 1
4k after t = Õ(k)

iterations with high probability. However, this result does not establish the desired Õ(1/k) rate in
Theorem 1. To improve this result, we consider two situations as below:
Situation 1: After Õ(k) iterations, the top k eigenvalues are relatively close in magnitude. In other
words, λ1/λk is bounded and the largest eigenvalue λ1 is thereby bounded.
Situation 2: After Õ(k) iterations, the top k eigenvalues are not uniformly distributed. In other
words, there exist non-negligible gaps among the top k eigenvalues.

Stage 2 exactly characterizes the reduction effect in the second situation: Using several iterations
after stage 1, the SR1 update notably reduces large eigenvalues, while the left, which have already
been reduced a lot, remains nearly the same. This stage inspires us to accelerate the decay rate of
the dominant eigenvalue, based on the existence of gaps among the top eigenvalues. We prove the
following lemma that quantifies the rate in detail:
Lemma 2 (Informal version of Lemma 6). Under the conditions corresponding to Theorem 1, for
any m ≤ s ∈ N∗, 0 < u < 1, r > 0, and under mild conditions, there exists K = Õ( s2r

m2u ), such
that λm(A−BK) will be smaller than max{(1+u)λs(A−B0),

1
r} iterations with high probability.

Note that the conclusion in Lemma 2 can be applied to any starting matrix Bk and corresponding
Bk+K , because the SR1 update is an online learning process, and Bk satisfies tr(A − Bk) ≤
tr(A−B0) ≤ C0 (the condition in Theorem 1), it is only the matter of indices.

In particular, for any r > 0, if m = Θ(s), 1
u = Õ(1) and we have already reduced λs(A −Bk) to

the level of 1
r(1+u) for some k ∈ N∗, then λm(A−Bk+K) ≤ 1

r where K = Õ( ru ) = Õ(r) ·Õ(1) =

Õ(r). Note that using Lemma 1 we need Õ( r2

m2 ) iterations.

Theorem 1 is established by combining Lemma 1 and Lemma 2. First, by Lemma 1, λ⌊r⌋(A −
BK0

) ≤ 1
4r within K0 = Õ(r) iterations with high probability. Then Lemma 2 enables an

induction:
λ⌊r⌋(A−BK0

), λ⌊r/2⌋(A−BK0+K1
), · · · , λ1(A−BK0+K1+···+Kt

)

are all smaller than 1
r with high probability by induction, where t = ⌊log2 r⌋,Ki = Õ(r).

The induction process is as follows. Take u = 1
log2 r , s = ⌊r/2i⌋,m = ⌊r/2i+1⌋ in Lemma 2. Once

λs(A−BK0+···+Ki
) ≤ 1

4r (1+
1

log2 r )
i, then we have λm(A−BK0+···+Ki+1

) ≤ 1
4r (1+

1
log2 r )

i+1

with high probability and ultimately we have λ1 ≤ 1
4r (1 + 1

log2 r )
t ≤ 1

r . The total number of

iterations of this process is
t∑

i=0

Ki = (1 + t)Õ(r) = Õ(r). Then the proof of Theorem 1 is

complete.

The proof of Lemma 1 is based on the observation that if the i-th eigenvalue remains larger than
Õ(1/

√
ik), the trace would decrease at an accelerated rate. The proof of Lemma 2 involves a delicate

6
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Algorithm 2 A General Framework of Regularized SR1 Method

1: Requires: Initial point x0 ∈ Rd, matrix B0 ∈ Rd×d, distribution D, stepsize {rk}, l2
regularizer {ϵk} > 0, Hessian correction term {γk, dk}, subsequence {nk} ⊆ [N ].

2: for k = 0, 1, 2 . . . N do
3: xk+1 = xk − (γkBk + ( 1

rk
+ ϵk)Id)

−1(∇f(xk) + ϵk(xk − x0))
4: Sample a vector sk ∼ D which satisfies (4)
5: Compute Bk+1 = dkSR1(∇2f(xnk

),Bk, sk)
6: end for

construction of rational functions for comparison based on the eigenvalue structure of A−Bk. For
formal lemmas and proof details, see Appendix B.

5 INSIGHT TOWARDS REGULARIZED SR1 METHOD

5.1 A REGULARIZED SR1 FRAMEWORK

We present the general framework of the regularized SR1 method in Algorithm 2. Our goal is to
theoretically analyze its convergence behavior and establish a principled approach for parameter
selection, leveraging the Hessian approximation efficiency results derived in Section 4. Algorithm 2
utilizes the following strategies common in practice:

1. Randomized SR1 and regularized Newton formulas, which forms the algorithm’s basis.

2. l2 regularization ϵk to enhance the stability of the algorithm.

3. Hessian correction term γk, dk to ensure γkdkBk ⪯ ∇2f(xk).

4. Lazy Hessian strategy nk which only uses part of the exact Hessian.

The Hessian correction step aligns with the previous quasi-Newton convergence analyses (Liu &
Luo, 2021; Rodomanov & Nesterov, 2021b). The l2 regularization is a commonly adopted practical
technique in optimization (Loshchilov & Hutter, 2019; Zhang et al., 2019). Note that Jiang &
Mokhtari (2024) used extra gradient similar to l2 regularization in their regularized quasi-Newton
method. Sequence {nk} satisfied either nk = nk−1 or nk = k, which means only changing the
target Hessian in certain steps and thus reducing the Hessian computational cost (Doikov et al.,
2023; Chen et al., 2025). We will show that with proper choice of parameters (could be decided in
advance), Algorithm 2 enjoys an explicit global convergence rate.

5.2 COMPUTATIONAL COMPLEXITY

We briefly discuss the computational complexity of the inverse step (Bk + ckId)
−1

vk. In
quasi-Newton regime, B0 is typically set to be easy to compute its inverse, usually B0 = cId. Since
Bk is constructed via a sequence of rank-one updates, it admits a factorization Bk = cId +UkU

⊤
k ,

where Uk ∈ Rd×k. Applying the Sherman-Morrison-Woodbury formula, the inverse operation is
reduced to inverting a k × k matrix, which costs O(k3), along with matrix-vector multiplications
costing O(kd). Thus, typically, the complexity in the k-th iteration is O(k3 + kd) , aligns with the
previous research. However, as we will see, in our parameters scheme, where ck only change in a
few steps, it is unnecessary to compute the inverse of a k × k matrix in every iteration. We will
show that we can achieve the overall complexity of Õ(k3 + k2d) in the first k iterations instead of
O(k4 + k2d). For details, we refer the readers to Appendix C.3.

5.3 CONVERGENCE ANALYSIS

Let us first consider the quadratic case to get inspiration. That is, f(x) = 1
2x

⊤Ax+b⊤x+c,A ⪰ 0.
The following lemma establishes an elementary one-step descent property of the iterative scheme.

7
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Lemma 3 (Quadratic optimization). Suppose that ∇2f(x) ≡ A. In one step of Algorithm 2, if
0 ⪯ Bk ⪯ A and 0 ≤ rk ≤ 1

∥A−Bk∥2
, then we have

fϵk(xk+1)− f∗
ϵk

≤ 1

(1 + (µ+ ϵk)rk)2
(fϵk(xk)− f∗

ϵk
), (8)

where fϵk(x) = f(x) + ϵk
2 ∥x− x0∥22 and µ = λmin(A).

Given that ∥A−Bk∥2 decreases at a rate of Õ(Tr(A)k−1), a practical choice implied by Lemma
3 is accordingly increase rk ∼ Θ̃(k/Tr(A)). Let x∗ = argmin f . If rk does so and satisfies
the condition in Lemma 3, and ϵk ≡ ϵ > 0, γk ≡ 1, then after k = Ω̃(Tr(A)

1
2 ϵ−

1
2 ) iterations,

fϵ(xk) − f∗
ϵ starts to contract at least in a linear rate of 1 − Ω(ϵ

1
2 Tr(A)−

1
2 ). Hence, on one hand,

for quadratic convex problem, SR1 update leads fϵ to achieve an ϵ approximate minimizer within
Õ(Tr(A)

1
2 ϵ−

1
2 ) iterations. On the other hand, f∗

ϵ −f∗ ≤ fϵ(x
∗)−f∗ = ϵ

2 ∥x
∗∥22. Combining these

two we obtain Õ(Tr(A)k−2) convergence rate. The proof for Lemma 3 and both local and global
convergence for quadratic functions are postponed to Appendix C.1.

Now we shift our focus to general convex self-concordant functions. To clarify our motivation, for
the moment let Tr(∇2f(x)) ≤ 1 by normalizing. We regard Algorithm 2 as an approximation of
optimizing quadratic forms with Hessian ∇2f + ϵkId, where ϵkId is decaying l2 regularized factor.

The key observation is stated as below :

1. If f − f∗ ∼ O(ϵk), the Hessian perturbation will be no more than O(
√
ϵk).

2. If the Hessian’s perturbation is controlled at the level of
√
ϵk, the Hessian approximation

will satisfy ∥∇2f−Bk∥2 ∼ O(
√
ϵk) in at most Õ(ϵ

− 1
2

k )iterations. Then, Lemma 3 implies

f − f∗ ∼ O(ϵk) within at most Õ(ϵ
− 1

2

k ) iterations.

This basically answers the question why regularized QN method could exhibit faster convergence
than vanilla gradient descent and inspires us to gradually decrease ϵk at a moderate linear rate to
maintain these two conditions in practical algorithm designs.

Guided by this observation, we can design an easy-to-practice parameter scheme and prove a global
convergence rate of Õ(d2effL

2M2D4/k2), where deff =
supTr(∇2f(x))
sup ∥∇2f(x)∥2

.

Theorem 2 (General convex optimization). Under Assumption 1, 2, 3, there exists an explicit
choice of parameters in Algorithm 2 such that for every ε > 0, we only need at most
Õ
(
deffL(M + 1)D2(M + ε−

1
2 )
)

iterations in Algorithm 2 to obtain a solution z such that

f(z)− f∗ ≤ ε with high probability.

For details on how to choose parameters, we refer readers to Appendix C.2.4. The proof of Theorem
2 is postponed to Appendix C.2.

5.4 APPLICATION IN HIGH-DIMENSIONAL SCENARIOS

It is supported by both theoretical and empirical evidence that in many high-dimensional
optimization problems, the maximal Hessian’s trace T is guaranteed to be small, such as general
kernels (Terras, 1999; Gu & Gu, 2013; Zhang et al., 2015; Blanchard & Mücke, 2018), random
feature model (Rahimi & Recht, 2007; Bach, 2017), neural tangent kernel (Bietti & Bach, 2021; Hu
et al., 2021). In this situation, under Assumption 1, 3, Algorithm 2 can achieve a global convergence
rate of Õ(1/k2) where the constant does not explicitly depend on d.

A concrete example is the fundamental problem of empirical risk minimization problem over a
generalized linear model, with the objective f(x) = 1

n

∑n
i=1 fi(a

⊤
i x). Conventional assumptions

assumes that for each i ∈ {1, 2, · · · , n}, the data ai is normalized to ∥ai∥2 ≤ R2 (results from the
common data normalization processing) and fi ∈ C2 is convex and L0-smooth. Thus the Hessian
trace of f is bounded by

tr
(
∇2f(x)

)
=

1

n

n∑
i=1

f ′′
i (a

⊤
i x)tr(aia

⊤
i ) ≤

n∑
i=1

L0

n
∥ai∥2 ≤ L0R

2.
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(a) a9a, ρ = 0.3, c = 0.1. (b) a9a, ρ = 0.9, c = 0.01. (c) w8a, ρ = 0.3, c = 0.1. (d) w8a,ρ = 0.9, c = 0.01.

Figure 3: Iteration numbers vs. f(x)− f(x∗).

In low-precise regime, when k ≪ d, the computational complexity of inverse step simplifies to
O(k2d). The gradient computation itself usually reaches O(kd2) (quadratic case) or O(knd) where
n is the number of samples. Therefore, the efficiency of regularized SR1 method is comparable to
AGD in high-dimensional problems with bounded Hessian traces.

6 EXPERIMENTS

In this section, we present illustrations on the efficiency of the SR1 methods in the regime before
superlinear convergence in the logistic regression tasks formulated by

min
x∈Rd

f(x) =
1

n

n∑
i=1

log
(
1 + exp(−bia

⊤
i x)

)
,

where d = 300, n = 49749 for w8a dataset and d = 123, n = 32561 for a9a dataset. We
conduct experiments on our regularized SR1 algorithm with randomized update (RSR1) and the
secant equation update (SSR1), gradient descent (GD), accelerated gradient descent (AGD) and
three classical quasi-newton methods (CSR1, CBFGS, CDFP, where ‘C’ refers to ‘classical’).

For data preprocessing, we normalize the feature vectors to improve the condition number of
the optimization problem. For GD and AGD, our parameters are selected through grid search.
Specifically, learning rates are chosen from the set {k × 10t : k = 1, 2, 5, t = −2,−1, 0, 1}, and
momentum coefficients are selected from {0.9, 0.95, 0.99, 0.999}. For three classical quasi-newton
methods, the learning rates are selected by exact line search. For Algorithm 2, our parameters
are set as described in the phase 3 of Table 1 regarding L = 1, where ε0 = 1, S0 = 0,
εt = ρtε0, St+1 − St = c/

√
εt, αt = 1, βt = (1 −

√
εt)

2, ηt = 1
4
√
εt

and c, ρ are tuning
hyper-parameters listed above. All experiments are repeated multiple times to ensure the stability of
Algorithm 2. To plot f(x)−f(x∗) as the vertical axis, we approximate f(x∗) by the loss at iteration
500 of the best-performing algorithm.

We run simulations with 100 iterations, which is fewer than the problem dimension; as a result, the
SR1 method does not enter the superlinear convergence regime. The results in Figure 3 demonstrate
the following several implications: (1) SR1 methods consistently outperform vanilla gradient
descent, confirming the effectiveness of Hessian approximation preconditioning even outside the
superlinear convergence regime; (2) the SR1 method achieves convergence rates comparable to or
better than AGD, supporting our worst-case guarantee of Õ

(
1
k2

)
.

7 DISCUSSION

This paper elucidates the mechanism underlying the global convergence of quasi-Newton (QN)
methods in high-dimensional settings. By characterizing the algorithmic bias in the spectral
evolution during Hessian approximation, we establish a favorable approximation quality under
randomized SR1 updates. Besides our proposed framework, we believe that the implicit bias
viewpoint could be taken into consideration in many other Hessian approximation methods, improve
local superlinear convergence rate by diminishing the dependence on the dimension and be applied
to a various of inexact Newton methods combining with other techniques such as cubic and
acceleration.
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Appendix
A NOTATION AND THEORY STRUCTURE

First, we provide the necessary notation that appears in the Appendix. Denote λmax(A) = λ1(A) ≥
· · · ≥ λd(A) as the eigenvalues of a real symmetric matrix A ∈ Rd×d. For a positive definite matrix
A, we can endow Rd with conjugate Euclidean norms:

∥x∥A
def
=

√
x⊤Ax, ∥x∥∗A

def
=

√
x⊤A−1x, x ∈ Rd.

The corresponding matrix norm for a matrix H is

∥H∥A
def
= max

x ̸=0

∥Hx∥A
∥x∥A

=
∥∥∥A 1

2HA− 1
2

∥∥∥
2
.

Throughout the paper, x0 is the initial point when optimizing (1). For any convex function g,
provided that there is no ambiguity with the reference function g, we denote x∗ as any minimizer of
g, g∗ = g(x∗) and for any εt > 0, denote gεt(x) = g(x) + εt

2 ∥x − x0∥22, which is strong convex
and has unique minimizer x∗

εt with gεt(x
∗
εt) = g∗εt . Moreover, for any x, y ∈ Rd, εt ∈ R, we denote

∥x∥y =
√

x⊤∇2g(y)x, ∥x∥εty =
√
x⊤∇2gεt(y)x.

In the Appendix, g could be the objective f or its scaling af . If f satisfies Assumption 2, 3, then we
know that sup ∥∇2f(x)∥2 ≤ L and we denote deff = sup (∇2f(x))/L. Denote C as the absolute
constant of the O(·) term of Theorem 1.

Next, we present the structure of proofs and lemmas that appear in the main body of the paper. Figure
4 shows the relations between main theorems and key lemmas. An arrow from block A to B means
that the proof of B needs A. Some technical lemmas that are not essential are not listed in figure 4.
Theorem 6 is the detailed version of the key part of Theorem 2. Theorem 4 is the formal version of
1. Lemma 5 and Lemma 6 are the formal versions of Lemma 1 and Lemma 2, respectively.

Theorem 6 Theorem 5

Lemma 3
Theorem 4

Lemma 6 Lemma 5

Lemma 9,
10, 11, 12

Lemma 8

Lemma
23,24

Lemma 7

Lemma
16, 19

Lemma
15, 18

Figure 4: Relations between the main results in Appendix.

B POSTPONED PROOFS IN SECTION 4

B.1 PRELIMINARIES

Before proving the Hessian approximation results in Section 4, we present some preliminary results
about the basic properties of SR1 update (Lemma 4) and a relaxation to our assumption (Theorem 3)
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Lemma 4 states a basic property of the SR1 update. The matrix approximations A − Bk exhibit
monotonically decreasing eigenvalues. Given Weyls inequality (Lemma 21), {λi(A − Bk)}k
monotonically decreases with respect to k, for all 1 ≤ i ≤ d.
Lemma 4 (Monotonically decreasing matrices). If A ⪰ B ⪰ 0, then for any u ∈ Rd such that
u⊤(A−B)u ̸= 0, we have

B ⪯ SR1(A,B,u) ⪯ A.

Proof of Lemma 4. For any v ∈ Rd, since A−B ⪰ 0, we have

v⊤SR1(A,B,u)v = v⊤Bv +
(v⊤(A−B)u)2

u⊤(A−B)u
≥ v⊤Bv.

On the other hand, by the Cauchy-Schwartz inequality, we have

v⊤(A−B)v · u⊤(A−B)u ≥ (v⊤(A−B)u)2.

Hence,

v⊤SR1(A,B,u)v ≤ v⊤Bv +
(u⊤(A−B)u)

u⊤(A−B)u
· v⊤(A−B)v ≤ v⊤Av.

The claimed result then follows from the above inequalities.

Theorem 3 below could be used to give a stronger version of Theorem 2: If a constant number of
eigenvalues are large while the sum of the rest is bounded, then the trace decreases to a constant
level within Õ(1) iterations.
Theorem 3. Suppose that B0, Bk is produced by Algorithm 1, then for every k ∈ N∗ and 0 < p < 1,

if
d∑

i=k+1

λi(A) ≤ Tk, then there exists K1 = O
(
k ln

(
trA
Tk

)
+ ln 1

p

)
, such that with probability at

least 1− p, we have
tr(A−BK1

) ≤ 2Tk.

Proof of Theorem 3. Denote Rt = A−Bt and tr(Rt) = bt for simplicity. Let Tk =
d∑

i=k+1

λi(R0).

Define

β
(j)
t =

j∑
i=1

λi(Rt)

bt
, 1 ≤ j ≤ d.

We only need to condition on the process when β
(k)
t ≥ 1

2 , 0 ≤ t ≤ K. Otherwise, for some t, we

have bt ≤ 2
d∑

i=k+1

λi(Rt) ≤ 2
d∑

i=k+1

λi(R0), then the proof is finished. Let

At
def
=

{
tr(Rt+1) ≤ tr(Rt)− C3

tr(R2
t )

tr(Rt)

}
, 0 ≤ t ≤ K.

By Lemma 7 we have P(At) ≥ C4. By Cauchy-Schwartz inequality, we have

tr(R2
t ) ≥

1

k

(
k∑

i=1

λi(Rt)

)2

=
(β

(k)
t )2b2t
k

≥ b2t
4k

.

Therefore, if At is true, then

bt+1 ≤ bt −
C3

4k
bt.

Choose K = ⌈ 8
C4

max

{
k ln

b0
Tk

C3
, ln 1

p

}
⌉. Note that {bt} does not increase and if

| {0 ≤ t ≤ K : At is true} | ≥ C4K

2
≥

4k ln b0
Tk

C3
,
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(here |A| means the cardinality of a set A) then

bK ≤ b0

(
1− C3

4k

) 4k
C3

ln b0Tk

≤ Tk.

This implies tr(RK) ≤ Tk. Lemma 18 yields that

P
(
| {0 ≤ t ≤ K : At is true} | ≤ C4K

2

)
≤ e−

C4K
8 ≤ p.

Hence, with probability at least 1− p, we have tr(A−BK) ≤ 2Tk.

Since the relationship between A and Bk is invariant under simultaneous scaling by a constant
factor. We set tr(A − B0) ≤ 1 without loss of generality in the remaining proof of Appendix B.
Then the claimed upper bound in Theorem 4 can be obtained by rescaling a factor tr(A−B0).

B.2 FORMAL STATEMENT AND PROOFS

Below, we present the deferred proofs of Lemma 1 and Lemma 2. We begin by formally stating
Lemma 1.
Lemma 5 (Formal version of Lemma 1). Suppose that tr(A−B0) ≤ 1, then for every 1 ≤ k ≤ d,

m > 0, 0 < p < 1, there exists K = O
(
m lnm+ ln 1

p

)
∈ N such that with probability at least

1− p, λk(A−BK) ≤ 1√
km

.

Proof of Lemma 5. Denote Rt = A−Bt and tr(Rt) = bt for simplicity. Define

β
(j)
t =

j∑
i=1

λi(Rt)

bt
, 1 ≤ j ≤ d.

Since bt ≤ 1, we only need to condition on the process when β
(k)
t ≥

√
k
m , 0 ≤ t ≤ K. Otherwise,

for some t, we have λk(Rt) ≤ 1
k btβ

(k)
t ≤ 1√

km
, then the proof is finished. Let

At
def
=

{
tr(Rt+1) ≤ tr(Rt)− C3

tr(R2
t )

tr(Rt)

}
, 0 ≤ t ≤ K.

By Lemma 7 we have P(At) ≥ C4. By Cauchy-Schwartz inequality, we have

tr(R2
t ) ≥

1

k

(
k∑

i=1

λi(Rt)

)2

=
(β

(k)
t )2b2t
k

≥ b2t
m
.

Therefore, if At is true, then

bt+1 ≤ bt −
C3

m
bt.

Choose K = ⌈ 8
C4

max
{

m lnm
4C3

, ln 1
p

}
⌉. Note that {bt} does not increase and if

| {0 ≤ t ≤ K : At is true} | ≥ C4K

2
≥ m lnm

C3
,

then

bK ≤ b0

(
1− C3

m

) m
C3

lnm

≤ 1

m
.

This implies λk(RK) ≤ 1
km ≤ 1√

km
. Lemma 18 yields that

P
(
| {0 ≤ t ≤ K : At is true} | ≤ C4K

2

)
≤ e−

C4K
8 ≤ p.

Hence, with probability at least 1− p, we have λk(A−BK) ≤ 1√
km

.
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In the following, we formally state Lemma 2, which proves the improved decay rate of the
eigenvalues based on the eigengaps.
Lemma 6 (Formal version of Lemma 2). Suppose that tr(A−B0) ≤ 1, for any 1 ≤ m < s < d, if

λm(A−B0) ≤ 1
s+1 , then for every r > 0, p, u ∈ (0, 1), there exists K = O

(
s2r
um2 ln

s
u + ln 1

p

)
∈

N such that with probability at least 1− p, one of the following statements must hold:

λm(A−BK) ≤ 1

r
, (9)

∃1 ≤ i ≤ K,λm(A−Bi) ≤ (1 + u)λs+1(A−Bi). (10)

Proof of Lemma 6. We only need to condition on the process that satisfies for all 1 ≤ k ≤ K,
λm(A − Bk) > (1 + u)λs+1(A − Bk), otherwise (10) holds, and we finish the proof. Then by
Lemma 8, there exist constant C5, C6 > 0 such that for each 1 ≤ k ≤ K, with probability at least
C5, we have

tr(A−Bk+1)s ≤ tr(A−Bk)s −
umC6

s2 ln s
u

(tr(A−Bk)s)
2
, (11)

where tr(H)s means the sum of the top s eigenvalues of H.

Choose K = ⌈ 8
C5

max
{

s2r
4um2C6

ln s
u , ln

1
p

}
⌉ and let

Bk
def
=

{
tr(A−Bk+1)s ≤ tr(A−Bk)s −

umC6

s2 ln s
u

(tr(A−Bk)s)
2

}
, 1 ≤ k ≤ K.

Lemma 18 yields that

P
(
| {0 ≤ t ≤ K : At is true} | ≤ C5K

2

)
≤ e−

C5K
8 ≤ p.

Hence, with probability at least 1− p, we have

| {0 ≤ t ≤ K : Bt is true} | ≥ C5K

2
≥ s2r

um2C6
ln

s

u
.

Note that tr(A−Bk)s does not increase, as a result of Lemma 15, we have

λm(A−BK) ≤ 1

m
tr(A−BK)s ≤

1

m
· 1

C5K
2

umC6

s2 ln s
u

≤ 1

m
· m
r

≤ 1

r
.

By leveraging Lemma 5 and Lemma 6, we can complete the proof of Theorem 1. Concretely , we
prove the following generalized version of Theorem 1.
Theorem 4 (General version of Theorem 1). Suppose that 0 ⪯ B0 ⪯ A, Bk is produced by
Algorithm 1, then for every δ, p, u ∈ (0, 1), r ≥ 3, there exists K ∈ N satisfying

K = O
(

1

δu
(1 + u)

4
δ r1+δ ln

r

u
+ ln

1

δp

)
,

such that with probability at least 1− p, we have

∥A−BK∥2 ≤ tr(A−B0)

r
. (12)

Specifically, choose δ = u = 1
ln r , then K = O

(
r (ln r)

3
+ ln 1

p

)
.

Proof of Theorem 4. First, let us assume C0 = 1. We use Lemma 5 to give an initial bound. Let L1

be the constant term in Lemma 5. Set m → L1

(
4(1 + u)

4
δ r1+δ ln r

u + ln 3r
p

)
in Lemma 5. Then

for each 1 ≤ k ≤ r, with probability at least 1− p
2r , we have

λk(A−Bm) ≤ 1

2(1 + u)
2
δ

√
kr1+δ

. (13)
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Thus, with probability at least 1 − p
2r , (13) holds for all 1 ≤ k ≤ r. Denote t = ⌈ δ

2⌉, for all
1 ≤ i ≤ t, i ∈ N, define

ri
def
= (1 + u)t+1−ir, si

def
= ⌈r1−

(1+i)δ
2 ⌉,mi

def
= si+1, Qi

def
=

s2i ri
um2

i

ln
si
u

+ ln
2t

p
.

We consider the following non-negative integer-valued random variables:

K0 = m,Ki
def
= min

{
k ∈ N, k ≥ Ki−1 : λmi

(A−BKi
) ≤ 1

ri+1

}
, 1 ≤ i ≤ t.

We claim that there exists a constant C7, such that conditioned on (13), for each 1 ≤ i ≤ t, with
probability at least 1− p

2t , we have Ki −Ki−1 ≤ C7Qi. The proof of this claim is as follows.

1. Step 1: First, Let’s check that λmi
(A−BKi−1

) ≤ 1
1+si

. Since Ki−1 ≥ m, we have

λmi(A−BKi−1) ≤ λmi(A−Bm) ≤ 1

2
√

mir1+δ
.

It suffices to prove that
2
√
mir1+δ ≥ 1 + si.

Taking the value of mi, si into the above inequality, we only need to prove

2r1−
i
4 δ ≥ 1 + 1 + r1−

i+1
2 δ.

It holds since i
4 ≤ 1+i

2 for all i ∈ N.

2. Step 2: Utilize Lemma 6 to prove our claim. Let C7 be the constant term in Lemma 6. Set

K → C7Qi, r → ri, s → si,m → mi, p → p

2t
in Lemma 6. Then with probability at least 1− p

2t , we have either

λmi
(A−BKi−1+K) ≤ 1

ri
≤ 1

ri+1
,

or

∃1 ≤ i ≤ K,λmi(A−BKi−1+i) ≤ (1 + u)λsi+1(A−BKi−1+i) ≤
1 + u

ri
=

1

ri+1
.

In both cases, we have λmi
(A−BKi−1+K) ≤ 1

ri+1
. Therefore, Ki ≤ Ki−1 +K and this

leads to our claim.

From our claim we know that with probability at least 1− p
2 −

t∑
i=1

p
2t = 1− p, we have

Kt ≤ K0 + C7

t∑
i=1

Qi ≤ K0 + tC7 max
1≤i≤t

{
s2i ri
um2

i

ln
si
u

+ ln
2t

p

}
≤ K0 + tC7

(
⌈rδ⌉r
u

ln
r

u
+ ln

2t

p

)
≤ K0 + C7⌈

2

δ
⌉
(
⌈r1+δ⌉

u
ln

r

u
+ ln

2 + δ

δp

)
Choose C = max {L1, C7} and then we finish the proof when C0 = 1. For general cases, by
rescaling then the proof is complete.

Corollary 1. Denote Tk =
d∑

i=k+1

λi(A − B0). Suppose that 0 ⪯ B0 ⪯ A, Bk is produced by

Algorithm 1, then for every p ∈ (0, 1), r ≥ 3, 0 ≤ k ≤ d, there exists K ∈ N satisfying

K = O
(
k ln

T0

Tk
+ r (ln r)

3
+ ln

1

p

)
,

such that with probability at least 1− p, we have

∥A−BK∥2 ≤ Tk

r
. (14)
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Proof. By Theorem 3, after K1 = O
(
k ln T0

Tk
+ ln 2

p

)
iterations, we have tr(A − BK1

) ≤ 2Tk

with probability at least 1 − p
2 . Restart from K1, by Theorem 4, after K2 = O

(
r (ln r)

3
+ ln 2

p

)
iterations, we have ∥A − BK1+K2

∥2 ≤ tr(A−BK1
)

2r ≤ Tk

r with probability at least 1 − p
2 . Then

taking K = K1 +K2 finishes the proof.

C POSTPONED PROOFS IN SECTION 5

C.1 PROOF OF CONVERGENCE RATE FOR QUADRATIC FUNCTIONS

Proof of Lemma 3. First consider the case when ϵk = 0. Since f is quadratic, we have

f(x) =
1

2
(x− x∗)⊤A(x− x∗) + c0,∇f(x) = A(x− x∗).

Hence, xk+1 − x∗ = xk − x∗ − (Bk +
1
rk
Id)

−1A(xk − x∗), and take norm on both sides we have

∥xk+1 − x∗∥A ≤

∥∥∥∥∥Id −
(
Bk +

1

rk
Id

)−1

A

∥∥∥∥∥
A

∥xk − x∗∥A

=

∥∥∥∥∥Id −A
1
2

(
Bk +

1

rk
Id

)−1

A
1
2

∥∥∥∥∥
2

∥xk − x∗∥A.

Since 1
rk

≥ ∥A−Bk∥2, we have Bk + 1
rk
Id ⪰ A. As a result, A

1
2 (Bk + 1

rk
Id)

−1A
1
2 ⪯ Id. This

indicates that∥∥∥∥Id −A
1
2 (Bk +

1

rk
Id)

−1A
1
2

∥∥∥∥
2

= λmax

(
Id −A

1
2 (Bk +

1

rk
Id)

−1A
1
2

)
= 1− λmin

(
A

1
2 (Bk +

1

rk
Id)

−1A
1
2

)
= 1− λ−1

max

(
A− 1

2 (Bk +
1

rk
Id)A

− 1
2

)
≤ 1− λ−1

max

(
A− 1

2 (A+
1

rk
Id)A

− 1
2

)
=

1

1 + µrk
.

The inequality above follows from the fact that Bk ⪯ A. Note that f(x)− f∗ = 1
2∥x− x∗∥2A, then

the proof is complete for ϵk = 0. For any ϵk > 0, this iteration can be seen as one step for quadratic
fϵk with its Hessian A+ ϵkId and Hessian approximation Bk + ϵkId. It can be proved similarly as
above.

Theorem 5. Suppose that the update in Algorithm 2 has an initial approximation matrix B0 such
that 0 ⪯ B0 ⪯ A and tr(A − B0) ≤ T0. Then for every 1

4T0
> ε > 0, there exists absolute

constants C > 0, k0 = Õ(T
− 1

2
0 ε−

1
2 ), such that if we set

ϵk = T0ε,
1

T0rk
=

1 k ≤ 8C
(
1 + ln C

p

)
,

8C(ln k)3

k k > 8C
(
1 + ln C

p

)
,

with probability at least 1− p, for all k ≥ k0, we have

fT0ε(xk+1)− f∗
T0ε ≤ (1−

√
T0ε)

2(k−k0)(fT0ε(x0)− f∗
T0ε). (15)

And for k = 2k0, we also have
f(x2k0)− f(x∗) ≤ εT0D

2. (16)
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Proof of Theorem 5. First suppose that T0 = 1. From Theorem 1 we know that there exists a
constant C ≥ 3 such that for every r > 0,

∥∥∥A−B⌊Cr(ln r)3+C ln k2

p ⌋

∥∥∥
2
≤ 1

r with probability

at most 1 − p
k2 . A straightforward calculation shows that k > C ln k2

p when k ≥ 8C
(
1 + ln C

p

)
.

Hence, if k ≥ 8C
(
1 + ln C

p

)
, then there exists a unique r > 1 such that C

(
r (ln r)

3
+ ln k2

p

)
= k.

From Theorem 1 we have with probability at least 1− p
k2 , ∥A−Bk∥2 ≤ 1

r . Now we evaluate r in
the form of k. Since r ≤ k, we have r(ln k)3 + ln k2

p ≥ k
C . This means that

r ≥
k
C − 2 ln k − ln 1

p

(ln k)3
.

By k ≥ 8C
(
1 + ln C

p

)
and performing a basic calculation we can see that

k

C
− 2 ln k − ln

1

p
≥ k

8C
.

Therefore, with probability at least 1 −
k0∑
k≥2

p
k2 ≥ 1 − p, we have for all k ≥ 8C

(
1 + ln C

p

)
,

∥A−Bk∥2 ≤ 8C(ln k)3

k , which implies rk ≤ 1
∥A−Bk∥2

. Then Lemma 3 tells us that

∥xk+1 − x∗
ε∥A+εId

≤ 1

1 + εrk
∥xk − x∗

ε∥A+εId
, ∀k ≥ 8C

(
1 + ln

C

p

)
. (17)

Note that tr(A−B0) ≤ 1, so A−B0 ⪯ Id, so for k such that rk = 1, we have Bk +( 1
rk

+ ε)Id ⪰
A+ εId and rk ≤ 1

∥A−Bk∥2
. Using Lemma 3 again we have

∥xk+1 − x∗
ε∥A+εId

≤ ∥xk − x∗
ε∥A+εId

, ∀k ≤ 8C

(
1 + ln

C

p

)
. (18)

Combining (17), (18), and fε(xk)− f∗
ε = 1

2∥xk − x∗
ε∥

2
A+εId

, recursively, we have

fε(xk+1)− f∗
ε ≤

k∏
t=t0

(1 + rtε)
−2(fε(x0)− f∗), t0 = ⌈8C

(
1 + ln

C

p

)
⌉. (19)

Note that if t = Ω̃(ε−
1
2 ), rt = Ω(ε−

1
2 ). As a result, (19) leads to (15) directly.

For general T0, consider the function g(x) = f(x)/T0. Then Algorithm 2 is equivalent to

xk+1 = xk −
(
T0Bk + T0

(
1

T0rk
+ ε

)
Id

)−1

(T0∇g + T0ε(xk − x0)).

Hence, using the above result to g and notice that gε = fT0ε/T0, we know that (17), (18) still hold.
Thereafter, we have

fT0ε(xk+1)− f∗
T0ε ≤

k∏
t=t0

(1 + T0rtε)
−2(fT0ε(x0)− f∗). (20)

If t = Ω̃(T
− 1

2
0 ε−

1
2 ), then T0rtε = Ω(T

1
2
0 ε

1
2 ). As a result, (20) leads to (15) directly.

Choose k0 = Θ̃(T
− 1

2
0 ε−

1
2 ) such that k0 ≥ 1

2
√
T0ε

ln
fT0ε(x0)−f∗

T0ε

εTD2 , then (15) implies that

fT0ε(x2k0
)− f∗

T0ε
≤ εT0D

2

2 . Hence,

f(x2k0
)− f∗ ≤ fT0ε(x2k0

)− f∗
T0ε +

εT0∥x∗ − x0∥2

2
≤ εT0D

2.

Then the proof is complete, showing that the convergence rate is Õ(T0D
2/k2).
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Algorithm 3 Phase 1 of Algorithm 2

1: Requires: Initial point x0 ∈ Rd, stepsize 1
L , l2 regularizer ϵ0 > 0.

2: for k = 0, 1, 2 . . . S1 − 1 do
3: xk+1 = xk − 1

L+ϵ0
(∇f(xk) + ϵk(xk − x0))

4: end for

From Lemma 3, we can also derive a superlinear convergence rate for µ strong convex quadratic
functions as stated in the following corollary.
Corollary 2. Suppose that the choice of parameters in Algorithm 2 is the same as in Theorem 5
except for ϵk. If A ⪰ µId and we choose ϵk = 0, then for all k ≥ t0 = ⌈8C

(
1 + ln C

p

)
⌉, we have

f(xk+1)− f∗ ≤
k∏

t=t0

(
1 +

kµ

8CT0(ln k)3

)−2

(f(x0)− f∗) (21)

with probability at least 1− p.

C.2 PROOF OF THEOREM 2

It may be confusing if we directly state how to choose the parameters. Therefore, We will first break
down the process of Algorithm 2 into 3 phases, add requirement on the parameters in each phase step
by step, give convergence analysis respectively and at last combine the result in different phases.

In Algorithm 2, we require {nk} to satisfy either nk = nk−1 or nk = k. This induces another
sub-sequence {St} ⊂ [N ], where St is the t-th integer such that nSt

= St. Hence, for k ∈
[St, St+1), we have nk = St.

Divide the algorithm into 3 phases:

• Phase 1: (Gradient descent) k ∈ [0, S1);
• Phase 2: (Hessian approximation) k ∈ [S1, S2);
• Phase 3: (Quasi-Newton iteration) k ∈ [S2, N ].

The first and second phases are for preprocessing. They aim to give a rough estimation for the
minimizer of fε0(x) and the Hessian ∇2f(x∗

ε0), which only cost a constant number of iterations. The
last phase is the key step, exhibiting Õ(1/k2) convergence rate under proper choice of parameters
and preprocessing.

C.2.1 ANALYSIS FOR PHASE 1

Parameter requirement for phase 1: For k ∈ [0, S1), set nk = γk = dk = 0, ϵk = ε0, rk = 1
L .

Algorithm 3 shows the first phase of Algorithm 2 under the above requirement. It is actually
minimizing a ε0 strong convex function fε0(x) = f(x) + ε0

2 ∥x − x0∥22. As a consequence, it
exhibits a linear convergence rate.
Proposition 1. Under Assumption 1, 2, in Algorithm 3 we have

∥xS1
− x∗

ε0∥2 ≤ 2e−
ε0S1

L+2ε0 D. (22)

Proof. Let g(x) = f(x) + ε0
2 ∥x− x0∥22. Then phase one is equivalent to iterating as

xk+1 = xk − 1

Lg
∇g(xk),

where Lg = L+ ε0 ≥ sup ∥∇2g(x)∥2. It is well-known that for a m strong convex function which
is L1 gradient Lipschitz, if the stepsize α ∈ (0, 2

m+L1
), then we have

∥xk − x∗∥22 ≤
(
1− α

2mL1

m+ L1

)k

∥x0 − x∗∥22.
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Algorithm 4 Phase 2 of Algorithm 2

1: Requires: Initial point xS1 ∈ Rd, matrix BS1 ∈ Rd×d, distribution D.
2: for k = S1, S1 + 1, . . . S2 − 1 do
3: xk+1 = xk

4: Sample a vector sk ∼ D which satisfies (4)
5: Compute Bk+1 = SR1(∇2f(xk),Bk, sk)
6: end for

In our case, m = ε0, L1 = Lg, α = 1
Lg

. Hence,

∥xk − x∗∥2 ≤
(
1− 2ε0

ε0 + Lg

)k/2

∥x0 − x∗∥2 ≤ e−
kε0

L+2ε0 D.

Then the proof is complete.

Proposition 1 will help to satisfy the condition 2 in Theorem 6.

C.2.2 ANALYSIS FOR PHASE 2

Parameter requirement for phase 2: For k ∈ [S1, S2), set nk = S1, ϵk = rk = 0, γk = dk = 1.

Algorithm 4 shows the second phase of Algorithm 2 under the above requirement. It is simply
doing Hessian approximation to ∇2f(xS2

). Applying Theorem 1 we could evaluate the Hessian
approximation quality, which will help to verify the condition 2 in Theorem 6.
Proposition 2. Under Assumption 2, in Algorithm 4, if 0 ⪯ BS1

⪯ ∇2f(xS1
), then there exists an

absolute constant C, for every r > 3, 1 > p > 0 such that S2 − S1 ≥ C
(
r(ln r)3 + ln 1

p

)
, with

probability at least 1− p, we have

∥BS2 −∇2f(xS2)∥2 ≤ deffL

r
(23)

Proof. Let A = ∇2f(xS1
) and B0 refers to BS1

in Theorem 1 and apply this theorem we directly
finish the result.

C.2.3 ANALYSIS FOR PHASE 3

Let Nt = St+1 − St. We begin to consider the last phase, the most important one, in which ϵk is
relatively small (ϵk = O(1/M2D2)). We come up with the first requirement as follows:

Parameter requirement for phase 3: For all t ≥ 2 and k ∈ [St, St+1), there exist ηt, εt, αt, βt

such that 1
rk

= L
(

1
ηtαt

+ εt(1−αt)
αt

)
, ϵk = Lεt, and γk = α−1

t , dk = 1 for k ∈ [St, St+1 − 1),

γk = α−1
t , dk = (1 − βt)

2 for k = St+1 − 1. The specific values of ηt, εt, αt, βt should satisfy
conditions in Theorem 6.

From the above requirement, it can be checked that phase 3 are in the form of Algorithm 5. Note
that we write in the form of double loop. However, this is just for the convenience of proof. Our
proposed Algorithm 2 does not need it. The following theorem provides suitable conditions for
parameters in phase 3 and its convergence result.
Theorem 6. Under Assumption 1, 2, 3, suppose that in Algorithm 5, the following conditions are
satisfied:

1. For the initial point and Hessian approximation, we have

ε2 ≤ 1

121M2D2L
, BS2

⪯ ∇2f(xS2
);

∥∥xS2
− x∗

Lε2

∥∥Lε2

x∗
Lε2

≤ D
√
Lε2

33
√
2

,
∥∥BS2

−∇2f(xS2
)
∥∥
2
≤ 2Lmin{MD

√
L,

1

MD
√
L
}
√
ε2.
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Algorithm 5 Phase 3 of Algorithm 2

1: Requires:
Initial point xS2 ∈ Rd, {εt} > 0, initial matrix BS2 ∈ Rd×d, correction parameters {βt}
Distribution D, stepsize {ηt}, factor {αt}.

2: for t = 2, 3, . . . do
3: for k = 0, 1, . . . , Nt − 1 do
4: xk+1+St

= xk+St
− αt(Bk+St

+ ( L
ηt

+ Lεt)Id)
−1∇fLεt(xk+St

)

5: Sample sk+St ∼ D which satisfies (4)
6: Update: Bk+St+1 = SR1(∇2f(xSt),Bk+St , sk+St)
7: end for
8: Correct Hessian approximation: BSt+1

= (1− βt)
2BSt+1

9: end for

2. Denote c∗ = 1
4096 , for parameters, we have for all t ≥ 2,

εt =

(
1

1 + c∗

)t−2

ε2, αt =

(
1− 3MD

√
2Lεt

32

)2

;

βt =
MD

√
Lεt

4
,

3
√
εt

2MD
√
L

≤ 1

ηt
≤ 2

√
2εt

MD
√
L
.

3. When proceeding the inner loop as stated in Algorithm 6, we guarantee that∥∥xSt
− x∗

Lεt

∥∥Lεt

x∗
Lεt

≤ 21D

320

√
εt,

∥∥BSt
−∇2f(xSt−1

)
∥∥
2
≤ 19L

40
min{MD

√
L,

1

MD
√
L
}
√
εt.

Then for every ε > 0, to get a solution z such that f(z) − f∗ ≤ ε, with high probability, we only
need at most Õ(deffLMD2ε−

1
2 ) iterations in the 3rd phase of Algorithm 2.

Proof of Theorem 6. For simplicity, we first consider the function f such that L = 1. Then for
general f , the result can be derived from f/L by scaling.

For notation convenience, denote xt as xSt
and G̃t = BSt

, Ht = (1 − βt−1)
2BSt

. We aim to
give a uniform bound to the error measure in the form of εt in each sub-problem solving process.
The constants Ri, w that appear in the proof can be seen in Lemma 11. According to Lemma 11, if
for every t ≥ 2, all conditions in this lemma hold, then we can prove the convergence by induction.
From the description of Lemma 11, we only need to prove that:

1. For t = 2, (45),(46),(47) and H2 ⪯ ∇2f(xS2) hold.

2. For every t ≥ 3, (48) and
∥∥∥G̃t −∇2f(xt−1)

∥∥∥
2
≤ R4

√
εt hold.

The above two statements can be directly verified from our conditions in this theorem. Next, we give
an upper bound to the number of iterations in each inner loop. Take q = 1

16
√
2

in Lemma 10 and we
can check that our choice of parameters satisfies its conditions by using Lemma 12. Therefore, for
every k ∈ [St, St+1), we have∥∥xk+1 − x∗

εt

∥∥εt
x∗
εt

≤
(
1− qMD

2

√
εt

)∥∥xk − x∗
εt

∥∥εt
x∗
εt

, x0 = xt−1.

Note (52),(53) in the proof of Lemma 11 also give a bound to
∥∥xt−1 − x∗

εt

∥∥εt
xεt

, that is∥∥xt−1 − x∗
εt

∥∥εt
xεt

≤ 1

1−MR1
√
εt

(
w
√
εt +

R1
√
εt−1

1−Mw
√
εt

)
≤ D

4

√
εt.

Hence, for k − St ≥ 2 ln 4
qMD

√
εt

, we have

∥∥xk − x∗
εt

∥∥εt
x∗
εt

≤
(
1− qMD

2

√
εt

)k
D

4

√
εt ≤

21D

320

√
εt.
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Table 1: Parameter settings for Algorithm 2 in different phases.

Parameter Phase 1: Phase 2: Phase 3:
k ∈ [0, S1) k ∈ [S1, S2) k ∈ [St, St+1), t ≥ 2

nk 0 S1 St

ϵk (11MD)−2 0 Lεt
rk

1
L 0 ηtαt

L(1+ηtεt(1−αt))

γk 0 1 α−1
t

dk 0 1 1 for k < St+1 − 1, (1− βt)
2 for k = St+1 − 1

Then (48) holds. By Theorem 1, with probability at least 1− p, we have

∥∥Gk −∇2f(xt−1)
∥∥
2
≤ 19

40MD

√
εt, k − St ≥ Cdeff

(
40MD

19
√
εt

(
ln

40CMD

19
√
εt

)3

+ ln
1

p

)
.

Thus, we only need to iterate Nt ∼ Θ̃
(

MD+M−1D−1
√
εt

)
times in each inner loop. Now we choose

m = ⌈4096 log2 1
M2ε⌉, then we have

εm ≤ ρmε0 ≤ 2M2ε · 1

2M2 ∥x∗ − x0∥22
≤ ε

2 ∥x∗ − x0∥22
.

Similar to the proof in Lemma 9, we have

f(xm)− f(x∗
εm) ≤ 1

(1−M
∥∥xm − x∗

εm

∥∥εm
x∗
εm

)2

(∥∥xm − x∗
εm

∥∥εm
x∗
εm

)2
≤ 10

9
· ∥x0 − x∗∥22

1000
εm ≤ ε

2
.

This implies

f(xm)− f(x∗) ≤ f(xm)− f(x∗
εm) + f(x∗

εm)− f(x∗) ≤ ε

2
+

εm
2

∥x∗∥22 ≤ ε.

Without the loss of generality, we can set MD ≥ 1, otherwise we can choose our M = D−1. Then
to obtain the solution xm, we only need at most m · Õ

(
deffMD√

εm

)
= Õ

(
deffMD2

√
ε

)
iterations in total.

Then we finish our proof for L = 1.

For general L, consider Algorithm 5 as a process to minimize g = f/L. For conditions in Theorem
6, note that the quantity MD

√
L remain the same after scaling, so the condition on ηt, εt, αt, βt

remains the same as well. Note also that ∇2g = ∇2f/L and B′
k = Bk/L where Bk is the Hessian

approximation for ∇2f , B′
k is the Hessian approximation for ∇2g using initial B′

0 = B0/L, so the
condition for Hessian approximation is consistent after scaling. Note also that

√
z⊤(∇2f + Lc)z =√

L
√
z⊤(∇2g + c)z and the x∗

Lc of f is the same as the x∗
c of g, so the conditions related to ∥x−y∥cz

is consistent after scaling.

Therefore, by our requirement on parameters, phase 3 equivalently performs the optimization on g
using parameters consistent with the case when L = 1. Hence, to find xm such that g(xm)−g∗ ≤ ε,
we need at most Õ

(
deffM

√
LD2

√
ε

)
iterations (the self-concordance coefficient for g is M

√
L) . This

means to find xm such that f(xm)− f∗ ≤ Lε, we need at most Õ
(

deffMLD2
√
Lε

)
iterations. Then the

proof is finished.

C.2.4 FINAL PROOF

First, we summarize the previous results and present the explicit form of parameters in Table 1, 2.

Combining the results in 3 phases, we can easily give a proof for Theorem 2.
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Table 2: One example for the value of εt, αt, βt, ηt, St, t ≥ 2.

Parameter Values
εt

(
4096
4097

)t−2 1
121M2D2L

αt

(
1− 3MD

√
2Lεt

32

)2
βt

MD
√
Lεt

4

ηt
3
√
εt

2MD
√
L
≤ 1

ηt
≤ 2

√
2εt

MD
√
L

St S1 = L+2ε0
ε0

ln

(
66

√
2D

ε
1/2
0

)
S2 = S1 + C

(
r(ln r)3 + ln 1

p

)
, where r = 22deff max{1,M2D2L}

St+1 − St = Cdeff

(
40MD

√
L

19
√
εt

(
ln 40CMD

√
L

19
√
εt

)3
+ ln 1

p

)

Proof of Theorem 2. Suppose that the parameters satisfy the requirement in each phase, fix a
failure probability p, set ε0 = 1

121M2D2 , S1 = L+2ε0
ε0

ln 66
√
2D

ε0.50
= Õ(M2D2L), S2 = S1 +

C
(
r(ln r)3 + ln 1

p

)
, where r = 22deff max{1,M2D2L} = Õ(deffM

2D2L). Set

Nt = St+1 − St = Cdeff

40MD
√
L

19
√
εt

(
ln

40CMD
√
L

19
√
εt

)3

+ ln
1

p

 , t ≥ 2.

Then by Proposition 1, for ε ≥ 1
M2 , we need at most Õ(M2D2L) iterations. By Proposition 2 and

Theorem 6, for ε ≤ 1
M2 , we need at most Õ(deffM

2D2L+ deffLMD2ε−
1
2 ) = Õ(deffLMD2ε−

1
2 )

iterations to let f − f∗ ≤ ε with probability at least 1−Õ(deffLMD2ε−
1
2 )p. Combining two cases,

we finish the proof.

C.3 ANALYSIS OF COMPUTATIONAL COMPLEXITY

We now give a computational complexity analysis for Algorithm 2 in the parameter scheme
described in Table 1, 2. We first demonstrate the computational cost for a single iteration.
This efficiency stems from the low-rank nature of the Hessian approximation Bk. According to
Sherman-Morrison-Woodbury formula:(

A+UCV⊤)−1
= A−1 −A−1U

(
C−1 +V⊤A−1U

)−1
V⊤A−1

Note that in the scheme, our Hessian approximation, Bk, starts from BS1 = 0. Since each iteration
involves only a rank-one update, the rank of Bk is at most k. If we store the update vectors ui from

each step, then Bk =
k∑

i=1

uiu
⊤
i = UkU

⊤
k , where Uk = (u1,u2, · · · ,uk). For any ak > 0, by

setting A = akId, C = Ik, and V = U in the SMW formula, we derive:

(akId +UkU
⊤
k )

−1 = a−1
k Id − a−1

k Uk(Ik + a−1
k U⊤

k Uk)
−1U⊤

k · a−1
k Id.

Consequently, for any vector w, the term (akId +UkU
⊤
k )

−1w can be computed as:

(akId +UkU
⊤
k )

−1w = a−1
k w − a−1

k Uk(akIk +U⊤
k Uk)

−1U⊤
k w.

Let’s break down the computational costs:

• Calculating w1 = U⊤
k w costs O(kd).

• Assuming U⊤
k−1Uk−1 is already available, then U⊤

k Uk can be formed by:

U⊤
k Uk =

[
U⊤

k−1Uk−1 U⊤
k−1uk

u⊤
k Uk−1 u⊤

k uk

]
.

This only requires computing U⊤
k−1uk and u⊤

k uk, both costing O(kd).
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• Inverting the k × k matrix (akIk +U⊤
k Uk) costs O(k3).

• Calculating w2 = (akIk +U⊤
k Uk)

−1w1 costs O(k2).
• Calculating w3 = Ukw2 costs O(kd).

• Finally, computing w4 = a−1
k w −w3 (the final result) costs O(d).

Therefore, the total computational complexity in the k-th iteration is O(k3 + kd).

However, if for k ∈ [St, St+1), ak are the same, then for k ∈ (St, St+1), we have

(akIk +U⊤
k Uk)

−1 =

[
ak−1Ik−1 +U⊤

k−1Uk−1 U⊤
k−1uk

u⊤
k Uk−1 ak + u⊤

k uk

]−1

=

[
X−1 + X−1bb⊤X−1

c−b⊤X−1b
− X−1b

c−b⊤X−1b

− b⊤X−1

c−b⊤X−1b
1

c−b⊤X−1b

]
,

where X = ak−1Ik−1 +U⊤
k−1Uk−1,b = U⊤

k−1uk, c = ak + u⊤
k uk. Since X−1 has already been

computed in the (k − 1) -th iteration, we only need to compute X−1b, which only costs O(k2).
Hence, the total computational complexity in the k-th iteration is O(k2 + kd) except for k = St.
Note that in our choice of St (see the proof of Theorem 2 in C.2.4), satisfies St − St−1 grows at
least linearly, so St ≤ k only for t ≤ O(ln k). The total computational cost in the first k iterations
is at most

k∑
l=1

O(l2 + ld) +O(ln k)O(k3 + kd) = Õ(k3 + k2d).

D USEFUL LEMMAS IN APPENDIX B

Lemma 7 depicts the decrease of trace during the SR1 update.
Lemma 7. Denote Rk = A−Bk, then there exist constants C3, C4 > 0 such that:

P
(
tr(Rk+1) ≤ tr(Rk)− C3

tr(R2
k)

tr(Rk)

)
≥ C4. (24)

Proof. Denote Rk = A−Bk, then by (3) we have

Rk+1 = Rk − Rksks
⊤
k Rk

s⊤k Rksk
. (25)

Taking the trace on both sides of (25), we have

tr(Rk+1) = tr(Rk)−
s⊤k R

2
ksk

s⊤k Rksk
. (26)

From (4) we can see that

E
[
s⊤k Rksk

]
= tr(Rk), E

[
s⊤k R

2
ksk
]
= tr(R2

k) (27)

By Markov inequality we have

P
(
s⊤k Rksk ≤ 8(3 + C1)E

[
s⊤k Rksk

])
≥ 1− 1

8(3 + C1)
. (28)

By Lemma 19 and Lemma 16 we have

P
(
s⊤k R

2
ksk ≥ 1

2
E
[
s⊤k R

2
ksk
]) (55)

≥
E
[
s⊤k R

2
ksk
]

4E
[
(s⊤k R

2
ksk)

2
]

(59)

≥ tr(R2
k)

2

4(3 + C1)tr(R2
k)

2

≥ 1

4(3 + C1)
. (29)
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Combining (28) and (29) we have

P
(
tr(Rk+1) ≤ tr(Rk)−

tr(R2
k)

16(3 + C1)tr(Rk)

)
≥ 1

8(3 + C1)
. (30)

Lemma 8 is the key lemma to prove Lemma 6, which constructs a rational fraction to compare its
roots with the eigenvalues . We can show that the top eigenvalues after one iteration are smaller
than these roots respectively with a certain probability and quantify the amount of top eigenvalues’
reduction by the difference value between the previous step’s eigenvalues and these roots in each
iteration.
Lemma 8. Under the condition of Lemma 6, if (10) does not hold, then there exist constants
C5, C6 > 0 such that for all 0 ≤ k ≤ K, with probability at least C5, we have

tr(A−Bk+1)s ≤ tr(A−Bk)s −
umC6

s2 ln s
u

(tr(A−Bk)s)
2, (31)

where tr(H)s means the sum of top s eigenvalues of a matrix H.

Proof. For simplicity of notation, denote di = λi(A−Bk), λi = λi(A−Bk+1). We first assume
that di are distinct from each other. Let

A−Bk = UDU⊤

be the orthogonal decomposition of symmetric matrix A − Bk. Denote U = (uij)d×d, sk =
(s1, · · · , sd)⊤, Usk = v and v = (v1, · · · , vd)⊤, assume that vi ̸= 0 for all i, then we can rewrite
(3) as:

A−Bk+1 = U

(
D− Dvv⊤D

v⊤Dv

)
U⊤.

By Lemma 24, we know that λi are the roots of

q(x) =

d∑
i=1

d2i v
2
i

di − x
−

d∑
i=1

div
2
i .

Now we begin to progress our proof in the following steps.

1. Step 1: First, we find a special point in (dm, ds+1). We claim that the set

Q
def
=

{
x ∈ S

def
=

[
2dm
u+ 2

,
3dm
u+ 3

]
:

s+1∑
i=m

d2i
|x− di|

≤ 120

u
ln

30(1 + s)2

u

}
̸= ∅.

The proof of this claim is as follows. Let T =
s+1⋃
i=m

[
di − u

30d
2
i , di +

u
30d

2
i

]
, then the integral

∫
S\T

s+1∑
i=m

d2i
|x− di|

dx ≤ 2

s+1∑
i=m

d2i

∫ 1

ud2
i

30

1

x
dx

= 2

s+1∑
i=m

−d2i ln
u

30
d2i = 2

s+1∑
i=m

d2i ln
30

u
+ 4

s+1∑
i=m

d2i ln
1

di

(a)

≤ 2(s−m)d2m ln
30

u
+ 4dm

s+1∑
i=m

di ln
1

di

(b)

≤ 2(s−m)d2m ln
30

u
+ 4dm(s−m+ 1)dm ln

1

dm

≤ 2s

(
ln

30

u
s− 2 ln dm

)
d2m. (32)
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Here (a) holds because di ≤ dm and (b) holds because di ln 1
di

≤ dm ln 1
dm

by Lemma 13.
Meanwhile, we have

|S\T | ≥ 3dm
u+ 3

− 2dm
u+ 2

− u

15

s+1∑
i=m

d2i ≥ udm
(u+ 3)(u+ 2)

− udm
15

≥ udm
60

. (33)

Combining (32)(33) we know that there exists z ∈ S\T such that
s∑

i=m

d2i
|z − di|

≤ 120s

u

(
ln

30

u
dm + 2dm ln

1

dm

)
≤ 120

u
(ln 30− lnu+ 2 ln(1 + s)) .

(34)
The last inequality in (34) can be derived from Lemma 13 and the condition that dm ≤
1

s+1 ≤ 1
e . Then we finish the proof of our claim.

2. Step 2: Next, we construct a rational fraction r(x) in order to compare with q(x) as follows.
Let m ≤ j ≤ s satisfy dj < z < dj+1, denote M = 8(3 + C1) and define

r(x)
def
=

j∑
i=1

d2i v
2
i

(di − x)
−

 d∑
i=j+1

d2i v
2
i

z − di
+

8M

u

d∑
i=1

di +

j∑
i=m+1

d2i v
2
i

di − z

 . (35)

Using Lemma 22, we can know that r(x) = 0 has j solutions µi, 1 ≤ i ≤ j such that

d1 > µ1 > d2 > · · · > dj > µj ,

and we have the following equation by (63)

j∑
i=1

(di − µi) =

j∑
i=1

d2i v
2
i

M1
, M1 =

d∑
i=j+1

d2i v
2
i

z − di
+

8M

u

d∑
i=1

di +

j∑
i=m+1

d2i v
2
i

di − z
. (36)

Note that for i ≤ m, di − z ≥ di − 3
u+3dm ≥ u

u+3di, therefore,

r(z) ≤
m∑
i=1

(
1 +

3

u

)
div

2
i +

j∑
i=m+1

d2i v
2
i

di − z
−M1. (37)

3. Step 3: Now we compare λi with µi. Since vi =
d∑

l=1

uilsl, we have E
[
v2i
]
= 1 and

E
[
v4i
]
= E

( d∑
p=1

uipsp

)4
 (c)

= E

 d∑
p=1

u4
ips

4
p + 6

∑
1≤p<q≤d

u2
ipu

2
iqs

2
ps

2
q


≤ (3 + C1)

(
d∑

p=1

u2
ip

)2

= 3 + C1.

The equality (c) holds for the same reason as (60). For each m ≤ l ≤ j, we define random
variables

X
def
=

d∑
i=1

div
2
i , Y

def
=

j∑
i=1

d2i v
2
i , Z

def
=

d∑
i=j+1

d2i v
2
i

z − di
+

j∑
i=m+1

d2i v
2
i

di − z
.

By Lemma 20 and Markov inequality, we have

P
(
A def

=

{
Y ≥ 1

2
E [Y ] , X ≤ 2ME [X] , Z ≤ 2ME [Z]

})
≥ 1

M
. (38)

In the rest part of this step we condition on A, then by (37), we have

r(z) ≤
(
1 +

3

u

)
X +

j∑
i=m+1

d2i v
2
i

di − z
− 8M

u
E [X]−

j∑
i=m+1

d2i v
2
i

di − z
≤ 0.
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Hence, µj ≥ z, and

q(µl) =

j∑
i=1

d2i v
2
i

(di − µl)
−

d∑
i=j+1

d2i v
2
i

µl − di
−X

(35)
= r(µl) +

 d∑
i=j+1

d2i v
2
i

z − di
+

8M

u

d∑
i=1

di +

j∑
i=m+1

d2i v
2
i

di − z

−
d∑

i=j+1

d2i v
2
i

µl − di
−X

µl≥z

≥ r(µl) +

 d∑
i=j+1

d2i v
2
i

µl − di
+

8M

u

d∑
i=1

di

−
d∑

i=j+1

d2i v
2
i

µl − di
−X

≥ 8M

u

d∑
i=1

di −X ≥ 8M

u
E [X]−X ≥ 0.

This implies λl ≤ µl. Therefore, dl −λl ≥ dl −µl. Since Z ≤ 2ME [Z] , Y ≥ 1
2E [Y ], by

(36), we can bound
j∑

i=1

(di − µi) as follows

M1 ≤ 2ME [Z] +
8M

u
E [X]

(34)

≤ 2M

(
120

u

(
1

30
+ ln 30− lnu+ 2 ln(1 + s)

))
+M

(
d∑

i=s+2

d2i
z − di

)
(d)

≤ 2M

(
120

u

(
1

30
+ ln 30− lnu+ 2 ln(1 + s)

))
+M

(
1 +

2

u

)( d∑
i=s+2

di

)

≤ 2M

(
120

u
ln

32(1 + s)2

u
+ 1 +

2

u

)
. (39)

The inequality (d) holds due to the fact that

z − di ≥
2

u+ 2
dm − di ≥

2(1 + u)

u+ 2
di − di ≥

u

u+ 2
di.

Take C6 = 1
3000M , by (39) and some numerical calculation we have M1 ≤ 1

2uC6
ln s

u , thus,

j∑
i=1

(di − λi) ≥
j∑

i=1

(di − µi) ≥
Y

M1
≥

j∑
i=1

d2i

2M1
≥ uC6

ln s
u

j∑
i=1

d2i .

Note that m ≤ j ≤ s, so we have

j∑
i=1

d2i ≥ j

s

s∑
i=1

d2i ≥ j

s2

(
s∑

i=1

di

)2

≥ m

s2

(
s∑

i=1

di

)2

.

tr(A−Bk+1)s ≤ tr(A−Bk)s −
umC6

s2 ln s
u

(tr(A−Bk)s)
2
. (40)

Combining (38) and (40), we choose C5 = 1
M and then we finish the proof.

For the case when vi may be zero and di may not be distinct from each other, by Weyl’s inequality
(Lemma 21), the spectrum of Hermitian matrices is stable under perturbation. Hence, the conclusion
is true for the general case.
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E USEFUL LEMMAS IN APPENDIX C.2

We need several additional lemmas to help proving Theorem 6 as listed below. All the Lemmas
in this section assume L = 1. (Though some do not use it.) Lemma 9 measures the deviation
between the exact solutions of the proximate inner loops. Lemma 10 proves a linear convergence
rate under proper conditions. Lemma 11 and Lemma 12 further measure the deviation between the
approximated solutions of proximate inner loops.
Lemma 9. Suppose that εt ≤ εt−1 ≤ 1

2M2∥x∗−x0∥2
2

, then∥∥x∗
εt − x∗∥∥

x∗ ≤
√
2εt∥x∗ − x0∥2, (41)∥∥∥x∗

εt−1
− x∗

εt

∥∥∥ε∗t
x∗
εt

≤
√
2(εt−1 − εt)∥x∗ − x0∥2. (42)

Proof of Lemma 9. Denote r = ∥x∗
εt − x∗∥x∗ , then by self-concordancy we have

∇2f
(
x∗ + t

(
x∗
εt − x∗)) ⪰ (1−Mrt)

2 ∇2f (x∗) for all t ≤ 1
Mr . Therefore,

f
(
x∗
εt

)
− f (x∗) =

(∫ 1

0

∇f
(
x∗ + t

(
x∗
εt − x∗)) dt)⊤ (

x∗
εt − x∗)

=

(∫ 1

0

(∫ 1

0

∇2f
(
x∗ + st

(
x∗
εt − x∗)) ds) t

(
x∗
εt − x∗) dt)⊤ (

x∗
εt − x∗)

=
(
x∗
εt − x∗)⊤(∫ 1

0

(∫ t

0

∇2f
(
x∗ + s

(
x∗
εt − x∗)) ds) dt

)(
x∗
εt − x∗)

=
(
x∗
εt − x∗)⊤(∫ 1

0

(1− t)∇2f
(
x∗ + t

(
x∗
εt − x∗)) dt)(x∗

εt − x∗)
≥

(∫ min{ 1
Mr ,1}

0

(1− t) (1−Mrt)
2
dt

)(
x∗
εt − x∗)⊤ ∇2f (x∗)

(
x∗
εt − x∗)

= r2 ·
{

1
3Mr − 1

12M2r2 Mr ≥ 1
1
12M

2r2 − 1
3Mr + 1

2 Mr < 1
.

On the other hand,

f
(
x∗
εt

)
− f (x∗) = f

(
x∗
εt

)
− fεt (x

∗) +
εt
2
∥x∗ − x0∥22

≤ fεt
(
x∗
εt

)
− fεt (x

∗) +
εt
2
∥x∗ − x0∥22

≤ εt
2
∥x∗ − x0∥22.

Combining these two inequalities we have:

min

{
r2

4
,

r

4M

}
≤ εt

2
∥x∗ − x0∥22.

Hence, either r ≤
√
2εt∥x∗ − x0∥2 or r ≤ 2Mεt∥x∗ − x0∥22. Since

√
2εt ≤ 1

M∥x∗−x0∥2
, we

must have r ≤
√
2εt∥x∗ − x0∥2. For the second conclusion in Lemma 9, note that fεt is also

self-concordant with constant M , and fεt−1
= fεt +

εt−1−εt
2 ∥x∗ − x0∥22, so we can use the same

argument on fεt−1
compared with fεt , then the result leads to (42).

We extract the inner loop for solving sub-problems in Algorithm 5 to Algorithm 6 as shown above.
Lemma 10. If we use Algorithm 6 to optimize the regularized objective function fεt , while satisfying
the following conditions:

1. There exists a constant q such that M
∥∥x1 − x∗

εt

∥∥εt
x∗
εt

≤ qMD
√
εt ≤ 1

30 .

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 6 Inner loop of Algorithm 5

1: Requires: Initial point x0 ∈ Rd, regularizer εt, matrix G0 ∈ Rd×d, distribution D, parameter
sequence {ηk}, stepsize 0 < αt < 1.

2: for k = 0, 1, 2 . . . do

3: xk+1 = xk − αt

(
Gk +

(
1
ηk

+ εt

)
Id

)−1

∇fεt(xk)

4: Sample a random vector sk ∼ D and compute Gk+1 = SR1(∇2f(x1),Gk, sk).
5: end for

2. Gk +
(

1
ηk

+ εt

)
Id ⪰ ∇2fεt(x1), α = (1− 3qMD

√
εt)

2.

Then if for every k ≥ 1, we have 1
ηk

≤
√
εt

8qMD , the following inequality holds:

∥∥xk+1 − x∗
εt

∥∥εt
x∗
εt

≤
(
1− qMD

2

√
εt

)∥∥xk − x∗
εt

∥∥εt
x∗
εt

. (43)

Proof of Lemma 10. For simplicity, in this proof we replace ∥z∥εtx∗
εt

by ∥z∥∗. We denote

vk = ∥xk − x∗
εt∥∗, Jk =

∫ 1

0
∇2fεt

(
x∗
εt + t

(
xk − x∗

εt

))
dt. We use induction to prove that

∥xk+1 − x∗
εt∥∗ ≤ (1− qMD

√
εt/2) ∥xk − x∗

εt∥∗.

Suppose that we already have vs+1 ≤ vs for all s ≤ k − 1. Then we have

xk+1 − x∗
εt =

(
Id − αt

(
Gk +

1

ηk
Id + ε−1

t Jk

))(
xk − x∗

εt

)
.

Since vk ≤ v0 and Mv0 ≤ qMD
√
εt, we have

∥xk − x1∥x1
≤ 1

1−Mv0
∥xk − x1∥∗ ≤ 1

1−Mv0

(
∥xk − x∗

εt∥∗ + ∥x1 − x∗
εt∥∗

)
≤ 2v0

1−Mv0
.

Then for every t ∈ [0, 1] we have

∇2fεt
(
x∗
εt + t

(
xk − x∗

εt

))
⪯ 1(

1−M
(
t∥xk − x1∥x1 + (1− t) ∥x∗

εt − x1∥x1

))2∇2fεt (x1) .

This implies

∇2fεt
(
x∗
εt + t

(
xk − x∗

εt

))
⪯ 1(

1− 2Mv0

1−Mv0

)2∇2fεt (x0) .

Take integral for t over [0, 1] we have

Jk ⪯ 1(
1− 2Mv0

1−Mv0

)2∇2fεt (x0) ⪯
1(

1− 3qMD
√
εt
)2∇2fεt (x0) .

By the same reason we have

Jk ⪰ (1− 3qMD
√
εt)

2 ∇2fεt (x0) .

Since Gk + 1
ηk
Id ⪰ ∇2f (x0) and αt ≤

(
1− 3qMD

√
εt
)2

, we can see that Gk + 1
ηk
Id + εtId ⪰

αtJk, as a result,

λmin

(
Id − αt

(
Gk +

1

ηk
Id + εtId

)−1

Jk

)
≥ 0
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Also by SR1 update we have Gk + εtId ⪯ ∇2fεt (x0) ⪯ 1
(1−3qMD

√
εt)

2Jk, and by our assumption,
1
ηk

≤
√
εt

8qMD , so we can deduce that

λmax

(
Id − αt

(
Gk +

1

ηk
Id + εtId

)−1

Jk

)
≤ 1− αtλ

−1
max

(
1

ηk
J−1
k +

1(
1− 3qMD

√
εt
)2 Id

)
≤ 1− αt

2
ηkεt

+ 1
(1−3qMD

√
εt)

2

≤ 1−
(
1− 3qMD

√
εt
)2

1
4qMD

√
εt

+ 1
(1−3qMD

√
εt)

2

≤ 1− 2qMD (1− 3qMD
√
εt)

2 √
εt.

Hence,
∥xk+1 − x∗

εt∥Jk
≤ (1− 1.62qMD

√
εt) ∥xk − x∗

εt∥Jk
.

Since M∥xk − x∗
εt∥∗ ≤ qMD

√
εt, we have

∇2fεt
(
x∗
εt + t

(
xk − x∗

εt

))
⪯ 1

(1− tMvk)
2∇

2fεt
(
x∗
εt

)
.

This could imply ∥z∥Jk
∈
[√

1−Mrk∥z∥∗, 1√
1−Mrk

∥z∥∗
]
. At last, we can derive that

∥xk+1 − x∗
εt∥∗ ≤

1− 1.62qMD
√
εt

1− qMD
√
εt

∥xk − x∗
εt∥∗ ≤ (1− qMD

√
εt/2) ∥xk − x∗

εt∥∗.

Then we finish the proof by induction.

Lemma 11. Under the condition of Theorem 6 and follow the same notation. Denote constants

R0 =
D

4
, R1 =

21D

320
, R2 =

3MD

2
, R3 = 2

√
2MD,R4 =

19MD

40
, c∗ =

1

4096

if

εt < εt−1 ≤ (1 + c∗)εt ≤
1

121M2D2
,

and the approximate solution xt−2, xt−1 and matrix Ht−2, G̃t−1 satisfy Ht−2 ⪯ ∇2f(xt−2) and

∥xt−1 − xt−2∥xt−1
≤ R0

√
εt−1, (44)∥∥∥xt−1 − x∗

εt−1

∥∥∥εt−1

x∗
εt−1

≤ R1
√
εt−1, (45)∥∥∥G̃t−1 −∇2f(xt−1)

∥∥∥
2
≤ R2

√
εt−1. (46)

Choose βt−1 = MR0
√
εt−1, then the correction approximate matrix Ht−1 satisfies Ht−1 ⪯

∇2f(xt−1) and ∥∥Ht−1 −∇2f(xt−1)
∥∥
2
≤ R3

√
εt. (47)

Next, if the approximate solution xt satisfies∥∥xt − x∗
εt

∥∥εt
x∗
εt

≤ R1
√
εt, (48)

then
∥xt − xt−1∥xt

≤ R0
√
εt. (49)

Moreover, if
∥∥∥G̃t −∇2f(xt−1)

∥∥∥
2
≤ R4

√
εt, then we have∥∥∥G̃t −∇2f(xt)

∥∥∥
2
≤ R2

√
εt. (50)
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Proof. First, we prove Ht−1 ⪯ ∇2f(xt−1) and (47). Since Ht−1 = (1− βt−1)
2G̃t−1, we have∥∥Ht−1 −∇2f(xt−1)

∥∥
2
≤ 2βt−1

∥∥∥G̃t−1

∥∥∥
2
+
∥∥∥G̃t−1 −∇2f(xt−1)

∥∥∥
2

≤ (2MR0 +R2)
√
εt−1

(66)

≤ R3
√
εt.

By the property of SR1 update we have G̃t−1 ⪯ ∇2f(xt−2). Using the self-concordancy we have

Ht−1 = (1− βt−1)
2G̃t−1 ⪯ (1− βt−1)

2∇2f(xt−2)

⪯ (1− βt−1)
2

(1−M∥xt−1 − xt−2∥xt−1
)2
∇2f(xt−1)

(44)

⪯ ∇2f(xt−1).

Second, let us bound ∥xt − xt−1∥xt
using the self-concordance property. We have

∥xt − xt−1∥εtxt
≤ 1

1−M
∥∥xt − x∗

εt

∥∥εt
x∗
εt

∥xt − xt−1∥εtx∗
εt

. (51)

We need to bound ∥xt − xt−1∥εtx∗
εt

, and we have

∥xt − xt−1∥εtx∗
εt

≤
∥∥xt − x∗

εt

∥∥εt
x∗
εt

+
∥∥∥x∗

εt − x∗
εt−1

∥∥∥εt
x∗
εt

+
∥∥∥x∗

εt−1
− xt−1

∥∥∥εt
x∗
εt

. (52)

By (48) and Lemma 9, we have∥∥xt − x∗
εt

∥∥εt
x∗
εt

≤ R1
√
εt,

∥∥∥x∗
εt − x∗

εt−1

∥∥∥εt
x∗
εt

≤
√
2(εt−1 − εt)∥x∗ − x0∥2.

Denote w =
√

2(εt−1−εt)
εt

∥x∗ − x0∥2, then the last term in (52) can be bounded by (45) and Lemma
9: ∥∥∥x∗

εt−1
− xt−1

∥∥∥εt
x∗
εt

≤

∥∥∥x∗
εt−1

− xt−1

∥∥∥εt
x∗
εt−1

1−M
∥∥∥x∗

εt−1
− x∗

εt

∥∥∥εt
x∗
εt

≤
R1

√
εt−1

1−Mw
√
εt

Hence, ∥xt − xt−1∥εtx∗
εt

≤ R1
√
εt + w

√
εt +

R1
√
εt−1

1−Mw
√
εt

, combining with (51) we have

∥xt − xt−1∥εtxt
≤ 1

1−MR1
√
εt

(
R1

√
εt + w

√
εt +

R1
√
εt−1

1−Mw
√
εt

)
. (53)

This leads to (49) by (67) in Lemma 25.

Finally, we use (47), (49) to prove (50). We have∥∥∥G̃t −∇2f(xt)
∥∥∥
2
≤
∥∥∥G̃t −∇2f(xt−1)

∥∥∥
2
+
∥∥∇2f(xt−1)−∇2f(xt)

∥∥
2

≤ R4
√
εt +

(
1− (1−M∥xt − xt−1∥xt

)4

(1−M∥xt − xt−1∥xt
)2

)∥∥∇2f(xt)
∥∥
2

(49)

≤ R4
√
εt +

1− (1−MR0
√
εt)

4

(1−MR0
√
εt)2

(68)

≤ R2
√
εt.

Lemma 12. Suppose that εt ≤ εt−1 ≤ 1
M2D2 and we already have∥∥∥x∗

εt−1
− x∗

εt

∥∥∥εt
x∗
εt

≤ D

32
√
2

√
εt,

∥∥∥xt−1 − x∗
εt−1

∥∥∥εt−1

x∗
εt−1

≤ D

33
√
2

√
εt.

Then we have ∥∥xt−1 − x∗
εt

∥∥εt
x∗
εt

≤ D

16
√
2

√
εt. (54)
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Proof. Note that fεt(x) is self-concordant with constant M , so we have∥∥∥xt−1 − x∗
εt−1

∥∥∥εt
x∗
εt

≤ 1

1−M
∥∥∥x∗

εt−1
− x∗

εt

∥∥∥εt
x∗
εt−1

∥∥∥xt−1 − x∗
εt−1

∥∥∥εt
x∗
εt−1

≤ 1

1−M
D
√
εt

32
√
2

∥∥∥xt−1 − x∗
εt−1

∥∥∥εt
x∗
εt−1

≤ 32
√
2

32
√
2− 1

∥∥∥xt−1 − x∗
εt−1

∥∥∥εt−1

x∗
εt−1

≤ 32
√
2

32
√
2− 1

· D

33
√
2

√
εt ≤

D

32
√
2

√
εt.

Hence, ∥∥xt−1 − x∗
εt

∥∥εt
x∗
εt

≤
∥∥∥x∗

εt−1
− x∗

εt

∥∥∥εt
x∗
εt

+
∥∥∥xt−1 − x∗

εt−1

∥∥∥εt
x∗
εt

≤ D

16
√
2

√
εt.

F TECHNICAL LEMMAS

In this section, we present technical lemmas that are used in the previous proofs. Among these
lemmas, Lemma 16, Lemma 17, and Lemma 21 are well-known and can be found in classical
textbooks. As such, we do not provide their proofs.

Lemma 13. The function h(t) = t ln t decreases in the interval
(
0, 1

e

]
.

Proof. This simply follows from the h(t)’s derivative: h′(t) = 1 + ln(t) ≤ 0, for t ≤ 1
e .

Lemma 14. Let {an}n≥0 be a sequence of real positive numbers and c > 0 such that an+1 ≤
an − ca2n, then for all n ∈ N, we have an ≤ a0

cn+a0
.

Proof. Since an+1 ≤ an − ca2n, we have 1
an+1

≥ 1
an

+ c
1−can

. Hence, we get

1

an
≥

n−1∑
i=0

c

1− cai
+

1

a0
≥ nc+

1

a0
.

This implies an ≤ a0

cn+a0
.

Lemma 15. Let {an}n≥0 be a sequence of real positive numbers that do not increase. Let c > 0 be
a constant. For every n ∈ N, denote An =

{
k ∈ N, k ≤ n : ak+1 ≤ ak − ca2k

}
, then we have

an ≤ a0
a0 + c|An|

,

where |An| denotes the number of elements in the set An.

Proof. Construct the sequence {ank
} by ordering the elements of

+∞⋃
i=0

Ai according to their

subscripts in increasing order. Denote m = |An|, then anm
≥ an ≥ anm+1

. By Lemma 14,
anm

≤ a0

a0+cm . Therefore, an ≤ anm
≤ a0

a0+cm .

Lemma 16 (PaleyZygmund inequality). Let X ≥ 0 be a nonnegative random variable. Then for all
0 < θ < 1, we have

P (X ≥ θE [X]) ≥ (1− θ)2E [X]
2

E [X2]
. (55)
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Lemma 17 (Chernoff bound for Bernoulli variables). Let X1, · · · , Xn
i.i.d∼ Bernoulli(1, p), then

for every 0 < δ < 1, we have

P

(
n∑

i=1

Xi ≤ (1− δ)np

)
≤ e−

δ2np
2 . (56)

Lemma 18 is our main tool for proving high-probability bounds. This lemma extends classical
Chernoff bounds to dependent processes by requiring only a one-sided lower bound on conditional
success probabilities. This allows deriving exponential concentration inequalities similar to the
independent case, making it particularly useful for analyzing adaptive algorithms and sequential
decision processes where independence assumptions fail but some probabilistic structure remains.
The result provides a powerful tool for establishing high-probability guarantees in dependent
settings.
Lemma 18 (Coupling). Consider a random process Xk, k ∈ N∗, where Xk is taken in {0, 1}.
Denote Fk as the σ-algebra generated by X1, · · · , Xk. Suppose that for all k ≥ 1, we have
P (Xk = 1|Fk−1) ≥ p, then for any k ≥ 0, t ≥ 0, we have

P(X1 + · · ·+Xk ≥ t) ≥ P(Y1 + · · ·+ Yk ≥ t),

where Y1, · · · , Yk
i.i.d∼ Bernoulli(1, p). Moreover, for every 0 < δ < 1, n ∈ N∗, we have

P

(
n∑

i=1

Xi ≤ (1− δ)np

)
≤ e−

δ2np
2 . (57)

Proof. We construct an auxiliary process {Zk}k∈N∗ with Zk ∈ {0, 1} as follows:

Since X1, . . . , Xk take on finitely many values, each event in Fk can be expressed as a union of
atomic events. For each atomic event A ∈ Fk−1 where P(Xk = 1 | A) = qA ≥ p, we define Zk|A
to be an independent Bernoulli random variable with parameter p

qA
, i.e., Zk|A ∼ Bernoulli

(
1, p

qA

)
,

independent of Xk|A. By repeating this construction for all atomic events in Fk−1, we obtain a
well-defined random variable Zk ∈ {0, 1} satisfying:

P(XkZk = 1 | Fk−1) = p.

Since Xk ≥ XkZk, it suffices to prove that

P(X1Z1 + · · ·+XkZk = t) = P(Y1 + · · ·+ Yk = t). (58)

Now we can prove (58) by induction. Suppose that (58) holds for k − 1, then we have

P(X1Z1 + · · ·XkZk = t)

= P(XkZk = 0|X1Z1 + · · ·Xk−1Zk−1 = t)P(X1Z1 + · · ·Xk−1Zk−1 = t)

+ P (XkZk = 1|X1Z1 + · · ·Xk−1Zk−1 = t− 1)P(X1Z1 + · · ·Xk−1Zk−1 = t− 1)

= (1− p)P(X1Z1 + · · ·Xk−1Zk−1 = t) + pP(X1Z1 + · · ·Xk−1Zk−1 = t− 1)

= (1− p)P(Y1 + · · ·Yk−1 = t) + pP(Y1 + · · ·Yk−1 = t− 1)

= P(Y1 + · · ·+ Yk = t).

Hence (58) holds for all k, t. This implies (58) and implies (57) by (58) and (56).

Lemma 19. Let A ∈ Rd×d,A ⪰ 0 and X be a random variable that satisfies (4). Let Xi
i.i.d∼ X

and X = (X1, · · · , Xd)
⊤. Then we have

E
[
(X⊤AX)2

]
≤ (3 + C1)tr(A)2. (59)

Proof. The left side of (59) is actually

E


∑

i,j

AijXiXj

2
 =

∑
i,j,k,l

AijAklE [XiXjXkXl] .
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Denote
A1 = {(i, j, k, l) : i = j = k = l} ,

A2 = {(i, j, k, l) : i = j, k = l, i ̸= k or its permutation} .
Then the term E [XiXjXkXl] satisfies:

E [XiXjXkXl] =


C1 (i, j, k, l) ∈ A1

1 (i, j, k, l) ∈ A2

0 (i, j, k, l) ∈ (A1 ∪A2)
c

(60)

Hence,

E


∑

i,j

AijXiXj

2
 = C1

∑
i

A2
ii +

∑
1≤i<j≤d

(4A2
ij + 2AiiAjj)

≤ (2 + C1)∥A∥2F + tr(A)2 = (3 + C1)tr(A)2.

Lemma 20. Let X1, · · · , Xn be n random variables such that E
[
X2

i

]
= 1 and sup

1≤i≤n
E
[
X4

i

]
= M .

Then for any a1, · · · , an ≥ 0, we have

E

( n∑
i=1

aiX
2
i

)2
 ≤ M

(
n∑

i=1

ai

)2

. (61)

This implies

P

(
n∑

i=1

aiX
2
i ≥ 1

2

n∑
i=1

ai

)
≥ 1

4M
. (62)

Proof. By AM-GM inequality, E
[
X2

i X
2
j

]
≤ 1

2E
[
X4

i +X4
j

]
≤ M . Then the left-hand side of the

equation (61) is

n∑
i=1

a2iE
[
X4

i

]
+

∑
1≤i<j≤n

aiajE
[
X2

i X
2
j

]
≤ M

(
n∑

i=1

ai

)2

Hence, (61) holds and implies (62) by Lemma 16.

Lemma 21 (Weyl’s Inequality for Hermitian Matrices). Let A and B be n× n Hermitian matrices.
Denote their eigenvalues in non-increasing order as:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A),

λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B),

Then for any i, j ≥ 1 with i+ j − 1 ≤ n, we have:

λi+j−1(A+B) ≤ λi(A) + λj(B),

and for any i, j ≥ 1 with i+ j − 1 ≥ n, we have

λi(A) + λj(B) ≤ λi+j−n(A+B).

Remark. If B = −uu⊤ and u ̸= 0, then λn(B) < 0 and λi(B) = 0, i < n. In this case,
λi+1(A) ≤ λi(A −B) ≤ λi(A). Moreover, we have |λi(A) − λi(A +B)| ≤ ∥B∥2. Hence, the
spectrum of Hermitian matrices is stable under perturbation.
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Lemma 22. Consider a rational fraction

f(x) =

m∑
i=1

ai
bi − x

, ai > 0, b1 > b2 > · · · > bm ≥ 0.

For any t > 0, the equation
f(x) = t

has m solutions x1 > x2 > · · · > xm such that xi ∈ (bi+1, bi) for 1 ≤ i ≤ m − 1 and xm ∈
(−∞, bm). Moreover,

m∑
i=1

xi =

m∑
i=1

bi −
1

t

m∑
i=1

ai. (63)

Proof. Let us consider each (bi+1, bi), note that

f ′(x) =

m∑
i=1

ai
(bi − x)2

> 0,

and lim
x→b+i+1

f(x) = −∞, lim
x→b−i

f(x) = +∞. Hence, by Intermediate Value Theorem, for any t ≥ 0,

the equation f(x) = t has a unique root in (bi+1, bi). Similarly, it has a unique root in (−∞, bm).

Multiplying
m∏
i=1

(bi − x) to the equation, they can be also seen as the roots of a polynomial

p(x) =

m∑
i=1

ai
∏
j ̸=i

(bj − x)− t

m∏
i=1

(bi − x).

And (63) follows directly by Vieta’s formula.

The next two lemmas ( Lemma 23, Lemma 24) are well-known results in numerical algebra. Their
proofs can be found in any numerical algebra textbook. The famous Divide-and-Conquer algorithm
for solving eigenvalues of tridiagonal Hermitian matrices is based on the following theory.

Lemma 23. Let D = diag(d1, · · · , dn) be a diagonal matrix such that d1 > d2 > · · · > dn,
assume that ρ ̸= 0, u ∈ Rn and each coordinate of u ∈ Rn is non-zero. If v ∈ Rn and λ ∈ R
satisfy

(D+ ρuu⊤)v = λv,

then v⊤u ̸= 0, and D− λIn is invertible.

Proof. If v⊤u = 0, then Dv = λv,v ̸= 0, hence λ is the eigenvalue of D. Note that D’s diagonals
are different from each other, so there exists i such that di = λ and v = αei, α ̸= 0. Therefore, we
have 0 = v⊤u = αu⊤ei, contradicting the condition that each coordinate of u is non-zero.

Besides, if D− λIn is singular, then there exists i such that e⊤i (D− λIn) = 0 and thus we have

0 = e⊤i (D− λIn)v = −ρu⊤ve⊤i u,

but ρu⊤v ̸= 0, so e⊤i u = 0, a contradiction.

Lemma 24. Let D = diag(d1, · · · , dn) be a diagonal matrix such that d1 > d2 > · · · > dn,
u ∈ Rn, and suppose that each coordinate of u is non-zero and ρ > 0. Denote λ1 ≥ λ2 ≥ · · · ≥ λn

as the eigenvalues of D− ρuu⊤. Then λi are distinct and they are exactly the roots of

1− ρ

(
u2
1

d1 − λi
+ · · ·+ u2

n

dn − λi

)
= 0, (64)

where ui denotes the i-th component of u.
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Proof. First, consider the case when di are distinct from each other. Denote vi as the unit
eigenvector with respect to λi. Then we have

(D− ρuu⊤)vi = λivi.

By Lemma 23, D− λiIn is invertible and u⊤vi ̸= 0. Therefore,

vi = ρu⊤vi(D− λiIn)
−1u.

Left multiply both sides by u⊤, note that u⊤vi ̸= 0, we have

1 = ρu⊤(D− λiIn)
−1u,

this is equivalent to

1− ρ

(
u2
1

d1 − λi
+ · · ·+ u2

n

dn − λi

)
= 0.

By Lemma 22, the above equation has exactly n roots, each belonging to
(d2, d1), (d3, d2), · · · , (−∞, dn) respectively. Thus the proof is complete.

Lemma 25. Under the condition of Lemma 11, we have the following inequalities:

w
def
=

√
2(εt−1 − εt)

εt
∥x∗ − x0∥2 ≤ D

32
. (65)

(2MR0 +R2)
√
εt−1 ≤ R3

√
εt. (66)

1

1−MR1
√
εt

(
R1

√
εt + w

√
εt +

R1
√
εt−1

1−Mw
√
εt

)
≤ R0

√
εt. (67)

R4
√
εt +

1− (1−MR0
√
εt)

4

(1−MR0
√
εt)2

≤ R2
√
εt. (68)

Proof. Since εt < εt−1 ≤ (1 + c∗)εt ≤ 1
121M2D2 , we have√

2(εt−1 − εt)

εt
∥x∗ − x0∥2 ≤

√
2c∗∥x∗ − x0∥2 ≤ D

32
√
2
,

this implies (65). The inequality (66) is equivalent to

(2M · 1

4M
+

3

2
)
√
εt−1 ≤ 2

√
2εt,

this is obvious because we have εt−1 ≤ 2εt by c∗ ≤ 1.

For (67), notice that w ≤ D
32 and R1 ≤ 21D

320 , we only need to prove

320

299

(
D

32

√
εt +

21D

320

√
εt +

32

31
· 21D
320

√
εt−1

)
≤ D

4

√
εt.

This can be done by numerical calculation.

Finally, let us prove (68). Since R0 ≤ D
4 , R4 = 19MD

40 , we only need to prove

19

40

√
εt +

1− (1− 0.25
√
εt)

4

(1− 0.25
√
εt)2

≤ 3

2

√
εt.

We can see that for x ∈
(
0, 1

44

)
, (1− x)2 ≥ 1− 2x, as a result,

1

(1− x)2
− (1− x)2 ≤ 1

1− 2x
− (1− 2x) =

2x

1− 2x
+ 2x ≤ 45

11
x.

Take x = 0.25
√
εt and then we finish the proof.
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G LIMITATIONS

Our results do not yet characterize the accelerated convergence resulting from faster eigenvalue
decay beyond a merely bounded trace. Although AGD and SR1 share the same worst-case
convergence rate, there exist classes of problems where SR1 converges more rapidly. This is also
supported by our experimental findings, where SR1-based methods demonstrate faster convergence
on problems with rapidly decaying Hessian eigenvalues. We hypothesize that this acceleration arises
from the larger eigengap induced by the faster eigenvalue decay. We think this can be proved by
obtaining a faster decay rate of the Hessian approximation’s trace and a more delicate analysis on
the regularized SR1 method that fully utilizes the benign property of self-concordant functions. We
leave this for future work.

H LLM USAGE

In the preparation of this paper, we employed Deepseek (a large language model) solely for the
purpose of refining language expression and correcting grammatical errors in the manuscript. The
LLM was not involved in any aspect of research ideation, data analysis, interpretation of results,
or substantive content generation. All intellectual contributions, including the formulation of
research questions, methodological design, empirical investigation, and critical discussion, originate
exclusively from the human authors. The use of the LLM was strictly limited to enhancing the clarity,
coherence, and grammatical accuracy of the text, and it did not contribute to the scholarly or creative
substance of the work.
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