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ABSTRACT

Quasi-Newton methods have recently been shown to demonstrate
dimension-independent convergence rate outperforming vanilla gradient
descent (GD) in modern high-dimensional problems. By examining the spectrum
of the Hessian approximation throughout the iterative process, we analyze a
regularized quasi-Newton algorithm based on the standard randomized symmetric
rank-one (SR1) update. The evolution of the spectrum reveals an implicit bias
introduced by the Hessian learning, which promotes a preferential reduction of
certain eigenvalues. This observation precisely captures the quality of Hessian
approximation. Incorporating the implicit effect of Hessian update, we show that
the regularized randomized SR1 method achieves a convergence rate of 1) (%)
for standard self-concordant objective functions, where deg is the effective
dimension of Hessian. In specific high-dimensional settings, which are common
in practice, this method preserves convergence speeds comparable to accelerated
gradient descent (AGD) while maintaining similar computational complexity
per iteration. This work highlights the impact of implicit bias and offers a new
theoretical perspective on the efficiency of quasi-Newton methods.

1 INTRODUCTION

We are interested in using quasi-Newton methods to solve the following unconstrained convex
optimization problem:

min f(x). ()

zER

The convergence properties have been widely studied since the 1970s in the asymptotic regime
(Broyden, 1970; BROYDENef all, T973; Dennis"& Moard, T973; Khaltan_ef all, T993). Recently,
a series of breakthrough works such as Rodomanov_& Nesferov (2027); lin"& Mokhfari (2023)
have obtained explicit non-asymptotic convergence rates for quasi-Newton methods for quadratic
objectives and local problems of general objectives. These initial results have been refined through
further research (Krufikov_ef all, 2073; Rodomanoy, P024; lin"ef all, P0254;R) and have offered
insights guiding the development of algorithmic design (Fin-& Tnd, 2027; Iin"efall, PO77).

In these analyses, non-asymptotic local convergence after the k-th iteration is given by, for example,
(ed/FInr l)k/2 ,(dr/k)" | (dlog K /k)", where d is the problem dimension and  the condition

number. This implies that superlinear convergence is achieved when k = €2(d), but no meaningful
rate is guaranteed for & = (O(d). The requirement of k& = €)(d) arises because accurate
Hessian approximation across all dimensions is necessary for superlinear convergence in regions
where the Hessian remains stable. Since quasi-Newton methods update the Hessian approximation
with constant-rank strategies, their convergence inherently depends on d. The high dependence
of the convergence rate on the dimension d significantly limits its interpretability in practical
high-dimensional optimization problems, which is a central challenge in modern learning context.

However, quasi-Newton algorithms, served as intermediate methods between gradient descent
methods, which have dimension-independent convergence properties, and Newton’s methods, which
are renowned for their rapid convergence rates, are expected to demonstrate dimension-independent
convergence and also surpass the performance of vanilla gradient descent even in high dimensions.
Empirical studies (Goldfarh_ef-all, 2020; Berahas"ef all, P027; Yousefi & Marfinez, 2023) also
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Figure 1: Early-stage convergence behavior of regularized SR1 versus GD and AGD methods in
linear regression tasks. Experimental results on a9a and w8a datasets reveal that the regularized SR1
algorithm matches the rapid initial convergence speed of AGD, while outperforming standard GD.

substantiate this performance advantage, demonstrating that quasi-Newton methods and their
variants (such as limited-memory versions) are more efficient than vanilla gradient descent in
high-dimensional problems. Thus, it becomes important to examine the convergence behavior of
quasi-Newton methods through the lens of complexity theory with the following naturally raised
question: how do quasi-Newton methods differentiate from gradient descent in high-dimensional
settings through the lens of complexity theory?

A key factor behind the success of modern machine learning algorithms is implicit bias, which states
that distinct optimization trajectories, despite converging to the same target (e.g. minimizing the
empirical loss), preferentially select certain trajectories over others. This preference can significantly
impact their practical effectiveness (Gunasekar_ef all, P0T/; Arora_ef all, POTY; Lief all, P0727).
In particular, the condition associated with implicit bias, low effective dimension of Hessian,
is ubiquitous and naturally arises in high-dimensional machine learning problems (Cai_& Hall,
P006; Liang & Rakhlin, 2020). This condition has been empirically substantiated (Sagun et all,
P0T18; Ghorbani_ef all, P0TY9) and serves as a fundamental theoretical assumption (Silin"& Fan,
2077). In the context of Hessian approximation, when interpreting the quasi-Newton method as
online learning processes targeting Hessian matrix approximation, while the update rules eventually
achieve full Hessian approximation and guarantee superlinear convergence, they inherently prioritize
specific dimensional approximations before the superlinearly converging phase. This work aims to
characterize such implicit preference and sheds light on how to enhance optimization efficiency in
high-dimensional problems, thereby establishing a theoretically guaranteed convergence rate.

In this study, we build upon the framework of randomized symmetric rank-one (SR1) algorithms
(Davidon, T997; Lin"ef all, Z027), a specific quasi-Newton method chosen for its simple update
rule, best local theoretical guarantees, and broad prior study in the recent non-asymptotic
convergence result (Ci-& Tud, DO21; Ye“ef all, P0773; Cm_ef all, P0744d). Concretely, we first
quantify the implicit bias of Hessian approximation in terms of its trace. Then, utilizing this
implicit preference, we demonstrate that regularization, a widely employed practical and analytical
technique in Newton-type methods (Mord, TY78), enables quasi-Newton algorithms to achieve
improved convergence rates. Finally, we illustrate the empirically observed global effectiveness
of quasi-Newton methods in high-dimensional optimization under a specific setting. This setting is
applicable across a broad spectrum of optimization problems.

Organization. The rest of the paper is organized as follows. Section @ discusses our work with
related literature. Section B provides necessary background for our algorithm to be analyzed. Section
B presents our main result for Hessian approximation and a proof sketch. Section B applies the main
result to regularized SR1 method and rigorously establishes global convergence rates of @(1 /k?),
as well as its application in high-dimensional optimization. Section B gives experiments on our
framework compared with other methods and Section [ summarizes the paper and points out its
limitation and future direction.
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2 RELATED WORK

Hessian approximation methods. In addition to traditional quasi-Newton updates and its variants,
other approximation techniques involves low-dimensional subspace Newton methods (Gower ef-all,
2019; Qu et all, 20T6; Doikov ef all, POTR; Hanzely et all, Z020; Jiang et all, 2024), and a various
of stochastic QN methods (Bordes ef all, 2009, Byrd et all, 2OT6, Gower ef all, 2016). Daikov ef all
(2024) noted the importance of spectral preconditioning and analyzed the influence of Hessian’s
spectrum to regularized QN methods. Our result fully consider the evolution of spectrum but does
not rely on its specific structure.

Cubic regularization methods. Regularized Newtons method stabilizes iterations in singular
curvatures (Liefall, P004; Burger & Kaltenbachert, P00f), with asymptotic quadratic convergence
proven by Polyak (200Y9). Adaptive variants, like Nesterovs cubic regularization (Nesferov &
PolyaK, 2006) (implicitly adjusting regularization via step size) and gradient norm regularization
(Mishchenkd, P0234; Doikov & Nesferov, 2024), achieve (9(1712) rates under Hessian Lipschitz
conditions. However, these methods require exact Hessians, requiring high computational
complexity. To reduce the computational cost, Benson & Shanna (Z01X); Ghadimief all (2017);
Kamzolov ef all (2023R); Scienrd (2024) proposed cubic regularized inexact Newton methods. Some
of them (Kamzolov ef all, Z023K; Jiang et all, 2024) also achieved global convergence rate O (75 ),
but they were based on either assumptions on Hessian approximation quality, or Hessian’s low-rank
structure. Note that they still introduced cubic acceleration strategies including solving a non-trivial
sub-problem in each iteration, which are beyond the scope of this paper. Our framework is much
simpler, more general, and easier to implement than theirs.

Quasi-Newton methods. The quasi-Newton method approximates Hessian information via secant
equations, with different forms including DFP (Davidon, 1991), BFGS (Shanna, T970), and SR1
(Davidon, MT99T). Recent work by Rodomanov & Nesferov (PZ02TH) established non-asymptotic
rates for greedy quasi-Newton updates, followed by analyses of classical (Rodomanov & Nesferow,
20272, P021a; Rodomanaon, 20724); [Yeef all, P0773; lIin_ & Mokhfari, 2023) and modified methods (Lin
ef all, PO27; L ef all, PD074H; Cm & Tnd, P071). Among these analyses, the greedy or randomized

. B(E—1) | I . S
SR1 achieves the fastest rate O((1—3) ™ 2 ' ) (Cin‘efall, D7) but requires O(d) iterations to enter

the convergence phase. These methods have been extended to non-linear equations (Ye_ef all, DO,
LCin“ef-all, P073), saddle-point problems (Xiao ef all, P074; Cm-& Tuaq, POZT), and other settings
(Ranganath et al], 2025; Benson & Shanna, POTY; Du_& You, 2024).

3 PRELIMINARIES

3.1 NOTATION AND PROBLEM SETUP

We consider the problem in Euclidean space RY. Denote Ayax(A) = A (A) > -+ > \;(A) as the
eigenvalues of a real symmetric matrix A € R?*9, Forany z,y € R? and function g, if V2g(y) = 0,

we denote ||z, = /2T V2g(y)z and ¢g* as the minimum of g. Throughout the paper, we will make
assumptions on the objective function f(x) as followed:

Assumption 1 (Bounded level sets). The diameter of the level set at the initial point x,

L(zo) Y {z e R : f(z) < fla0)}

is bounded by a constant D, then ||z — z*||, < D.

Assumption 2 (Gradient Lipschitz). There exist a constant L such that for all x,y € R%, we have
IVf(@) =Vl < Lllz = ylla-

Assumption 3 (Self-concordancy). The objective function f € C?(R?) is convex and there exists a
constant M such that for all z,y € R® and ||y — x|, < 5. we have

1

(1= My = 2ll.)*V2 @) < V21 0) 2 ==

sV f(@). @)

Assumption B is a standard assumption in the convergence of Newton method (Nesferov &
Nemirovskii, 994; Nesferov, Z0T8) and the recent non-asymptotic convergence analysis of
quasi-Newton methods (Rodomanov & Nesferow, P02 1TH; LCin_ef all, 2027).
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3.2 METHODOLOGY

Randomized SR1 update. The Hessian update in quasi-Newton methods can be viewed as an online
learning process which iteratively refines the approximation to the current Hessian matrix. The
SR1 update can be categorized into different versions. The classical SR1 methods find the Hessian
approximation By ; for the next iteration using the moving direction and the secant equation. The
recent progress on non-asymptomatic analysis originates from other types of SR1 update:

def (A — Bk)SkSE(A — Bk)
B =SR1(A, By, =B
k+1 ( ks Sk) K+ SZ(A " B)se

3

where A € R%*4 jg the target Hessian matrix at the current iteration, By € R9%d g the current
Hessian approximation, and s, € R? is the update direction vector for the rank-one correction,

superlinear convergence of quasi-Newton method utilizing the greedy update, and was later extended
to randomized update (Cin_efall, P(077) and secant equation update (Rodomanov & Nesferov, P07T4).
This paper primarily focuses on the algorithm bias of (B) from randomized update direction. To be
specific, given a distribution u defined on the real line R that satisfies

Eonp 2] =0, Epup[2°] =1, Epop[2t] = C1 < +o0, 4)
We draw a sample vector uy, whose coordinates are independently generated from .

Regularized Newton’s method. Regularization techniques, also referred to as the
Levenberg-Marquardt regularization (Moré, T97X), are commonly used to stabilize Newton-type
algorithms. They interpolate between Newton’s method and gradient descent through a damping
factor a;; > 0 and perform the update:

Tri1 = ok — (G + ogly) " Vi (a), ©)

where Gy, represents the second order information (typically Hessian matrix (Mishchenkd, PO23H)
or its quasi Newton approximation (Kamzolov_ef-all, P17734)). Large oy, biases the method towards
the gradient descent direction, which promotes stability in singular curvature, while small ay, permits
fast Newton-type local convergence when the local geometry is well-conditioned. As a consequence,
implementations of regularized Newton’s method progressively reduce a4, leading to a transition
from the unstable global exploration to the local faster convergence.

4 SPECTRAL ANALYSIS FOR A — B,

4.1 MOTIVATION AND MAIN RESULT

In this section, we start the analyses with the theoretical guarantees of SR1 approximating a positive
semi-definite matrix A € R?*?. Given an initial matrix Bg < A, the randomized SR1 updates the
approximation as (B) where sy, is randomly sampled from a distribution satisfying (B).

To illustrate the implicit preference of the update rule (B), we first provide a heuristic analysis
through a deterministic analogy of the update (B). While the simplified deterministic analogy lacks
mathematical rigor, it offers valuable insight into the algorithm.

In the deterministic analogy of (B): (1) the denominator sz (A —By)sg is replaced by a deterministic
scalar cqen, suggested by the concentration of high-dimensional vectors; (2) the rank-one sksg is
replaced by its expectation I;. Then, we can write the evolution of A — By, under the deterministic
update as:

1

Cden
Without loss of generality, consider a diagonal A = diag(A1, Aa,...,Ag) with Ay > Ag > -+ >
Ag > 0, and initialize By = 0. Under these conditions, all iterates in (B) remain diagonal. For each
eigenvalue \; of A, we analyze the evaluation of the corresponding error component [A — By];; by
its continuous-time approximation z(*) (k) evolving as:
dx® 1

_ L o2 290) = A
o L) S OL Y

(A =Bgi1) = (A -Byg) — (A - By)? (6)
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Algorithm 1 Randomized SR1 Update

1: Requires: Initial matrix By € R%*? 0 < By < A, distribution D.
2: fork=0,1,2... do

3: Sample a random vector si ~ D which satisfies (B).

4 Compute By.11 = SR1(A, By, sy).

5: end for

The flow admits the closed-form solution z(*) () = W In fact, this solution exhibits distinct
convergence behaviors depending on the magnitude of the initial eigenvalues:

s For \; > Cqen/t, the error decreases rapidly as 2V (t) ~ cqen /t;

* For \; < Cden/t, the error remains nearly unchanged: z()(t) ~ \;.

Thus, this demonstrates that the update rule (B) prioritizes components with large initial eigenvalues.

The following theorem, originating from this implicit preference for large eigenvalues, provides
an upper bound on the approximation error in terms of the ¢o-norm. Minimizing the f5-norm
equivalently imposes a uniform constraint on all eigenvalues of the error matrix, which confirms
the algorithms implicit bias on the spectrum: the SR1 update prioritizes error reduction in large
eigenspaces while having limited impact on small eigenspaces.

Theorem 1. Suppose that 0 < Bg < A, By, is produced by Algorithm I, then for every r > 3,0 <
p < 1, there exists K € N* satisfying K = O(r(Inr)? + In %), such that with probability at least
1 — p, we have

Tr(A — B
|A — By, < XA =Bo), )

r

Theorem [ shows that, with high probability, || A — By, = O(Tr(A)k~1).

The uniform bound of matrix ¢5-norm is more challenging in the proof technically, which is
corroborated in the related fields. Previous works on SR1 approximation have primarily focused on
aggregate eigenvalue measurements, such as the trace function (Cin‘ef-all, P0127), the log-determinant

4.2 PROOF SKETCH OF THEOREM [l

Without loss of generality, in the proof we can set Tr(A — Bg) = 1 by normalization. The difficulty
of proving Theorem [ arises from the uniform bound nature of the ¢5- norm and the online algorithm
nature of the SR1 update. These lead to one prominent challenge: the uniform spectral bound
|A — Bg]||, is not guaranteed to decrease sufficiently in one single iteration, regardless of sj’s
selection. This challenge necessitates an analysis of the decrease at each individual eigenvalue. In
fact, our proof investigates this fine-grained spectral analysis, and moreover, considers two different
phases in the iteration with different decrease patterns.

To illustrate this, Figure @ shows how the largest 5 eigenvalues of the approximation error matrix
A — By evolve empirically over iterations of SR1. This example considers the specific case where
the initial matrix has multiple identical largest eigenvalues, as presented in D (a).

In this case, the largest eigenvalue does not decrease during the earlier steps. Besides, the spectrum
distribution exhibits two stages during the iteration:

Stage 1:(2(b), Dispersion) Spectral gap emerges between large eigenvalues - the largest eigenvalue
remains while the subsequent eigenvalues decrease;

Stage 2:(0(c), Normalization) The largest eigenvalue is reduced to achieve the uniform spectral
decay.

This two-stage phenomenon results from that a rank-one update cannot simultaneously reduce
multiple large eigenvalues in the approximation matrix. In fact, this case serves as the worst-case
scenario in our analysis, and our proof also divides into two stages as the empirical results in
Figure D
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Figure 2: Top 5 Eigenvalues of A — B. X-axis: eigenvalue index, Y-axis: eigenvalue magnitude.

First, the following lemma formalizes the different decay rates of eigenvalues in Stage 1.

Lemma 1 (Informal version of Lemma B). Under the conditions in Theorem [, the i-th eigenvalue
of the approximation error matrix enjoys a rate of O(1/+/ik) with high probability.

In particular, focusing on the k-th eigenvalue demonstrates that A, (A — B,) < - after t = O(k)
iterations with high probability. However, this result does not establish the desired O(1/k) rate in
Theorem [. To improve this result, we consider two situations as below:

Situation 1: After @(k) iterations, the top k eigenvalues are relatively close in magnitude. In other
words, A1 /A is bounded and the largest eigenvalue )\; is thereby bounded.

Situation 2: After @(k) iterations, the top k eigenvalues are not uniformly distributed. In other
words, there exist non-negligible gaps among the top k eigenvalues.

Stage 2 exactly characterizes the reduction effect in the second situation: Using several iterations
after stage 1, the SR1 update notably reduces large eigenvalues, while the left, which have already
been reduced a lot, remains nearly the same. This stage inspires us to accelerate the decay rate of
the dominant eigenvalue, based on the existence of gaps among the top eigenvalues. We prove the
following lemma that quantifies the rate in detail:

Lemma 2 (Informal version of Lemma B). Under the conditions corresponding to Theorem I, for
anym < s € N*.0 <u < 1,r > 0, and under mild conditions, there exists K = (’)(;1222 ), such
that A, (A —B ) will be smaller than max{(1+u)\;(A —By), 2} iterations with high probability.

rr

Note that the conclusion in Lemma [ can be applied to any starting matrix B and corresponding
Bk, because the SR1 update is an online learning process, and By, satisfies tr(A — Bg) <
tr(A — Bg) < Cj (the condition in Theorem M), it is only the matter of indices.

In particular, for any 7 > 0, if m = O(s), L = O(1) and we have already reduced \,(A — B},) to
the level of 57— for some k € N, then A, (A~ By i) < ; where K = O(L)=0(r)-0(1) =
O(r). Note that using Lemma [0 we need (7)(7%) iterations.

Theorem [ is established by combining Lemma 0 and Lemma P. First, by Lemma @, A, (A —

Bk,) < 7= within Ky = O(r) iterations with high probability. Then Lemma @ enables an
induction:

Arj(A=Bky), A2 (A=Brork,), 0 M(A = Broyki4tk,)

are all smaller than % with high probability by induction, where ¢t = |log, |, K; = O(r).
The induction process is as follows. Take u = @, s=|r/2¢|,m = |[r/2""!] in Lemma . Once

As(A=Bggttk,) < 2(1+ -2=)% then we have Ay, (A — Byt kpyy) < £ (14 =)+

— 4r logy 7 logy 7
with high probability and ultimately we have \; < %( 1+ @)t < } The total number of
¢ . .
iterations of this process is . K; = (1 + t)O(r) = O(r). Then the proof of Theorem [ is
i=0

complete.

The proof of Lemma [l is based on the observation that if the i-th eigenvalue remains larger than
O(1/+/ik), the trace would decrease at an accelerated rate. The proof of Lemma D involves a delicate



Under review as a conference paper at ICLR 2026

Algorithm 2 A General Framework of Regularized SR1 Method

1: Requires: Initial point 7o € R? matrix By € R4, distribution D, stepsize {ry}, lo
regularizer {¢; } > 0, Hessian correction term {~j, di. }, subsequence {n;} C [N].

2: fork=0,1,2... N do

3 wr1 = xp — (WBi + (- + e)La) T (Vf (k) + ex(zr — 20))

4: Sample a vector s ~ D which satisfies (H)

5 Compute By 11 = dxSR1(V2f(x,, ), Bk, sk)

6: end for

construction of rational functions for comparison based on the eigenvalue structure of A — By. For
formal lemmas and proof details, see Appendix B.

5 INSIGHT TOWARDS REGULARIZED SR1 METHOD

5.1 A REGULARIZED SR1 FRAMEWORK

We present the general framework of the regularized SR1 method in Algorithm . Our goal is to
theoretically analyze its convergence behavior and establish a principled approach for parameter
selection, leveraging the Hessian approximation efficiency results derived in Section B. Algorithm &
utilizes the following strategies common in practice:

1. Randomized SR1 and regularized Newton formulas, which forms the algorithm’s basis.
2. lo regularization €y to enhance the stability of the algorithm.
3. Hessian correction term 7y, dy to ensure yxdpBr < V2 f ().

4. Lazy Hessian strategy nj, which only uses part of the exact Hessian.

The Hessian correction step aligns with the previous quasi-Newton convergence analyses (Cin_&
Lnd, D021, Rodomanov & Nesferov, PO2TR). The [, regularization is a commonly adopted practical
technique in optimization (Coshchilov_& Huffeid, P0T9; Zhang et all], 20T9). Note that Jiang &
Mokhfari (2024) used extra gradient similar to [, regularization in their regularized quasi-Newton
method. Sequence {ny} satisfied either ny = ni_q or ny = k, which means only changing the
target Hessian in certain steps and thus reducing the Hessian computational cost (Doikov_ef all,
2073; Chen_efall, 2075). We will show that with proper choice of parameters (could be decided in
advance), Algorithm [ enjoys an explicit global convergence rate.

5.2 COMPUTATIONAL COMPLEXITY

We briefly discuss the computational complexity of the inverse step (B + ckId)_1 Vi, In
quasi-Newton regime, B is typically set to be easy to compute its inverse, usually By = cI4. Since
By, is constructed via a sequence of rank-one updates, it admits a factorization By, = cI; + Uy U;r,
where U, € R?*. Applying the Sherman-Morrison-Woodbury formula, the inverse operation is
reduced to inverting a k x k matrix, which costs O(k?), along with matrix-vector multiplications
costing O(kd). Thus, typically, the complexity in the k-th iteration is O (k3 + kd) , aligns with the
previous research. However, as we will see, in our parameters scheme, where ¢ only change in a
few steps, it is unnecessary to compute the inverse of a k X k matrix in every iteration. We will
show that we can achieve the overall complexity of O (k3 + k2d) in the first k iterations instead of
O(k* + k2d). For details, we refer the readers to Appendix C3.

5.3 CONVERGENCE ANALYSIS

Let us first consider the quadratic case to get inspiration. That s, f(z) = %xTAz +b 'z +c, A= 0.
The following lemma establishes an elementary one-step descent property of the iterative scheme.
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Lemma 3 (Quadratic optimization). Suppose that V> f(x) = A. In one step of Algorithm D, if

OjBijandOSTkgm,thenwehave
1

feo(@pr) = f2, < (L4 (1 + €x)ri)?
where fc, (z) = f(z) + %z — zoll3 and 1 = Anin(A).

(ffk(xk) _fe*k)v (8)

Given that || A — By||, decreases at a rate of O(Tr(A)k~!), a practical choice implied by Lemma
B is accordingly increase 7, ~ O(k/Tr(A)). Let z* = argmin f. If 7 does so and satisfies
the condition in Lemma B, and ¢, = ¢ > 0,7, = 1, then after k = Q(Tr(A)ze 2) iterations,
fe(zy) — f starts to contract at least in a linear rate of 1 — Q(e2 Tr(A)~2). Hence, on one hand,
for quadratic convex problem, SR1 update leads f, to achieve an e approximate minimizer within
O(Tr(A)ze2) iterations. On the other hand, f* — f* < f.(z*)— f* = 5 Hx*||§ Combining these
two we obtain O(Tr(A)k~2) convergence rate. The proof for Lemma B and both local and global
convergence for quadratic functions are postponed to Appendix .

Now we shift our focus to general convex self-concordant functions. To clarify our motivation, for
the moment let Tr(V?2f(x)) < 1 by normalizing. We regard Algorithm D as an approximation of
optimizing quadratic forms with Hessian V2 f + €, 14, where €1, is decaying 5 regularized factor.

The key observation is stated as below :

1. If f — f* ~ O(eg), the Hessian perturbation will be no more than O(/€y).
2. If the Hessian’s perturbation is controlled at the level of /€, the Hessian approximation

will satisfy | V2 f —By|l2 ~ O(y/ex) i in atmost O(e,, )iterations. Then, Lemma B implies
f = f* ~ O(ey) within at most O(e,, ) iterations.

This basically answers the question why regularized QN method could exhibit faster convergence
than vanilla gradient descent and inspires us to gradually decrease ¢;, at a moderate linear rate to
maintain these two conditions in practical algorithm designs.

Guided by this observation, we can design an easy-to-practice parameter scheme and prove a global

convergence rate of O(d%; L2 M?D*/k?), where der = %.

Theorem 2 (General convex optimization). Under Assumption W, B, B, there exists an explicit
choice of parameters in Algorithm B such that for every € > 0, we only need at most
o (degL(M+ I)DQ(M—FE_%)) iterations in Algorithm B fto obtain a solution z such that

f(z) — f* < e with high probability.

For details on how to choose parameters, we refer readers to Appendix C24. The proof of Theorem
D is postponed to Appendix C2.

5.4 APPLICATION IN HIGH-DIMENSIONAL SCENARIOS

It is supported by both theoretical and empirical evidence that in many high-dimensional
optimization problems, the maximal Hessian’s trace 71" is guaranteed to be small, such as general
kernels (Terras, 1T999; Gu-& Gu, P013; Zhang et all, POTY; Blanchard & Miicke, P0IR), random
feature model (Rahimi & Rechi, Z007; Bach, DOT7 ), neural tangent kernel (Bieffi-& Bach, DOZ1; Hui
ef-all, POZT). In this situation, under Assumption [, B, Algorithm [ can achieve a global convergence
rate of O(1/k?) where the constant does not explicitly depend on d.

A concrete example is the fundamental problem of empirical risk minimization problem over a
generalized linear model, with the objective f(z) = L 3" | f;(a/z). Conventional assumptions
assumes that for each i € {1,2,--- ,n}, the data a; is normalized to ||a;||> < R? (results from the
common data normalization processing) and f; € C? is convex and Lg-smooth. Thus the Hessian
trace of f is bounded by

tr (V2 lz (af )tr(a;a <Z—||al||2<L0R2

n
=1
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Figure 3: Iteration numbers vs. f(z) — f(z*).

In low-precise regime, when k < d, the computational complexity of inverse step simplifies to
O(k?d). The gradient computation itself usually reaches O (kd?) (quadratic case) or O(knd) where
n is the number of samples. Therefore, the efficiency of regularized SR1 method is comparable to
AGD in high-dimensional problems with bounded Hessian traces.

6 EXPERIMENTS

In this section, we present illustrations on the efficiency of the SR1 methods in the regime before
superlinear convergence in the logistic regression tasks formulated by

n

min f(z) = % Zlog (1+ exp(—biaiTx)) ,

R
fAS =1

where d = 300,n = 49749 for w8a dataset and d = 123,n = 32561 for a9a dataset. We
conduct experiments on our regularized SR1 algorithm with randomized update (RSR1) and the
secant equation update (SSR1), gradient descent (GD), accelerated gradient descent (AGD) and
three classical quasi-newton methods (CSR1, CBFGS, CDFP, where ‘C’ refers to ‘classical’).

For data preprocessing, we normalize the feature vectors to improve the condition number of
the optimization problem. For GD and AGD, our parameters are selected through grid search.
Specifically, learning rates are chosen from the set {k x 10 : k = 1,2,5,¢t = —2,—1,0,1}, and
momentum coefficients are selected from {0.9,0.95,0.99,0.999}. For three classical quasi-newton
methods, the learning rates are selected by exact line search. For Algorithm [, our parameters
are set as described in the phase 3 of Table M regarding L. = 1, where ¢¢ = 1,5y = 0,
g = pleo,Seq1 — St = ¢/ e = LB = (1 —E)m = 4%@5 and ¢, p are tuning
hyper-parameters listed above. All experiments are repeated multiple times to ensure the stability of
Algorithm B. To plot f(x) — f(z*) as the vertical axis, we approximate f(x*) by the loss at iteration
500 of the best-performing algorithm.

We run simulations with 100 iterations, which is fewer than the problem dimension; as a result, the
SR1 method does not enter the superlinear convergence regime. The results in Figure B demonstrate
the following several implications: (1) SR1 methods consistently outperform vanilla gradient
descent, confirming the effectiveness of Hessian approximation preconditioning even outside the
superlinear convergence regime; (2) the SR1 method achieves convergence rates comparable to or

better than AGD, supporting our worst-case guarantee of O (k%)

7 DISCUSSION

This paper elucidates the mechanism underlying the global convergence of quasi-Newton (QN)
methods in high-dimensional settings. By characterizing the algorithmic bias in the spectral
evolution during Hessian approximation, we establish a favorable approximation quality under
randomized SR1 updates. Besides our proposed framework, we believe that the implicit bias
viewpoint could be taken into consideration in many other Hessian approximation methods, improve
local superlinear convergence rate by diminishing the dependence on the dimension and be applied
to a various of inexact Newton methods combining with other techniques such as cubic and
acceleration.
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Appendix

A  NOTATION AND THEORY STRUCTURE

First, we provide the necessary notation that appears in the Appendix. Denote Apax(A) = A\ (A) >
-++ > Ag(A) as the eigenvalues of a real symmetric matrix A € R?*<, For a positive definite matrix
A, we can endow R? with conjugate Euclidean norms:

[E2N O VT Az, IE2IHN CVrTA 13,2 € RY
The corresponding matrix norm for a matrix H is

def Hz
B 5 2 e [T
220 |2
Throughout the paper, x( is the initial point when optimizing (Il). For any convex function g,
provided that there is no ambiguity with the reference function g, we denote z* as any minimizer of
g, g* = g(«*) and for any &, > 0, denote g., (z) = g(z) + %||@ — xo||3, which is strong convex

and has unique minimizer ¥, with g., (x7,) = gZ,. Moreover, for any z,y € R% ¢, € R, we denote

~ |atma-
2

lzlly = /& TV2g(y)z, zlly =/ 2TV, (y)x.

In the Appendix, g could be the objective f or its scaling a f. If f satisfies Assumption B, B, then we
know that sup || V2 f(z)||2 < L and we denote deg = sup (V2 f(z))/L. Denote C as the absolute
constant of the O(-) term of Theorem [

Next, we present the structure of proofs and lemmas that appear in the main body of the paper. Figure
@ shows the relations between main theorems and key lemmas. An arrow from block A to B means
that the proof of B needs A. Some technical lemmas that are not essential are not listed in figure .
Theorem B is the detailed version of the key part of Theorem [. Theorem H is the formal version of
. Lemma B and Lemma B are the formal versions of Lemma [ and Lemma D, respectively.

Theorem B Theorem B

™

Lemma B

Theorem @

~ 7
e ™

Lemma B Lemma B
Lemma B Iﬁgma:nga Lemma [
Lemma Lemma
3,24 ra, [

Figure 4: Relations between the main results in Appendix.

B POSTPONED PROOFS IN SECTION 4

B.1 PRELIMINARIES

Before proving the Hessian approximation results in Section B, we present some preliminary results
about the basic properties of SR1 update (Lemma H) and a relaxation to our assumption (Theorem B)

15
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Lemma B states a basic property of the SR1 update. The matrix approximations A — By exhibit
monotonically decreasing eigenvalues. Given Weyls inequality (Lemma ), {)\;(A — By)}x
monotonically decreases with respect to k, forall 1 < i < d.

Lemma 4 (Monotonically decreasing matrices). If A = B = 0, then for any u € R? such that
u' (A —B)u # 0, we have
B <SR1(A,B,u) < A.

Proof of Lemma 8. For any v € R, since A — B > 0, we have

T A—-B 2
v'SR1(A,B,u)v =v By + M >v'Bv.
On the other hand, by the Cauchy-Schwartz inequality, we have

v (A-B)v-u'(A-B)u>(v' (A -B)u)’

Hence,
T(A-B
v SR1(A,B,u)v <v Bv+ w vI(A-B)v<v' Av.
The claimed result then follows from the above inequalities. O

Theorem B below could be used to give a stronger version of Theorem B: If a constant number of
eigenvalues are large while the sum of the rest is bounded, then the trace decreases to a constant
level within O(1) iterations.

Theorem 3. Suppose that By, By, is produced by Algorithm I, then for every k € N* and 0 < p < 1,

d
if > MN(A) < Ty, then there exists K1 = O (k: In (trA) +In= ) , such that with probability at
i=k+1
least 1 — p, we have
tI‘(A — BKl) < 2T;.

d
Proof of Theorem B. Denote R, = A — B, and tr(R,;) = b, for simplicity. Let T, = > X\ (Rp).
i=kt1
Define

1 M“-

)\i(Rt)
(j) == 1<j<d
by
We only need to condition on the process when ng) > %, 0 <t < K. Otherwise, for some t, we
d d
have by <2 > MN(Ri) <2 > Xi(Ryp), then the proof is finished. Let
i=k+1 i=k+1

def

Ay =

{tr(Rt+1) < tr(Ry) cgiigi; } C0<i<K.

By Lemma @ we have P(A;) > C4. By Cauchy-Schwartz inequality, we have

1 (ﬁ(k))sz b2
2y > E =t 7t s
r(Re) = 3 ( ARy ) kT 4k

Therefore, if A; is true, then

C
bear < bp — 2 br

In 20

k1In
Choose K = (C% max { = In % }] Note that {b; } does not increase and if

C3

b
O,K S 4k‘lnT—‘;

[{0<t < K: Ay istrue} | > > Tk
Cs

16



Under review as a conference paper at ICLR 2026

(here | A| means the cardinality of a set A) then
A8 1n by T
bKSbo(].—i’Iz>3 <T;.
This implies tr(Rg) < 7). Lemma IR yields that

CuK
]P’<|{0§t§K:Atistrue}§ ‘; ) <e <.
Hence, with probability at least 1 — p, we have tr(A — Bg) < 2T}. O

Since the relationship between A and By is invariant under simultaneous scaling by a constant
factor. We set tr(A — Bg) < 1 without loss of generality in the remaining proof of Appendix B.
Then the claimed upper bound in Theorem B can be obtained by rescaling a factor tr(A — By).

B.2 FORMAL STATEMENT AND PROOFS

Below, we present the deferred proofs of Lemma [0l and Lemma B. We begin by formally stating
Lemma .

Lemma 5 (Formal version of Lemma ). Suppose that tr(A — By) < 1, then for every 1 < k < d,
m > 0,0 < p <1, there exists K = O (m Inm 4+ In %) € N such that with probability at least

Proof of Lemma B. Denote R; = A — B, and tr(R;) = b; for simplicity. Define

J

MR
b

Since b; < 1, we only need to condition on the process when 3; (k) >/ LA ,0 <t < K. Otherwise,

for some t, we have Ag(R;¢) < %btﬁ(k) < \/j then the proof is finished. Let

tr(R?)
tI‘(Rt)
By Lemma @ we have P(A;) > Cj4. By Cauchy-Schwartz inequality, we have

(k)y2p2 2
R > L (ZA Rt) SCA S
m

Therefore, if A; is true, then

def

At:

{tr(Rt+1) S tr(Rt) — 03 } 5 0 S t S K.

C
bi1 < by — Esbt-

Choose K = [ - max {%gm In+ }1 Note that {b; } does not increase and if

K 1
\{Ogth:Atistrue}\204 > MAm

2 = (s ’
then -
=—inm 1
bK<bO<1—C‘5> <.
m m
This implies Ay (Rg) < 7+ < \/j Lemma I3 yields that

Ci K
]P’<|{0§t§K Ay is true} | < ‘; )ge—aﬁs}{gp.

Hence, with probability at least 1 — p, we have A\ (A — Bg) <

ot

17
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In the following, we formally state Lemma B, which proves the improved decay rate of the
eigenvalues based on the eigengaps.

Lemma 6 (Formal version of Lemma D). Suppose that tr(A —Bg) < 1, forany1 <m < s < d, if
A (A — Byg) < -1, then for every r > 0,p,u € (0,1), there exists K = O (;2T In2 +1In %) €

s+1’ m?2

N such that with probability at least 1 — p, one of the following statements must hold:
1
Am(A = Bg) < -, ©))
T
31 <i <K, A (A —=By) < (1+u)hsr1(A - By). (10)

Proof of Lemma B. We only need to condition on the process that satisfies for all 1 < k£ < K,
Am(A = Bg) > (1 4+ u)As1(A — Byg), otherwise () holds, and we finish the proof. Then by
Lemma B, there exist constant C5, Cg > 0 such that for each 1 < k < K, with probability at least

Cs, we have
umCeg

tr(A — Bjp1)s < tr(A — By), — (tr(A — By),)?, (11)

s2ln 2
u

where tr(H), means the sum of the top s eigenvalues of H.

Choose K = [ & max { In £ In % }W and let

_s’r
4um?2Ceg w?

def um CG

B, = {tr(A —Bpy1)s < tr(A —By), — (tr(A — Bk)S)Q} , 1<k<K.

s2ln 2
u

Lemma IR yields that

Cs K
]P’<|{O§t§K:Atistrue}§ 52 )ge—C%K <p.

Hence, with probability at least 1 — p, we have
CsK s%r s

0<t< K :B;istrue}| > > —In—.

Ho=ts ! H= 2 T um?Cq "

Note that tr(A — By,) does not increase, as a result of Lemma [3, we have
1 1 1 1 m 1
)\m(A_BK) < Etr(A_BK)s < Em < E? < .

2 s?2ln2

O

By leveraging Lemma B and Lemma B, we can complete the proof of Theorem 0. Concretely , we
prove the following generalized version of Theorem [II.

Theorem 4 (General version of Theorem ). Suppose that 0 <X By =X A, By is produced by
Algorithm [, then for every §,p,u € (0,1),r > 3, there exists K € N satisfying

1
ou
such that with probability at least 1 — p, we have

1
Kz(’)( (1+u)§r1+6lnr—|—ln),
u

op

A-B
A - By, < TAZB) (12)

Specifically, choose § = u = ﬁ then K = O (7‘ (In r)3 + In %)

Proof of Theorem B. First, let us assume Cy = 1. We use Lemma B to give an initial bound. Let L,
be the constant term in Lemma B. Set m — L; (4(1 + u)§r1+5 In = +1In %) in Lemma B. Then
for each 1 < k < r, with probability at least 1 — 21’7 we have

1
2(1 4 u) s VEri+s

Ai(A —B,,) < (13)

18
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Thus, with probability at least 1 — 2-, (I3) holds for all 1 < k& < r. Denote t = [gl, for all
1 <i<tiéeN,define
, 2
def ta1_i def [ 1_ (1+)6 def def S;Ti 2t
1 i = 2 i — 9i+1, Wi — In In —
( + ) s |—T —‘m 8+1Q ung u+np
We consider the following non-negative integer-valued random variables:

1
Kozm,Kidéfmin{kEN,kZKi1:)\mi(A—BKi)§ }, 1< <t
Ti+1
We claim that there exists a constant C'7, such that conditioned on (I3), for each 1 < i < ¢, with
probability at least 1 — ;; , we have K; — K;_1 < C7Q);. The proof of this claim is as follows.

1. Step 1: First, Let’s check that \,,,, (A — Bg,_,) < TI& Since K;_1 > m, we have

1
A (A—Bg. V<A, (A-B,)< ——u .
z( le)— L< ) QW

It suffices to prove that
2v/mrttd > 1+ ;.
Taking the value of m;, s; into the above inequality, we only need to prove
271740 > 1 4 1 41,

It holds since + < 14+ forall i € N.

2. Step 2: Utilize Lemma B to prove our claim. Let C7 be the constant term in Lemma B. Set

K — C;Q;,r = 1,8 = 8;,m — m;,p — 4

2t

in Lemma B. Then with probability at least 1 — £, we have either

1 1

Ami(A_BKi—lJFK) <—-< )

i Tl

or
1 1
31 <0< KA (A= B, a0) < (14 wAg1(A = Br,_ 1) € — o = ——.
T Ti+1

In both cases, we have A\, (A — Bk, ,1x) <
leads to our claim.

i—1 + K and this

From our claim we know that with probability at least 1 — £

”M“

Qﬁzl—p,wehave

S?Ti S; 2t
Kt<K0+C7ZQ1<KO+tC7maX QIHE—Fhlf

=1
6 2t
< Ko +tCy (wlnr+ln)
U U P

1446 244
<K0+C[1(” ]15+1 +>
op
Choose C' = max{L;,C7} and then we finish the proof when Cy = 1. For general cases, by
rescaling then the proof is complete. O

d

Corollary 1. Denote T, = > N (A — By). Suppose that 0 < By = A, By, is produced by
i=k+1

Algorithm 0, then for every p € (0,1),r > 3,0 < k < d, there exists K € N satisfying

T 3 1 )
K=0(kln—+r(Inr)"4+1In- |,
( T (In7) p
such that with probability at least 1 — p, we have

7
[ (14)
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Proof. By Theorem B, after K1y = O (k In % +In %) iterations, we have tr(A — By, ) < 2T}

with probability at least 1 — £. Restart from K, by Theorem B, after K = O (r (In T)S +1In %)

o tr(A—B . -
iterations, we have [|[A — Bk, 1 x,]|l2 < % < It with probability at least 1 — £. Then

taking K = K; + K finishes the proof. O

C POSTPONED PROOFS IN SECTION A

C.1 PROOF OF CONVERGENCE RATE FOR QUADRATIC FUNCTIONS

Proof of Lemma B. First consider the case when ¢, = 0. Since f is quadratic, we have

fz) = %(x — x*)TA(m — ")+ ¢, Vf(x) = Az —z¥).

Hence, 1 —2* =z — 2" — (B + iId)_lA(xk — z*), and take norm on both sides we have
1 -1

I, — (Bk + Id> A
Tk

k41 —2%[|a < s — 2"l o

A

—1
1 1
I,— Az (Bk + Id> Az
Tk

[z =27 5-
2

Since - > [|A — By||,, we have By, + ;-1 = A. As aresult, Az (B + %Id)_lA% =< 1,. This
indicates that ' '

. 1
I,— A*(B, + —I,) ‘Az
Tk

1 1
= Amax (Id — A3 (B + Id>—1A2)
2 Tk
1
=1— Amin (A%(Bk + Id)lA%)
Tk
—1 _ 1 1 _1
=1- >\max Az (Bk + 7Id)A 2
Tk

1
<1-Aghs (A—%(A - Id)A—%)
Tk
1
1+ /ﬂ’k.

The inequality above follows from the fact that Bj, < A. Note that f(z) — f* = 3|z — z* Hi then
the proof is complete for €, = 0. For any ¢;, > 0, this iteration can be seen as one step for quadratic
fe,, withits Hessian A + ¢;1, and Hessian approximation By, + €;1,4. It can be proved similarly as
above. O

Theorem 5. Suppose that the update in Algorithm B has an initial approximation matrix Bg such
that 0 < By < A and tr(A — By) < Ty. Then for every ﬁ > ¢ > 0, there exists absolute

L1
constants C > 0, kg = O(Tj 2e73), such that if we set

T 1 1 k<8C (14 1n% ,
ek = 6’ —_— = E
UT Ty | SRS ks g0 (14mE),
with probability at least 1 — p, for all k > kg, we have
Froe (@) = fre < (1= VToe)* ) (frc(20) = f7,e): (15)
And for k = 2ky, we also have
f(war,) — flz*) < eTyD?. (16)
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Proof of Theorem B. First suppose that T, = 1. From Theorem [0 we know that there exists a

constant C' > 3 such that for every » > 0, ||A — B ‘ < % with probability
2

[Cr(Inr)34+CIn %J
at most 1 — % A straightforward calculation shows that & > C'In % when k£ > 8C (1 +In %)

Hence, if k > 8C' (1 + In %), then there exists a unique 7 > 1 such that C' (r (In r)3 +1In ’%) = k.
From Theorem [l we have with probability at least 1 — %, [|A — By ||, < . Now we evaluate r in
the form of k. Since r < k, we have r(In k)3 + In %ﬁ > % This means that

t _2Ink-Ini
> 00000 P
- (Ink)3

T
By k > 8C (1 +1In %) and performing a basic calculation we can see that

E—2lnk—1n

>
C =2

L
8C"

SRR

ko
Therefore, with probability at least 1 — Y 5 > 1 — p, we have for all & > 8C (1 +In %),
k>2

[|A —Byl, < M, which implies 7, < . Then Lemma B tells us that

1
[A—Bxll,

* . C
lzk+1 — 2l ayer, < |2k —2Zllaqer,, Vhk2>8C (1 +1In p> . (17)

1+erg

Note that tr(A —Bg) < 1,50 A — By < I, so for & such that r;, = 1, we have By, + (% +e)lg =
A +eljand ry < m. Using Lemma B again we have

* * O
lzk+1 — 22l ajer, < ok — 2oy, VE<8C (1 +1n p) . (18)

Combining (I2), (IR), and f.(z)) — f* = %||zp — a2 ||i+dd, recursively, we have

k
fe(mrpn) = £2 < [T+ rie) 2 (fe(wo) = £7),  to=[8C <1 +1In i)] (19)

t=to
Note that if t = Q(e~2), ry = Qe 2). As a result, (I[9) leads to (I3) directly.
For general Ty, consider the function g(x) = f(x)/To. Then Algorithm @ is equivalent to

1 —1
Tyl = T — (TOBk + Ty (T + e’:‘) Id) (TOVg + Toe’:‘(l‘k - a:o))

0Tk

Hence, using the above result to g and notice that g. = fr,./Tp, we know that (I72), (IR) still hold.
Thereafter, we have

k
froe(@isr) = fiye < [T+ Toree) ™ (Fre(@o) — 7). (20)

t=to

~ _1 1
Ift = QT ® g_%), then Torie = QT 5%). As a result, (Z0) leads to (I3) directly.

=

—2) such that kg > 5 LTBE In fT“Ei?,)JZfTOE

Choose kg = O(T, *¢ , then (3) implies that
D2

Iroe(Tary) — f1,e < ETOQ . Hence,

eTo|lz* — @o|?

f(war,) — f* < froe(van,) — fr,e + 5 <eT,D?.
Then the proof is complete, showing that the convergence rate is O(TyD? /k?). O
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Algorithm 3 Phase 1 of Algorithm [

1: Requires: Initial point zy € R, stepsize T, l» regularizer €y > 0.
2: fork=0,1,2.. Sl —1do

3: Tht1 = Tk — L+60 (Vf(%k) + Gk( Ty — xo))

4: end for

From Lemma B, we can also derive a superlinear convergence rate for u strong convex quadratic
functions as stated in the following corollary.

Corollary 2. Suppose that the choice of parameters in Algorithm O is the same as in Theorem B
except for ex. If A = uly and we choose €, = 0, then for all k >ty = [8C (1 + In %)1, we have

fl@ps) - H <1+ SCT ln e >_ (f(zo) = f7) @1)

with probability at least 1 — p.

C.2 PROOF OF THEOREM [

It may be confusing if we directly state how to choose the parameters. Therefore, We will first break
down the process of Algorithm Dinto 3 phases, add requirement on the parameters in each phase step
by step, give convergence analysis respectively and at last combine the result in different phases.

In Algorithm B, we require {n} to satisfy either ny, = nyx_1 or ny = k. This induces another
sub-sequence {S;} C [N], where S; is the t-th integer such that ng, = S;. Hence, for k €
[St, St4+1), we have ny, = S;.

Divide the algorithm into 3 phases:
¢ Phase 1: (Gradient descent) k € [0, S1);

* Phase 2: (Hessian approximation) k € [Sy,.53);
¢ Phase 3: (Quasi-Newton iteration) k € [Sa, N].

The first and second phases are for preprocessing. They aim to give a rough estimation for the
minimizer of f.,(z) and the Hessian V? f(x% ), which only cost a constant number of iterations. The

last phase is the key step, exhibiting @(1 /k?) convergence rate under proper choice of parameters
and preprocessing.

C.2.1 ANALYSIS FOR PHASE 1
Parameter requirement for phase 1: For k € [0,57), set ngy = v, = dx = 0, € = €0, Tk = %

Algorithm B shows the first phase of Algorithm @ under the above requirement. It is actually
minimizing a g strong convex function f.,(z) = f(z) + S|z — 2¢|3. As a consequence, it
exhibits a linear convergence rate.

Proposition 1. Under Assumption I, B, in Algorithm B we have
egS
s, — a2, lls < 2¢7 %55 D. (22)
Proof. Let g(x) = f(x) + 5|l — xo||3. Then phase one is equivalent to iterating as
1
Tp1 = T — 7-Vg(2k),
g

where L, = L + o > sup || V?g(z)||2. It is well-known that for a m strong convex function which

is Ly gradient Lipschitz, if the stepsize a € (0, 7=27—), then we have
k
* 2mL1 *
o~ a1 < (1= a 225 )y = o7
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Algorithm 4 Phase 2 of Algorithm [

1: Requires: Initial point x5, € R?, matrix Bg, € R4*¢, distribution D.
2: fork=51,51+1,...5—1do

3 Thy1 = Tk

4: Sample a vector s ~ D which satisfies (H)

5 Compute By 11 = SR1(V?f(x1), By, si)

6: end for

1
In our case, m = €g, L1 = Ly, = i Hence,

280

k)2 .
_— o — |2 < e T2 D.
) -t < e T

o~ 'l < 1~
Then the proof is complete. O
Proposition [ will help to satisfy the condition 2 in Theorem B.

C.2.2 ANALYSIS FOR PHASE 2

Parameter requirement for phase 2: For k € [S1,53), setng = S1, e =7, =0, v, = di, = 1.

Algorithm B shows the second phase of Algorithm [ under the above requirement. It is simply
doing Hessian approximation to V2 f(zs,). Applying Theorem [ we could evaluate the Hessian
approximation quality, which will help to verify the condition 2 in Theorem B.

Proposition 2. Under Assumption D, in Algorithm B, if 0 < Bg, < V2f(xs,), then there exists an
absolute constant C, for every r > 3,1 > p > 0 such that So — S1 > C (r(ln )3 +In %) with
probability at least 1 — p, we have

deg L

IBs, = V*f(zg,)l2 < (23)

Proof. Let A = V2 f(xg,) and By refers to Bg, in Theorem [ and apply this theorem we directly
finish the result. O

C.2.3 ANALYSIS FOR PHASE 3

Let Ny = S¢y1 — Sy We begin to consider the last phase, the most important one, in which ¢y, is
relatively small (¢, = O(1/M?D?)). We come up with the first requirement as follows:

Parameter requirement for phase 3: For all ¢ > 2 and k € [S;, Si11), there exist 0, 4, oy, Bt
such that % =1L (L + M) J€r = Ley, and v, = at_17dk = 1for k € [St, Ser1 — 1),

Nt g at
Ve = a;l,dk = (1 — B)? for k = S;41 — 1. The specific values of 1, ¢, ay, 3¢ should satisfy
conditions in Theorem B.

From the above requirement, it can be checked that phase 3 are in the form of Algorithm B. Note
that we write in the form of double loop. However, this is just for the convenience of proof. Our
proposed Algorithm [ does not need it. The following theorem provides suitable conditions for
parameters in phase 3 and its convergence result.

Theorem 6. Under Assumption [, O, B, suppose that in Algorithm B, the following conditions are
satisfied:

1. For the initial point and Hessian approximation, we have

1 2
€2 < T1IMED2L Bs, X V*f(xs,);
« Leo D\/LEQ . 1
Hmsz - stz| x;gz < 33,2 HBSz - V2f($sz)H2 < 2me{MD\FL: m}\/?%
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Algorithm 5 Phase 3 of Algorithm [

1: Requires:
Initial point x5, € RY, {¢;} > 0, initial matrix Bg, € R?*9, correction parameters {3; }
Distribution D, stepsize {1 }, factor {c;}.

2: fort=2,3,... do
3 fork=0,1,...,N; — 1do
4 Trr148, = Tres, — a(Burs, + (5 + Le)1a) 'V fre, (2hts,)
5: Sample sy4s, ~ D which satisfies (B)
6 Update: Bk+5t+1 = SR].(V?]C(IS,,), Bk+Su Sk+5t)
7 end for
8 Correct Hessian approximation: Bg, , = (1 — 3,)?Bg,,
9: end for
2. Denote c* = Wl%, for parameters, we have for all t > 2,
1\ _(,_ 3MDV2Le "
&t = 1+ c €2, ¢ = 39 )
B, — MD+/Le; 3\ /Et < 1 < 24/2¢4
' 4 7 2MDVL MDVL
3. When proceeding the inner loop as stated in Algorithm B, we guarantee that
«  ||Les 21D 9L 1
ngt _stt| v, < 330 Vet HBSt V2f(xs, , H2 mm{MD\F MD\/Z}\/a

Then for every € > 0, to get a solution z such that f(z) — f* < e, with high probability, we only
need at most O(dog LM D?e~ %) iterations in the 3rd phase of Algorithm D.

Proof of Theorem B. For simplicity, we first consider the function f such that L = 1. Then for
general f, the result can be derived from f/L by scaling.

For notation convenience, denote z; as zg, and G; = Bg,, H; = (1 — 5t—1)2Bs,, . We aim to
give a uniform bound to the error measure in the form of ¢; in each sub-problem solving process.
The constants R;, w that appear in the proof can be seen in Lemma [l. According to Lemma [, if
for every t > 2, all conditions in this lemma hold, then we can prove the convergence by induction.
From the description of Lemma [, we only need to prove that:

1. For t = 2, (&9),(8),(E7) and Hy < V2 f(zg,) hold.

2. Forevery t > 3, (B8) and Hét —V2f(xi1)

’2 < Ry\/&7 hold.

The above two statements can be directly verified from our conditions in thls theorem. Next, we give

an upper bound to the number of iterations in each inner loop. Take ¢ = W in Lemma [ and we

can check that our choice of parameters satisfies its conditions by using Lemma 2. Therefore, for
every k € [Sy, St+1), we have

. qM D .
< (1- 252 VE) o

Note (82),(B3) in the proof of Lemma [ also give a bound to th_l —x

* t 1 Et—1 D
Et;<(wxf+ —y )< NGE

€t

lonss = 22,1

* )
(1351/

frecr —a

T 1-MRi\/5 - Mw,/e;
Hence, for k — S; > qﬁ[}j‘;ja, we have
et qMD
_ 12177
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Table 1: Parameter settings for Algorithm [ in different phases.

Parameter Phase 1: Phase 2: Phase 3:
ke0,S1) | k€ [S1,S2) k € [St, Sty1),t > 2
N 0 51 St
€k (11M D)2 0 Le;
i 3 0 T (e
Vi 0 1 ot
dy, 0 1 Lfork < S;t1—1,(1—B)?fork = S;,1 — 1

Then (EX) holds. By Theorem [I, with probability at least 1 — p, we have

19 40MD [, 40CMD\® 1
I v 2 < - _ 9 > 2.
1Gr = V2 f @)y < gozpVEn k=St = Clen (19\/5 (m NG > +1np>

MD+M~'D™!

Thus, we only need to iterate N, ~ © ( NG

) times in each inner loop. Now we choose
m = [4096log, 7= |, then we have
1 €

<
2 > 2"
2M? ||z* — xOHz 2 [ — xOHz

Em < pMeg < 2M 3¢ -

Similar to the proof in Lemma B, we have

* 1 * Em 2
f(.’l':m) - f(‘r&‘m) S (1 _ Mme — x* Em )2 (me - xé‘m mzm)
k]2
10 Jwo—allz €
-9 1000 T2

This implies
f@m) = £@) < flam) = flal,) + f(@2,) = f@) < 5+ 2 a"]l} <.

Em

Without the loss of generality, we can set M D > 1, otherwise we can choose our M = D=1, Then

. . It N 2 . . .
to obtain the solution x,,, we only need at most m - O (%) =0 (%) iterations in total.

Then we finish our proof for L = 1.

For general L, consider Algorithm B as a process to minimize g = f/L. For conditions in Theorem

B, note that the quantity M D+/L remain the same after scaling, so the condition on 1, €4, cvt, B¢
remains the same as well. Note also that V2g = V2 f/L and B}, = By, /L where By, is the Hessian
approximation for V2 f, B}, is the Hessian approximation for Vg using initial Bj = B/L, so the

condition for Hessian approximation is consistent after scaling. Note also that \/2 T (V2f + Lc)z =

VL\/2T(V2g + c)z and the z} _ of f is the same as the 2% of g, so the conditions related to ||z —y||¢
is consistent after scaling.

Therefore, by our requirement on parameters, phase 3 equivalently performs the optimization on g
using parameters consistent with the case when L = 1. Hence, to find x,, such that g(z,,) — ¢* < ¢,

we need at most O (%) iterations (the self-concordance coefficient for ¢ is M+/L) . This
means to find x.,, such that f(z,,) — f* < Le, we need at most 1) (%) iterations. Then the
proof is finished. O
C.2.4 FINAL PROOF

First, we summarize the previous results and present the explicit form of parameters in Table [, D.

Combining the results in 3 phases, we can easily give a proof for Theorem [
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Table 2: One example for the value of €;, o, By, ¢, St, £ > 2.

Parameter | Values
4096 =2 1
€t (4097) 21M2 D21
- 1— 3MD3,2/2Lst)
MD+/Le;
Bt — 4
3\t 1 2/2¢e
Mt 2M DL = ne = MD\/tZ
Sy S| = L—Ziso In (6(:1)//§2D>
So=581+C (r(lnr)?’ +In %), where r = 22dg max{1, M2D?L}
3
Str1 — St = Cdegy (4011\61\1/%@ (ln 40?3{/%\5) +1In ;)

Proof of Theorem B. Suppose that the parameters satisfy the requirement in each phase, fix a
failure probability p. set g = zrrpz. S1 = LEZem 92D = O(M2D?L), S, = Si +

0

c (r(ln )%+ In %) where r = 22dug max{1, M2D2L} = O(deg M2D?L). Set

3
40M D~/ L 40CM D~/ L 1
Ny = Si41 — 5¢ = Cdegr 0 VL (hﬂ o \/>> +1

-, t=>2.
NG 19,2, " =
Then by Proposition [, for € > ﬁ, we need at most @(M 2D?L) iterations. By Proposition D and

Theorem B, for ¢ < 15, we need at most O(degM2D?L + dog LM D% %) = O(deg LM D%~ 2)

iterations to let f — f* < e with probability at least 1 — O(deg LM DQE_%)p. Combining two cases,
we finish the proof. O

C.3 ANALYSIS OF COMPUTATIONAL COMPLEXITY

We now give a computational complexity analysis for Algorithm D in the parameter scheme
described in Table M, . We first demonstrate the computational cost for a single iteration.
This efficiency stems from the low-rank nature of the Hessian approximation By. According to
Sherman-Morrison-Woodbury formula:

(A+UCV) ' =A' —A'U(C' +VTA'U) ' VTAT!

Note that in the scheme, our Hessian approximation, By, starts from Bg, = 0. Since each iteration
involves only a rank-one update, the rank of By is at most k. If we store the update vectors u; from

each step, then By = i wu! = UkUZ, where U, = (uj,ug, - ,ug). For any a; > 0, by
setting A = aily, C :lfkl ,and V = U in the SMW formula, we derive:
(axlq + U UL = a1y — a0 ' U (I + 0 ' UL U) 7'U; -0 '
Consequently, for any vector w, the term (axI; + UkU;)’lw can be computed as:
(axly + UpUL) 'w = 'w — a), ' U (agly + UL Up) " 'U L w.

Let’s break down the computational costs:

« Calculating w; = U] w costs O(kd).

* Assuming U/, Uj_; is already available, then U] Uy, can be formed by:

T T
U 1Up—1 Up_jug

U, U, =
k Yk T T
u, Up_y u,, uy

This only requires computing U}, uy, and u; uy, both costing O (kd).
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« Inverting the k x k matrix (axI; + U} Uy) costs O(k?).
* Calculating wo = (aI; + U] Uy) 1wy costs O(k?).
* Calculating w3 = Upwa costs O(kd).

* Finally, computing w4 = a, 'w — w3 (the final result) costs O(d).
Therefore, the total computational complexity in the k-th iteration is O(k3 + kd).
However, if for k € [St, S¢11), ay are the same, then for k € (Sy, S¢11), we have

-1
(I, + Ul ULt = [ak—lI’C—l +U_Urr Ul juy }

u;—Uk_l ar + u;uk
-1, X7'bb'X"!  X7'p
—_ X + Qr—lex_lb c—bTX-1b
b'X"™ 1 )
T c—bTX1b c—b'X-1b

where X = aj_1I;—1 + U}_,Ui_1,b =U]_,uy,c = aj +u} ug. Since X! has already been
computed in the (k — 1) -th iteration, we only need to compute X ~'b, which only costs O(k?).
Hence, the total computational complexity in the k-th iteration is O(k? + kd) except for k = S;.
Note that in our choice of S; (see the proof of Theorem I in C24), satisfies Sy — S;—1 grows at
least linearly, so S; < k only for t < O(In k). The total computational cost in the first k iterations
is at most

> O +1d) + O(Ink)O(K? + kd) = O(K® + k>d).

=1
D USEFUL LEMMAS IN APPENDIX

Lemma [ depicts the decrease of trace during the SR1 update.
Lemma 7. Denote R, = A — By, then there exist constants Cs, Cy > 0 such that:

R2
P <tr(Rk+1) < tr(Ry) — C3 EiER:D > Cy. (24)

Proof. Denote Ry, = A — By, then by (B) we have

RkSkSZRk
R =Ry — ———— 25
k1 k STRysn (25)
Taking the trace on both sides of (I3), we have
s R?s
tr(Rpp1) = tr(Ry) — 228 (26)

S;Rksk '
From (@) we can see that

E [sp Rysi] = tr(Re), E[s) Risi] = tr(R}) (27)
By Markov inequality we have

1
By Lemma [ and Lemma A we have
1 ®)  E[s; Risy]
P (s) R2s, > -E[s/ R? ) > kPR
(sTRts.> g siRin] ) S ettt
() tr(R3?)?
= A3+ C)u(RY)?
1
> 29
~ 43+ Cy) 29
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Combining (£8) and (Z9) we have

PG“R“QSt“R“_1a3ngLRw)ngicm' (30)

O

Lemma B is the key lemma to prove Lemma B, which constructs a rational fraction to compare its
roots with the eigenvalues . We can show that the top eigenvalues after one iteration are smaller
than these roots respectively with a certain probability and quantify the amount of top eigenvalues’
reduction by the difference value between the previous step’s eigenvalues and these roots in each
iteration.

Lemma 8. Under the condition of Lemma B, if (1) does not hold, then there exist constants
Cs,Cg > 0 such that for all 0 < k < K, with probability at least Cs, we have

umC,
= lnj(tr(A_ B)s)% (31)

tI‘(A —Bii1)s < tI‘(A —By)s —
where tr(H)s means the sum of top s eigenvalues of a matrix H.

Proof. For simplicity of notation, denote d; = \;(A — Bg), A; = A\;(A — Bgy1). We first assume
that d; are distinct from each other. Let
A-B,=UDU'

be the orthogonal decomposition of symmetric matrix A — By. Denote U = (u;;)axd, Sk =

(s1,--+,84) ", Usy = vand v = (vy,--- ,vq) ", assume that v; # O for all i, then we can rewrite
(@) as:
Dvv'D
A-B =U(D-——)|U".
b ( v Dv )
By Lemma 4, we know that \; are the roots of
d
div? 2
q(x) = Z dq, —x - Zdlvl

Now we begin to progress our proof in the following steps.

1. Step 1: First, we find a special point in (d,,, ds11). We claim that the set

s+l 2 2
Qdéf{ Sdif{zdm73dm] Z & 1201n30(1+s)}7ég

u+2 u+3 |z —d;| — u
The proof of this claim is as follows. Let T' = 501 [di — d?, d; + %df] then the integral
i=m
s+1 s+1
/S\TZ |x_d|dx<22d2/ fda:

s+1 s+1 s+1
—zz dzln—d2—22d2ln—+42d2ln—

s+1

(@) 30 1

< 2(s —m)dy, In = +4d,, ¥ diIn—

< 2(s—m)d;, In " + 2 ndi

(b) 30 1

< 2(s —m)d?, In —+ 4dy, (s —m +1)d,, In -

< 2s <ln @s - 21ndm> dz,. (32)
u
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Here (a) holds because d; < d,,, and (b) holds because d; In 7~ < d,y, In g~ by Lemma I3.
Meanwhile, we have

3d 2d u 1 ud udy, _ ud
S\T| > =m . N2> i -—0>—". 33
15 |—u+3 u+2 15;%’ (u+3)(u+2) 15 — 60 (33)

Combining (B2)(B3) we know that there exists z € S\T such that

7 - < _ .
E E | " <1 dy + 2d,, In ) " (In30 — Inw + 21n(1 + s))

(34)
The last 1nequa11ty in (B4) can be derived from Lemma [3 and the condition that d,,, <

+1 g =. Then we finish the proof of our claim.

2. Step 2: Next, we construct a rational fraction r(x) in order to compare with ¢(x) as follows.
Letm < j < ssatisfy d; < z < d; 1, denote M = 8(3 + C) and define

d J

o~ d202 d2 2 d2 2
r(z) “:fz(d;fzx)_ > Zd + )39

i:j—i—l i= m+1

Using Lemma D2, we can know that 7(z) = 0 has j solutions y;,1 < i < j such that
dy > pyp >do > - >dj >y,
and we have the following equation by (B3)

J Z dzzvzz d J 2 9
= d v dzv:

d; — ;) = =1 . M = d; —i7i (36
> (di = i) L =3 oty Z + =5 00
=1 ’L:j+1 1=m-+1

. 3 u
Note that fori < m, d; — z > d; — mdm > mdi’ therefore,
m J d2 2
gZ(l—i- )dv—l— > 7 : (37)
=1 i=m-+1 Z
d

3. Step 3: Now we compare \; with ;. Since v; = > uys;, we have E [v?] = 1 and
=1

4 4
(Zuipsp> (C)E ZUW p+6 z u; uqugsg
p=1

1<p<q<d

2
<(3+Cy) <Zuw> =3+C.

The equality (c) holds for the same reason as (). For each m <[ < j, we define random

variables
d 2,2 J 2,2
def def def dsv; d?v?
XeEdv,,YSE:dff,ZeE 7+§7
- Z—di . di—Z
=741 1=m-+1

By Lemma PO and Markov inequality, we have
P(Ade‘ {Y> IE[Y],X<2MIE[X],Z<2M]E[Z]}) > (38)

In the rest part of this step we condition on A, then by (BZ), we have

3 I 20?2 8M I @22
<[|l14+—-1|X — 2 _ —_E[X Lt <.
r(z) < ( + u) + [X] — Z <0

, di—z u .
1=m-+1 i=m-+1
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Hence, p1; > z, and

] d2v? 4 d?v?
Zd )_Z,Ul dz_X

i=1 —H) ST
d v d2v? d2v?
= r(’UJZ)—F Z Zd —+ dl_l _ Z z_ld _
—it+1 i=mt1 H PTG
d
>z d?v? d2v?
S (30 ) S
Pt Hy — d;
J+1 1=7+1

d
—MZdi— >%E[X]—X20.

This implies A; < p;. Therefore, d; — \; > d; — . Since Z < 2ME [Z],Y > %}E [Y], by

j
(BA), we can bound Y (d; — p;) as follows
i=1

8M
M, <2ME[Z] + —IE [X]
(c) 120 @2
< 2M In 1 2In(1 M L
(u <30+ 30 —Inw+ 21n( +s)>)+ <i;22_di
(d) 120 2 d
< it )
_QM( - <30—|—ln30 1nu+21n(1+s))>—|—M(1+u) ('Z dz>
i=s+2
12 1 2 2
§2M( 01(+5)+1+>. (39)
U U
The inequality (d) holds due to the fact that
2 2(1
S A B R R i) S S
u+ 2 u+ 2 u+ 2
Take Cg = 30010 77> by (B9) and some numerical calculation we have M; < ln 2 thus,
> a2
J J i
Y i=1 uCg 2
di — Ni) > di — pi) > — > > — d;.

Note that m < j < s, so we have

J . 8 . s 2 s 2
Beeifed(Be) 25 (S

umC,
tr(A — Bjy1)s < tr(A — By, — 52le (tr(A — By)s)?. (40)

Combining (BR) and (E0), we choose C5 = ﬁ and then we finish the proof.

For the case when v; may be zero and d; may not be distinct from each other, by Weyl’s inequality
(Lemma (1), the spectrum of Hermitian matrices is stable under perturbation. Hence, the conclusion
O

is true for the general case.
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E USEFUL LEMMAS IN APPENDIX

We need several additional lemmas to help proving Theorem B as listed below. All the Lemmas
in this section assume L. = 1. (Though some do not use it.) Lemma B measures the deviation
between the exact solutions of the proximate inner loops. Lemma [0 proves a linear convergence
rate under proper conditions. Lemma [T and Lemma [ further measure the deviation between the
approximated solutions of proximate inner loops.

Lemma 9. Suppose that e; < ;1 < m, then
[z, - S V2|2t = wolly, (41)
oz, - < V2 —ella” - ol “2)
Proof of LemmaB. Denote r = |[[xf, , then by self-concordancy we have
V2f (z* +t (22, — %)) = (1 — Mrt)? V2 f (z*) for all t < £+ Therefore,
T
fan) - :< VS (2 4t (a2 —x*))dt) (a2, — 2)
T
= < ( (x* + st (x:f - x*)) ds) t (l’:t — x*) dt> (x:t — x*)
1 t
(:17 . ) </ (/ V2 f (z*+s(z:tz*))ds> dt> (x;fx*)
0 0
1
(a2, —a")" (/ (=) V2f (a* +1 (a2, — ")) dt> (2, — ")
0
min{ﬁr,l} ) -
> / (L—t)(1— Mrt)*dt | (zf, —z*) V2f(2¥) (F, — 2¥)
0
5 [+ — oz Mr>1
— 2. 3Mr 12M32r2 =
{112M2r2 —sMr+4 Mr<l1
On the other hand,

flaz) = £a®) = £ (&2,) = For @) + o™ = ol

< oo (@2) = fo @)+ 5

— zoll3

*

|z

Combining these two inequalities we have:

2 T E¢ *
mln{ T 4M} < —Hx — 20|35

Hence, either 7 < /2&;||x* — o]z or 7 < 2Me||z* — x0/3. Since 2, < m,
must have r < /2e¢||z* — x¢||2. For the second conclusion in Lemma B, note that f., is also

: - 2
self-concordant with constant M, and f., , = f., + =" [|z* — x¢l|3, so we can use the same

argument on f,, , compared with f.,, then the result leads to (B2). O

we

We extract the inner loop for solving sub-problems in Algorithm B to Algorithm B as shown above.

Lemma 10. Ifwe use Algorithm B to optimize the regularized objective function f.,, while satisfying
the following conditions:

1. There exists a constant q such that MH$1 — x:t it <qgMD,/e; < %.
€t
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Algorithm 6 Inner loop of Algorithm B

1: Requires: Initial point 2o € RY, regularizer ¢,, matrix Gy € R%*?, distribution D, parameter
sequence {7y, }, stepsize 0 < oy < 1.
2: fork=0,1,2... do

3: Tpt1 = T — O (Gk + (nik + 5t) Id)_l stt (zk)

4: Sample a random vector s ~ D and compute G, 1 = SR1(V2f(x1), G, sk).
5: end for

2. Gy + (n% + €t> L = V2 fe, (21), 0 = (1 = 3¢M D /&;)*.

Then if for every k > 1, we have nik < 8(;/]\?]3, the following inequality holds:

o< (1 — @ Et) Ha:k -,

PR
fEEt

€t

.
:Ef-:t

|lzks1 — 22, (43)

Proof of Lemma [D. For simplicity, in this proof we replace | z|

;‘;t by |lz|l«- We denote

vp = |lok — 2% |l Jp = fol V2f., (x:t +t(xk, — z;t)) dt. We use induction to prove that
zrs1 — 2%, [« < (1 —qgMDye,/2) ||zg — 2, ||

Suppose that we already have vs 1 < v, forall s < k£ — 1. Then we have

1 — *
Tht1 — x:t = (Id — Qi (Gk + ﬁ:Id + & 1Jk)> (l‘k — J)Et) .

Since v, < vg and Mvg < gM D, /g;, we have

2’[)0

— < =0
k= 21lle, < 1— Muo

(e = 22 Il + [l21 = 22, ]14) <

1
T — X < —
ool ol < T3

1-M
Then for every ¢ € [0, 1] we have

1
(1= M (tloe — z1lle, + A —1) |22, — 21l2,))

szst (l’:f +t (mk — :c:f)) =< 2V2f€t (z1).

This implies

L %, (w0).

Ve (@l +t(mp—al)) 2 ——5
(1 _ 2Mwg )
17M’L)0

Take integral for ¢ over [0, 1] we have

1 1
Jp 2 —————— V2, (20) =2

(1 _ 2Mu, ) (1-3¢MD/z)*

V2f., (x0).

17M’Ug

By the same reason we have
Jp = (1 - 3¢MD\/z)* V2f., (x0) .

Since G, + %Id = V2f (zo) and oy < (1 — 3qMD\/57)2, we can see that G, + nikld +edy -
a;J g, as a result,

1 —1
Amin (Id — oy (Gk + 7771d + €t1d) Jk) >0
k
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Also by SR1 update we have G, +&,15 < V2 f., (z0) = & J}, and by our assumption,

1
(1—3¢M Dy
1 < Ve oo we can deduce that

Nk — 8qMD’
1 - 1 1
Amax | Ia — o (Gk +—1Ig+ 5tId) Je | <1- Oét)\l:lélix 7‘];1 + 2Id
Nk Mk (1 —3¢MD,/z)
<1- 2 = 1
e T AsquDyE)?
. (1-3¢MD/z)°
> - 1 1
1qM D /e, + (1-3¢M D, /27)?
< 1—2¢MD (1 — 3¢MD+/z;)* \/2r.
Hence,

ks — a2, |3, < (1= 1.62¢M D/ey) [law — 2z, ||,
Since M ||x), — 2%, ||« < ¢M D,/g;, we have

1
—V?f., (22).

v2f5t (x; +1 (xk - x:t)) =
This could imply ||z]|5, € [\/1 — Mr||2]|«, ﬁ”zﬂ*] . At last, we can derive that

1-1.62¢MD, /e,
1—-gMD,/e;
Then we finish the proof by induction. O

[ehsr — a2, [l < ek — 22 [« < (1= gM D& /2) |log — 2z, |-

Lemma 11. Under the condition of Theorem B and follow the same notation. Denote constants

D 21D 3M 19M D 1
0 T 2 10 ¢ T 109

D
,Rs =2V2MD,R, =

1
< -
= To1A2 D2’

and the approximate solution x;_o, x1_1 and matrix Hy_o, ét—l satisfy Hy_o < VQf(act_g) and

g <1 < (]. +C*)

|zt—1 — 212, | < Roy/Er—1, (44)
Et—1
‘ i —ag, || o < RiyE, (45)

€t—1

Hét—l - VQf(iL’t—l)

LSRw@I. (46)

Choose B;_1 = MRy.\/e;_1, then the correction approximate matrix H;_1 satisfies Hy_1 =<
V2f(xi_1) and

[Ho1 = V2f (201)||, < Rsv/er. 47)
Next, if the approximate solution x; satisfies
| =22, ||, < Rivar, (48)
then
@ = 211, < Rov/ee. (49)

Moreover, lfHét — V2f(xt,1)H2 < Ry\/€y, then we have

|G = Vs (@)

| < Rava (50)
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Proof. First, we prove H;_; < V2 f(x,_1) and (&2). Since H,_; = (1 — 8;_1)2G,_1, we have
[Ber = V2 f(@ion)l], < 280 | G| + ]| G = 92 (i)

< MRy + Ro)VETT S Ryvar
By the property of SR1 update we have G = V2 f(x4_2). Using the self-concordancy we have
Hy 1= (1—B-1)2Gi1 = (1= Bie1)? V2 f(24-2)
(1= Bi-1)?
T (A= Mz — 2o

@ _,
j V f(xt—l)-

2 sz(xtfl)

It—l)

Second, let us bound ||z; — 241, using the self-concordance property. We have
1
1 —MHa:t —a:fgt|

(S

£t ||xt -

*
{I/’Et

l|lz: — xt—l”ii <

We need to bound ||z; — x¢—1]

€
- »and we have
€t

£
€t * ¢

xEt—l

(52)

e = o, < s =,

Tk *
€t zz,

By (BR) and Lemma B, we have

o <R, ‘ <V2(gim1 —&)||2* — @o),-
et

Denote w = 4/ 2(5"671_5’) |z* — 20|5, then the last term in (82) can be bounded by (B3) and Lemma
B:

*
r. —
£t Et 1

*
th - $5t|

*

Et
A

" ‘ o ez, Ri\/E—1
€t
zZ, 1— M‘ 1 — Mww/

*
et

*
mft—l — Tt-1

*
— X
Et 1 €t

Hence, ||z: — 241

;‘:t <Ry &+ w\/?t + EIMi ny’i}%, combining with (1) we have

(le+ wyE - m) (53)

lze — ¢ 1||zt

- 1- M Ri/&
This leads to (E9) by (B4) in Lemma 3.
Finally, we use (E4), (89) to prove (B0). We have

|G- swl, <[}& - vt + 1920 - P50,

— (1= Mz — x4-1ll,,)* 2
< t
< Rave+ ( (1= Mz — 24-1],,)? HV (@ ”2

1—(1-MR 4 (83)
( 0v/Et) 2 Rover.

(E9)
< R
< Ryv/er + - MRoya)? =

O
Lemma 12. Suppose that e, < €,y < g5z and we already have
e et D
T I N
Then we have
ler =2, ]15: < 16[\7 (54)

34



Under review as a conference paper at ICLR 2026

Proof. Note that f., (z) is self-concordant with constant M, so we have

* &t 1 . €t
’ Tt—1— xﬁt—l T* < et ‘ Ti-1 7 :Est_l ¥
et 1-— M’ T, , — J,‘::‘t - e4—1
et—1
1 £t
Tl M Ti—1 7 Te, 4 -
32v/2 ft-t
32\/§ ’ " €t—1
S ——F—||Tt—-1 — X
32v/2 -1 st I;H
- 32/2 D JE < /a
322 -1 332 32[
Hence,
£t £t D
* ||€t * * *
i1 —a || . < ‘:c —x +’9:t_1fac < ——=\/&
H 5t| zz, €t—1 €t z;t Et—1 « 16\@

F TECHNICAL LEMMAS

In this section, we present technical lemmas that are used in the previous proofs. Among these
lemmas, Lemma @8, Lemma 1, and Lemma 1 are well-known and can be found in classical
textbooks. As such, we do not provide their proofs.

Lemma 13. The function h(t) = tInt decreases in the interval (0, %].

Proof. This simply follows from the h(t)’s derivative: h'(t) = 1 + In(¢) <0, fort < é O

Lemma 14. Let {an}n>0 be a sequence of real positive numbers and ¢ > 0 such that a,4+; <

_ ao
ca , then for all n € N, we have a,, < .

Proof. Since a1 < ay, — ca?, we have —

n+1 — an

Sl p— can . Hence, we get

1 c 1
- > - > -
EO A—|— ne +

This implies a,, < —2° O

— cn—+ap”

Lemma 15. Let {a,,}, . be a sequence of real positive numbers that do not increase. Let ¢ > 0 be
a constant. For everyn € N, denote A,, = {k eNE<n:ags1 <ap— cai}, then we have

ao

< N ERE
a0—|—c|An\

an >

where |A,,| denotes the number of elements in the set A,,.

+oo
Proof. Construct the sequence {a,,} by ordering the elements of |J A; according to their
=0
subscripts in increasing order. Denote m = [A,|, then a,,, > a, > ay,,,,. By Lemma O3,
an,, <

ag
<% +<m Therefore, a,, < ay,,, < PP ]

Lemma 16 (PaleyZygmund inequality). Let X > 0 be a nonnegative random variable. Then for all
0 <6 <1, we have
(1-6)%E [x]?

P(X > 0E[X]) > X7

(55)
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Lemma 17 (Chernoff bound for Bernoulli variables). Let X1, -, X, ‘" Bernoulli(1, p), then
Sfor every 0 < § < 1, we have

g (Z X, < (1- 6>np> < F (56)

=1

Lemma [¥ is our main tool for proving high-probability bounds. This lemma extends classical
Chernoff bounds to dependent processes by requiring only a one-sided lower bound on conditional
success probabilities. This allows deriving exponential concentration inequalities similar to the
independent case, making it particularly useful for analyzing adaptive algorithms and sequential
decision processes where independence assumptions fail but some probabilistic structure remains.
The result provides a powerful tool for establishing high-probability guarantees in dependent
settings.

Lemma 18 (Coupling). Consider a random process Xy, k € N*, where Xy, is taken in {0, 1}.
Denote Fi, as the o-algebra generated by X1,--- , Xy. Suppose that for all k > 1, we have
P(Xy = 1|Fx—1) > p, then for any k > 0,t > 0, we have

P(X1+4Xp >t) >P(Y; + -+ Y, > 1),

where Y1, , Yy el Bernoulli(1, p). Moreover, for every 0 < § < 1,n € N*, we have
n 2np
P(ZXig(l—(S)np) <e 3P (57)
i=1

Proof. We construct an auxiliary process { Z } ren+ with Z, € {0, 1} as follows:

Since X7,..., X} take on finitely many values, each event in Fj, can be expressed as a union of
atomic events. For each atomic event A € Fj,_; where P(X; = 1| A) = g4 > p, we define Zj| 4

to be an independent Bernoulli random variable with parameter q%, i.e., Zp|a ~ Bernoulli (1, q%) s

independent of Xj|4. By repeating this construction for all atomic events in Fj_1, we obtain a
well-defined random variable Z;, € {0, 1} satisfying:

P(Xka =1 | J_‘.kfl) =Dp.
Since Xj, > X Zx, it suffices to prove that
P(X1Z1+ -+ X3 Zi=t) =P(Y1+ -+ Y, =1). (58)

Now we can prove (BX) by induction. Suppose that (88) holds for £ — 1, then we have

IP’(XlZl + - X2y = t)

=P(X3Zp =0/X1Z1 + - X1 Zpy = )P(X1Z1 + - Xpm1Zj—1 = t)

+ P(Xka = 1|X121 + - X 11 =t — 1) ]P’(XlZl + - X 11 =t — 1)

= (]. — p)]P’(XlZl + . Xk,1Zk71 = t) +p]P(X1Z1 —+ . Xk,le,l =t— ].)

= (]. 7}))]}»(}/1 + "’Yk—l :t)+pP(Y1 +"'Yk_1 =t - ].)

=PY1+ -+ Y, =1t).
Hence (BR) holds for all &, t. This implies (BR) and implies (87) by (BR) and (Bf). O
Lemma 19. Let A € R¥*? A > 0 and X be a random variable that satisfies (8). Let X; e x
and X = (X1, ,Xq) . Then we have

E[(XTAX)?] < (3+C1)tr(A)>. (59)

Proof. The left side of (R9) is actually

E| (> AuXiX; = Y A ALE X X; X X))
] ikl
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Denote
Al = {(Zajakal) Z:] :k:l};
Ay ={(i,j, k1) :i=j,k =1,i# k orits permutation} .
Then the term E [X; X ; X}, X;] satisfies:

Cl (Z7Jak7l) EAI
EX:X;Xp Xl =41 (4,5,k1) € Ay (60)
0 (i,4,k 1) € (AL U Ag)°

Hence,

ElY 4;xX; =C1Y AL+ > (447 +24,4;)
— 1,

1<i<j<d
< (24 C)|A|% +tr(A)? = (3+ Cy)tr(A)>
O

Lemma 20. Let X1, -, X,, ben random variables such that E [Xf] =1land sup E [Xﬂ = M.
1<i<n
Then for any aq, - -+ ,a, > 0, we have

E (Z aiXi2> <M (Z ai> . 61)
i=1 i=1
This implies

P (an a; X? > ;zn:a> > ﬁ. (62)

i=1 i=1

Proof. By AM-GM inequality, E [X?X?] < E [X} + X ] < M. Then the left-hand side of the
equation (BI) is

n n 2
N @E[X ]+ Y aeE[XPX?] <M (Z ai>
i=1 1<i<j<n i=1

Hence, (B1) holds and implies (B2) by Lemma [@. O

Lemma 21 (Weyl’s Inequality for Hermitian Matrices). Let A and B be n x n Hermitian matrices.
Denote their eigenvalues in non-increasing order as:

A(A) 2 A(A) = -+ = An(A),
M (B) = A2(B) = - > \,(B),
Then for any i,j5 > 1 withi+ j — 1 < n, we have:
Airj-1(A+B) < Ai(A) +4(B),
and forany i,7 > 1l withi+ j — 1 > n, we have
Ai(A) +X2;(B) < Aipj—n(A+B).
Remark. I[f B = —uu' and u # 0, then \,(B) < 0 and \;(B) = 0,i < n. In this case,

Xit1(A) < X(A —B) < X (A). Moreover, we have |\;(A) — X\i(A + B)| < ||B||,. Hence, the
spectrum of Hermitian matrices is stable under perturbation.
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Lemma 22. Consider a rational fraction

m

f(x)zzblcﬁx, a; >0,by > by > -+ > by, > 0.

i=1

For any t > 0, the equation
flz) =t

has m solutions ©1 > xo > -+ > Xy, such that ©; € (bj11,b;) for 1 <i < m —1and x,, €
(=00, byn). Moreover,
m m 1 m
Zmi:Zbi—gzai. (63)
=1 i=1 i=1

Proof. Let us consider each (b;11, b;), note that

f/(x):Z(biiiix)?>0’

=1

and lirri f(z) = —o0, lim f(x) = +o0. Hence, by Intermediate Value Theorem, for any ¢ > 0,
m%bi_*_l :c~>bi_

the equation f(z) = t has a unique root in (b;11,b;). Similarly, it has a unique root in (—00, by, ).

m
Multiplying [] (b; — «) to the equation, they can be also seen as the roots of a polynomial

i=1
plz) = Zai H(bj —z)—t H(bi — ).
i=1  j#i i=1
And (B3) follows directly by Vieta’s formula. O

The next two lemmas ( Lemma 3, Lemma [4)) are well-known results in numerical algebra. Their
proofs can be found in any numerical algebra textbook. The famous Divide-and-Conquer algorithm
for solving eigenvalues of tridiagonal Hermitian matrices is based on the following theory.

Lemma 23. Let D = diag(dy,--- ,d,) be a diagonal matrix such that di > do > -+ > d,
assume that p # 0, u € R" and each coordinate of u € R" is non-zero. If v.e R" and A € R
satisfy

(D + puu’)v = Av,
then v'u # 0, and D — A1, is invertible.

Proof. If viu = 0, then Dv = \v,v # 0, hence ) is the eigenvalue of D. Note that D’s diagonals
are different from each other, so there exists i such that d; = X and v = «e;, a # 0. Therefore, we
have 0 = v'u = au'e;, contradicting the condition that each coordinate of u is non-zero.

Besides, if D — AL, is singular, then there exists i such that e, (D — AI,,) = 0 and thus we have

0=e/ (D - \,)v=—pu've/u,
but puTv #0, s0 e;ru = 0, a contradiction. O
Lemma 24. Let D = diag(dy,--- ,d,) be a diagonal matrix such that di > ds > -+ > d,
u € R", and suppose that each coordinate of u is non-zero and p > 0. Denote \y > Ay > -+ > A\
as the eigenvalues of D — puu . Then \; are distinct and they are exactly the roots of

2 2

uy uy,
1- e+ —2—1=0 64
p(dl_)\i+ +dn—/\i> ; (64)

where u; denotes the i-th component of u.
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Proof. First, consider the case when d; are distinct from each other. Denote v; as the unit
eigenvector with respect to A;. Then we have

(D — puu’ )v; = \v;.
By Lemma 3, D — \;I,, is invertible and u'v; = 0. Therefore,
v, = puTvi(D — )\Z-In)_l
Left multiply both sides by u', note that u ' v; # 0, we have
1= puT(D — )\iIn)_l

this is equivalent to

2 2
uy Uy,
- 0.
p(dl)\i+ +dn>\,;)

By Lemma DX, the above equation has exactly n roots, each belonging to
(d2,dy), (ds,d2),- -+, (—00,d,,) respectively. Thus the proof is complete. O

Lemma 25. Under the condition of Lemma [Lll, we have the following inequalities:

def |2(ep—1 —&¢) D

w = ?”x*_l‘OHQSﬁ- (65)
(2MRO + Rg)w&‘t 1 < Rg\/i (66)
1 \/

1-(1 —MRO\/a)

Ryy/et + (1~ MRoy/z,)?

< Rov/zr. (68)

. 1
Proof. Since ey < ;-1 < (1 + ¢*)ey < 5732 pz» We have

2(81571 — Et) D
——— |z — x|y, < V22T — 0|y £ ——,
e =l < VATt —aolly < o
this implies (B3). The inequality (B8) is equivalent to
1
@M )\/eﬁ < 22,

this is obvious because we have ¢;_1 < 25f by ¢* < 1.

For (&), notice that w < =5 and R, < 23126’ , we only need to prove

320 (D 21D 32 21D D
(= === o2 2= < = /.
209 (32\/5+ 320 Ve 31 320 VgH) S gV

This can be done by numerical calculation.

Finally, let us prove (BR). Since Ry < 2, R, = 191D

, we only need to prove

10
19 1-(1-0.25 4 3
Y ( V/Et) <3
10 (1-025/5)2 - 2
We can see that for z € (0, ;). (1 — 2)* > 1 — 2z, as aresult,
1 1 2z
R —(1—22) = 2%
Aoz Uma) sy ~ (-2 =g +2rs o

Take x = 0.25,/¢; and then we finish the proof.
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G LIMITATIONS

Our results do not yet characterize the accelerated convergence resulting from faster eigenvalue
decay beyond a merely bounded trace. Although AGD and SR1 share the same worst-case
convergence rate, there exist classes of problems where SR1 converges more rapidly. This is also
supported by our experimental findings, where SR1-based methods demonstrate faster convergence
on problems with rapidly decaying Hessian eigenvalues. We hypothesize that this acceleration arises
from the larger eigengap induced by the faster eigenvalue decay. We think this can be proved by
obtaining a faster decay rate of the Hessian approximation’s trace and a more delicate analysis on
the regularized SR1 method that fully utilizes the benign property of self-concordant functions. We
leave this for future work.

H LLM USAGE

In the preparation of this paper, we employed Deepseek (a large language model) solely for the
purpose of refining language expression and correcting grammatical errors in the manuscript. The
LLM was not involved in any aspect of research ideation, data analysis, interpretation of results,
or substantive content generation. All intellectual contributions, including the formulation of
research questions, methodological design, empirical investigation, and critical discussion, originate
exclusively from the human authors. The use of the LLM was strictly limited to enhancing the clarity,
coherence, and grammatical accuracy of the text, and it did not contribute to the scholarly or creative
substance of the work.
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