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Abstract

Large Reasoning Models (LRMs) such as Ope-001
nAI o1 and DeepSeek-R1 have shown remark-002
able reasoning capabilities by scaling test-003
time compute and generating long Chain-of-004
Thought (CoT). Distillation—post-training on005
LRMs-generated data—is a straightforward006
yet effective method to enhance the reasoning007
abilities of smaller models, but faces a criti-008
cal bottleneck: we found that distilled long009
CoT data poses learning difficulty for small010
models and leads to the inheritance of biases011
(i.e., formalistic long-time thinking) when us-012
ing Supervised Fine-tuning (SFT) and Rein-013
forcement Learning (RL) methods. To alle-014
viate this bottleneck, we propose construct-015
ing data from scratch using Monte Carlo Tree016
Search (MCTS). We then exploit a set of CoT-017
aware approaches, including Thoughts Length018
Balance, Fine-grained DPO, and Joint Post-019
training Objective, to enhance SFT and RL on020
the MCTS data. We conducted evaluation on021
various benchmarks such as math (GSM8K,022
MATH, AIME). instruction-following (Multi-023
IF) and planning (Blocksworld), results demon-024
strate our CoT-aware approaches substantially025
improve the reasoning performance of distilled026
models compared to standard distilled models027
via reducing the hallucinations in long-time028
thinking.029

1 Introduction030

Recent advancements in large reasoning models031

(LRMs), such as OpenAI o1 (OpenAI, 2024), QwQ032

(Qwen Team, 2024) and DeepSeek-R1 (Guo et al.,033

2025), have led to significant progress in han-034

dling complex tasks spanning mathematics, cod-035

ing, and even open-ended queries (Zhong et al.,036

2024; Huang et al., 2024; Zhao et al., 2024). The037

success is largely attributed to “scaling test-time038

compute” by extending the length of the reasoning039

process. Given that most state-of-the-art LRMs are040

computationally expensive, recent efforts attempt041

Error Type Thoughts

Content Repetition
(Math)

. . . So I’ve got this probability . . .
that the positions are considered up to
consider that the positions are consid-
ered up to . . . (no answer)

Over-Reflection
(Planning)

So I have this problem: I need to . . .
Wait, perhaps it’s . . . Wait, perhaps
I need to think differently . . . I recall
that . . . (no answer)

Instruction Failure
(Translation)

Translation: Your order is closed.
Your order is closed. Wait, . . . the
same sentence twice. I should remove
. . . Your order is closed. Your order
is closed. . . . (no answer)

Table 1: The illustration of formalistic long-time think-
ing generated by distilled reasoning models across dif-
ferent tasks. Error tokens in thoughts are highlighted in
blue and red colors. Notably, due to excessively long
thoughts, there are no final answers in above cases. The
Quantitative Analysis is detailed in Section 2.4.

to distill their reasoning capabilities into smaller 042

lightweight models, demonstrating competitive per- 043

formances (Qin et al., 2024). For instance, Guo 044

et al. (2025) explored direct distillation, where they 045

fine-tuned smaller dense models (e.g. Qwen2.5 7B) 046

using reasoning patterns generated by DeepSeek- 047

R1 671B model, outperforming GPT-4 on math 048

benchmarks (e.g. AIME: 9.3% vs. 55.5%). 049

However, we observed that these distilled mod- 050

els often exhibit hallucinations during long-time 051

thinking, such as content repetition and over- 052

reflection, leading to no final answer being pro- 053

duced (as shown in Table 1). We refer to this 054

phenomenon as formalistic long-time thinking, 055

where smaller models mechanically replicate the 056

reasoning patterns of large models without internal- 057

izing the reasoning logic. Recent research shows 058

that LRMs face both over-thinking and under- 059

thinking issues (Chen et al., 2024; Wang et al., 060

2025), while smaller models struggle to learn gen- 061
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eral reasoning (Fu et al., 2023). Accordingly, the062

root cause may be that distillation methods intro-063

duce bias inheritance and learning difficulties in064

smaller models. A natural research question arise:065

How can long CoT reasoning be effectively trans-066

ferred to smaller models through data construction,067

SFT and RL methods?068

To tackle this challenge, we explore improve-069

ments in reasoning distillation from both data and070

methodological perspectives. First, we propose a071

fundamental framework for constructing tree-based072

CoT data, which generates pre-defined thought073

nodes using general LLMs (rather than LRMs) and074

heuristically expands these nodes into a tree struc-075

ture via the Monte Carlo Tree Search (MCTS) al-076

gorithm (Browne et al., 2012). The constructed077

data is not only more effective compared to di-078

rectly distilled data, but also inherently more flex-079

ible, allowing the extraction of different types of080

reasoning paths as training data. Secondly, regard-081

ing commonly-used SFT and direct preference op-082

timization (DPO) (Rafailov et al., 2023) as post-083

training framework, we empirically investigate a084

set of CoT-aware methods on the effects of for-085

malistic long-time thinking. Specifically, this in-086

cludes: 1) Thoughts Length Balance, where we ex-087

tract CoT data of varying lengths; 2) Fine-grained088

DPO, where we employ conservative DPO (cDPO)089

(Mitchell, 2023) and mask-based DPO to better090

leverage the fine-grained information in long CoT;091

3) Joint Post-training Objective, where we combine092

the DPO loss with SFT loss to mitigate the over-093

optimization observed in DPO (Fernando et al.,094

2024; Wang et al., 2024).095

We validated our approaches on five exam-096

oriented and open-ended benchmarks, covering097

three different difficulty levels of math (GSM8K,098

MATH and AIME) (Cobbe et al., 2021a; Light-099

man et al., 2023), instruction-following in eight100

languages (Multi-IF) (He et al., 2024), and real-101

world planning tasks (Blocksworld) (Valmeekam102

et al., 2022). Experimental results show that the103

proposed method consistently and orthogonally im-104

prove reasoning performance over the standard dis-105

tilled models. The improvements come from the106

reduced hallucinations during long-time thinking,107

particularly content repetition, which leads to fewer108

“no answer” phenomena and better overall accuracy.109

The main contributions of this work are:110

• Our study reveals the side effect of standard distil-111

lation on transferring long CoT reasoning, which112

results in sub-optimal training of smaller models 113

when using the distilled data (in Section 2.4). 114

• We propose a novel approach to construct CoT 115

trees from scratch, which not only scales up 116

the solution space but also more closely mim- 117

ics human-like reasoning patterns. To the best of 118

our knowledge, it is the first attempt of its kind 119

(in Section 2). 120

• We investigate a set of effective approaches to 121

widen the distillation bottleneck, demonstrating 122

that they are orthogonal and complementary to 123

each other, and robustly applicable to different 124

reasoning tasks and languages (in Section 3&4). 125

2 Tree-Based CoT Data Construction 126

We propose a flexible and customizable tree-based 127

CoT data construction method that generates high- 128

quality CoT data from scratch. In this section, we 129

introduce the overall framework in Section 2.1, fol- 130

lowed by the thought nodes (Section 2.2), reason- 131

ing patterns (Section 2.3), and how to extract CoT 132

data for post-training (Section 2.4). 133

2.1 Overall Framework 134

We introduce the tree-based CoT data construc- 135

tion process as shown in Figure 1. This tree struc- 136

ture not only constrains the search space to pre- 137

vent unbounded expansions but also guides the 138

model to produce reasoning steps (nodes) system- 139

atically. For instance, we specify that each node in 140

the search tree corresponds to a particular action 141

role (e.g., thinking, reflection), and each edge repre- 142

sents a transition to the next step. By constraining 143

the transitions among these nodes, we ensure the 144

search is both tractable and coherent. With the 145

structure in place, we use MCTS to explore the 146

search tree. During each step: 147

• Node Selection. We select a thought node to 148

expand based on MCTS principles, such as upper 149

confidence bound (UCB). If Child(n) denotes 150

the set of child nodes of node n, then UCB bal- 151

ances exploration and exploitation via a score: 152

UCB(ni) = v(ni)
nvisits(ni)

+ C

√
ln
(
nvisits(nparent)

)
nvisits(ni)

, 153

where v(ni) is an estimated value (or reward) of 154

node ni, nvisits(·) denotes the visit count, and C 155

is the exploration constant. 156

• Expansion. We expand the selected node by 157

prompting an LLM by adding a thought prompt 158

(detailed in Table 2) that specifies the required 159

action role. The LLM then generates the textual 160
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Figure 1: MCTS-based CoT data generation framework. Starting from an initial prompt (root node), the system
proceeds through predefined nodes (e.g., Sub-Task, Thinking, Reflection) according to a customizable node transfer
matrix. Each node is expanded by prompting either Qwen or Llama, allowing multi-model collaboration. If a wrong
answer is detected, we perform error backtracking (pink arrows) to a prior node and trigger Reflection in another
model, enhancing the overall correctness and diversity of the final reasoning path.

content for that node.161

• Rollout. If the expansion reaches an answer162

node, we compute a reward based on correct-163

ness determined by rules and backpropagate this164

reward up the tree.165

2.2 Thought Node166

Definition A Thought Node corresponds to a dis-167

tinct step or action within the CoT reasoning pro-168

cess. As outlined in Table 2, each node has a ded-169

icated role and prefix prompt that guides the lan-170

guage model to generate specific content or revise171

previously generated reasoning. This structured de-172

sign facilitates modular expansion and systematic173

backtracking within the MCTS framework. No-174

tably, Thinking is treated as a special node that175

does not require any prefix prompt; instead, it ad-176

mits unconditioned continuation generation to fos-177

ter open-ended exploration of partial solutions. By178

combining multiple node types into a coherent tree,179

we can more effectively elicit and refine multi-step180

reasoning from the model.181

Multi-Model Coordination and Reflection We182

adopt multi-model coordination to further diver-183

sify and correct the generated reasoning paths: 1)184

For nodes such as Thinking, we use Qwen2.5-72B-185

Instruct to generate logical steps or partial solu-186

Thought Node Prompt

Thinking (continuation generation)
Sub-Task Firstly, I need to break down this task.
Reflection Let’s check the result. Wait! some-

thing is wrong, let’s think again.
Hypothesis I propose the following hypothesis:
Double-Check Now, I need to check whether all the

requirements are met.
Reclarify To ensure clarity, let me restate the

question or issue at hand:
Answer The answer is:

Table 2: The pre-defined Thought Node. For a selected
node, its corresponding prompt is continuously fed to
LLMs for MCTS expansion.

tions; 2) For Reflection nodes, we switch to a differ- 187

ent model, e.g., Llama3.1-70B-Instruct, to perform 188

self-checks and corrections. 189

This separation enhances the reliability of reflec- 190

tion. When the same model that made a mistake 191

also attempts to correct itself, it may fall back on 192

the same erroneous distributional patterns. In our 193

pipeline, if a Reflection node detects an error, it 194

can backtrack to a specific earlier node (also con- 195

figurable in the MCTS design) and request a re- 196

generation of the Thinking steps. By alternating 197
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Figure 2: Representative node transition patterns in our search tree. Each sub-figure (a–d) illustrates a distinct
sequence of transitions (e.g., Sub-Task, Thinking, Reflection, Double Check, Hypothesis) toward arriving at an
Answer node. These variations allow the search to adaptively expand or backtrack based on correctness checks,
thereby generating rich and context-specific chain-of-thought data.

between models, we reduce the risk of repeated198

mistakes and improve the diversity of exploration.199

2.3 Reasoning Pattern200

As illustrated in Figure 2, we design a set of cus-201

tomizable search tree structures to reflect the di-202

verse ways in which humans reason about different203

tasks. Each tree is configured to capture a variety of204

reasoning modes. For instance, in Figure 2(a), we205

demonstrate a sequence of nodes to solve a ques-206

tion: we first break down the task via a Sub-Task207

node, then perform a general Thinking step, and208

finally provide an Answer. We evaluate correctness209

through rule-based checks: if correct, we output210

the result; otherwise, we prompt the model to re-211

flect on potential mistakes (entering the Reflection212

node). Here, the model revisits or re-checks its213

chain of thought, then either formulates new rea-214

soning or proposes a revised answer. This feedback215

loop repeats until the solution is correct or a pre-216

set search limit is reached. Some tasks, however,217

also require formulating assumptions or provisional218

conclusions, so in Figure 2(b), we incorporate a Hy-219

pothesis node immediately after the Sub-Task node220

for tasks that benefit from explicitly positing as-221

sumptions or preliminary formulas early on. For222

example, “Find the sum of all ordered pairs (x, y)223

of positive integers such that x + y = 5.” After224

breaking down the task (Sub-Task), the model pro-225

poses a hypothesis that x can range from 1 to 4226

(with y = 5 − x) and enumerates each pair, ob-227

taining a total sum of 20. If the answer is verified228

correct, the model outputs 20.229

In practice, we randomly sample from these dif-230

ferent reasoning-flow templates (e.g., Figure 2(a-231

d)) to ensure we capture diverse, human-like modes232

of thought. By introducing node transition pat-233

terns, our framework produces richer and more234

flexible CoT data and fosters more robust reason-235

ing in downstream tasks.236

Datasets Long Middle Short

GSM8K 5.38% 5.08% 5.08%
MATH 28.40% 20.60% 16.20%
AIME 51.66% 50.00% 60.00%
Plan. 6.40% 6.40% 6.20%
IF (Zh) 32.30% 4.23% 1.9%
IF (En) 22.36% 3.80% 4.00%
IF (Ot.) 18.69% 1.70% 1.59%

Table 3: Effects of thoughts length(long, medium, and
short CoT paths) on model performance across different
datasets.

2.4 CoT Data Extraction for Post-Training 237

Once MCTS completes its exploration, we have a 238

large set of candidate paths. At this point, we must 239

extract final CoT data for SFT or DPO. 240

• CoT Data for SFT We typically select successful 241

paths that lead to the correct final answer. De- 242

pending on the data volume requirements, one 243

can: 1) Pick the highest-reward path according to 244

MCTS; 2) Pick the long or short path that yields 245

the correct answer, if specific chain lengths are 246

desired. 247

• CoT Data for DPO Constructing DPO data re- 248

quires both positive and negative examples for 249

each prompt: 1) The positive example is the CoT 250

path that correctly solves the problem, like the 251

SFT data; 2) The negative example is a flawed 252

path (an incorrect final answer) that shares a min- 253

imal prefix with the positive path to mitigate ex- 254

cessive overlapping tokens, which can degrade 255

DPO performance. 256

We find that many existing QA prompts (especially 257

those frequently seen during Qwen or Llama train- 258

ing) are too easy for the models, producing few or 259

no negative paths. As a result, fewer DPO pairs 260

are generated. One can overcome this limitation by 261

using more challenging questions or those that the 262

models have not encountered extensively. 263
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Figure 3: Distribution of data lengths by token count: A comparative analysis of sampling strategies and their
correspondence to short, medium, and long data lengths illustrated with histograms and KDE curves

Quantitative Analysis: Formalistic Long-time264

Thinking We explore the impact of the CoT265

length distribution on model performance. We266

experiment with different sampling strategies for267

DPO datasets, where responses to the same ques-268

tion are ranked and categorized based on their269

length (Their distributions are shown in Figure 3).270

As shown in Table 3, the selection of shorter CoT271

paths leads to a noticeable reduction in ineffective272

outputs. In addition, we note that shorter reason-273

ing paths tend to mitigate the issue of "formalistic274

long-time thinking", thus improving the quality of275

the reasoning output.276

3 CoT-Aware Post-Training277

Section 2.4 identifies that DPO training is prone to278

causing the formalistic long-time thinking. In this279

section, we propose three methods to address this280

problem: Thoughts Length Balance (Section 3.1),281

Fine-grained DPO (Section 3.2), Joint Post-training282

Objective (Section 3.3).283

3.1 Thoughts Length Balance284

Section 2.4 shows that the length of CoT signifi-285

cantly affects reasoning performance of distilled286

smaller models at DPO phase. However, in pre-287

liminary experiments, we found no such effect on288

SFT training. Therefore, we propose using longest289

CoT data during the SFT phase, while using the290

shortest CoT data during the DPO phase. In prac-291

tice, we extract all valid paths leading to correct292

answer nodes from the CoT trees, as there can be293

multiple correct paths. From these paths, we select294

examples of varying lengths (long, medium, short)295

based on token count for SFT. For DPO, the correct296

paths serve as positive examples, while negative297

examples are generated by identifying incorrect298

paths that share the shortest common prefix with299

the positive examples. This ensures a diverse set of300

reasoning paths for both SFT and DPO.301

Figure 4: The illustration of masking-based DPO, by
setting the log probabilities of the common prefix tokens
in preference pairs to zero.

3.2 Fine-grained DPO 302

Recent studies highlight that DPO is sensitive to 303

the length of responses, which can lead to biased re- 304

ward assessments (Lu et al., 2024; Liu et al., 2024). 305

Longer chosen responses increase the model’s ten- 306

dency to generate longer outputs, while longer re- 307

jected responses push the model to move away 308

from such outputs, potentially without reducing 309

their length. These issues are particularly pro- 310

nounced in long CoT reasoning tasks, where length 311

disparities may undermine DPO’s effectiveness in 312

fine-tuning reasoning models. 313

Conservative DPO Conservative DPO (cDPO) 314

(Mitchell, 2023) adapts the standard DPO frame- 315

work to handle noisy preference labels, typically 316

encountered when labels may be flipped with a 317

small probability ϵ. The key innovation of cDPO 318

is to modify the target distribution to account for 319

potential label noise, setting the preference prob- 320

ability to p(yw ≻ yl) = 1 − ϵ. This adjustment 321

reduces the impact of noisy labels by softening the 322

gradient updates, making the model less sensitive 323

to incorrect preferences. Formally, the cDPO loss 324

is defined as: 325

Lϵ
DPO(θ, yw, yl) =− (1− ϵ) log p̂θ(yw ≻ yl)

− ϵ log(1− p̂θ(yw ≻ yl)),
326

where p̂θ(yw ≻ yl) is the predicted preference 327

probability. The gradient of this loss combines 328

weighted contributions from both the correct and 329
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Model Math Planning Instruction-Following

GSM8K MATH AIME Blocksworld Zh En Other

Llama-3.1-8B-Instruct 85.5 47.0 11.7 10.0 61.5 76.2 67.1
+ Sky-T1 84.8 44.0 6.7 2.0 25.4 31.6 29.7
+ Our Data 87.4 51.4 15.0 12.4 69.2 76.6 79.1

Table 4: Comparison of SFT results across various models on multiple different tasks, including math, planning and
instruction-following Benchmarks.

incorrect paths, facilitating more stable training un-330

der label noise. By upweighting correct preferences331

and downweighting incorrect ones, cDPO prevents332

overfitting to noisy data, resulting in more reliable333

optimization and improved model robustness.334

Masking-based DPO To mitigate the adverse ef-335

fects of shared prefixes inherent in tree-based data,336

we modify the DPO loss computation by masking337

out the shared prefix tokens. Specifically, prior338

to loss calculation, we identify the number of to-339

kens constituting the common prefix between the340

positive and negative samples and adjust the loss341

mask by setting the corresponding entries for these342

shared tokens to zero—analogous to the treatment343

of padding tokens in standard loss formulations, as344

shown in Figure 4. This ensures that the shared345

prefix tokens do not contribute to the gradient com-346

putation, allowing the model to focus on the dif-347

ferentiating segments of the outputs and better dis-348

tinguish between valid and invalid reasoning paths.349

This strategy provides a fine-grained adjustment350

to the DPO objective, enhancing optimization in351

settings with substantial prefix overlap.352

3.3 Joint Post-training Objective353

In model training, the typical approach follows a354

sequential training paradigm, first conducting SFT355

followed by RLHF or DPO. However, this sequen-356

tial training process is suboptimal due to the inher-357

ent trade-off between SFT and RLHF/DPO, where358

the model tends to forget the content learned in the359

first stage as it progresses to the second. Even regu-360

larization methods like KL divergence cannot fully361

mitigate the forgetting caused by the distribution362

shift from the SFT dataset to the preference-based363

dataset, as highlighted by (Fernando et al., 2025).364

A similar phenomenon is observed in our work,365

where such forgetting contributes to the emergence366

of formalistic long-time thinking in distilled mod-367

els. To address this, we introduce SFT loss during368

the DPO training phase to alleviate the performance369

degradation resulting from the switch in training370

methodologies. The final loss function is thus mod- 371

ified as: L = LDPO + αLSFT, where the hyperpa- 372

rameter α enables a better trade-off between SFT 373

and preference learning, helping to maintain consis- 374

tency in the model’s reasoning patterns throughout 375

the training process. This adjustment ensures more 376

robust and stable performance across stages. 377

4 Experiments 378

4.1 Experimental Setup 379

Models We start with the baseline model, "Our 380

LRM (SFT)," which is Llama-3.1-8B fine-tuned 381

on our CoT data. Direct Preference Optimization 382

(DPO) is applied next, followed by Data Length 383

Balance. Conservative DPO (cDPO) is then added, 384

and a Joint Loss function combining DPO and Su- 385

pervised Fine-Tuning (SFT) loss is incorporated. 386

Finally, masking-based DPO is applied. Each of 387

these methods is sequentially added to the baseline, 388

as shown in Table 5. 389

Benchmark We evaluate our approach on five 390

benchmarks, each capturing different reasoning 391

challenges. AIME focuses on higher-level math 392

with 60 questions from 2023 and 2024, while 393

GSM8K (Cobbe et al., 2021a) features elementary- 394

to-intermediate arithmetic tasks. MATH500 (Light- 395

man et al., 2023) presents a wide range of advanced 396

mathematical problems, testing deeper analytical 397

thinking. For sequential decision making, we adopt 398

the classical Blocksworld (Valmeekam et al., 2022) 399

planning domain from the International Planning 400

Competitions (IPC). Lastly, Multi-IF (He et al., 401

2024) assesses multi-turn instruction following in 402

eight languages, encompassing 4,501 multilingual, 403

three-turn conversations. 404

4.2 Experimental Results 405

Constructed Data Validation We apply our con- 406

structed CoT data to smaller models such as Llama- 407

8B, comparing it against the Sky-T1 8B model, 408

which utilizes a distillation pipeline based on QwQ 409
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Model Math Planning Instruction-Following

GSM8K MATH AIME Blocksworld Zh En Other

Baseline
Our LRM (SFT) 87.4 51.4 15.0 12.4 69.2 76.6 79.1

(0.23%) (5.40%) (30.00%) (1.80%) (0.77%) (1.69%) (1.08%)

+ DPO
86.2 41.8 8.3 2.0 5.7 6.3 6.7

(6.37%) (31.80%) (55.00%) (93.60%) (91.54%) (90.93%) (92.22%)

Our Methods

+ Data Balance
86.8 28.0 6.6 6.8 43.4 44.7 42.4

(5.08%) (46.40%) (65.00%) (44.60%) (30.77%) (44.73%) (45.28%)

+ cDPO
87.5 48.6 15.0 4.4 61.9 66.4 67.7

(3.71%) (15.00%) (45.00%) (47.40%) (11.15%) (15.61%) (15.40%)

+ Joint Loss
86.8 48.6 10.0 8.6 72.3 78.9 78.1

(0.38%) (8.60%) (31.67%) (9.00%) (1.15%) (1.90%) (2.22%)

+ Masking
87.2 51.0 8.0 12.6 72.0 77.2 79.1

(0.15%) (5.80%) (38.33%) (10.20%) (1.15%) (1.90%) (1.36%)

Table 5: Performance comparison among different methods. The best performance is boldfaced, while the second
best is underlined. The numbers in parentheses indicates the ratio of instances where no answer is obtained in the
specified format.

and proves effective on larger models (32B). While410

Sky-T1 demonstrates competitive performance on411

large models, it faces challenges when scaled down412

to 8B models due to the inherent limitations in413

context processing and reasoning capabilities. In414

contrast, our CoT data, specifically designed to415

address these limitations, leads to substantial im-416

provements in smaller models, particularly in tasks417

involving arithmetic reasoning such as GSM8K and418

MATH, as well as more complex open-ended tasks419

like AIME and Blocksworld, as shown in Table 4.420

This validates the effectiveness of our constructed421

data in advancing the performance of small models422

across a wide range of reasoning tasks.423

Main Results As shown in Figure 5, we pro-424

gressively adding various techniques described in425

Section 3 to address the challenges identified dur-426

ing DPO. Initially, we observe that DPO causes a427

significant increase in output length, which results428

in a marked drop in model performance due to the429

high proportion of samples without answers. To430

mitigate this issue, we explore several strategies,431

including the data balance, applying cDPO to re-432

duce the impact of noisy labels, SFT Loss for multi-433

objective training to prevent catastrophic forgetting,434

and masking shared prefixes during loss calculation435

to reduce overemphasis on redundant tokens. Our436

results show that these adjustments achieves a no-437

table improvement in reasoning tasks, particularly438

in planning and instruction-following, while main-439

taining competitive performance on mathematical 440

benchmarks. The performance improvements can 441

be primarily attributed to the reduction of formalis- 442

tic long-time thinking, which is a major source of 443

inefficiency in reasoning. By addressing this issue, 444

our model exhibits a stronger ability to generate 445

meaningful and correct answers instead of produc- 446

ing excessive, irrelevant reasoning steps. This leads 447

to a substantial enhancement in overall model ef- 448

fectiveness, with improvements of coherent reason- 449

ing and accurate outputs. The integration of these 450

methods ensures that our model achieves robust 451

and efficient performance across a wide range of 452

reasoning tasks, Contributing to the application of 453

DPO technology in LRMs. 454

4.3 Effects of Joint DPO Loss 455

In this study, we explore the effects of combining 456

DPO loss with SFT loss within a joint post-training 457

objective, as outlined in Section 3.4. Our goal is 458

to stabilize the training process and mitigate is- 459

sues like over-optimization observed in pure DPO. 460

To this end, we experiment with varying values 461

of the hyperparameter alpha, which controls the 462

weight balance between the DPO and SFT losses. 463

As shown in Table 6, our results indicate that al- 464

pha=1 provides the best trade-off, as smaller values 465

still lead to some degree of catastrophic forget- 466

ting, while larger values reduce the effectiveness of 467

preference alignment, thereby diminishing the effi- 468

ciency of the valuable preference dataset. Conse- 469
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Datasets CDPO +0.5 +1.0 +1.5 +2.0

GSM8K
87.5 86.5 86.8 85.5 85.6

(3.71%) (0.53%) (0.38%) (0.08%) (0.08%)

MATH
48.6 50.0 48.6 48.4 48.0

(15.00%) (10.20%) (8.60%) (0.08%) (9.00%)

AIME
15.0 11.6 10.0 6.6 11.6

(45.00%) (35.00%) (31.67%) (36.67%) (31.67%)

Plan.
4.4 7.8 8.6 7.6 8.4

(47.40%) (12.80%) (9.00%) (6.40%) (7.40%)

IF (Zh)
61.9 68.8 72.3 68.4 70.7

(11.15%) (2.31%) (1.15%) (3.46%) (0.77%)

IF (En)
66.4 76.1 78.9 77.2 78.2

(15.61%) (4.22%) (1.90%) (2.74%) (2.32%)

IF (Ot.)
67.7 78.0 78.1 79.2 78.9

(15.40%) (1.99%) (2.22%) (1.82%) (1.93%)

Table 6: Effects of joint loss (combining DPO loss and
SFT loss with a weight factor α in L = LDPO + αLSFT)
on model performance across different datasets with
varying hyperparameter settings.

quently, we adopt the combined L = LDPO +LSFT470

as the configuration for subsequent experiments.471

4.4 MCTS Inference Exploration472

As an additional experiment, we explored the im-473

pact of applying MCTS at the inference stage. As474

shown in Table 7, we use Test@N to denote the475

percentage of problems solved correctly at least476

once when allowing the model to make N sepa-477

rate guesses for each problem.(Cobbe et al., 2021b)478

We evaluated solve rates at Test@1, Test@8, and479

Test@32 on the MATH dataset. Specifically, at480

Test@8 and Test@32, the MCTS-based approach481

outperforms the model without MCTS inference,482

demonstrating its ability to expand the solution483

space and leverage test-time scaling effectively.484

5 Related Work485

Reasoning Models Several prior works have ex-486

plored various approaches, including CoT fine-487

tuning (Wei et al., 2022), reinforcement learning488

(RL) (Kumar et al., 2024), More recently, Large489

reasoning models (LRMs) such as OpenAI o1 (Ope-490

nAI, 2024), and DeepSeek-R1 (Guo et al., 2025)491

have shown remarkable reasoning capabilities by492

scaling test-time compute and generating long CoT.493

Knowledge Distillation Knowledge distillation494

has also been crucial for transferring reasoning ca-495

pabilities from large models to smaller ones. Guo496

et al. (2025) investigated direct distillation, where497

smaller models are fine-tuned on CoT data gener-498

ated by large reasoning models, yielding significant499

improvements on math benchmarks. However, dis-500

tillation faces challenges such as overfitting and the501

Model Test@1 Test@8 Test@32

Llama-3.1-8B-Instruct 47.0 67.6 75.8
Our Best Model 51.0 70.2 79.2

+ MCTS Decode 51.0 70.8 82.8

Table 7: Performance on MATH Dataset: Test@1,
Test@8, and Test@32 Results. Test@N denotes the
percentage of problems solved correctly at least once
when the model is allowed to make N separate guesses
for each problem.

inheritance of biases from large models, which can 502

lead to suboptimal reasoning patterns in smaller 503

models. Research by Chen et al. (2024) and Wang 504

et al. (2025) highlighted that long CoT reason- 505

ing could introduce learning difficulties and biases, 506

impacting the performance of smaller models. 507

Monte Carlo Tree Search MCTS has been pro- 508

posed as a promising solution to improve reasoning 509

quality. (Qi et al., 2024) and (Tian et al., 2024) 510

applied MCTS for reasoning in LLMs.They use 511

MCTS to guide the model to generate outputs with 512

long Chains of Thought (CoT), and then use these 513

outputs for continued training. 514

6 Conclusion 515

We explore strategies for transferring long CoT rea- 516

soning to smaller models, addressing learning dif- 517

ficulties and bias inheritance common in standard 518

distillation. We propose a MCTS framework that 519

generates tree-based reasoning paths from scratch, 520

enabling flexible data generation and reducing re- 521

liance on large teacher models. We enhance per- 522

formance through CoT-aware post-training, com- 523

bining supervised fine-tuning, direct preference 524

optimization, and masking-based strategies. Ex- 525

periments on diverse benchmarks—covering exam 526

tasks, multilingual instruction following, and real- 527

world planning—show that MCTS-generated data 528

and targeted optimization reduce formalistic over- 529

thinking and content repetition. By balancing rea- 530

soning length, introducing multi-model coordina- 531

tion for reflection, and using a joint loss approach 532

for preference optimization, our model demon- 533

strates robust performance across various reasoning 534

tasks. These findings highlight the importance of 535

well-designed data and post-training strategies in 536

improving the efficiency and reliability of smaller- 537

scale reasoning models. 538
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Limitations539

Our MCTS-based method for constructing CoT540

data moves beyond straightforward distillation541

pipelines by explicitly building a search tree, guid-542

ing the LLM to generate multi-step, human-like543

reasoning. Despite its advantages, the method can544

be computationally expensive as task complexity545

increases. Future optimizations could include: 1)546

Pruning Strategies: Prune branches of the tree that547

appear suboptimal based on a partially learned re-548

ward or confidence metric. 2) More Diverse Model549

Rotations: Beyond reflection vs. thinking, multi-550

ple specialized models (or specialized parameter551

shards within a large model) could be employed for552

different reasoning skills (e.g., logic vs. creative).553

Ethics Statement554

We take ethical considerations very seriously, and555

strictly adhere to the ACL Ethics Policy. All556

datasets used in this paper are publicly available.557

We ensure that the findings and conclusions of this558

paper are reported accurately and objectively.559
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