
Published as a Tiny Paper at ICLR 2024

Q-LEARNING AS A MONOTONE SCHEME

Lingyi Yang
Mathematical Institute
University of Oxford
yangl@maths.ox.ac.uk

ABSTRACT

Stability issues with reinforcement learning methods persist. To better under-
stand some of these stability and convergence issues involving deep reinforcement
learning methods, we examine a simple linear quadratic example. We interpret the
convergence criterion of exact Q-learning in the sense of a monotone scheme and
discuss consequences of function approximation on monotonicity properties.

1 INTRODUCTION

Sutton & Barto (2018) coined the combination of bootstrapping, off-policy learning, and function
approximations as “the deadly triad” due to stability issues. Let x denote the state, and u the action.
A simple system for analysis is the linear quadratic (LQ) regulator where the dynamics is linear and
the objective function is quadratic

xt+1 = Axt +But, min

{∑
t

x⊺
tQxt + u⊺

t Put

}
.

Recht (2019) observed unstable behaviour on this system using a vanilla policy gradient method.
Agarwal et al. (2021) showed policy gradients converge when the value function is increas-
ing/monotone pointwise. We know that in general, the monotonicity of a numerical method can
have a large impact on its convergence (Godunov & Bohachevsky, 1959; Crandall & Majda, 1980).
We say an explicit numerical method with updates un+1

i = S({un
j }j∈I), S : Rk → R is monotone

if the operator S is monotone, i.e. if u ≥ v ⇒ Su ≥ Sv. Linear schemes are monotone only if
all coefficients of un

j are non-negative (see the discussion on positive coefficient discretisation by
Forsyth & Labahn (2007)). Barles & Souganidis (1991) proved that a stable, consistent, and mono-
tone scheme converges (as the mesh size tends to zero) to the viscosity solution (Crandall & Lions,
1983; Crandall et al., 1992). We look at the impact of monotonicity in the context of continuous LQ
problems, and the implications for Q-learning if we view it as a discretised numerical method.

2 1D DETERMINISTIC LINEAR QUADRATIC PROBLEM

Consider a continuous, infinite-horizon, discounted control problem with linear state dynamics
dXx,u

t

dt
= b(Xx,u

t , ut), b(Xx,u
t , ut) = αXx,u

t + ut, Xx,u(0) = x,

where {Xx,u}t is the process starting at x and following the policy u. Let the cost function be
J(us;Xs) =

∫∞
0

e−βsf(Xx,u
s , us)ds, where f(Xx,u

t , ut) = (Xx,u
t)2 + u2

t , and define the value
function V (x) = infu J(u;x). The Hamilton–Jacobi–Bellman (HJB) equation is

−βV (x) + inf
u

{
∂xV (x) · b(x, u) + f(x, u)

}
= 0. (1)

To solve the HJB (1) numerically, we can rearrange the formula to get a fixed point problem

V n+1 =
β + γ

γ
V n +

1

γ
min
u

{
∂xV

n · (αx+ u) + x2 + u2

}
. (2)

If we choose a finite difference scheme for the derivative depending on the sign of αxi + u, then we
can obtain an upwind method that ensures monotonicity. This subtle variation of finite difference
schemes for different parts of the domain has an enormous impact on the stability in estimating value
function and policies through value/policy iteration. A brief introduction to the continuous control
set-up and the stability analysis of (2) can be found in Appendix A.

1

Published as a Tiny Paper at ICLR 2024

2.1 Q-LEARNING

Q-learning arises as a fixed point iteration to the Bellman optimality equation in discrete time

Qn+1(xt, ut) =(1− α)Qn(xt, ut) + α

[
f(xt, ut) + γmin

û
Qn(xt+1, û)

]
,

where f(x, u) denotes the instantaneous reward function (Appendix B). We see the coefficients are
non-negative for 0 ≤ α ≤ 1; within this range, the update step is monotone. This aligns with the
usual range for the step size α in Q-learning. We explore larger values outside this range analogous
to over-relaxation in optimisation (Saad, 2003). In our experiments, Q-learning is seen to be stable
against the theoretical limits for a deterministic LQ problem when 0 ≤ α ≤ 1 (Figure 1). We
converge to the correct value function, and the differences in policy are due to discretisation error.
Since monotonicity is a sufficient condition for convergence, having α outside of this range does not
necessitate the method breaking. In Figure 5 we see that we still converge to the theoretical values
for α = 1.3. Instability occurs when α is sufficiently large, α = 1.8 will do (Figure 2).

−20 −10 0 10 20
state

−600

−500

−400

−300

−200

−100

0

va
lu

e
fu

n
ct

io
n

Value function for step size = 0.8

−20 −10 0 10 20
state

−10

−5

0

5

10

p
ol

ic
y

Policy for step size = 0.8

Figure 1: Q-learning: learnt value function and policy (blue) against theoretical (orange) for α = 0.8

−20 −10 0 10 20
state

0.0

0.5

1.0

1.5

2.0

va
lu

e
fu

n
ct

io
n

×1040 Value function for step size = 1.8

−20 −10 0 10 20
state

−20

−10

0

10

p
ol

ic
y

Policy for step size = 1.8

Figure 2: Q-learning: learnt value function and policy (blue) against theoretical (orange) for α = 1.8

Ensuring monotonicity with a function approximator is non-trivial. In the LQ case, note Q∗(xt, u) =
f(xt, u)+V ∗(xt+1) and f and V can be expressed as a quadratic function in x and u (Appendix A).
Therefore a linear function approximator for Q(x, u) with features of terms up to quadratic powers
in x and u will be a suitable function class. To be precise, Q̃(x, u, w) = X(x, u)⊺w, where X(x, u)
are the features that we extract from our state-action pair, and w are the weights. Then (Appendix B)

Q̃n+1(x, u, wn+1) = αnf(x, u)X
⊺(x, u)X(x, u) + (1− αnX

⊺(x, u)X(x, u))Q̃n(x, u, wn)

+ αnX
⊺(x, u)X(x, u)max

ũ
Q̃n(x′, ũ, wn).

To ensure monotonicity, the features X(x, u) need to be bounded and step sizes are sufficiently
small such that αnX

⊺(x, u)X(x, u) < 1, i.e. αn(x, u) < 1/(X⊺(x, u)X(x, u)). This condition is
dependent on the state and action, so a potential issue is that we may not sufficiently explore the state
space (e.g. if for large values of x, the action u is also large then α needs to be very small). Even
a simple, linear function approximator can disrupt monotonicity causing instability so violations in
the nonlinear case (neural networks) may explain the stability issues we observe in practice.

2

Published as a Tiny Paper at ICLR 2024

ACKNOWLEDGEMENTS

The author would like to thank Prof Samuel N. Cohen and Dr Jaroslav Fowkes for their support and
feedback. This work was supported by the EPSRC [EP/L015803/1].

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the Theory of Policy Gra-
dient Methods: Optimality, Approximation, and Distribution Shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Guy Barles and Panagiotis E. Souganidis. Convergence of approximation schemes for fully
nonlinear second order equations. Asymptotic Analysis, 4(3):271–283, 1991. doi: 10.3233/
ASY-1991-4305. Publisher: IOS Press.

Michael G. Crandall and Pierre-Louis Lions. Viscosity Solutions of Hamilton–Jacobi Equations.
Transactions of the American Mathematical Society, 277(1):1–42, 1983. ISSN 00029947. Pub-
lisher: American Mathematical Society.

Michael G. Crandall and Andrew Majda. Monotone difference approximations for scalar conserva-
tion laws. Mathematics of Computation, 34(149):1–21, 1980. ISSN 00255718, 10886842.

Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions of
second order partial differential equations. Bulletin of the American Mathematical Society, 27:
1–67, 1992.

Peter A. Forsyth and George Labahn. Numerical methods for controlled Hamilton–Jacobi–Bellman
PDEs in finance. Journal of Computational Finance, 2007.

Sergei K. Godunov and I. Bohachevsky. Finite difference method for numerical computation of
discontinuous solutions of the equations of fluid dynamics. Matematičeskij sbornik, 47(89)(3):
271–306, 1959.

Nikolay V. Krylov. Controlled Diffusion Processes. Stochastic Modelling and Applied Probability.
Springer Berlin Heidelberg, 1980. ISBN 978-3-540-70914-5.

Benjamin Recht. A Tour of Reinforcement Learning: The View from Continuous Control. Annual
Review of Control, Robotics, and Autonomous Systems, 2(1):253–279, May 2019. ISSN 2573-
5144. doi: 10.1146/annurev-control-053018-023825. Publisher: Annual Reviews.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathe-
matical Statistics, 22(3):400–407, 1951. ISSN 00034851. Publisher: Institute of Mathematical
Statistics.

Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, 2nd edition, 2003. doi: 10.1137/1.9780898718003.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2nd
edition, 2018.

3

Published as a Tiny Paper at ICLR 2024

A 1D CONTINUOUS LQ PROBLEM

Consider the typical deterministic, infinite-horizon, discounted control problem with linear state
dynamics

dXx,u
t

dt
= b(Xx,u

t , ut), b(Xx,u
t , ut) = αXx,u

t + ut, Xx,u(0) = x, (3)

where {Xx,u}t is the process starting at x and following the policy u thereafter. Let the cost function
be given by

J(us;Xs) =

∫ ∞

0

e−βsf(Xx,u
s , us)ds, (4)

where
f(Xx,u

t , ut) = (Xx,u
t)2 + u2

t .

Define the value function
V (x) = inf

u
J(u;x). (5)

Lemma 1. The dynamic programming principle gives us

V (x) = inf
u

{∫ h

0

e−βs
(
(Xx,u

s)2 + u2
s

)
ds+ e−βhV (Xx,u

h)

}
.

Proof.

V (x) = inf
u

∫ ∞

0

e−βsf(Xx,u
s , us)ds

= inf
u

∫ h

0

e−βsf(Xx,u
s , us)ds+ inf

u

∫ ∞

h

e−βsf(Xx,u
s , us)ds

= inf
u

∫ h

0

e−βsf(Xx,u
s , us)ds+ inf

ũ

∫ ∞

0

e−β(t+h)f(X
Xx,u

h ,ũ
t , ũt)dt

= inf
u

∫ h

0

e−βsf(Xx,u
s , us)ds+ e−βh inf

ũ

∫ ∞

0

e−βtf(X
Xx,u

h ,ũ
t , ũt)dt

= inf
u

∫ h

0

e−βsf(Xx,u
s , us)ds+ e−βhV (Xx,u

h).

■

See (Krylov, 1980) for a rigorous formulation of this problem detailing the set of admissible controls
and growth conditions assumed. From this form of the value function, we can derive the Hamilton–
Jacobi–Bellman (HJB) equation.
Lemma 2. The HJB equation of the system given by (3) and (4) is

−βV (x) + inf
u

{
∂xV (x) · b(x, u) + f(x, u)

}
= 0. (6)

Proof. Let us first consider a constant control ū. By the definition of the value function, we must
have

V (x) ≤
∫ h

0

e−βsf(Xx,ū
s , ū)ds+ e−βhV (Xx,ū

h).

Now by the chain rule we have

V (Xx,ū
h) = V (x) +

∫ h

0

b(Xx,ū
t , ū)∂xV (Xx,ū

t)dt,

therefore

V (x) ≤
∫ h

0

e−βsf(Xx,ū
s , ū)ds+ e−βh

(
V (x) +

∫ h

0

b(Xx,ū
t , ū)∂xV (Xx,ū

t)dt

)
.

4

Published as a Tiny Paper at ICLR 2024

Upon rearranging, we have

1− e−βh

h
V (x) ≤ 1

h

∫ h

0

e−βsf(Xx,ū
s , ū)ds+

e−βh

h

∫ h

0

b(Xx,ū
t , ū)∂xV (Xx,ū

t)dt.

We consider the limit as h tends to 0. By L’Hôpital’s rule

lim
h→0

1− e−βh

h
= lim

h→0

βe−βh

1
= β,

and by applying the Mean Value Theorem, we obtain

βV (x) ≤ f(x, ū) + b(x, ū)∂xV (x).

Therefore, for an arbitrary constant cost ū we have

−βV (x) + f(x, ū) + b(x, ū)∂xV (x) ≥ 0,

thus
−βV (x) + inf

u

[
f(x, u) + b(x, u)∂xV (x)

]
≥ 0.

If we apply the above analysis with the optimal control, we will find that equality holds

−βV (x) +
[
f(x, u∗) + b(x, u∗)∂xV (x)

]
= 0,

and therefore
−βV (x) + inf

u

[
f(x, u) + b(x, u)∂xV (x)

]
= 0

as required. ■

We can find the optimal feedback control of (6).
Lemma 3. The optimal control is given by

u∗ = −Γx.

Proof. Let us propose the following ansatz for (6)

V (x) = Γx2 + 2κx+ λ.

We then find the derivative with respect to x, dV/dx = 2Γx+2κ and substitute into the Hamiltonian
to get

∂xV (x) · b(x, u) + f(x, u) = Qx2 +Ru2 + (2Γx+ 2κ)(Ax+Bu).

By taking the partial derivative w.r.t u and setting to zero for the stationary point, we have that

2Ru+B(2Γx+ 2K) = 0

and the optimal control is given by

u∗ = −B(Γx+ κ)

R
.

Evaluate the Hamiltonian at the optimal control

∂xV (x) · b(x, u) + f(x, u)|u∗ = Qx2 +R

(
− B(Γx+ κ)

R

)2

+ (2Γx+ 2κ)

(
Ax− B2(Γx+ κ)

R

)
= Qx2 +������B2(Γx+ κ)2

R
+ 2AΓx2 + 2Aκx− �2B

2(Γx+ κ)2

R

=

(
Q+ 2AΓ− B2Γ2

R

)
+

(
2Aκ− 2B2Γκ

R

)
x− B2κ2

R
.

Substitute this into the HJB

β(Γx2 + κx+ λ)−
((

Q+ 2AΓ− B2Γ2

R

)
+

(
2Aκ− 2B2Γκ

R

)
x− B2κ2

R

)
= 0

5

Published as a Tiny Paper at ICLR 2024

and set each coefficient to zero

0 =
B2Γ2

R
+ Γ(β − 2A)−Q, (7)

0 = 2κ(β +
B2Γ

R
−A), (8)

0 = βλ+
B2κ2

R
. (9)

From (8), we see that either κ = 0 or Γ = R(A−β)
B2 . The latter case would not generally satisfy (7).

Thus we must have κ = 0. Substituting this into (9), we also get that λ = 0. Thus the only non-zero
coefficient of V (x) is Γ, which satisfies the quadratic (7). We choose the root that ensures we have
a stable solution (typically positive definite).

For our problem (3) we have that A = α, B = R = Q = 1, hence Γ must satisfy

Γ2 + (β − 2α)Γ− 1 = 0, (10)

which has two roots Γ+ and Γ−. We choose the root that would result in a positive eigenvalue. Our
optimal control is then u∗ = −Γx. ■

If we want to solve the HJB (6) numerically, we can rearrange the formula to get a fixed point
method

V n+1 =
β + γ

γ
V n +

1

γ
min
u

{
∂xV

n · (αx+ u) + x2 + u2

}
. (11)

If we naı̈vely tried to solve this directly by approximating the derivative with finite differences, for
example, central difference, then we obtain the following numerical method

V n+1
i =

β + γ

γ
V n
i +

1

γ
min
u

{
V n
i+1 − V n

i−1

2∆x
· (αxi + u) + x2

i + u2

}
, (12)

where Vi = V (xi) and xi = xi−1 +∆x, and we can take forward and backward differencing at the
boundary.

This method is not monotone in general as the coefficients of V n
i+1 and V n

i−1 are the opposite signs
to each other.

To obtain a monotone method we look at an upwind scheme. Let us approximate the derivative w.r.t.
x with forward differences or backward differences depending on the sign of αx+ u

∂xV ≈
Vi+1 − Vi

∆x
if αx+ u > 0

∂xV ≈
Vi − Vi−1

∆x
if αx+ u < 0.

For αx+ u > 0,

V n+1
i =

β + γ

γ
V n
i +

1

γ
min
u

{
V n
i+1 − V n

i

∆x
(αxi + u) + x2

i + u2

}
=

(
β + γ

γ
− αxi + u∗

γ∆x

)
V n
i +

αxi + u∗

γ∆x
V n
i+1 +

x2
i + (u∗)2

γ
,

where u∗ is the argmin of the Hamiltonian. Now the coefficient of V n
i+1 is positive, but the coefficient

of V n
i will only be positive if we have

∆x >
αxi + u∗

β + γ
. (13)

Hence taking a large value for γ enables us to use finer meshes.

6

Published as a Tiny Paper at ICLR 2024

Similarly when αx+ u < 0,

V n+1
i =

β + γ

γ
V n
i +

1

γ
min
u

{
V n
i − V n

i−1

∆x
(αxi + u) + x2

i + u2

}
=

(
β + γ

γ
+

αxi + u∗

γ∆x

)
V n
i −

αxi + u∗

γ∆x
V n
i−1 +

x2
i + (u∗)2

γ
.

Since αx+ u < 0, the coefficient of V n
i−1 is positive, but the coefficient of V n

i will only be positive
if we have

∆x > −αxi + u∗

β + γ
. (14)

Note that by updating our value function as

V n+1 =
β + γ

γ
V n +

1

γ
min
u
{∂xV n · (ax+ u) + (x2 + u2)},

this is precisely the value iteration updates. We only do one cycle of policy evaluation before choos-
ing a new policy by taking u to be the argmin of the Hamiltonian (policy improvement). A monotone
numerical scheme for the LQ problem with value iteration updates is described in Algorithm 1.

Algorithm 1: Value Iteration for LQ
1. Initialisation
Discretise the state and action spaces
Parameters: a small threshold θ > 0 determining accuracy of estimation (convergence

criterion), a maximum iteration count N
Initialize V (x) as zeros
Initialize ∆ > θ.
2. Iteration
repeat

for each x ∈ X do
V̂ (x)← V (x),
u∗ ← argmin Hamiltonian at x
V (x)← β+γ

γ V̂ (x) + 1
γH(x, u∗, V̂),

where H(x, u∗, V̂) is the Hamiltonian evaluated at x, with control u∗ and using the
suitable differencing for a monotone scheme.

end
∆← max |V̂ − V |.

until ∆ < θ or N ;

For a policy iteration-like update, we need to have a fixed policy that we evaluate the value func-
tion on until convergence before we make a policy improvement step. The pseudocode is given in
Algorithm 2

Let us be more precise on finding the control. To recap, for the value iteration, we are updating at
each iteration with the rule

V n+1 = −β − γ

γ
V n +

1

γ
min
u

{
∂xV

n · (αx+ u) + (x2 + u2)
}
.

In order to obtain a monotone scheme, we must apply forward differencing on ∂xV
n if αx+ u > 0

or backward differencing otherwise. However, for value iteration, we are also minimising over all
u, which means that there are a few cases we can fall into. Let us consider finding the correct action
for each discretised state xi.

We have the regions R1 = {u : αxi + u ≥ 0} and R1 = {u : αxi + u < 0}. Let

Hn(u) =

{
hn
1 (u) if u ∈ R1

hn
2 (u) if u ∈ R2

where

hn
1 =

V n
i+1 − V n

i

∆x
(αxi + u) + x2

i + u2,

7

Published as a Tiny Paper at ICLR 2024

Algorithm 2: Policy Iteration for LQ
1. Initialisation
Discretise the state and action spaces
Parameters: two small thresholds θv > 0 and θu > 0 determining accuracy of estimation
(convergence criterion), maximum iteration counts Nv, Nu

Initialize u(x) ∈ U arbitrarily for all x ∈ X (let us say equal to 1).
Initialize ∆ > θ.
2. Policy Evaluation
repeat

for each x ∈ X do
V̂ (x)← V (x),
V (x)← β+γ

γ V̂ (x) + 1
γH(x, u, V̂),

where H(x, u, V̂) is the Hamiltonian evaluated at x, with the current control u and
using the suitable differencing for a monotone scheme.

end
∆← max |V̂ − V |.

until ∆ < θv;
3. Policy Improvement
for each x ∈ X do

û(x)← u(x)
u(x)← argmin of Hamiltonian at x

end
If max |û− u| < θu, then stop and return V ≈ V ∗ and u ≈ u∗; else go back to Step 2.

and

hn
2 =

V n
i − V n

i−1

∆x
(αxi + u) + x2

i + u2.

Our problem is now to find
y = min

u
Hn(u).

The smoothness of H(u) depends on the smoothness of the value function. In the case of the LQ
problem, the value function is smooth, therefore H(u) is smooth except on the boundary of R1 and
R2, which in this case is a linear boundary, u = −αxi.

We can solve the above problem numerically, by finding

y∗1 = min
u

h1(u), u ∈ R1

and
y∗2 = min

u
h2(u), u ∈ R2

then taking the minimum over these 2 values

y = min{y1, y2}
to get the desired control for value iteration.

For policy iteration, when we are doing policy evaluation, as the policy is fixed, we just need to
check the sign of αx + u. However, we need to also ensure that monotonicity is maintained in
policy improvement. The policy improvement step can be described as

u∗ = argmin
u

H(u).

In this case we can again solve the two minimisation problem separately to find y∗1 and y∗2 and
choose u based on which of these have the lower value.

In Figures 3 and 4, we see the result of applying the downwind iteration and upwind iteration re-
spectively. We see clearly the instability arising in the downwind case, and how important it is to
choose between forward and backward difference so that we ensure monotonicity.

8

Published as a Tiny Paper at ICLR 2024

−10 −5 0 5 10
state

−4

−2

0

2

4

p
ol

ic
y

optimal policy

downwind learned policy

−10 −5 0 5 10
state

0

10

20

30

va
lu

e
fu

n
ct

io
n

optimal value

downwind learned value

Figure 3: An intermediate policy and value function for a downwind method (the policy and value
function have not converged yet). Instability forms and becomes amplified with further iterations.

−10 −5 0 5 10
state

−4

−2

0

2

4

p
ol

ic
y

optimal policy

upwind learned policy

−10 −5 0 5 10
state

0

10

20

30

va
lu

e
fu

n
ct

io
n

optimal value

upwind learned value

Figure 4: An intermediate policy and value function for an upwind method. Note that whilst the
policy has not converged yet, there are no instabilities in this case.

B Q-LEARNING (DISCRETE SETTING)

Let the transition be xt+1 = b(xt, ut) and let f(x, u) denote the reward function. The state value
function under policy π is defined as

V π(x) =

∞∑
t=0

γtf(xt, π(xt)), x0 = x.

The Bellman optimality equations are

V ∗(xt) = max
ut

[
f(xt, ut) + γV ∗(xt+1)|xt+1=b(xt,ut)

]
,

Q∗(xt, ut) = f(xt, ut) + γV ∗(xt+1)|xt+1=b(xt,ut)

= f(xt, ut) + γmin
â

Q(xt+1, â)|xt+1=b(xt,ut).

Thus the first order condition is given by

∂Q∗(st+1, â)

∂â
= 0

or
∂f

∂ut
+ γ

∂V ∗

∂xt+1

∂xt+1

∂ut
= 0.

Monotonicity gives a sufficient condition for stability but it is not necessary. We see that Q-learning
is also stable for α = 1.3 case, as seen in Figure 5.

Note that, when we have a constant step size α > 1, not only can we no longer guarantee mono-
tonicity, but the square summability condition of the step size α (Robbins & Monro, 1951) would
also be violated.

9

Published as a Tiny Paper at ICLR 2024

−20 −10 0 10 20
state

−600

−500

−400

−300

−200

−100

0

va
lu

e
fu

n
ct

io
n

Value function for step size = 1.3

−20 −10 0 10 20
state

−10

−5

0

5

10

p
ol

ic
y

Policy for step size = 1.3

Figure 5: Learnt value function and policy (blue) against theoretical (orange) for α = 1.3

For ‘table-lookup’ methods, as long as all states are updated infinitely often and step sizes satisfy
square summability conditions (Robbins & Monro, 1951), then we have convergence for policy
evaluation. This is not guaranteed when we have a general function approximator. The problem with
having exact table representation is that they are slow to converge, and the number of states/state-
action pairs suffer from the curse of dimensionality. Using a function approximator, we postulate that
as long as the function approximation preserves monotonicity, then Q-learning should still converge.

When we are approximating Q(x, u) by Q̃(x, u, w), we want to minimise the expected error
1

2
E
[
(Q(x, u)− Q̃(x, u, w))2

]
.

We use a semi-gradient descent method and take update steps in the form of

wn+1 = wn + αn

(
Q(x, u)− Q̃(x, u, wn)

)
∇wn

Q̃(x, u, wn).

For reinforcement learning/control problems, we do not have access to the true value function
Q(x, u) and therefore use an approximation in its place. An approximate method derived from
Q-learning uses

Q(x, u) ≈ f(x, u) + γmax
ū

Q̃(x′, ū, w).

Since
Q∗(xt, u) = f(xt, u) + V ∗(xt+1)

and we know in the LQ case, both f and V can be expressed as a quadratic function in x and u
(Appendix A), a linear function approximator for Q(x, u) with features of terms up to quadratic
powers in x and u will be a suitable function class for this approximation.

This linear approximator for Q(x, u) is represented as

Q̃(x, u, w) = X(x, u)⊺w, (15)
where X(x, u) are the (e.g. quadratic) features that we extract from our state-action pair, and w are
the weights. Then

Q̃n+1(x, u, wn+1) =X⊺(x, u)
(
wn + αn

(
Q(x, u)− Q̃n(x, u, wn)

)
X(x, u)

)
≈ Q̃n(x, u, wn)

+ αnX
⊺(x, u)

(
f(x, u) + γmax

ũ
Q̃n(x′, ũ, wn)− Q̃n(x, u, wn)

)
X(x, u)

)
= αnf(x, u)X

⊺(x, u)X(x, u) + (1− αnX
⊺(x, u)X(x, u))Q̃n(x, u, wn)

+ αnX
⊺(x, u)X(x, u)max

ũ
Q̃n(x′, ũ, wn). (16)

Monotonicity implies that the action-value function Q̃n+1(x, u, wn+1) must be non-decreasing with
respect to the action-value function at the other points. Hence to ensure monotonicity we need to
ensure that the features X(x, u) are bounded and we take sufficiently small step size such that
αnX

⊺(x, u)X(x, u) < 1, i.e. αn(x, u) < 1/(X⊺(x, u)X(x, u)), the step size is dependent on the
state and action. A potential problem is that we may not sufficiently explore the state space with a
step size that is dependent on the state-action space (e.g. if for large values of x, the action u is also
large then α needs to be very small).

10

	Introduction
	1D Deterministic Linear Quadratic Problem
	Q-Learning

	1D continuous LQ problem
	Q-learning (discrete setting)

