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Abstract

Grokking is a surprising phenomenon in neural network training where test ac-1

curacy remains low for an extended period despite near-perfect training accuracy,2

only to suddenly leap to strong generalization. In this work, we study grokking3

using a depth-3, width-200 ReLU MLP trained on a subset of MNIST. We inves-4

tigate it’s long-term dynamics under both weight-decay and, critically, no-decay5

regimes—the latter often characterized by increasing l2 weight norms. Our pri-6

mary tool is the theory of Heavy-Tailed Self-Regularization (HTSR), where we7

track the heavy-tailed exponent α. We find that α reliably predicts both the initial8

grokking transition and subsequent anti-grokking. We benchmark these insights9

against four prior approaches: progress measures—Activation Sparsity, Absolute10

Weight Entropy, and Approximate Local Circuit Complexity —and weight norm11

(l2) analysis. Our experiments show that while comparative approaches register12

significant changes, in this regime of increasing l2 norm, the heavy-tailed expo-13

nent α demonstrates a unique correlation with the ensuing large, long-term14

dip in test accuracy, a signal not reliably captured by most other measures.15

Extending our zero weight decay experiment significantly beyond typical16

timescales (105 to approximately 107 optimization steps), we reveal a late-stage17

catastrophic generalization collapse (“anti-grokking”), characterized by a18

dramatic drop in test accuracy (over 25 percentage points) while training19

accuracy remains perfect; notably, the heavy-tail metric α uniquely provides20

an early warning of this impending collapse. Our results underscore the utility21

of Heavy-Tailed Self-Regularization theory for tracking generalization dynamics,22

even in the challenging regimes without explicit weight decay regularization.23

1 Introduction24

Grokking is an intriguing phenomenon where a neural network achieves near-perfect training accu-25

racy quickly, yet the test accuracy lags significantly, often near chance level, before abruptly surging26

towards high generalization [15]. Figure 1 illustrates this for a depth-3, width-200 ReLU MLP27

trained on a subset of MNIST.28

To dissect this phenomenon and uncover deeper dynamics, our primary analytical lens is the recently29

developed theory of Heavy-Tailed Self-Regularization (HTSR), following Martin et.al.[10]. The30

HTSR theory examines the empirical spectral density (ESD) of individual layer weight matrices31

(W), quantified by the heavy-tailed power law (PL) exponent α. We find α provides a sensitive32

measure of correlation structure within layers, tracking the transition into the grokking phase, and33

crucially, predicting a subsequent decrease in generalization.34

For comparative context, we also investigate several other methodologies:35
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1. Weight Norm Analysis: Motivated by studies like Liu et al. [6], we examine the l2 norm36

of the weights. We observe that grokking occurs even without weight decay (leading to an37

increasing norm), suggesting weight norm alone is not a complete explanation, confirming38

the weight-norm related findings by Golechha [2] .39

2. Progress Measures: We utilize metrics proposed by Golechha [2].—Activation Sparsity,40

Absolute Weight Entropy, and Approximate Local Circuit Complexity—which capture41

broader structural and functional changes in the network during training.42

Figure 1: The three phases of grokking. Training curves for a depth-3, width-200 MLP on MNIST.
The initial pre-grokking phase (grey): training accuracy (red line) surges at 102 steps, saturating
between 104−105 steps, while test accuracy (purple line) remains low; the grokking phase (yellow):
with test accuracy rapidly increasing after ∼ 105 steps, and reaching a maximum at 106 steps; and
the newly revealed late-stage anti-grokking phase (green): test accuracy collapses (to 0.5).

Our Contributions: Our work makes several related contributions that helps explain the underlying43

mechanisms associated with the grokking phenomena:44

1. By extending training significantly (up to 107 steps) under zero weight decay (WD = 0),45

we identify and characterize late-stage generalization collapse: a substantial drop in test46

accuracy long after initial grokking, despite perfect training accuracy and a continually47

increasing l2 weight norm. We call this anti-grokking.48

2. We show that the HTSR layer quality metric α (the heavy-tailed power-law (PL) exponent),49

effectively tracks the grokking transition under both the traditional setting of weight decay50

(WD > 0) and zero weight decay WD = 0), outperforming the l2 weight norm and the51

other progress metrics. Only the HTSR α can distinguish between all 3 phases of grokking.52

3. We identify the mechanism of the pre-grokking phase, where the training accuracy is per-53

fect but the model does not generalize. This phase occurs because only a subset of the54

model layers are well trained (i.e. α ≤ 4), whereas at least one layer is underfit (i.e.55

α ≥ 5). Moreover, the layers can show great variability between training runs, indicating56

their instabili. Importantly, the layer α’s here are distinct from those in the anti-grokking57

phases, despite both phases having perfect training accuracy and low test accuracy. .58

4. We demonstrate that when the HTSR PL exponent α < 2, this identifies the collapse. Also,59

in this phase, we observe the presence of anomalous rank-one (or greater) perturbations60

in one or more underlying layer weight matrices W. We call these correlation traps and61

identify them by randomizing W elementwise, forming Wrand, and looking for unusu-62

ally large eigenvalues, λtrap ≫ λ+ (where λ+ is the right-most edge of the associated63

Marchenko-Pastur (MP) distribution [9]).64

2 Related Work65

Grokking [15], the delayed emergence of generalization well after training accuracy saturation,66

has prompted significant research into its underlying mechanisms. Initial studies often explored67

grokking in algorithmic tasks [12, 13, 16], frequently linking the phenomenon to the presence of68

weight decay (WD) which favors simpler, lower-norm solutions [6]. Other approaches include69
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mechanistic interpretability [13] and analyses identifying competing memorization and generaliza-70

tion circuits [16, 12].71

Varma et al. [16] defined ’ungrokking’ as generalization loss when retraining a grokked network on72

a smaller dataset (D < Dcrit), attributing it to shifting circuit efficiencies under WD. In contrast, we73

observe late-stage generalization collapse (’anti-grokking’) occurring on the original dataset after74

prolonged training (˜107 steps) without WD (WD=0). This distinct phenomenon is not predicted by75

[16] as it falls outside of the crucial weight decay assumption on which it relies.76

Grokking studies now include real-world tasks [2, 4]. Golechha et al. [2] introduced progress mea-77

sures (e.g., Activation Sparsity, Absolute Weight Entropy) and notably observed grokking without78

WD, resulting in increasing l2 norms, similar to our setup. We use their metrics for comparison but79

extend training drastically (up to 107 steps), revealing the subsequent ’anti-grokking’ collapse—a80

phenomenon not reported in their work despite the similar WD=0 regime.81

We employ the theory of Heavy-Tailed Self-Regularization (HTSR) [10, 11], tracking the spectral82

exponent α. We find α predicts both the initial grokking and, uniquely, the subsequent dip and even-83

tual ’anti-grokking’ collapse under WD=0. Our contribution lies in identifying and characterizing84

this anti-grokking phenomenon using α for long-term generalization stability, extending prior work85

that either required WD or did not explore sufficiently long training horizons.86

3 Measures and Metrics87

3.1 Heavy–Tailed Self-Regularization (HTSR)88

From weights to spectra. For each layer weight matrix W ∈ RN×M , we build the un-centred89

correlation (Gram) matrix90

X =
1

N
W⊤W ∈ RM×M . (1)

Let {λi}Mi=1 be the eigenvalues of X. Their empirical spectral density (ESD) is the discrete measure91

ρemp(λ) =
1

M

M∑
i=1

δ
(
λ− λi

)
. (2)

Gaussian baseline. If the entries of W are i.i.d. N (0, σ2), then, in the limit N→∞,M→∞ with92

aspect ratio Q = N/M ≥ 1 fixed, ρemp(λ) converges to the Marchenko–Pastur (MP) density [7]93

ρMP(λ) =


Q

2πσ2

√
(λ+ − λ)(λ− λ−)

λ
, λ ∈ [λ−, λ+],

0, otherwise,
λ± = σ2

(
1±Q−1/2

)2
(3)

This provides a principled “null model” against which real, trained weights can be compared. In a94

well-trained model, the eigenvalues of any layer W will rarely conform closely to an MP distribu-95

tion and will almost always have a significant number of large eigenvalues extending beyond any96

recognizable bulk MP region (λ ≫ λ+) if not being fully heavy-tailed power-law. If, however, we97

randomize W elementwise,98

W → Wrand (4)
then the elements of Wrand will be i.i.d. by construction, and we expect that the ESD of Wrand99

can be very well fit to an MP distribution. This is shown below, on in Figure 2 (Right).100

Heavy–Tailed Self-Regularization (HTSR) Theory Prior work[10, 11, 9] shows that the101

ESD of real-world DNN layers with learned correlations almost never sits entirely within the102

Marchenko–Pastur bulk predicted for i.i.d. Gaussian weights; instead, the right edge flares into103

a power law (PL) tail . Formally,104

ρemp(λ) ∼ λ−α, λmin < λ < λmax, (5)

with the exponent α quantifying the strength of the correlations. According to the HTSR framework105

[11], different ranges of α correspond to the different phases of training and different levels of106

convergence for each layer:107
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• α ≳ 5 − 6: Random-like or Bulk-plus-Spikes — the spectrum is close to the Gaussian108

baseline; little task structure is present.109

• 2 ≲ α ≲ 5 − 6: Weak (WHT) to Moderate Heavy (Fat) Tailed (MHT) — correlations110

build up; layers are well-conditioned and typically generalise better.111

• α = 2 Ideal value: Corresponds to fully optimized layers in models. Associated with112

layers in models that generalize best.113

• α < 2: Very-Heavy-Tailed (VHT) — extremely heavy tails indicate potentially over-114

fitting to the training data and often precede and/or are associated with decreases in the115

generalization / test accuracy.116

Note that the lower bound of α = 2 on the Fat-Tailed phase is a hard cutoff, whereas the upper117

bound α ≳ 5− 6 is somewhat looser because it can depend on the aspect ratio Q. See Martin et. al.118

[10, 9] for more details.119

Estimating α. Following [11], we fit the tail of ρemp to a PL 5 through the maximum likeli-120

hood estimator (MLE) [1]. The start of the Pl tail, λmin, is chosen automatically to minimize the121

Kolmogorov-Smirnov distance between the empirical and fitted distributions. All calculations are122

performed with WeightWatcher v0.7.5.5 [8], which automates123

• SVD extraction of singular values σi (λi = σ2
i ),124

• PL fits and goodness-of-fit KS tests (including selection of λmin and λmax)125

• Detection of correlation traps (optional)126

Figure 2 (Left) shows an example of a PL fit on a log-log scale for a representative layer after127

training. The plot displays the ESD for a typical NN layer (a histogram or kernel density estimate128

of eigenvalues), the automatically chosen λmin (xmin, vertical line, red), the λmax (xmax, vertical129

line, orange), and the best fit for the PL tail (dashed line, red).130

Figure 2: Left: Example of the ESD derived from a well-correlated W (blue) and the Power-Law
fit to the tail (red), on a Log-Log plot. Right: Example of the ESD of Wrand (light purple) and the
MP fit (red), on a Log-Linear plot.

Note that the PL fit is very sensitive to the choice of λmin, and a poor choice will result in a poorly131

estimated α. If λmin is too large (bad xmin, vertical line, purple), then the PL tail is too small and132

results in a larger α. The selection of λmin is very important in the calculation of the tail alpha (α)133

and is fully automated using the open-source WeightWatcher tool.[8]134

Significance for Grokking/Anti-Grokking. Across all experiments, the trajectory α(t) proves135

to be a highly sensitive indicator of the network’s generalization state: large drops toward α ≈136

2 coincide with the onset of grokking, while a further fall below α < 2 foreshadows (and then137

characterizes) the eventual ”anti-grokking” collapse .138

3.2 Correlation Traps139

To better understand the origin of anti-grokking (generalization collapse), it is instructive to look140

for evidence of potential overfitting in the layer weight matrices W, which appear as what we141
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call Correlation Traps [9]. Recall that for a well-trained model, we expect the ESDs of Wrand142

to be well-fit by an MP distribution; here we argue that deviations from this are significant and143

informative. To identify these deviations, we compare the randomized layer ESDs against the MP144

distribution at the different stages of training to assess deviations from randomness. We identify145

these deviations as anomalously large eigenvalues in the underlying Wrand. We call such large146

eigenvalues correlation traps, λtrap, when they are significantly larger than the bulk edge λ+
rand of147

the best fit MP distribution.148

λtrap ≫ λ+
rand (6)

See the Appendix D for additional statistical validation of the presence of such traps, as well as the149

Supplementary Information. Also, see [9] for more details.150

The WeightWatcher tool [8] detects correlation traps automatically; it randomizes W, then per-151

forms automated MP fits by estimating the variance σ2
MP of the underlying randomized matrix152

Wrand, finding the fit that best describes the bulk of its ESD of Wrand. It then finds all eigenval-153

ues λtrap that are significantly larger (i.e. beyond the Tracy-Widom fluctuations) of the MP bulk154

edge λ+
rand of the ESD of Wrand. Figure 3 depicts two layers from the models studied here with155

correlation traps.156

Figure 3: Examples of Correlation Traps. ESDs of (Wrand) (light purple) of Layer 2 for the
randomized weight matrix Wrand for different models, compared to an MP fit (red). Correlation
traps λtrap are depicted a small spikes to the right of the MP fit. (x-axis is log scale) Left: Right
Before Collapse (i.e. at more than ∼ 106 steps) (σmp ≈ 0.9879). The KS test (P-value ≈ 4×10−13)
indicates a strong deviation from the MP model. A single, prominent correlation trap appears at
λtrap ≈ 106.5. Right: Final Generalization Collapse. The KS test (P-value ≈ 1.877 × 10−5)
indicates a strong deviation from the MP model. Multiple correlation traps are observed, λtrap ∈
[102.x, 106.5].

For additional statistical validation, here, we also use the Kolmogorov-Smirnov (KS) test to quantify157

the dissimilarity between the ESD of Wrand and its best MP fit. A large difference, combined with158

a visual inspection of the data, indicates the presence of one or more correlation traps (λtrap).159

3.3 Other Benchmarked Metrics160

We benchmarked our HTSR-based findings against l2 weight norm analysis [6] and several progress161

measures proposed by Golechha [2], these include Activation Sparsity (As), Absolute Weight En-162

tropy (Habs(W )), and Approximate Local Circuit Complexity (ΛLC). Detailed definitions of these163

measures are provided in Appendix B.164
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Figure 4: HTSR results vs. optimization steps. Top: Average α across layers. Middle: α for the
first fully connected layer (FC1). Bottom: α for the second fully connected layer (FC2). Note the
significant dip below the critical threshold α = 2, especially in FC2, coinciding with the ”anti-
grokking” performance drop seen in Fig. 1 after 1M steps.

4 Results and Analysis165

4.1 Layer Metrics for Tracking Grokking166

HTSR layer quality metric α: Our primary metric, the HTSR layer quality metric α, reveals167

critical dynamics missed by other measures. Figure 4 shows the evolution of α averaged across168

layers (top) and for individual fully connected layers (middle, bottom).169

Table 1: Layer-wise and average HTSR α exponents. At the right edge of each grokking phase:
Pre-grokking ∼ 105 steps, Grokking 106 steps, and Anti-grokking 107 steps, For the zero-weight-
decay (WD = 0) experiment; values are taken from Fig. 4. Various seeds are used and variability
in initialization, optimizer trajectory may occur.

Layer, Metric Pre-grokking Grokking (Max Test Acc.) Anti-grokking (Collapse)
FC1 α 4.0± 1.3 3.2± 0.6 1.0± 0.40
FC2 α 4.6± 0.5 2.4± 0.1 1.4± 0.24
average α 4.3± 0.70 2.8± 0.30 1.2± 0.23

Initially, α is high, reflecting random-like weights. As training progresses and the network begins170

to fit the training data, α decreases. The sharp drop towards the optimal (fat-tailed) regime (2 ≲171

α ≲ 5−6) coincides with the rapid improvement in test accuracy characteristic of grokking (around172

104-105 steps in Figure 1). Crucially, as training continues into the millions of steps, α consistently173

dips below 2, entering the Very Heavy-Tailed (VHT) regime. This occurs notably in the second174

fully connected layer (FC2, bottom panel). This drop below α = 2, indicating potential layer non-175

optimality and overly strong correlations, directly precedes and coincides with the significant drop176

in test accuracy—the ”anti-grokking” phase—observed after 106 steps in Figure 1.177
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Together, these observations highlight the unique sensitivity of the HTSR α metric. This metric not178

only identifies the grokking transition but also provides an early warning for the subsequent insta-179

bility and the novel ”anti-grokking” phenomenon, highlighting potentially pathological correlation180

structures forming deep into training. The layer-wise analysis (Figure 4) further suggests that this181

instability might originate in specific layers (i.e. FC2 here) becoming over correlated (α < 2).182

Comparative metrics: In contrast, the comparative metrics capture the initial training and183

grokking phases but fail to predict the late-stage generalization collapse. Figure 5 displays the Acti-184

vation Sparsity, Absolute Weight Entropy, and Approximate Local Circuit Complexity. While these185

metrics show clear trends during the initial learning and grokking phases (e.g., changes in sparsity186

and complexity), their trajectories become relatively stable or lack distinct features corresponding187

to the dramatic performance drop seen during ”anti-grokking”. For example, circuit complexity188

remains relatively flat in the late stages up until some noise at the end, offering no warning of the189

impending collapse. Though Activation Sparsity shows an inflection around peak test accuracy and190

does detect grokking, it generally continues its upward trend through the late-stage collapse.191

Figure 5: Alternative progress measures (Golechha [2]) vs. optimization steps. Top: Activation
Sparsity. Middle: Absolute Weight Entropy. Bottom: Approximate Local Circuit Complexity.
While these metrics show changes during the initial training and grokking phases (Activation Spar-
sity for example), they do not exhibit clear signals predicting the magnitude of the late-stage ”anti-
grokking” performance dip observed after 106 steps.

In our primary WD=0 experiments, As generally increases throughout training (Figure 5), seemingly192

tracking the pre-grokking and grokking phases, however, it fails the negative control in the anti-193

grokking phase because it continues to increase in the same way as in pre-grokking. Prior studies194

have linked activation sparsity to generalization [5, 12, 14] and reported specific dynamics such195

as plateauing before grokking [2] or an increase preceding a rise in test loss [3]. Specifically, we196

observe a subtle inflection or dip in As coinciding with the point of maximum test accuracy before197

a slight increase. While this feature appears to mark a shift around peak test accuracy, its specific198

predictive utility for subsequent generalization dynamics is questionable. In other words, without199

knowing the proper sparsity cutoff, it is impossible to determine if increasing As corresponds to200

pre-grokking or anti-grokking. In contrast, because the HTSR α = 2 is a theoretically established201

universal cutoff, one can distinguish between the two phases correctly.202
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Additionally, in our WD=0.01 control experiment, as detailed in Appendix C, a similar inflection203

in As occurs where test accuracy, after a slight initial decrease from its peak, subsequently plateaus204

rather than undergoing a catastrophic collapse as seen in the WD=0 case. Therefore, observing205

this dip in As alone does not allow one to distinguish whether test accuracy will catastrophically206

decline or stabilize, suggesting it primarily indicates that some form of transitional change has oc-207

curred around the point of maximum generalization, rather than predicting the specific nature of208

the subsequent trajectory. Our findings indicate limitations in the other two comparitive metrics for209

tracking the anti-grokking phase. Absolute Weight Entropy (Habs(W)), despite its suggested link210

to generalization [2], also decreases sharply during the collapse, thus not reliably distinguishing this211

anti-grokking phase. Similarly, ΛLC [2] remains low throughout the collapse, failing to reflect the212

performance degradation. We also confirm, consistent with [2], that grokking occurs robustly even213

with increasing weight norms and no weight decay.214

4.2 Correlation Traps and Anti-Grokking215

To better understand the origin of anti-grokking (generalization collapse), it is instructive to look216

for evidence of potential overfitting in the layer weight matrices W, in the form correlation traps.217

As described in Section 3.1, we analyze the eigenvalues {λi} of the randomized weight matrices218

Wrand derived from each layer’s weight matrix W for layers FC1 and FC2.219

Table 2: Average number of detected correlation traps in layers FC1 and FC2 at the right edge of
of the three grokking phases: Pre-grokking ∼ 105 steps, Grokking 106 steps, and Anti-grokking 107

steps. Results shown for both experiments, with (WD > 0) and without WD = 0 weight decay.

Model, Layer Pre-grokking Grokking (Max Test Acc.) Anti-grokking (Collapse)
WD = 0, FC1 0 0 6.33± 5.44
WD = 0, FC2 0 0 1.00± 0.00

WD > 0, FC1 0 0 2.00± 0.00
WD > 0, FC2 0 0 1.00± 0.00

As show in Table 2, for both layers, FC1 and FC2, and for both experiments, with and without weight220

decay, neither layer shows evidence of correlation traps until the anti-grokking phase. The presence221

of such traps corresponds to HTSR α < 2 for these layers, as predicted by previous work[9]. Further222

statistical analysis for the FC2 layers is provided in Appendix D. The presence of correlation traps,223

combined with α < 2, is a definitive signal indicating the model is in the anti-grokking phase.224

5 Conclusion225

This study investigated the well-known grokking phenomena in neural networks (NN) under the226

lens of the recently developed theory of Heavy-Tailed Self Regularization (HTSR) [10]. Previous227

work has attempted to explain grokking (using the l2 norm), but only succeeds in the presence of228

weight decay (WD), and has been unable to explain grokking without weight decay[6, 2]. For this229

reason, we have studied the long-term generalization dynamics of the grokking phenomena both230

with weight decay (WD > 0) and without (WD = 0). We compare the application of the HTSR231

theory to the l2 norm and several previous proposed metrics.[6] Our primary finding is that the232

HTSR layer quality metric α can effectively track grokking both with and without weight decay.233

In particular, the HTSR α tracks the initial grokking transition and subsequent performance dips in234

both case (WD = 0 ,WD > 0) and, in doing so, offers new insights into the grokking phenomena.235

Moreover, and critically, in the WD = 0 setting, the HTSR α also provides an early indication of236

a novel late-stage generalization collapse, called anti-grokking. This collapse is characterized by237

a significant drop in test accuracy despite sustained perfect training accuracy (and a large l2 norm),238

and is observed after extensive training (up to 107 steps).239

We also examined several other grokking progress measures, in addition to the l2 norm [6], includ-240

ing Activation Sparsity As, Absolute Weight Entropy Habs(W ), and Approximate Local Circuit241

Complexity ΛLC [2]. Although As and ΛLC captured initial training and grokking phases, and do242
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change at the anti-grokking transition, they failed to unambiguously predict the appearance and/or243

presence of anti-grokking.244

In examining the HTSR results on all 3 phases of grokking, we propose a new explanation of the245

grokking phenomena. During the first phase, pre-grokking, where only training accuracy saturates,246

only a subset of the individual layers will converge, and only far enough (i.e, α ≈ 4) to describe the247

training data, while other layers will appear almost random (i.e, α ≈ 5). Importantly, some layers248

will be more important for generalization than others, and these will not have converged very well at249

all. During the grokking phase, when the test accuracy is maximal, all important layers will converge250

extremely well, with α metrics approach the optimal value with α ≈ 2.0–exactly as predicted by251

the HTSR theory. In the third anti-grokking phase, where the test accuracy drops substantially, one252

or more layer will overfit the data in some yet undetermined way). They will have α < 2, and may253

exhibit correlation traps (and/or even rank collapse). (Note these results are also supported by recent254

theoretical developments in HTSR (and SETOL) theory[9].)255

In particular, we consider the implications of observing numerous correlation traps in the anti-256

grokking phase. The ’traps’ are anomalous rank-one (or greater) perturbations in the weight matrix257

W, causing a large mean-shift in underlying distribution of elements: E[Wij ] → large and, ’push-258

ing’ the ESD into the VHT phase where α < 2. The large shift in E[Wij ] → large indicates that the259

distribution of weights is atypical. That is, different random samples of the weights could have very260

different means. And as with any statistical estimator, an atypical distribution will not generalize261

well. (Similar results have been seen in training a similar model with very large learning rates[9].)262

Consequently, it is hypothesized that layers with large numbers of correlation traps are overfit to the263

training data (in some unspecified way), and hurt the overall model test accuracy.264

These results underscore the utility of HTSR for monitoring and understanding long-term gener-265

alization stability across different regularization schemes, with a particular strength in identifying266

potential catastrophic collapse. The observed layer-specific changes in α during the WD = 0 col-267

lapse suggest that potential over-fitting may develop deep into training. While our current findings268

are based on a specific MLP architecture and MNIST subset, further research should validate these269

observations across diverse datasets, architectures, hyperparameter configurations, and optimizers.270

Promising future work includes developing α-guided adaptive training strategies. Additionally, de-271

signing differentiable regularizers or loss terms based on α could potentially enable faster and more272

stable generalization, for instance, by encouraging convergence towards α ≈ 2.273

6 Limitations274

Our study, while providing insights into generalization dynamics via Heavy-Tailed Self-275

Regularization (HTSR), has limitations that define important avenues for future research. The empir-276

ical findings are primarily derived from a specific three-layer MLP architecture trained on an MNIST277

subset. Consequently, the generalizability of the observed α trajectories and their specific predictive278

power for phenomena like grokking and late-stage generalization collapse warrants further valida-279

tion across a wider range of model architectures (e.g., CNNs, Transformers), datasets, tasks, and280

diverse training configurations, including different optimizers and hyperparameter settings.281

Furthermore, HTSR is an empirically-grounded, phenomenological framework, supported theoret-282

ically with a novel application of Random Matrix Theory (RMT). While its correlations between283

the heavy-tailed PL exponent α and network generalization states are compelling, the interpretation284

requires careful consideration of context. For instance, while well-generalized models often exhibit285

α values within the range (e.g., 2 ≤ α ≤ 6), and α ≈ 2 is frequently associated with optimal per-286

formance or critical transitions, this is not a strictly bidirectional implication. It is conceivable that287

layers or models might exhibit α values near or even below 2 (typically indicating over-correlation)288

yet display suboptimal generalization. Other very-well trained models may have layers fairly large289

alphas. This is not yet fully understood. This highlights that while α provides strong correlational290

insights into learning phases and stability, the precise mapping of specific α values to absolute per-291

formance levels can be context-dependent and is an area for ongoing refinement of the theory (see292

[9]). Our work contributes observations within specific phenomena, acknowledging that the broader293

applicability and predictive nuances of the HTSR theory will benefit from continued exploration.294

These limitations underscore the importance of ongoing empirical and theoretical work to further295

refine, validate, and extend the understanding of HTSR theory in deep learning.296
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Appendices339

A Experimental Setup340

We train a Multi-Layer Perceptron (MLP) on a subset of the MNIST dataset using the hyperparame-341

ters detailed in Table 3. The training subset is constructed by randomly selecting 100 samples from342

each of the 10 MNIST classes, ensuring a balanced dataset of 1,000 unique training points. This343

was run on an Nvidia Quadro P2000 and took approximately 11 hours. A considerable part of the344

time is due to the speed of saving the measures.345

Table 3: Experimental hyperparameters used in the study (details in Appendix A).

Parameter Value
Network Architecture Fully Connected MLP
Depth 3 Linear layers (Input → Hidden1 → Hidden2 → Output)
Width 200 hidden units per hidden layer
Activation Function ReLU (Rectified Linear Unit)
Input Layer Size 784 (Flattened MNIST image 28× 28)
Output Layer Size 10 (MNIST digits 0-9)
Weight Initialization Default PyTorch (Kaiming Uniform for weights), parameters scaled by 8.0
Bias Initialization Default PyTorch (Uniform), then scaled by 8.0
Dataset MNIST
Training Points 1,000 (100 per class, stratified random sampling)
Test Points Standard MNIST test set (10,000 samples)
Batch Size 200
Loss Function Mean Squared Error (MSE) with one-hot encoded targets
Optimizer AdamW
Learning Rate (LR) 5× 10−4

Weight Decay (WD) 0.0 (for main results), 0.01 (for Appendix C comparison)
AdamW β1 0.9 (PyTorch default)
AdamW β2 0.999 (PyTorch default)
AdamW ϵ 10−8 (PyTorch default)
Optimization Steps 107

Data Type (PyTorch) ‘torch.float64‘
Random Seed 0 (for all libraries)
Software Framework PyTorch
HTSR Tool WeightWatcher v0.7.5.5 [8]

Note on Weight Decay: The primary results presented in this paper, particularly those demonstrat-346

ing grokking followed by late-stage generalization collapse (Figure 1), were obtained with weight347

decay explicitly set to 0. This allows observation of the learning dynamics driven purely by the op-348

timizer and the loss landscape while exhibiting both phenomena, whereas the other proposed mea-349

sures fail to detect the grokking transition of increasing test accuracy. Runs with non-zero weight350

decay (e.g., WD=0.01, see Appendix C) were also performed for comparison, showing different351

dynamics but confirming the general utility of HTSR.352

B Comparative Grokking Progress Metrics and Measures353

Weight Norm Analysis Following observations that weight decay can influence grokking [6], we354

monitor the l2 norm of the network’s weights,355

||W||2 =

√∑
l

||Wl||2F , (7)

throughout training. We specifically run experiments with weight decay disabled (WD=0) to isolate356

the effect of the optimization dynamics on the norm itself.357
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Activation Sparsity. For a given layer with activations bi,j (representing the activation of neuron358

j for input example i), the activation sparsity As is defined as:359

As =
1

T

T∑
i=1

1

n

n∑
j=1

1(bi,j < τ), (8)

where T is the number of training examples, n is the number of neurons in the layer, τ is a chosen360

threshold, and 1(·) is the indicator function. This metric measures neuron inactivity. Prior studies361

have linked activation sparsity to generalization [5, 12, 14] and reported specific dynamics such as362

plateauing before grokking [2] or an increase preceding a rise in test loss [3].363

Absolute Weight Entropy. For a weight matrix W ∈ Rm×n, the absolute weight entropy364

Habs(W ) is given by:365

Habs(W ) = −
m∑
i=1

n∑
j=1

|wi,j | log |wi,j |. (9)

This entropy quantifies the spread of absolute weight magnitudes. Golechha et al. [2] suggested its366

sharp decrease signals generalization.367

Approximate Local Circuit Complexity. Let L(W )(x) denote the output logits for input x using368

weights W , and let L(W ′)(x) denote the logits when 10% of the weights are set to zero (forming369

W ′). The approximate local circuit complexity, denoted ΛLC , is the summed KL divergence:370

ΛLC =

Ndata∑
k=1

∑
j∈C

Pr
(
j|L(W )(xk)

)
log

Pr
(
j|L(W )(xk)

)
Pr
(
j|L(W ′)(xk)

) . (10)

Here, Ndata is the number of training examples xk, C is the set of classes, and Pr(j|L(x)) is the371

probability of class j derived from the logits L(x) (e.g., via softmax). This measure captures out-372

put sensitivity to minor weight perturbations. Lower ΛLC has been linked to stable, generalizable373

representations [2].374

C Experiment with Weight Decay375

To further understand the influence of weight decay on the observed generalization dynamics and the376

behavior of our tracked metrics, we conducted an experiment identical to our main study (WD=0) but377

with a small amount of weight decay (WD=0.01) applied. The training curves and metric evolutions378

for this WD=0.01 experiment are presented in Figures 6, and 7.379

A key characteristic of training with weight decay is the tendency for the l2 norm of the weights to380

decrease over time, or stabilize at a lower value, which is observed in this experiment (Figure 7).381

This contrasts with the continuously increasing l2 weight norm seen in our primary WD=0 experi-382

ments.383

In this WD=0.01 regime, the network still achieves a high level of test accuracy. Notably, after384

the initial grokking phase, the test accuracy slightly decreases and then enters a prolonged plateau,385

maintaining near peak performance for a significant number of optimization steps (Figure 6). Cor-386

respondingly, the average heavy-tail exponent, α, also exhibits the decrease and a distinct plateau387

around the critical value of α ≈ 2 during this period (Figure 6, top left panel).388

The other progress measures considered—Activation Sparsity and Approximate Local Circuit Com-389

plexity—also tend to plateau or stabilize during this phase of peak test performance in the WD=0.01390

setting (Figure 7). This contrasts with the WD=0 scenario where, despite eventual grokking, the391

system does not find such a stable long-term plateau and instead proceeds towards a late-stage gen-392

eralization collapse. The observation that α (and other metrics) plateau in conjunction with peak,393

stable test accuracy under traditional weight decay settings aligns with some existing understanding394

of well-regularized training.395

While HTSR and the α exponent provide valuable insights in both regimes, its unique capability396

to signal impending collapse in the absence of weight decay underscores its importance for under-397

standing layer dynamics under various scenarios.398
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Figure 6: HTSR α exponent evolution for the MLP trained with WD=0.01.

Figure 7: Progress measures (Activation Sparsity, Weight Entropy, Circuit Complexity) and l2

Weight Norm for the MLP trained with WD=0.01.

D Statistical Analysis and Validation of Correlation Traps399

Here, to further validate the presence of correlation traps for the zero weight decay WD = 0400

experiment , we report the results of statistical tests designed to determine if the randomized ESD401

of the Wrand fits an MP distribution or not. Briefly we fit the ESD to a MP distribution and report402

the fitted variance σmp, the Kolmogorov-Smirnov (KS) statistic of the fit, and the p-value for the403

MP fit as the null model. We also report the number of correlation traps, as determined using the404

open-source WeightWatcher tool[8]. Results for layer FC1 are presented in Table 4. Results for405

FC2 are similar (not shown). Additional details are provided in the supplementary material.406
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Table 4: Statistical validation of correlation traps. Selected results for layer FC1 at different
training stages for zero weight decay (WD = 0) experiment. MP Variance (σMP ) Kolmogorov-
Smirnov (KS) test statistic, p-value for MP fit, and number of detected correlation traps. Pre-
grokking ∼ 105 steps, Grokking 106 steps, and Anti-grokking 107 steps,

Model State MP variance (σmp) KS Statistic p-value # Traps
Pre-Grokking ≈ 1.002 0.0120 ≈ 1.0 0
Grokking (Max Test Accuracy) ≈ 0.999 0.0212 ≈ 1.0 0
Anti-Grokking (Collapse) ≈ 0.949 0.3044 1.877× 10−5 9

Initial Layer State (Pre-Grokking WD=0): Immediately after initialization, the network weights407

are expected to be largely random, and their ESD should conform well to the MP distribution. Fig-408

ure 2 (Right) shows an MP fit to an ESD from a representative layer Wrand of the newly initialized409

model. A KS test comparing this empirical ESD to the fitted MP distribution (using σmp ≈ 1.0024410

as estimated by WeightWatcher) yielded a KS statistic of 0.0120 and a p-value ≈ 1.0. This high411

p-value indicates this ESD is statistically consistent with the MP distribution, as expected.412

Best Layer State (Grokking phase WD=0): As the network learns and reaches its maximum test413

accuracy, significant structure develops in the elements of the weight matrices Wi,j . This can be seen414

by randomizing the layer weight matrix elementwise, W → Wrand , and plotting ESD, and looking415

for deviations from the theoretical MP distribution. The ESD now typically exhibits a pronounced416

heavy tail, with eigenvalues extending beyond the bulk region that might be approximated by an417

MP fit. For our model at peak test accuracy, the KS test against a fitted MP model (σmp ≈ 0.999)418

resulted in a KS statistic of 0.0212 and a p-value ≈ 1. Again, this is an MP distribution.419

Final Layer State (Anti-Grokking phase WD=0): In the late-stage of training, as the model420

undergoes generalization collapse and enters an over-correlated state (characterized by α < 2), the421

ESD of Wrand structure continues to reflect a non-random configuration. The KS test for the final422

model against an MP fit (with an estimated σmp ≈ 2) yielded a KS statistic of 0.3044 and a p-value423

of 1.877× 10−5 Figure 3 (Right) . This result further confirms that the network’s structure remains424

significantly different from a random matrix baseline, consistent with the highly correlated or near425

rank-collapsed state indicated by our HTSR analysis.426

These quantitative comparisons demonstrate a transition from an initially random-like state (consis-427

tent with MPD) to progressively more structured, non-random states as learning occurs and eventu-428

ally leads to over-correlation. The inability of the MP distribution to describe these learned features,429

especially the heavy tails, necessitates the use of tools like the HTSR theory, the PL exponent α,430

and the open-source WeightWatcher tool, to properly characterize these complex correlation431

structures and their relationship to generalization performance.432
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NeurIPS Paper Checklist433

The checklist is designed to encourage best practices for responsible machine learning research,434

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-435

move the checklist: The papers not including the checklist will be desk rejected. The checklist436

should follow the references and follow the (optional) supplemental material. The checklist does437

NOT count towards the page limit.438

Please read the checklist guidelines carefully for information on how to answer these questions. For439

each question in the checklist:440

• You should answer [Yes] , [No] , or [NA] .441

• [NA] means either that the question is Not Applicable for that particular paper or the442

relevant information is Not Available.443

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).444

The checklist answers are an integral part of your paper submission. They are visible to the445

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it446

(after eventual revisions) with the final version of your paper, and its final version will be published447

with the paper.448

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-449

ation. While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No]450

” provided a proper justification is given (e.g., ”error bars are not reported because it would be too451

computationally expensive” or ”we were unable to find the license for the dataset we used”). In452

general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased453

in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your454

best judgment and write a justification to elaborate. All supporting evidence can appear either in the455

main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,456

in the justification please point to the section(s) where related material for the question can be found.457

IMPORTANT, please:458

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-459

list”,460

• Keep the checklist subsection headings, questions/answers and guidelines below.461

• Do not modify the questions and only use the provided macros for your answers.462

1. Claims463

Question: Do the main claims made in the abstract and introduction accurately reflect the464

paper’s contributions and scope?465

Answer: [Yes]466

Justification: The abstract claims that the heavy-tailed exponent alpha from HTSR theory467

reliably predicts grokking, anti-grokking (a late-stage generalization collapse), and pro-468

vides an early warning for this collapse, especially in no-decay regimes where other mea-469

sures may not. It also mentions the identification of ”correlation traps.” The introduction470

reiterates these points. Section 1 ”Our Contributions” and Section 4 ”Results and Anal-471

ysis” (particularly subsections 4.1 and 4.2, and Table 2) provide experimental results and472

discussion supporting these claims, such as alpha dropping below 2 before collapse and the473

appearance of correlation traps.474

Guidelines:475

• The answer NA means that the abstract and introduction do not include the claims476

made in the paper.477

• The abstract and/or introduction should clearly state the claims made, including the478

contributions made in the paper and important assumptions and limitations. A No or479

NA answer to this question will not be perceived well by the reviewers.480

• The claims made should match theoretical and experimental results, and reflect how481

much the results can be expected to generalize to other settings.482
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• It is fine to include aspirational goals as motivation as long as it is clear that these483

goals are not attained by the paper.484

2. Limitations485

Question: Does the paper discuss the limitations of the work performed by the authors?486

Answer: [Yes]487

Justification: Section 7, titled ”Limitations,” explicitly discusses the limitations. These488

include the specificity of the MLP architecture and MNIST dataset used, calling for valida-489

tion across diverse models and data. It also mentions that the interpretation of alpha can be490

context-dependent, and is not a bidirectional relationship491

Guidelines:492

• The answer NA means that the paper has no limitation while the answer No means493

that the paper has limitations, but those are not discussed in the paper.494

• The authors are encouraged to create a separate ”Limitations” section in their paper.495

• The paper should point out any strong assumptions and how robust the results are to496

violations of these assumptions (e.g., independence assumptions, noiseless settings,497

model well-specification, asymptotic approximations only holding locally). The au-498

thors should reflect on how these assumptions might be violated in practice and what499

the implications would be.500

• The authors should reflect on the scope of the claims made, e.g., if the approach was501

only tested on a few datasets or with a few runs. In general, empirical results often502

depend on implicit assumptions, which should be articulated.503

• The authors should reflect on the factors that influence the performance of the ap-504

proach. For example, a facial recognition algorithm may perform poorly when image505

resolution is low or images are taken in low lighting. Or a speech-to-text system might506

not be used reliably to provide closed captions for online lectures because it fails to507

handle technical jargon.508

• The authors should discuss the computational efficiency of the proposed algorithms509

and how they scale with dataset size.510

• If applicable, the authors should discuss possible limitations of their approach to ad-511

dress problems of privacy and fairness.512

• While the authors might fear that complete honesty about limitations might be used by513

reviewers as grounds for rejection, a worse outcome might be that reviewers discover514

limitations that aren’t acknowledged in the paper. The authors should use their best515

judgment and recognize that individual actions in favor of transparency play an impor-516

tant role in developing norms that preserve the integrity of the community. Reviewers517

will be specifically instructed to not penalize honesty concerning limitations.518

3. Theory assumptions and proofs519

Question: For each theoretical result, does the paper provide the full set of assumptions and520

a complete (and correct) proof?521

Answer: [Yes]522

Justification: Any necessary proofs along with assumptions will be provided in the suppli-523

mental material.524

Guidelines:525

• The answer NA means that the paper does not include theoretical results.526

• All the theorems, formulas, and proofs in the paper should be numbered and cross-527

referenced.528

• All assumptions should be clearly stated or referenced in the statement of any theo-529

rems.530

• The proofs can either appear in the main paper or the supplemental material, but if531

they appear in the supplemental material, the authors are encouraged to provide a532

short proof sketch to provide intuition.533

• Inversely, any informal proof provided in the core of the paper should be comple-534

mented by formal proofs provided in appendix or supplemental material.535
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• Theorems and Lemmas that the proof relies upon should be properly referenced.536

4. Experimental result reproducibility537

Question: Does the paper fully disclose all the information needed to reproduce the main538

experimental results of the paper to the extent that it affects the main claims and/or conclu-539

sions of the paper (regardless of whether the code and data are provided or not)?540

Answer: [Yes]541

Justification: Appendix A (”Experimental Setup”) and Table A.1 provide a comprehensive542

list of experimental settings: network architecture, depth, width, activation, input/output543

sizes, weight/bias initialization (including scaling), dataset (MNIST), training points (1000,544

(100 per class), stratified random sampling), test points (standard MNIST test set), batch545

size, loss function (MSE), optimizer (AdamW), learning rate, weight decay, AdamW betas546

and epsilon, optimization steps, data type, random seed, and software framework. Also547

mentioned is the Weightwatcher version which is an open source package.548

Guidelines:549

• The answer NA means that the paper does not include experiments.550

• If the paper includes experiments, a No answer to this question will not be perceived551

well by the reviewers: Making the paper reproducible is important, regardless of552

whether the code and data are provided or not.553

• If the contribution is a dataset and/or model, the authors should describe the steps554

taken to make their results reproducible or verifiable.555

• Depending on the contribution, reproducibility can be accomplished in various ways.556

For example, if the contribution is a novel architecture, describing the architecture557

fully might suffice, or if the contribution is a specific model and empirical evaluation,558

it may be necessary to either make it possible for others to replicate the model with559

the same dataset, or provide access to the model. In general. releasing code and data560

is often one good way to accomplish this, but reproducibility can also be provided via561

detailed instructions for how to replicate the results, access to a hosted model (e.g., in562

the case of a large language model), releasing of a model checkpoint, or other means563

that are appropriate to the research performed.564

• While NeurIPS does not require releasing code, the conference does require all sub-565

missions to provide some reasonable avenue for reproducibility, which may depend566

on the nature of the contribution. For example567

(a) If the contribution is primarily a new algorithm, the paper should make it clear568

how to reproduce that algorithm.569

(b) If the contribution is primarily a new model architecture, the paper should describe570

the architecture clearly and fully.571

(c) If the contribution is a new model (e.g., a large language model), then there should572

either be a way to access this model for reproducing the results or a way to re-573

produce the model (e.g., with an open-source dataset or instructions for how to574

construct the dataset).575

(d) We recognize that reproducibility may be tricky in some cases, in which case au-576

thors are welcome to describe the particular way they provide for reproducibility.577

In the case of closed-source models, it may be that access to the model is limited in578

some way (e.g., to registered users), but it should be possible for other researchers579

to have some path to reproducing or verifying the results.580

5. Open access to data and code581

Question: Does the paper provide open access to the data and code, with sufficient instruc-582

tions to faithfully reproduce the main experimental results, as described in supplemental583

material?584

Answer: [Yes]585

Justification: Provided with supplementary in accordance with guidlines.586

Guidelines:587

• The answer NA means that paper does not include experiments requiring code.588
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/589

public/guides/CodeSubmissionPolicy) for more details.590

• While we encourage the release of code and data, we understand that this might not591

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not592

including code, unless this is central to the contribution (e.g., for a new open-source593

benchmark).594

• The instructions should contain the exact command and environment needed to run to595

reproduce the results. See the NeurIPS code and data submission guidelines (https:596

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.597

• The authors should provide instructions on data access and preparation, including how598

to access the raw data, preprocessed data, intermediate data, and generated data, etc.599

• The authors should provide scripts to reproduce all experimental results for the new600

proposed method and baselines. If only a subset of experiments are reproducible, they601

should state which ones are omitted from the script and why.602

• At submission time, to preserve anonymity, the authors should release anonymized603

versions (if applicable).604

• Providing as much information as possible in supplemental material (appended to the605

paper) is recommended, but including URLs to data and code is permitted.606

6. Experimental setting/details607

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-608

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the609

results?610

Answer: [Yes]611

Justification: Appendix A (”Experimental Setup”) and Table A.1 provide a comprehensive612

list of experimental settings: network architecture, depth, width, activation, input/output613

sizes, weight/bias initialization (including scaling), dataset (MNIST), training points (1000,614

100 per class, stratified random sampling), test points (standard MNIST test set), batch size,615

loss function (MSE), optimizer (AdamW), learning rate, weight decay, AdamW betas and616

epsilon, optimization steps, data type, random seed, and software framework.617

Guidelines:618

• The answer NA means that the paper does not include experiments.619

• The experimental setting should be presented in the core of the paper to a level of620

detail that is necessary to appreciate the results and make sense of them.621

• The full details can be provided either with the code, in appendix, or as supplemental622

material.623

7. Experiment statistical significance624

Question: Does the paper report error bars suitably and correctly defined or other appropri-625

ate information about the statistical significance of the experiments?626

Answer: [Yes]627

Justification: Table (”Layer-wise and average HTSR alpha exponents”) and Table (”Aver-628

age number of detected correlation traps”) report values with mean and standard deviation,629

likely over runs/seeds, though the exact source of this variability (e.g., multiple runs vs.630

variability across layers/checkpoints) is explicitly detailed for these tables. KS test p-values631

are reported in Section 3.2, Appendix B (Table A.2), and Figure 2 caption when discussing632

MP fits and correlation traps, which is a measure of statistical significance for those spe-633

cific tests. The experiments take considerably long time to run (each experiment takes 11634

hours) so n is limited635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-638

dence intervals, or statistical significance tests, at least for the experiments that support639

the main claims of the paper.640
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• The factors of variability that the error bars are capturing should be clearly stated (for641

example, train/test split, initialization, random drawing of some parameter, or overall642

run with given experimental conditions).643

• The method for calculating the error bars should be explained (closed form formula,644

call to a library function, bootstrap, etc.)645

• The assumptions made should be given (e.g., Normally distributed errors).646

• It should be clear whether the error bar is the standard deviation or the standard error647

of the mean.648

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-649

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of650

Normality of errors is not verified.651

• For asymmetric distributions, the authors should be careful not to show in tables or652

figures symmetric error bars that would yield results that are out of range (e.g. negative653

error rates).654

• If error bars are reported in tables or plots, The authors should explain in the text how655

they were calculated and reference the corresponding figures or tables in the text.656

8. Experiments compute resources657

Question: For each experiment, does the paper provide sufficient information on the com-658

puter resources (type of compute workers, memory, time of execution) needed to reproduce659

the experiments?660

Answer: [Yes]661

Justification: Appendix A (”Experimental Setup”) states: ”This was run on an Nvidia662

Quadro P2000 and took approximately 11 hours.” This provides the type of GPU and the663

approximate execution time for the main experiment (107 steps). The GPU used has 5 GB664

memory.665

Guidelines:666

• The answer NA means that the paper does not include experiments.667

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,668

or cloud provider, including relevant memory and storage.669

• The paper should provide the amount of compute required for each of the individual670

experimental runs as well as estimate the total compute.671

• The paper should disclose whether the full research project required more compute672

than the experiments reported in the paper (e.g., preliminary or failed experiments673

that didn’t make it into the paper).674

9. Code of ethics675

Question: Does the research conducted in the paper conform, in every respect, with the676

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?677

Answer: [Yes]678

Justification: The research uses standard open datasets and open methodologies, with no679

ethical red flags based on our reasearch.680

Guidelines:681

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.682

• If the authors answer No, they should explain the special circumstances that require a683

deviation from the Code of Ethics.684

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-685

eration due to laws or regulations in their jurisdiction).686

10. Broader impacts687

Question: Does the paper discuss both potential positive societal impacts and negative688

societal impacts of the work performed?689

Answer: [NA]690

Justification: This is a foundational research paper on grokking which has no negative691

Societal Impact.692
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Guidelines:693

• The answer NA means that there is no societal impact of the work performed.694

• If the authors answer NA or No, they should explain why their work has no societal695

impact or why the paper does not address societal impact.696

• Examples of negative societal impacts include potential malicious or unintended uses697

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations698

(e.g., deployment of technologies that could make decisions that unfairly impact spe-699

cific groups), privacy considerations, and security considerations.700

• The conference expects that many papers will be foundational research and not tied701

to particular applications, let alone deployments. However, if there is a direct path to702

any negative applications, the authors should point it out. For example, it is legitimate703

to point out that an improvement in the quality of generative models could be used to704

generate deepfakes for disinformation. On the other hand, it is not needed to point out705

that a generic algorithm for optimizing neural networks could enable people to train706

models that generate Deepfakes faster.707

• The authors should consider possible harms that could arise when the technology is708

being used as intended and functioning correctly, harms that could arise when the709

technology is being used as intended but gives incorrect results, and harms following710

from (intentional or unintentional) misuse of the technology.711

• If there are negative societal impacts, the authors could also discuss possible mitiga-712

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,713

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from714

feedback over time, improving the efficiency and accessibility of ML).715

11. Safeguards716

Question: Does the paper describe safeguards that have been put in place for responsible717

release of data or models that have a high risk for misuse (e.g., pretrained language models,718

image generators, or scraped datasets)?719

Answer: [NA]720

Justification: Same as above not applicable721

Guidelines:722

• The answer NA means that the paper poses no such risks.723

• Released models that have a high risk for misuse or dual-use should be released with724

necessary safeguards to allow for controlled use of the model, for example by re-725

quiring that users adhere to usage guidelines or restrictions to access the model or726

implementing safety filters.727

• Datasets that have been scraped from the Internet could pose safety risks. The authors728

should describe how they avoided releasing unsafe images.729

• We recognize that providing effective safeguards is challenging, and many papers do730

not require this, but we encourage authors to take this into account and make a best731

faith effort.732

12. Licenses for existing assets733

Question: Are the creators or original owners of assets (e.g., code, data, models), used in734

the paper, properly credited and are the license and terms of use explicitly mentioned and735

properly respected?736

Answer: [Yes]737

Justification: Weightwatcher and the experimental code is Apache 2.0 , MNIST is Creative738

Commons Attribution-Share Alike 3.0. Pytorch is BSD 3-Clause License.739

Guidelines:740

• The answer NA means that the paper does not use existing assets.741

• The authors should cite the original paper that produced the code package or dataset.742

• The authors should state which version of the asset is used and, if possible, include a743

URL.744

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.745
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• For scraped data from a particular source (e.g., website), the copyright and terms of746

service of that source should be provided.747

• If assets are released, the license, copyright information, and terms of use in the748

package should be provided. For popular datasets, paperswithcode.com/749

datasets has curated licenses for some datasets. Their licensing guide can help750

determine the license of a dataset.751

• For existing datasets that are re-packaged, both the original license and the license of752

the derived asset (if it has changed) should be provided.753

• If this information is not available online, the authors are encouraged to reach out to754

the asset’s creators.755

13. New assets756

Question: Are new assets introduced in the paper well documented and is the documenta-757

tion provided alongside the assets?758

Answer: [Yes]759

Justification: Code is provided with comments760

Guidelines:761

• The answer NA means that the paper does not release new assets.762

• Researchers should communicate the details of the dataset/code/model as part of their763

submissions via structured templates. This includes details about training, license,764

limitations, etc.765

• The paper should discuss whether and how consent was obtained from people whose766

asset is used.767

• At submission time, remember to anonymize your assets (if applicable). You can768

either create an anonymized URL or include an anonymized zip file.769

14. Crowdsourcing and research with human subjects770

Question: For crowdsourcing experiments and research with human subjects, does the pa-771

per include the full text of instructions given to participants and screenshots, if applicable,772

as well as details about compensation (if any)?773

Answer: [NA]774

Justification: Not applicable.775

Guidelines:776

• The answer NA means that the paper does not involve crowdsourcing nor research777

with human subjects.778

• Including this information in the supplemental material is fine, but if the main contri-779

bution of the paper involves human subjects, then as much detail as possible should780

be included in the main paper.781

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-782

tion, or other labor should be paid at least the minimum wage in the country of the783

data collector.784

15. Institutional review board (IRB) approvals or equivalent for research with human785

subjects786

Question: Does the paper describe potential risks incurred by study participants, whether787

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)788

approvals (or an equivalent approval/review based on the requirements of your country or789

institution) were obtained?790

Answer: [NA]791

Justification:Not Applicable.792

Guidelines:793

• The answer NA means that the paper does not involve crowdsourcing nor research794

with human subjects.795
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• Depending on the country in which research is conducted, IRB approval (or equiva-796

lent) may be required for any human subjects research. If you obtained IRB approval,797

you should clearly state this in the paper.798

• We recognize that the procedures for this may vary significantly between institutions799

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the800

guidelines for their institution.801

• For initial submissions, do not include any information that would break anonymity802

(if applicable), such as the institution conducting the review.803

16. Declaration of LLM usage804

Question: Does the paper describe the usage of LLMs if it is an important, original, or805

non-standard component of the core methods in this research? Note that if the LLM is used806

only for writing, editing, or formatting purposes and does not impact the core methodology,807

scientific rigorousness, or originality of the research, declaration is not required.808

Answer: [NA]809

Justification: Not Applicable810

Guidelines:811

• The answer NA means that the core method development in this research does not812

involve LLMs as any important, original, or non-standard components.813

• Please refer to our LLM policy (https://neurips.cc/Conferences/814

2025/LLM) for what should or should not be described.815
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