
Grokking and generalization Collapse: Insights from HTSR theory

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Grokking is a surprising phenomenon in neural network training where test accuracy
2 remains low for an extended period despite near-perfect training accuracy,
3 only to suddenly leap to strong generalization. In this work, we study grokking
4 using a depth-3, width-200 ReLU MLP trained on a subset of MNIST. We investi-
5 giate its long-term dynamics under both weight-decay and, critically, no-decay
6 regimes—the latter often characterized by increasing l^2 weight norms. Our pri-
7 mary tool is the theory of Heavy-Tailed Self-Regularization (HTSR), where we
8 track the heavy-tailed exponent α . We find that α reliably predicts both the initial
9 grokking transition and subsequent anti-grokking. We benchmark these insights
10 against four prior approaches: progress measures—Activation Sparsity, Absolute
11 Weight Entropy, and Approximate Local Circuit Complexity—and weight norm
12 (l^2) analysis. Our experiments show that while comparative approaches register
13 significant changes, **in this regime of increasing l^2 norm, the heavy-tailed expo-**
14 **nent α demonstrates a unique correlation with the ensuing large, long-term**
15 **dip in test accuracy, a signal not reliably captured by most other measures.**

16 Extending our zero weight decay experiment significantly beyond typical
17 timescales (10^5 to approximately 10^7 optimization steps), **we reveal a late-stage**
18 **catastrophic generalization collapse (“anti-grokking”), characterized by a**
19 **dramatic drop in test accuracy (over 25 percentage points) while training**
20 **accuracy remains perfect**; notably, the heavy-tail metric α uniquely provides
21 an early warning of this impending collapse. Our results underscore the utility
22 of Heavy-Tailed Self-Regularization theory for tracking generalization dynamics,
23 even in the challenging regimes without explicit weight decay regularization.

24

1 Introduction

25 Grokking is an intriguing phenomenon where a neural network achieves near-perfect training accu-
26 racy quickly, yet the test accuracy lags significantly, often near chance level, before abruptly surging
27 towards high generalization [15]. Figure 1 illustrates this for a depth-3, width-200 ReLU MLP
28 trained on a subset of MNIST.

29 To dissect this phenomenon and uncover deeper dynamics, our primary analytical lens is the recently
30 developed theory of Heavy-Tailed Self-Regularization (HTSR), following Martin et.al.[10]. The
31 HTSR theory examines the empirical spectral density (ESD) of individual layer weight matrices
32 (\mathbf{W}), quantified by the heavy-tailed power law (PL) exponent α . We find α provides a sensitive
33 measure of correlation structure within layers, tracking the transition into the grokking phase, and
34 crucially, predicting a subsequent decrease in generalization.

35 For comparative context, we also investigate several other methodologies:

36 1. **Weight Norm Analysis:** Motivated by studies like Liu et al. [6], we examine the l^2 norm
 37 of the weights. We observe that grokking occurs even without weight decay (leading to an
 38 increasing norm), suggesting weight norm alone is not a complete explanation, confirming
 39 the weight-norm related findings by Golechha [2].

40 2. **Progress Measures:** We utilize metrics proposed by Golechha [2].—Activation Sparsity,
 41 Absolute Weight Entropy, and Approximate Local Circuit Complexity—which capture
 42 broader structural and functional changes in the network during training.

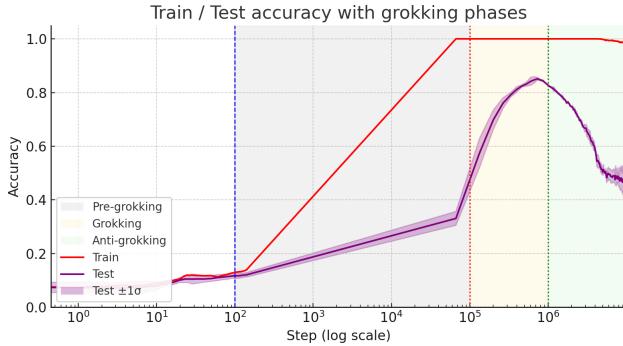


Figure 1: **The three phases of grokking.** Training curves for a depth-3, width-200 MLP on MNIST. The initial **pre-grokking** phase (grey): training accuracy (red line) surges at 10^2 steps, saturating between 10^4 – 10^5 steps, while test accuracy (purple line) remains low; the **grokking** phase (yellow): with test accuracy rapidly increasing after $\sim 10^5$ steps, and reaching a maximum at 10^6 steps; and the newly revealed late-stage **anti-grokking** phase (green): test accuracy collapses (to 0.5).

43 **Our Contributions:** Our work makes several related contributions that helps explain the underlying
 44 mechanisms associated with the grokking phenomena:

45 1. By extending training significantly (up to 10^7 steps) under zero weight decay ($WD = 0$),
 46 we identify and characterize **late-stage generalization collapse**: a substantial drop in test
 47 accuracy long after initial grokking, despite perfect training accuracy and a continually
 48 increasing l^2 weight norm. We call this **anti-grokking**.

49 2. We show that the HTSR layer quality metric α (the heavy-tailed power-law (PL) exponent),
 50 effectively tracks the grokking transition under both the traditional setting of weight decay
 51 ($WD > 0$) and zero weight decay $WD = 0$), outperforming the l^2 weight norm and the
 52 other progress metrics. Only the HTSR α can distinguish between all 3 phases of grokking.

53 3. We identify the mechanism of the pre-grokking phase, where the training accuracy is per-
 54 fect but the model does not generalize. This phase occurs because only a subset of the
 55 model layers are well trained (i.e. $\alpha \leq 4$), whereas at least one layer is underfit (i.e.
 56 $\alpha \geq 5$). Moreover, the layers can show great variability between training runs, indicating
 57 their instabili. Importantly, the layer α 's here are distinct from those in the anti-grokking
 58 phases, despite both phases having perfect training accuracy and low test accuracy. .

59 4. We demonstrate that when the HTSR PL exponent $\alpha < 2$, this identifies the collapse. Also,
 60 in this phase, we observe the presence of anomalous rank-one (or greater) perturbations
 61 in one or more underlying layer weight matrices \mathbf{W} . We call these **correlation traps** and
 62 identify them by randomizing \mathbf{W} elementwise, forming \mathbf{W}^{rand} , and looking for unusu-
 63 ally large eigenvalues, $\lambda_{trap} \gg \lambda^+$ (where λ^+ is the right-most edge of the associated
 64 Marchenko-Pastur (MP) distribution [9]).

65 2 Related Work

66 Grokking [15], the delayed emergence of generalization well after training accuracy saturation,
 67 has prompted significant research into its underlying mechanisms. Initial studies often explored
 68 grokking in algorithmic tasks [12, 13, 16], frequently linking the phenomenon to the presence of
 69 weight decay (WD) which favors simpler, lower-norm solutions [6]. Other approaches include

70 mechanistic interpretability [13] and analyses identifying competing memorization and generalization circuits [16, 12].

72 Varma et al. [16] defined ‘ungrokking’ as generalization loss when retraining a grokked network on
 73 a *smaller* dataset ($D < D_{crit}$), attributing it to shifting circuit efficiencies under WD. In contrast, we
 74 observe **late-stage generalization collapse** (‘anti-grokking’) occurring on the *original* dataset after
 75 prolonged training ($\sim 10^7$ steps) *without* WD (WD=0). This distinct phenomenon is not predicted by
 76 [16] as it falls outside of the crucial weight decay assumption on which it relies.

77 Grokking studies now include real-world tasks [2, 4]. Golechha et al. [2] introduced progress mea-
 78 sures (e.g., Activation Sparsity, Absolute Weight Entropy) and notably observed grokking without
 79 WD, resulting in increasing ℓ^2 norms, similar to our setup. We use their metrics for comparison but
 80 extend training drastically (up to 10^7 steps), revealing the subsequent ‘anti-grokking’ collapse—a
 81 phenomenon not reported in their work despite the similar WD=0 regime.

82 We employ the theory of Heavy-Tailed Self-Regularization (HTSR) [10, 11], tracking the spectral
 83 exponent α . We find α predicts both the initial grokking and, uniquely, the subsequent dip and even-
 84 tual ‘anti-grokking’ collapse under WD=0. Our contribution lies in identifying and characterizing
 85 this anti-grokking phenomenon using α for long-term generalization stability, extending prior work
 86 that either required WD or did not explore sufficiently long training horizons.

87 3 Measures and Metrics

88 3.1 Heavy-Tailed Self-Regularization (HTSR)

89 **From weights to spectra.** For each layer weight matrix $\mathbf{W} \in \mathbb{R}^{N \times M}$, we build the un-centred
 90 *correlation* (Gram) matrix

$$91 \quad \mathbf{X} = \frac{1}{N} \mathbf{W}^\top \mathbf{W} \in \mathbb{R}^{M \times M}. \quad (1)$$

91 Let $\{\lambda_i\}_{i=1}^M$ be the eigenvalues of \mathbf{X} . Their empirical spectral density (ESD) is the discrete measure

$$92 \quad \rho_{emp}(\lambda) = \frac{1}{M} \sum_{i=1}^M \delta(\lambda - \lambda_i). \quad (2)$$

92 **Gaussian baseline.** If the entries of \mathbf{W} are i.i.d. $\mathcal{N}(0, \sigma^2)$, then, in the limit $N \rightarrow \infty, M \rightarrow \infty$ with
 93 aspect ratio $Q = N/M \geq 1$ fixed, $\rho_{emp}(\lambda)$ converges to the Marchenko–Pastur (MP) density [7]

$$94 \quad \rho_{MP}(\lambda) = \begin{cases} \frac{Q}{2\pi\sigma^2} \frac{\sqrt{(\lambda^+ - \lambda)(\lambda - \lambda^-)}}{\lambda}, & \lambda \in [\lambda^-, \lambda^+], \quad \lambda^\pm = \sigma^2(1 \pm Q^{-1/2})^2 \\ 0, & \text{otherwise,} \end{cases} \quad (3)$$

94 This provides a principled “null model” against which real, trained weights can be compared. In a
 95 well-trained model, the eigenvalues of any layer \mathbf{W} will rarely conform closely to an MP distribu-
 96 tion and will almost always have a significant number of large eigenvalues extending beyond any
 97 recognizable bulk MP region ($\lambda \gg \lambda^+$) if not being fully heavy-tailed power-law. If, however, we
 98 randomize \mathbf{W} elementwise,

$$98 \quad \mathbf{W} \rightarrow \mathbf{W}^{rand} \quad (4)$$

99 then the elements of \mathbf{W}^{rand} will be i.i.d. by construction, and we expect that the ESD of \mathbf{W}^{rand}
 100 can be very well fit to an MP distribution. This is shown below, on in Figure 2 (Right).

101 **Heavy-Tailed Self-Regularization (HTSR) Theory** Prior work[10, 11, 9] shows that the
 102 ESD of real-world DNN layers with learned correlations almost never sits entirely within the
 103 Marchenko–Pastur bulk predicted for i.i.d. Gaussian weights; instead, the right edge flares into
 104 a power law (PL) tail. Formally,

$$105 \quad \rho_{emp}(\lambda) \sim \lambda^{-\alpha}, \quad \lambda_{\min} < \lambda < \lambda_{\max}, \quad (5)$$

105 with the exponent α quantifying the strength of the correlations. According to the HTSR framework
 106 [11], different ranges of α correspond to the different phases of training and different levels of
 107 convergence for each layer:

108 • $\alpha \gtrsim 5 - 6$: **Random-like or Bulk-plus-Spikes** — the spectrum is close to the Gaussian
 109 baseline; little task structure is present.
 110 • $2 \lesssim \alpha \lesssim 5 - 6$: **Weak (WHT) to Moderate Heavy (Fat) Tailed (MHT)** — correlations
 111 build up; layers are well-conditioned and typically generalise better.
 112 • $\alpha = 2$ **Ideal value**: Corresponds to fully optimized layers in models. Associated with
 113 layers in models that generalize best.
 114 • $\alpha < 2$: **Very-Heavy-Tailed (VHT)** — extremely heavy tails indicate potentially over-
 115 fitting to the training data and often precede and/or are associated with decreases in the
 116 generalization / test accuracy.

117 Note that the lower bound of $\alpha = 2$ on the Fat-Tailed phase is a hard cutoff, whereas the upper
 118 bound $\alpha \gtrsim 5 - 6$ is somewhat looser because it can depend on the aspect ratio Q . See Martin et. al.
 119 [10, 9] for more details.

120 **Estimating α .** Following [11], we fit the tail of ρ_{emp} to a PL 5 through the maximum likeli-
 121 hood estimator (MLE) [1]. The start of the PL tail, λ_{min} , is chosen automatically to minimize the
 122 Kolmogorov-Smirnov distance between the empirical and fitted distributions. All calculations are
 123 performed with `WeightWatcher` v0.7.5.5 [8], which automates

124 • SVD extraction of singular values σ_i ($\lambda_i = \sigma_i^2$),
 125 • PL fits and goodness-of-fit KS tests (including selection of λ_{min} and λ_{max})
 126 • Detection of correlation traps (optional)

127 Figure 2 (Left) shows an example of a PL fit on a log-log scale for a representative layer after
 128 training. The plot displays the ESD for a typical NN layer (a histogram or kernel density estimate
 129 of eigenvalues), the automatically chosen λ_{min} (xmin, vertical line, red), the λ_{max} (xmax, vertical
 130 line, orange), and the best fit for the PL tail (dashed line, red).

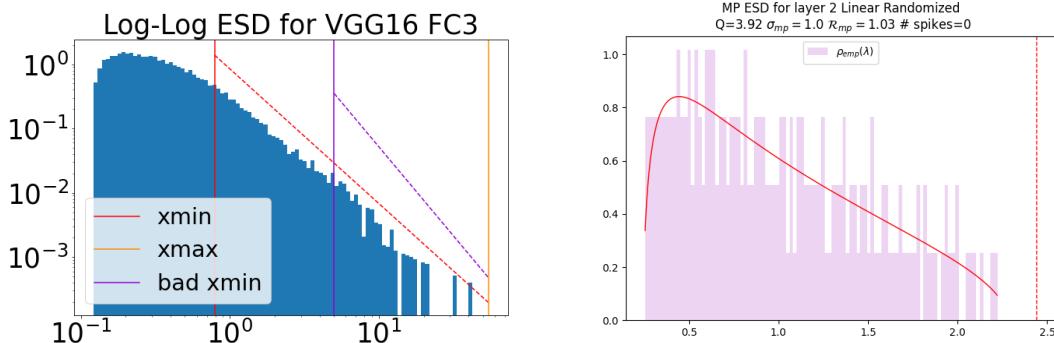


Figure 2: **Left:** Example of the ESD derived from a well-correlated \mathbf{W} (blue) and the Power-Law fit to the tail (red), on a **Log-Log** plot. **Right:** Example of the ESD of \mathbf{W}^{rand} (light purple) and the MP fit (red), on a **Log-Linear** plot.

131 Note that the PL fit is very sensitive to the choice of λ_{min} , and a poor choice will result in a poorly
 132 estimated α . If λ_{min} is too large (bad xmin, vertical line, purple), then the PL tail is too small and
 133 results in a larger α . The selection of λ_{min} is very important in the calculation of the tail alpha (α)
 134 and is fully automated using the open-source `WeightWatcher` tool.[8]

135 **Significance for Grokking/Anti-Grokking.** Across all experiments, the trajectory $\alpha(t)$ proves
 136 to be a highly sensitive indicator of the network’s generalization state: large drops toward $\alpha \approx$
 137 2 coincide with the onset of grokking, while a further fall below $\alpha < 2$ foreshadows (and then
 138 characterizes) the eventual ”anti-grokking” collapse .

139 3.2 Correlation Traps

140 To better understand the origin of anti-grokking (generalization collapse), it is instructive to look
 141 for evidence of potential overfitting in the layer weight matrices \mathbf{W} , which appear as what we

142 call **Correlation Traps** [9]. Recall that for a well-trained model, we expect the ESDs of \mathbf{W}^{rand}
 143 to be well-fit by an MP distribution; here we argue that deviations from this are significant and
 144 informative. To identify these deviations, we compare the randomized layer ESDs against the MP
 145 distribution at the different stages of training to assess deviations from randomness. We identify
 146 these deviations as anomalously large eigenvalues in the underlying \mathbf{W}^{rand} . We call such large
 147 eigenvalues correlation traps, λ_{trap} , when they are significantly larger than the bulk edge λ_{rand}^+ of
 148 the best fit MP distribution.

$$\lambda_{trap} \gg \lambda_{rand}^+ \quad (6)$$

149 See the Appendix D for additional statistical validation of the presence of such traps, as well as the
 150 Supplementary Information. Also, see [9] for more details.

151 The **WeightWatcher** tool [8] detects correlation traps automatically; it randomizes \mathbf{W} , then per-
 152 forms automated MP fits by estimating the variance σ_{MP}^2 of the underlying randomized matrix
 153 \mathbf{W}^{rand} , finding the fit that best describes the bulk of its ESD of \mathbf{W}^{rand} . It then finds all eigenval-
 154 ues λ_{trap} that are significantly larger (i.e. beyond the Tracy-Widom fluctuations) of the MP bulk
 155 edge λ_{rand}^+ of the ESD of \mathbf{W}^{rand} . Figure 3 depicts two layers from the models studied here with
 156 correlation traps.

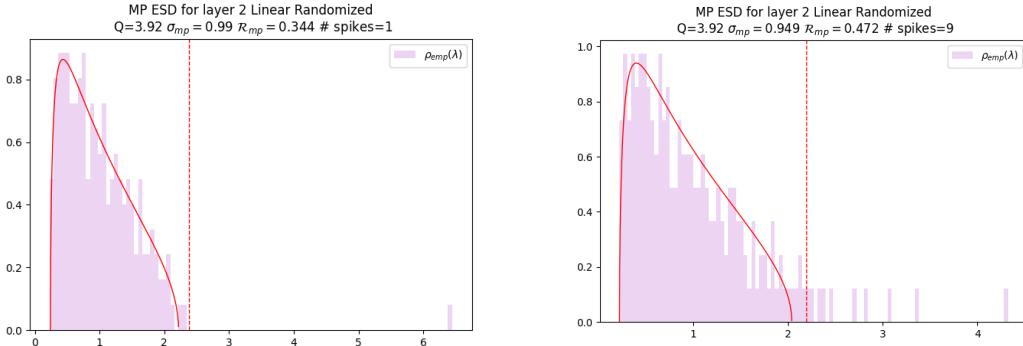


Figure 3: **Examples of Correlation Traps.** ESDs of (\mathbf{W}^{rand}) (light purple) of Layer 2 for the randomized weight matrix \mathbf{W}^{rand} for different models, compared to an MP fit (red). Correlation traps λ_{trap} are depicted as small spikes to the right of the MP fit. (x-axis is log scale) **Left: Right Before Collapse** (i.e. at more than $\sim 10^6$ steps) ($\sigma_{mp} \approx 0.9879$). The KS test (P-value $\approx 4 \times 10^{-13}$) indicates a strong deviation from the MP model. A single, prominent correlation trap appears at $\lambda_{trap} \approx 10^{6.5}$. **Right: Final Generalization Collapse.** The KS test (P-value $\approx 1.877 \times 10^{-5}$) indicates a strong deviation from the MP model. Multiple correlation traps are observed, $\lambda_{trap} \in [10^{2.5}, 10^{6.5}]$.

157 For additional statistical validation, here, we also use the Kolmogorov-Smirnov (KS) test to quantify
 158 the dissimilarity between the ESD of \mathbf{W}^{rand} and its best MP fit. A large difference, combined with
 159 a visual inspection of the data, indicates the presence of one or more correlation traps (λ_{trap}).

160 3.3 Other Benchmarked Metrics

161 We benchmarked our HTSR-based findings against l^2 weight norm analysis [6] and several progress
 162 measures proposed by Golechha [2], these include Activation Sparsity (A_s), Absolute Weight En-
 163 tropy ($H_{abs}(W)$), and Approximate Local Circuit Complexity (Λ_{LC}). Detailed definitions of these
 164 measures are provided in Appendix B.

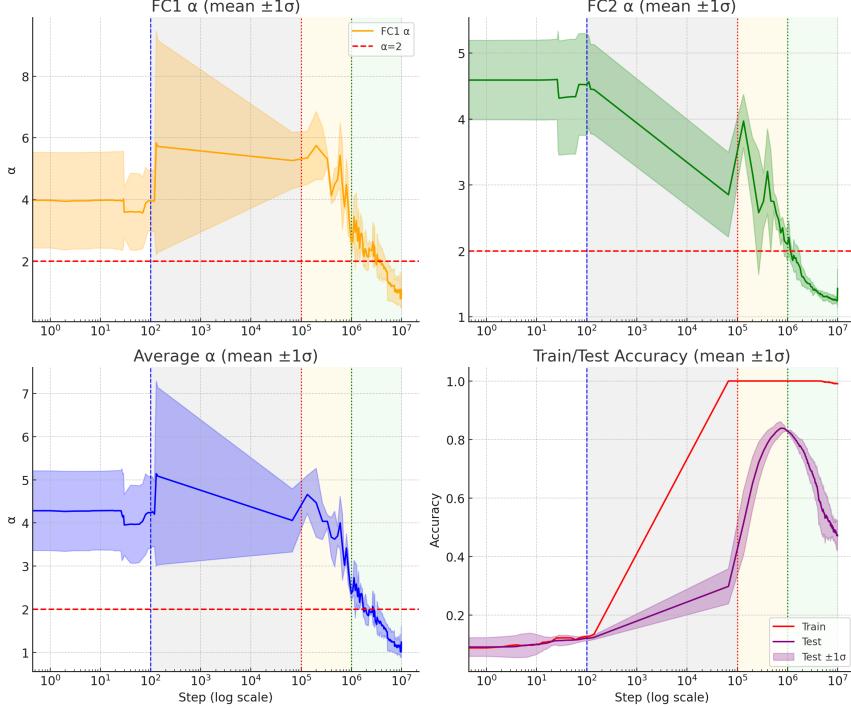


Figure 4: HTSR results vs. optimization steps. Top: Average α across layers. Middle: α for the first fully connected layer (FC1). Bottom: α for the second fully connected layer (FC2). Note the significant dip below the critical threshold $\alpha = 2$, especially in FC2, coinciding with the "anti-grokking" performance drop seen in Fig. 1 after 1M steps.

165 4 Results and Analysis

166 4.1 Layer Metrics for Tracking Grokking

167 **HTSR layer quality metric α :** Our primary metric, the HTSR layer quality metric α , reveals
 168 critical dynamics missed by other measures. Figure 4 shows the evolution of α averaged across
 169 layers (top) and for individual fully connected layers (middle, bottom).

Table 1: **Layer-wise and average HTSR α exponents.** At the right edge of each grokking phase: Pre-grokking $\sim 10^5$ steps, Grokking 10^6 steps, and Anti-grokking 10^7 steps. For the zero-weight-decay ($WD = 0$) experiment; values are taken from Fig. 4. Various seeds are used and variability in initialization, optimizer trajectory may occur.

Layer, Metric	Pre-grokking	Grokking (Max Test Acc.)	Anti-grokking (Collapse)
FC1 α	4.0 ± 1.3	3.2 ± 0.6	1.0 ± 0.40
FC2 α	4.6 ± 0.5	2.4 ± 0.1	1.4 ± 0.24
average α	4.3 ± 0.70	2.8 ± 0.30	1.2 ± 0.23

170 Initially, α is high, reflecting random-like weights. As training progresses and the network begins
 171 to fit the training data, α decreases. The sharp drop towards the optimal (fat-tailed) regime ($2 \lesssim$
 172 $\alpha \lesssim 5 - 6$) coincides with the rapid improvement in test accuracy characteristic of grokking (around
 173 10^4 - 10^5 steps in Figure 1). Crucially, as training continues into the millions of steps, α consistently
 174 dips below 2, entering the Very Heavy-Tailed (VHT) regime. This occurs notably in the second
 175 fully connected layer (FC2, bottom panel). This drop below $\alpha = 2$, indicating potential layer non-
 176 optimality and overly strong correlations, directly precedes and coincides with the significant drop
 177 in test accuracy—the "anti-grokking" phase—observed after 10^6 steps in Figure 1.

178 Together, these observations highlight the unique sensitivity of the HTSR α metric. This metric not
 179 only identifies the grokking transition but also provides an early warning for the subsequent insta-
 180 bility and the novel "anti-grokking" phenomenon, highlighting potentially pathological correlation
 181 structures forming deep into training. The layer-wise analysis (Figure 4) further suggests that this
 182 instability might originate in specific layers (i.e. FC2 here) becoming over correlated ($\alpha < 2$).

183 **Comparative metrics:** In contrast, the comparative metrics capture the initial training and
 184 grokking phases but fail to predict the late-stage generalization collapse. Figure 5 displays the Acti-
 185 vation Sparsity, Absolute Weight Entropy, and Approximate Local Circuit Complexity. While these
 186 metrics show clear trends during the initial learning and grokking phases (e.g., changes in sparsity
 187 and complexity), their trajectories become relatively stable or lack distinct features corresponding
 188 to the dramatic performance drop seen during "anti-grokking". For example, circuit complexity
 189 remains relatively flat in the late stages up until some noise at the end, offering no warning of the
 190 impending collapse. Though Activation Sparsity shows an inflection around peak test accuracy and
 191 does detect grokking, it generally continues its upward trend through the late-stage collapse.

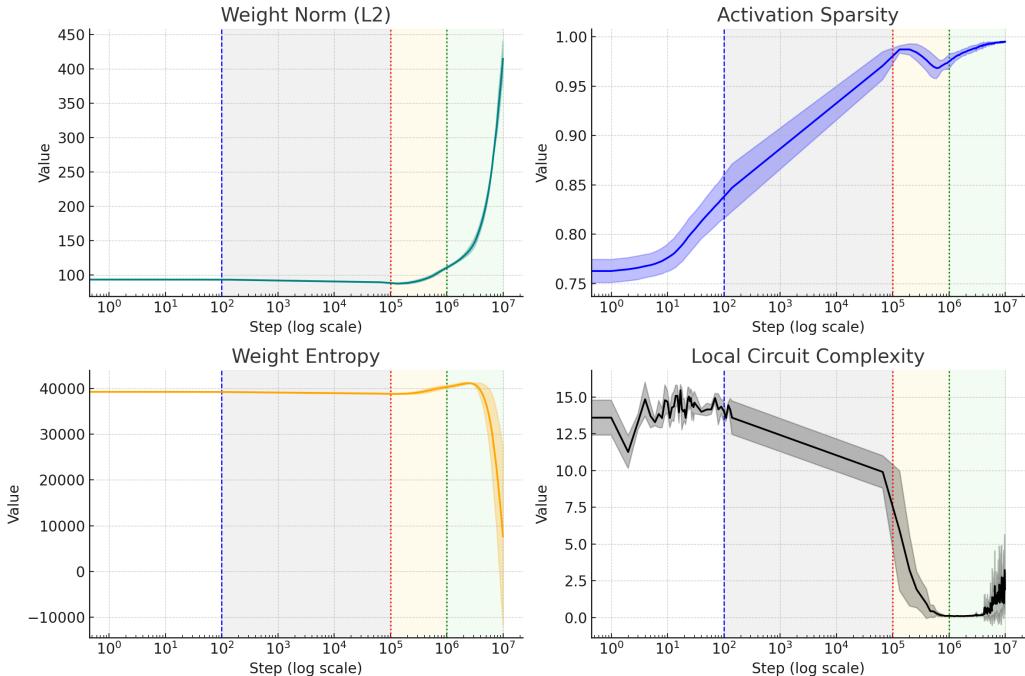


Figure 5: Alternative progress measures (Golechha [2]) vs. optimization steps. Top: Activation Sparsity. Middle: Absolute Weight Entropy. Bottom: Approximate Local Circuit Complexity. While these metrics show changes during the initial training and grokking phases (Activation Sparsity for example), they do not exhibit clear signals predicting the magnitude of the late-stage "anti-grokking" performance dip observed after 10^6 steps.

192 In our primary WD=0 experiments, A_s generally increases throughout training (Figure 5), seemingly
 193 tracking the pre-grokking and grokking phases, however, it fails the negative control in the anti-
 194 grokking phase because it continues to increase in the same way as in pre-grokking. Prior studies
 195 have linked activation sparsity to generalization [5, 12, 14] and reported specific dynamics such
 196 as plateauing before grokking [2] or an increase preceding a rise in test loss [3]. Specifically, we
 197 observe a subtle inflection or dip in A_s coinciding with the point of maximum test accuracy before
 198 a slight increase. While this feature appears to mark a shift around peak test accuracy, its specific
 199 predictive utility for subsequent generalization dynamics is questionable. In other words, without
 200 knowing the proper sparsity cutoff, it is impossible to determine if increasing A_s corresponds to
 201 pre-grokking or anti-grokking. In contrast, because the HTSR $\alpha = 2$ is a theoretically established
 202 universal cutoff, one can distinguish between the two phases correctly.

203 Additionally, in our $WD=0.01$ control experiment, as detailed in Appendix C, a similar inflection
 204 in A_s occurs where test accuracy, after a slight initial decrease from its peak, subsequently plateaus
 205 rather than undergoing a catastrophic collapse as seen in the $WD=0$ case. Therefore, observing
 206 this dip in A_s alone does not allow one to distinguish whether test accuracy will catastrophically
 207 decline or stabilize, suggesting it primarily indicates that some form of transitional change has oc-
 208 curred around the point of maximum generalization, rather than predicting the specific nature of
 209 the subsequent trajectory. Our findings indicate limitations in the other two comparative metrics for
 210 tracking the anti-grokking phase. Absolute Weight Entropy ($H_{abs}(\mathbf{W})$), despite its suggested link
 211 to generalization [2], also decreases sharply during the collapse, thus not reliably distinguishing this
 212 anti-grokking phase. Similarly, Λ_{LC} [2] remains low throughout the collapse, failing to reflect the
 213 performance degradation. We also confirm, consistent with [2], that grokking occurs robustly even
 214 with increasing weight norms and no weight decay.

215 4.2 Correlation Traps and Anti-Grokking

216 To better understand the origin of anti-grokking (generalization collapse), it is instructive to look
 217 for evidence of potential overfitting in the layer weight matrices \mathbf{W} , in the form correlation traps.
 218 As described in Section 3.1, we analyze the eigenvalues $\{\lambda_i\}$ of the randomized weight matrices
 219 \mathbf{W}^{rand} derived from each layer’s weight matrix \mathbf{W} for layers FC1 and FC2.

Table 2: **Average number of detected correlation traps** in layers FC1 and FC2 at the right edge of
 of the three grokking phases: Pre-grokking $\sim 10^5$ steps, Grokking 10^6 steps, and Anti-grokking 10^7
 steps. Results shown for both experiments, with ($WD > 0$) and without $WD = 0$ weight decay.

Model, Layer	Pre-grokking	Grokking (Max Test Acc.)	Anti-grokking (Collapse)
$WD = 0$, FC1	0	0	6.33 ± 5.44
$WD = 0$, FC2	0	0	1.00 ± 0.00
$WD > 0$, FC1	0	0	2.00 ± 0.00
$WD > 0$, FC2	0	0	1.00 ± 0.00

220 As show in Table 2, for both layers, FC1 and FC2, and for both experiments, with and without weight
 221 decay, neither layer shows evidence of correlation traps until the anti-grokking phase. The presence
 222 of such traps corresponds to HTSR $\alpha < 2$ for these layers, as predicted by previous work[9]. Further
 223 statistical analysis for the FC2 layers is provided in Appendix D. The presence of correlation traps,
 224 combined with $\alpha < 2$, is a definitive signal indicating the model is in the anti-grokking phase.

225 5 Conclusion

226 This study investigated the well-known grokking phenomena in neural networks (NN) under the
 227 lens of the recently developed theory of Heavy-Tailed Self Regularization (HTSR) [10]. Previous
 228 work has attempted to explain grokking (using the l^2 norm), but only succeeds in the presence of
 229 weight decay (WD), and has been unable to explain grokking without weight decay[6, 2]. For this
 230 reason, we have studied the long-term generalization dynamics of the grokking phenomena both
 231 with weight decay ($WD > 0$) and without ($WD = 0$). We compare the application of the HTSR
 232 theory to the l^2 norm and several previous proposed metrics.[6] Our primary finding is that the
 233 HTSR layer quality metric α can effectively track grokking both with and without weight decay.
 234 In particular, the HTSR α tracks the initial grokking transition and subsequent performance dips in
 235 both case ($WD = 0$, $WD > 0$) and, in doing so, offers new insights into the grokking phenomena.

236 Moreover, and critically, in the $WD = 0$ setting, the HTSR α also provides an early indication of
 237 a novel **late-stage generalization collapse**, called **anti-grokking**. This collapse is characterized by
 238 a significant drop in test accuracy despite sustained perfect training accuracy (and a large l^2 norm),
 239 and is observed after extensive training (up to 10^7 steps).

240 We also examined several other grokking progress measures, in addition to the l^2 norm [6], includ-
 241 ing Activation Sparsity A_s , Absolute Weight Entropy $H_{abs}(\mathbf{W})$, and Approximate Local Circuit
 242 Complexity Λ_{LC} [2]. Although A_s and Λ_{LC} captured initial training and grokking phases, and do

243 change at the anti-grokking transition, they failed to unambiguously predict the appearance and/or
244 presence of anti-grokking.

245 In examining the HTSR results on all 3 phases of grokking, we propose a new explanation of the
246 grokking phenomena. During the first phase, pre-grokking, where only training accuracy saturates,
247 only a subset of the individual layers will converge, and only far enough (i.e, $\alpha \approx 4$) to describe the
248 training data, while other layers will appear almost random (i.e, $\alpha \approx 5$). Importantly, some layers
249 will be more important for generalization than others, and these will not have converged very well at
250 all. During the grokking phase, when the test accuracy is maximal, all important layers will converge
251 extremely well, with α metrics approach the optimal value with $\alpha \approx 2.0$ —exactly as predicted by
252 the HTSR theory. In the third anti-grokking phase, where the test accuracy drops substantially, one
253 or more layer will overfit the data in some yet undetermined way). They will have $\alpha < 2$, and may
254 exhibit correlation traps (and/or even rank collapse). (Note these results are also supported by recent
255 theoretical developments in HTSR (and SETOL) theory[9].)

256 In particular, we consider the implications of observing numerous correlation traps in the anti-
257 grokking phase. The ‘traps’ are anomalous rank-one (or greater) perturbations in the weight matrix
258 \mathbf{W} , causing a large mean-shift in underlying distribution of elements: $\mathbb{E}[W_{ij}] \rightarrow \text{large}$ and, ‘pushing’
259 the ESD into the VHT phase where $\alpha < 2$. The large shift in $\mathbb{E}[W_{ij}] \rightarrow \text{large}$ indicates that the
260 distribution of weights is *atypical*. That is, different random samples of the weights could have very
261 different means. And as with any statistical estimator, an atypical distribution will not generalize
262 well. (Similar results have been seen in training a similar model with very large learning rates[9].)
263 Consequently, it is hypothesized that layers with large numbers of correlation traps are overfit to the
264 training data (in some unspecified way), and hurt the overall model test accuracy.

265 These results underscore the utility of HTSR for monitoring and understanding long-term gener-
266 alization stability across different regularization schemes, with a particular strength in identifying
267 potential catastrophic collapse. The observed layer-specific changes in α during the $WD = 0$
268 collapse suggest that potential over-fitting may develop deep into training. While our current findings
269 are based on a specific MLP architecture and MNIST subset, further research should validate these
270 observations across diverse datasets, architectures, hyperparameter configurations, and optimizers.
271 Promising future work includes developing α -guided adaptive training strategies. Additionally, de-
272 signing differentiable regularizers or loss terms based on α could potentially enable faster and more
273 stable generalization, for instance, by encouraging convergence towards $\alpha \approx 2$.

274 6 Limitations

275 Our study, while providing insights into generalization dynamics via Heavy-Tailed Self-
276 Regularization (HTSR), has limitations that define important avenues for future research. The empir-
277 ical findings are primarily derived from a specific three-layer MLP architecture trained on an MNIST
278 subset. Consequently, the generalizability of the observed α trajectories and their specific predictive
279 power for phenomena like grokking and late-stage generalization collapse warrants further valida-
280 tion across a wider range of model architectures (e.g., CNNs, Transformers), datasets, tasks, and
281 diverse training configurations, including different optimizers and hyperparameter settings.

282 Furthermore, HTSR is an empirically-grounded, phenomenological framework, supported theoreti-
283 cally with a novel application of Random Matrix Theory (RMT). While its correlations between
284 the heavy-tailed PL exponent α and network generalization states are compelling, the interpretation
285 requires careful consideration of context. For instance, while well-generalized models often exhibit
286 α values within the range (e.g., $2 \leq \alpha \leq 6$), and $\alpha \approx 2$ is frequently associated with optimal per-
287 formance or critical transitions, this is not a strictly bidirectional implication. It is conceivable that
288 layers or models might exhibit α values near or even below 2 (typically indicating over-correlation)
289 yet display suboptimal generalization. Other very-well trained models may have layers fairly large
290 alphas. This is not yet fully understood. This highlights that while α provides strong correlational
291 insights into learning phases and stability, the precise mapping of specific α values to absolute per-
292 formance levels can be context-dependent and is an area for ongoing refinement of the theory (see
293 [9]). Our work contributes observations within specific phenomena, acknowledging that the broader
294 applicability and predictive nuances of the HTSR theory will benefit from continued exploration.

295 These limitations underscore the importance of ongoing empirical and theoretical work to further
296 refine, validate, and extend the understanding of HTSR theory in deep learning.

297 **References**

298 [1] Aaron Clauset, Cosma Rohilla Shalizi, and Mark E.J. Newman. Power-law distributions in
299 empirical data. *SIAM Review*, 51(4):661–703, 2009.

300 [2] Satvik Golechha. Progress measures for grokking on real-world tasks, 2024.

301 [3] Karim Huesmann, Luis Garcia Rodriguez, Lars Linsen, and Benjamin Risse. The impact of ac-
302 tivation sparsity on overfitting in convolutional neural networks. In *Pattern Recognition. ICPR*
303 *International Workshops and Challenges: Virtual Event, January 10–15, 2021, Proceedings,*
304 *Part III*, volume 12663 of *Lecture Notes in Computer Science*, pages 130–145. Springer Inter-
305 national Publishing, 2021.

306 [4] Ahmed Intiaz Humayun, Randall Balestrier, and Richard Baraniuk. Deep networks always
307 grok and here is why, 2024.

308 [5] Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J.
309 Reddi, Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar. The lazy neuron phe-
310 nomenon: On emergence of activation sparsity in transformers. In *The Eleventh International*
311 *Conference on Learning Representations (ICLR)*, 2023. arXiv:2210.06313.

312 [6] Ziming Liu, Ouail Kitouni, Niklas S. Nolte, Eric J. Michaud, Max Tegmark, and Mike
313 Williams. Towards understanding grokking: An effective theory of representation learning.
314 In Surbhi Koyejo, Sham Kakade (formerly Mohamed), Aarti Agarwal, Danielle Belgrave,
315 Kyunghyun Cho, and Alice Oh, editors, *Advances in Neural Information Processing Systems*,
316 volume 35, pages 34651–34663. Curran Associates, Inc., 2022.

317 [7] Vladimir A. Marchenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some
318 sets of random matrices. *Matematicheskii Sbornik*, 72(114)(4):507–536, 1967.

319 [8] Charles H. Martin. WeightWatcher: Analyze Deep Learning Models without Training or Data.
320 <https://github.com/CalculatedContent/WeightWatcher>, 2018-2024. Ver-
321 sion 0.7.5.5 used in this study. Accessed May 12, 2025.

322 [9] Charles H. Martin, Christopher Hinrichs, and Michael W. Mahoney. SETOL: A Semi-
323 Empirical Theory of (Deep) Learning. [https://github.com/CalculatedContent/](https://github.com/CalculatedContent/setol_paper/blob/main/setol_draft.pdf)
324 *setol_paper/blob/main/setol_draft.pdf*, 2025. Preprint.

325 [10] Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural net-
326 works: Evidence from heavy-tailed spectral analysis, 2021.

327 [11] Charles H. Martin and Michael W. Mahoney. Predicting trends in the quality of state-of-the-art
328 deep learning models, 2021.

329 [12] William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: grokking as
330 competition of sparse and dense subnetworks, 2023.

331 [13] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
332 measures for grokking via mechanistic interpretability, 2023.

333 [14] Ze Peng, Lei Qi, Yinghuan Shi, and Yang Gao. Theoretical explanation of activation sparsity
334 through flat minima and adversarial robustness, 2023.

335 [15] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:
336 Generalization beyond overfitting on small algorithmic datasets, 2022.

337 [16] Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
338 grokking through circuit efficiency, 2023.

339 Appendices

340 A Experimental Setup

341 We train a Multi-Layer Perceptron (MLP) on a subset of the MNIST dataset using the hyperparameters
342 detailed in Table 3. The training subset is constructed by randomly selecting 100 samples from
343 each of the 10 MNIST classes, ensuring a balanced dataset of 1,000 unique training points. This
344 was run on an Nvidia Quadro P2000 and took approximately 11 hours. A considerable part of the
345 time is due to the speed of saving the measures.

Table 3: Experimental hyperparameters used in the study (details in Appendix A).

Parameter	Value
Network Architecture	Fully Connected MLP
Depth	3 Linear layers (Input → Hidden1 → Hidden2 → Output)
Width	200 hidden units per hidden layer
Activation Function	ReLU (Rectified Linear Unit)
Input Layer Size	784 (Flattened MNIST image 28×28)
Output Layer Size	10 (MNIST digits 0-9)
Weight Initialization	Default PyTorch (Kaiming Uniform for weights), parameters scaled by 8.0
Bias Initialization	Default PyTorch (Uniform), then scaled by 8.0
Dataset	MNIST
Training Points	1,000 (100 per class, stratified random sampling)
Test Points	Standard MNIST test set (10,000 samples)
Batch Size	200
Loss Function	Mean Squared Error (MSE) with one-hot encoded targets
Optimizer	AdamW
Learning Rate (LR)	5×10^{-4}
Weight Decay (WD)	0.0 (for main results), 0.01 (for Appendix C comparison)
AdamW β_1	0.9 (PyTorch default)
AdamW β_2	0.999 (PyTorch default)
AdamW ϵ	10^{-8} (PyTorch default)
Optimization Steps	10^7
Data Type (PyTorch)	‘torch.float64’
Random Seed	0 (for all libraries)
Software Framework	PyTorch
HTSR Tool	WeightWatcher v0.7.5.5 [8]

346 **Note on Weight Decay:** The primary results presented in this paper, particularly those demonstrating
347 grokking followed by late-stage generalization collapse (Figure 1), were obtained with weight
348 decay explicitly set to 0. This allows observation of the learning dynamics driven purely by the op-
349 timizer and the loss landscape while exhibiting both phenomena, whereas the other proposed mea-
350 sures fail to detect the grokking transition of increasing test accuracy. Runs with non-zero weight
351 decay (e.g., WD=0.01, see Appendix C) were also performed for comparison, showing different
352 dynamics but confirming the general utility of HTSR.

353 B Comparative Grokking Progress Metrics and Measures

354 **Weight Norm Analysis** Following observations that weight decay can influence grokking [6], we
355 monitor the l^2 norm of the network’s weights,

$$\|\mathbf{W}\|_2 = \sqrt{\sum_l \|\mathbf{W}_l\|_F^2}, \quad (7)$$

356 throughout training. We specifically run experiments with weight decay disabled (WD=0) to isolate
357 the effect of the optimization dynamics on the norm itself.

358 **Activation Sparsity.** For a given layer with activations $b_{i,j}$ (representing the activation of neuron
 359 j for input example i), the activation sparsity A_s is defined as:

$$A_s = \frac{1}{T} \sum_{i=1}^T \frac{1}{n} \sum_{j=1}^n \mathbf{1}(b_{i,j} < \tau), \quad (8)$$

360 where T is the number of training examples, n is the number of neurons in the layer, τ is a chosen
 361 threshold, and $\mathbf{1}(\cdot)$ is the indicator function. This metric measures neuron inactivity. Prior studies
 362 have linked activation sparsity to generalization [5, 12, 14] and reported specific dynamics such as
 363 plateauing before grokking [2] or an increase preceding a rise in test loss [3].

364 **Absolute Weight Entropy.** For a weight matrix $W \in \mathbb{R}^{m \times n}$, the absolute weight entropy
 365 $H_{abs}(W)$ is given by:

$$H_{abs}(W) = - \sum_{i=1}^m \sum_{j=1}^n |w_{i,j}| \log |w_{i,j}|. \quad (9)$$

366 This entropy quantifies the spread of absolute weight magnitudes. Golechha et al. [2] suggested its
 367 sharp decrease signals generalization.

368 **Approximate Local Circuit Complexity.** Let $L^{(W)}(x)$ denote the output logits for input x using
 369 weights W , and let $L^{(W')}(x)$ denote the logits when 10% of the weights are set to zero (forming
 370 W'). The approximate local circuit complexity, denoted Λ_{LC} , is the summed KL divergence:

$$\Lambda_{LC} = \sum_{k=1}^{N_{data}} \sum_{j \in \mathcal{C}} \Pr(j|L^{(W)}(x_k)) \log \frac{\Pr(j|L^{(W)}(x_k))}{\Pr(j|L^{(W')}(x_k))}. \quad (10)$$

371 Here, N_{data} is the number of training examples x_k , \mathcal{C} is the set of classes, and $\Pr(j|L(x))$ is the
 372 probability of class j derived from the logits $L(x)$ (e.g., via softmax). This measure captures out-
 373 put sensitivity to minor weight perturbations. Lower Λ_{LC} has been linked to stable, generalizable
 374 representations [2].

375 C Experiment with Weight Decay

376 To further understand the influence of weight decay on the observed generalization dynamics and the
 377 behavior of our tracked metrics, we conducted an experiment identical to our main study (WD=0) but
 378 with a small amount of weight decay (WD=0.01) applied. The training curves and metric evolutions
 379 for this WD=0.01 experiment are presented in Figures 6, and 7.

380 A key characteristic of training with weight decay is the tendency for the l^2 norm of the weights to
 381 decrease over time, or stabilize at a lower value, which is observed in this experiment (Figure 7).
 382 This contrasts with the continuously increasing l^2 weight norm seen in our primary WD=0 experi-
 383 ments.

384 In this WD=0.01 regime, the network still achieves a high level of test accuracy. Notably, after
 385 the initial grokking phase, the test accuracy slightly decreases and then enters a prolonged plateau,
 386 maintaining near peak performance for a significant number of optimization steps (Figure 6). Cor-
 387 respondingly, the average heavy-tail exponent, α , also exhibits the decrease and a distinct plateau
 388 around the critical value of $\alpha \approx 2$ during this period (Figure 6, top left panel).

389 The other progress measures considered—Activation Sparsity and Approximate Local Circuit Com-
 390 plexity—also tend to plateau or stabilize during this phase of peak test performance in the WD=0.01
 391 setting (Figure 7). This contrasts with the WD=0 scenario where, despite eventual grokking, the
 392 system does not find such a stable long-term plateau and instead proceeds towards a late-stage gen-
 393 eralization collapse. The observation that α (and other metrics) plateau in conjunction with peak,
 394 stable test accuracy under traditional weight decay settings aligns with some existing understanding
 395 of well-regularized training.

396 While HTSR and the α exponent provide valuable insights in both regimes, its unique capability
 397 to signal impending collapse in the absence of weight decay underscores its importance for under-
 398 standing layer dynamics under various scenarios.

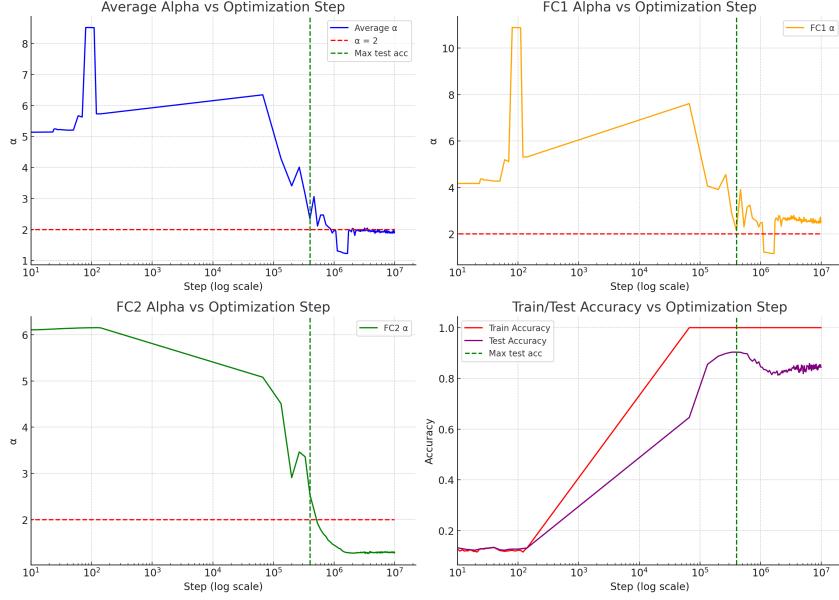


Figure 6: HTSR α exponent evolution for the MLP trained with $WD=0.01$.

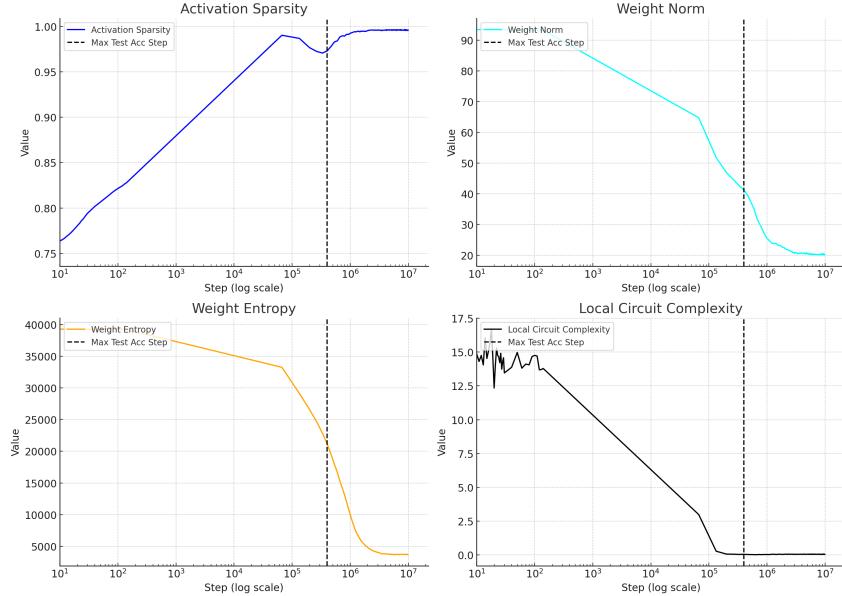


Figure 7: Progress measures (Activation Sparsity, Weight Entropy, Circuit Complexity) and l^2 Weight Norm for the MLP trained with $WD=0.01$.

399 **D Statistical Analysis and Validation of Correlation Traps**

400 Here, to further validate the presence of correlation traps for the zero weight decay $WD = 0$
401 experiment, we report the results of statistical tests designed to determine if the randomized ESD
402 of the \mathbf{W}^{rand} fits an MP distribution or not. Briefly we fit the ESD to a MP distribution and report
403 the fitted variance σ_{mp} , the Kolmogorov-Smirnov (KS) statistic of the fit, and the p-value for the
404 MP fit as the null model. We also report the number of correlation traps, as determined using the
405 open-source WeightWatcher tool[8]. Results for layer FC1 are presented in Table 4. Results for
406 FC2 are similar (not shown). Additional details are provided in the supplementary material.

Table 4: **Statistical validation of correlation traps.** Selected results for layer FC1 at different training stages for zero weight decay ($WD = 0$) experiment. MP Variance (σ_{MP}) Kolmogorov-Smirnov (KS) test statistic, p-value for MP fit, and number of detected correlation traps. Pre-grokking $\sim 10^5$ steps, Grokking 10^6 steps, and Anti-grokking 10^7 steps,

Model State	MP variance (σ_{mp})	KS Statistic	p-value	# Traps
Pre-Grokking	≈ 1.002	0.0120	≈ 1.0	0
Grokking (Max Test Accuracy)	≈ 0.999	0.0212	≈ 1.0	0
Anti-Grokking (Collapse)	≈ 0.949	0.3044	1.877×10^{-5}	9

407 **Initial Layer State (Pre-Grokking WD=0):** Immediately after initialization, the network weights
 408 are expected to be largely random, and their ESD should conform well to the MP distribution. Figure
 409 2 (Right) shows an MP fit to an ESD from a representative layer \mathbf{W}^{rand} of the newly initialized
 410 model. A KS test comparing this empirical ESD to the fitted MP distribution (using $\sigma_{mp} \approx 1.0024$
 411 as estimated by `WeightWatcher`) yielded a KS statistic of 0.0120 and a p-value ≈ 1.0 . This high
 412 p-value indicates this ESD is statistically consistent with the MP distribution, as expected.

413 **Best Layer State (Grokking phase WD=0):** As the network learns and reaches its maximum test
 414 accuracy, significant structure develops in the elements of the weight matrices $W_{i,j}$. This can be seen
 415 by randomizing the layer weight matrix elementwise, $\mathbf{W} \rightarrow \mathbf{W}^{rand}$, and plotting ESD, and looking
 416 for deviations from the theoretical MP distribution. The ESD now typically exhibits a pronounced
 417 heavy tail, with eigenvalues extending beyond the bulk region that might be approximated by an
 418 MP fit. For our model at peak test accuracy, the KS test against a fitted MP model ($\sigma_{mp} \approx 0.999$)
 419 resulted in a KS statistic of 0.0212 and a p-value ≈ 1 . Again, this is an MP distribution.

420 **Final Layer State (Anti-Grokking phase WD=0):** In the late-stage of training, as the model
 421 undergoes generalization collapse and enters an over-correlated state (characterized by $\alpha < 2$), the
 422 ESD of \mathbf{W}^{rand} structure continues to reflect a non-random configuration. The KS test for the final
 423 model against an MP fit (with an estimated $\sigma_{mp} \approx 2$) yielded a KS statistic of 0.3044 and a p-value
 424 of 1.877×10^{-5} Figure 3 (Right) . This result further confirms that the network's structure remains
 425 significantly different from a random matrix baseline, consistent with the highly correlated or near
 426 rank-collapsed state indicated by our HTSR analysis.

427 These quantitative comparisons demonstrate a transition from an initially random-like state (consis-
 428 tent with MPD) to progressively more structured, non-random states as learning occurs and eventu-
 429 ally leads to over-correlation. The inability of the MP distribution to describe these learned features,
 430 especially the heavy tails, necessitates the use of tools like the HTSR theory, the PL exponent α ,
 431 and the open-source `WeightWatcher` tool, to properly characterize these complex correlation
 432 structures and their relationship to generalization performance.

433 **NeurIPS Paper Checklist**

434 The checklist is designed to encourage best practices for responsible machine learning research,
435 addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
436 move the checklist: **The papers not including the checklist will be desk rejected.** The checklist
437 should follow the references and follow the (optional) supplemental material. The checklist does
438 NOT count towards the page limit.

439 Please read the checklist guidelines carefully for information on how to answer these questions. For
440 each question in the checklist:

441 • You should answer **[Yes]**, **[No]**, or **[NA]**.
442 • **[NA]** means either that the question is Not Applicable for that particular paper or the
443 relevant information is Not Available.
444 • Please provide a short (1–2 sentence) justification right after your answer (even for NA).

445 **The checklist answers are an integral part of your paper submission.** They are visible to the
446 reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
447 (after eventual revisions) with the final version of your paper, and its final version will be published
448 with the paper.

449 The reviewers of your paper will be asked to use the checklist as one of the factors in their evalua-
450 tion. While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**"
451 provided a proper justification is given (e.g., "error bars are not reported because it would be too
452 computationally expensive" or "we were unable to find the license for the dataset we used"). In
453 general, answering "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased
454 in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
455 best judgment and write a justification to elaborate. All supporting evidence can appear either in the
456 main paper or the supplemental material, provided in appendix. If you answer **[Yes]** to a question,
457 in the justification please point to the section(s) where related material for the question can be found.

458 **IMPORTANT**, please:

459 • **Delete this instruction block, but keep the section heading "NeurIPS Paper Check-
460 list",**
461 • **Keep the checklist subsection headings, questions/answers and guidelines below.**
462 • **Do not modify the questions and only use the provided macros for your answers.**

463 **1. Claims**

464 Question: Do the main claims made in the abstract and introduction accurately reflect the
465 paper's contributions and scope?

466 Answer: **[Yes]**

467 Justification: The abstract claims that the heavy-tailed exponent alpha from HTSR theory
468 reliably predicts grokking, anti-grokking (a late-stage generalization collapse), and pro-
469 vides an early warning for this collapse, especially in no-decay regimes where other mea-
470 sures may not. It also mentions the identification of "correlation traps." The introduction
471 reiterates these points. Section 1 "Our Contributions" and Section 4 "Results and Anal-
472 ysis" (particularly subsections 4.1 and 4.2, and Table 2) provide experimental results and
473 discussion supporting these claims, such as alpha dropping below 2 before collapse and the
474 appearance of correlation traps.

475 Guidelines:

476 • The answer NA means that the abstract and introduction do not include the claims
477 made in the paper.
478 • The abstract and/or introduction should clearly state the claims made, including the
479 contributions made in the paper and important assumptions and limitations. A No or
480 NA answer to this question will not be perceived well by the reviewers.
481 • The claims made should match theoretical and experimental results, and reflect how
482 much the results can be expected to generalize to other settings.

483 • It is fine to include aspirational goals as motivation as long as it is clear that these
484 goals are not attained by the paper.

485 **2. Limitations**

486 Question: Does the paper discuss the limitations of the work performed by the authors?

487 Answer: **[Yes]**

488 Justification: Section 7, titled "Limitations," explicitly discusses the limitations. These
489 include the specificity of the MLP architecture and MNIST dataset used, calling for validation
490 across diverse models and data. It also mentions that the interpretation of alpha can be
491 context-dependent, and is not a bidirectional relationship

492 Guidelines:

493 • The answer NA means that the paper has no limitation while the answer No means
494 that the paper has limitations, but those are not discussed in the paper.

495 • The authors are encouraged to create a separate "Limitations" section in their paper.

496 • The paper should point out any strong assumptions and how robust the results are to
497 violations of these assumptions (e.g., independence assumptions, noiseless settings,
498 model well-specification, asymptotic approximations only holding locally). The au-
499 thors should reflect on how these assumptions might be violated in practice and what
500 the implications would be.

501 • The authors should reflect on the scope of the claims made, e.g., if the approach was
502 only tested on a few datasets or with a few runs. In general, empirical results often
503 depend on implicit assumptions, which should be articulated.

504 • The authors should reflect on the factors that influence the performance of the ap-
505 proach. For example, a facial recognition algorithm may perform poorly when image
506 resolution is low or images are taken in low lighting. Or a speech-to-text system might
507 not be used reliably to provide closed captions for online lectures because it fails to
508 handle technical jargon.

509 • The authors should discuss the computational efficiency of the proposed algorithms
510 and how they scale with dataset size.

511 • If applicable, the authors should discuss possible limitations of their approach to ad-
512 dress problems of privacy and fairness.

513 • While the authors might fear that complete honesty about limitations might be used by
514 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
515 limitations that aren't acknowledged in the paper. The authors should use their best
516 judgment and recognize that individual actions in favor of transparency play an impor-
517 tant role in developing norms that preserve the integrity of the community. Reviewers
518 will be specifically instructed to not penalize honesty concerning limitations.

519 **3. Theory assumptions and proofs**

520 Question: For each theoretical result, does the paper provide the full set of assumptions and
521 a complete (and correct) proof?

522 Answer: **[Yes]**

523 Justification: Any necessary proofs along with assumptions will be provided in the supple-
524 mental material.

525 Guidelines:

526 • The answer NA means that the paper does not include theoretical results.

527 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
528 referenced.

529 • All assumptions should be clearly stated or referenced in the statement of any theo-
530 rems.

531 • The proofs can either appear in the main paper or the supplemental material, but if
532 they appear in the supplemental material, the authors are encouraged to provide a
533 short proof sketch to provide intuition.

534 • Inversely, any informal proof provided in the core of the paper should be comple-
535 mented by formal proofs provided in appendix or supplemental material.

536 • Theorems and Lemmas that the proof relies upon should be properly referenced.

537 **4. Experimental result reproducibility**

538 Question: Does the paper fully disclose all the information needed to reproduce the main
539 experimental results of the paper to the extent that it affects the main claims and/or conclu-
540 sions of the paper (regardless of whether the code and data are provided or not)?

541 Answer: [\[Yes\]](#)

542 Justification: Appendix A ("Experimental Setup") and Table A.1 provide a comprehensive
543 list of experimental settings: network architecture, depth, width, activation, input/output
544 sizes, weight/bias initialization (including scaling), dataset (MNIST), training points (1000,
545 (100 per class), stratified random sampling), test points (standard MNIST test set), batch
546 size, loss function (MSE), optimizer (AdamW), learning rate, weight decay, AdamW betas
547 and epsilon, optimization steps, data type, random seed, and software framework. Also
548 mentioned is the Weightwatcher version which is an open source package.

549 Guidelines:

- 550 • The answer NA means that the paper does not include experiments.
- 551 • If the paper includes experiments, a No answer to this question will not be perceived
552 well by the reviewers: Making the paper reproducible is important, regardless of
553 whether the code and data are provided or not.
- 554 • If the contribution is a dataset and/or model, the authors should describe the steps
555 taken to make their results reproducible or verifiable.
- 556 • Depending on the contribution, reproducibility can be accomplished in various ways.
557 For example, if the contribution is a novel architecture, describing the architecture
558 fully might suffice, or if the contribution is a specific model and empirical evaluation,
559 it may be necessary to either make it possible for others to replicate the model with
560 the same dataset, or provide access to the model. In general, releasing code and data
561 is often one good way to accomplish this, but reproducibility can also be provided via
562 detailed instructions for how to replicate the results, access to a hosted model (e.g., in
563 the case of a large language model), releasing of a model checkpoint, or other means
564 that are appropriate to the research performed.
- 565 • While NeurIPS does not require releasing code, the conference does require all sub-
566 missions to provide some reasonable avenue for reproducibility, which may depend
567 on the nature of the contribution. For example
 - 568 (a) If the contribution is primarily a new algorithm, the paper should make it clear
569 how to reproduce that algorithm.
 - 570 (b) If the contribution is primarily a new model architecture, the paper should describe
571 the architecture clearly and fully.
 - 572 (c) If the contribution is a new model (e.g., a large language model), then there should
573 either be a way to access this model for reproducing the results or a way to re-
574 produce the model (e.g., with an open-source dataset or instructions for how to
575 construct the dataset).
 - 576 (d) We recognize that reproducibility may be tricky in some cases, in which case auth-
577 ors are welcome to describe the particular way they provide for reproducibility.
578 In the case of closed-source models, it may be that access to the model is limited in
579 some way (e.g., to registered users), but it should be possible for other researchers
580 to have some path to reproducing or verifying the results.

581 **5. Open access to data and code**

582 Question: Does the paper provide open access to the data and code, with sufficient instruc-
583 tions to faithfully reproduce the main experimental results, as described in supplemental
584 material?

585 Answer: [\[Yes\]](#)

586 Justification: Provided with supplementary in accordance with guidlines.

587 Guidelines:

- 588 • The answer NA means that paper does not include experiments requiring code.

589 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
 590
 591 • While we encourage the release of code and data, we understand that this might not
 592 be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
 593 including code, unless this is central to the contribution (e.g., for a new open-source
 594 benchmark).
 595 • The instructions should contain the exact command and environment needed to run to
 596 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
 597
 598 • The authors should provide instructions on data access and preparation, including how
 599 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 600
 601 • The authors should provide scripts to reproduce all experimental results for the new
 602 proposed method and baselines. If only a subset of experiments are reproducible, they
 603 should state which ones are omitted from the script and why.
 604
 605 • At submission time, to preserve anonymity, the authors should release anonymized
 606 versions (if applicable).
 607
 608 • Providing as much information as possible in supplemental material (appended to the
 609 paper) is recommended, but including URLs to data and code is permitted.

607 **6. Experimental setting/details**

608 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
 609 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
 610 results?

611 Answer: [\[Yes\]](#)

612 Justification: Appendix A (“Experimental Setup”) and Table A.1 provide a comprehensive
 613 list of experimental settings: network architecture, depth, width, activation, input/output
 614 sizes, weight/bias initialization (including scaling), dataset (MNIST), training points (1000,
 615 100 per class, stratified random sampling), test points (standard MNIST test set), batch size,
 616 loss function (MSE), optimizer (AdamW), learning rate, weight decay, AdamW betas and
 617 epsilon, optimization steps, data type, random seed, and software framework.

618 Guidelines:

619 • The answer NA means that the paper does not include experiments.
 620 • The experimental setting should be presented in the core of the paper to a level of
 621 detail that is necessary to appreciate the results and make sense of them.
 622 • The full details can be provided either with the code, in appendix, or as supplemental
 623 material.

624 **7. Experiment statistical significance**

625 Question: Does the paper report error bars suitably and correctly defined or other appropriate
 626 information about the statistical significance of the experiments?

627 Answer: [\[Yes\]](#)

628 Justification: Table (“Layer-wise and average HTSR alpha exponents”) and Table (“Average
 629 number of detected correlation traps”) report values with mean and standard deviation,
 630 likely over runs/seeds, though the exact source of this variability (e.g., multiple runs vs.
 631 variability across layers/checkpoints) is explicitly detailed for these tables. KS test p-values
 632 are reported in Section 3.2, Appendix B (Table A.2), and Figure 2 caption when discussing
 633 MP fits and correlation traps, which is a measure of statistical significance for those spe-
 634 cific tests. The experiments take considerably long time to run (each experiment takes 11
 635 hours) so n is limited

636 Guidelines:

637 • The answer NA means that the paper does not include experiments.
 638 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
 639 dence intervals, or statistical significance tests, at least for the experiments that support
 640 the main claims of the paper.

641 • The factors of variability that the error bars are capturing should be clearly stated (for
 642 example, train/test split, initialization, random drawing of some parameter, or overall
 643 run with given experimental conditions).
 644 • The method for calculating the error bars should be explained (closed form formula,
 645 call to a library function, bootstrap, etc.)
 646 • The assumptions made should be given (e.g., Normally distributed errors).
 647 • It should be clear whether the error bar is the standard deviation or the standard error
 648 of the mean.
 649 • It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
 650 ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
 651 Normality of errors is not verified.
 652 • For asymmetric distributions, the authors should be careful not to show in tables or
 653 figures symmetric error bars that would yield results that are out of range (e.g. negative
 654 error rates).
 655 • If error bars are reported in tables or plots, The authors should explain in the text how
 656 they were calculated and reference the corresponding figures or tables in the text.

657 **8. Experiments compute resources**

658 Question: For each experiment, does the paper provide sufficient information on the com-
 659 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 660 the experiments?

661 Answer: **[Yes]**

662 Justification: Appendix A ("Experimental Setup") states: "This was run on an Nvidia
 663 Quadro P2000 and took approximately 11 hours." This provides the type of GPU and the
 664 approximate execution time for the main experiment (10^7 steps). The GPU used has 5 GB
 665 memory.

666 Guidelines:

667 • The answer NA means that the paper does not include experiments.
 668 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 669 or cloud provider, including relevant memory and storage.
 670 • The paper should provide the amount of compute required for each of the individual
 671 experimental runs as well as estimate the total compute.
 672 • The paper should disclose whether the full research project required more compute
 673 than the experiments reported in the paper (e.g., preliminary or failed experiments
 674 that didn't make it into the paper).

675 **9. Code of ethics**

676 Question: Does the research conducted in the paper conform, in every respect, with the
 677 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

678 Answer: **[Yes]**

679 Justification: The research uses standard open datasets and open methodologies, with no
 680 ethical red flags based on our research.

681 Guidelines:

682 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 683 • If the authors answer No, they should explain the special circumstances that require a
 684 deviation from the Code of Ethics.
 685 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 686 eration due to laws or regulations in their jurisdiction).

687 **10. Broader impacts**

688 Question: Does the paper discuss both potential positive societal impacts and negative
 689 societal impacts of the work performed?

690 Answer: **[NA]**

691 Justification: This is a foundational research paper on grokking which has no negative
 692 Societal Impact.

693 Guidelines:

- 694 • The answer NA means that there is no societal impact of the work performed.
- 695 • If the authors answer NA or No, they should explain why their work has no societal
- 696 impact or why the paper does not address societal impact.
- 697 • Examples of negative societal impacts include potential malicious or unintended uses
- 698 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
- 699 (e.g., deployment of technologies that could make decisions that unfairly impact spe-
- 700 cific groups), privacy considerations, and security considerations.
- 701 • The conference expects that many papers will be foundational research and not tied
- 702 to particular applications, let alone deployments. However, if there is a direct path to
- 703 any negative applications, the authors should point it out. For example, it is legitimate
- 704 to point out that an improvement in the quality of generative models could be used to
- 705 generate deepfakes for disinformation. On the other hand, it is not needed to point out
- 706 that a generic algorithm for optimizing neural networks could enable people to train
- 707 models that generate Deepfakes faster.
- 708 • The authors should consider possible harms that could arise when the technology is
- 709 being used as intended and functioning correctly, harms that could arise when the
- 710 technology is being used as intended but gives incorrect results, and harms following
- 711 from (intentional or unintentional) misuse of the technology.
- 712 • If there are negative societal impacts, the authors could also discuss possible mitiga-
- 713 tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
- 714 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
- 715 feedback over time, improving the efficiency and accessibility of ML).

716 **11. Safeguards**

717 Question: Does the paper describe safeguards that have been put in place for responsible
718 release of data or models that have a high risk for misuse (e.g., pretrained language models,
719 image generators, or scraped datasets)?

720 Answer: [NA]

721 Justification: Same as above not applicable

722 Guidelines:

- 723 • The answer NA means that the paper poses no such risks.
- 724 • Released models that have a high risk for misuse or dual-use should be released with
- 725 necessary safeguards to allow for controlled use of the model, for example by re-
- 726quiring that users adhere to usage guidelines or restrictions to access the model or
- 727 implementing safety filters.
- 728 • Datasets that have been scraped from the Internet could pose safety risks. The authors
- 729 should describe how they avoided releasing unsafe images.
- 730 • We recognize that providing effective safeguards is challenging, and many papers do
- 731 not require this, but we encourage authors to take this into account and make a best
- 732 faith effort.

733 **12. Licenses for existing assets**

734 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
735 the paper, properly credited and are the license and terms of use explicitly mentioned and
736 properly respected?

737 Answer: [Yes]

738 Justification: Weightwatcher and the experimental code is Apache 2.0 , MNIST is Creative
739 Commons Attribution-Share Alike 3.0. Pytorch is BSD 3-Clause License.

740 Guidelines:

- 741 • The answer NA means that the paper does not use existing assets.
- 742 • The authors should cite the original paper that produced the code package or dataset.
- 743 • The authors should state which version of the asset is used and, if possible, include a
- 744 URL.
- 745 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.

746 • For scraped data from a particular source (e.g., website), the copyright and terms of
747 service of that source should be provided.
748 • If assets are released, the license, copyright information, and terms of use in the
749 package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help
750 determine the license of a dataset.
751 • For existing datasets that are re-packaged, both the original license and the license of
752 the derived asset (if it has changed) should be provided.
753 • If this information is not available online, the authors are encouraged to reach out to
754 the asset's creators.
755

756 13. New assets

757 Question: Are new assets introduced in the paper well documented and is the documentation
758 provided alongside the assets?

759 Answer: [Yes]

760 Justification: Code is provided with comments

761 Guidelines:

762 • The answer NA means that the paper does not release new assets.
763 • Researchers should communicate the details of the dataset/code/model as part of their
764 submissions via structured templates. This includes details about training, license,
765 limitations, etc.
766 • The paper should discuss whether and how consent was obtained from people whose
767 asset is used.
768 • At submission time, remember to anonymize your assets (if applicable). You can
769 either create an anonymized URL or include an anonymized zip file.

770 14. Crowdsourcing and research with human subjects

771 Question: For crowdsourcing experiments and research with human subjects, does the paper
772 include the full text of instructions given to participants and screenshots, if applicable,
773 as well as details about compensation (if any)?

774 Answer: [NA]

775 Justification: Not applicable.

776 Guidelines:

777 • The answer NA means that the paper does not involve crowdsourcing nor research
778 with human subjects.
779 • Including this information in the supplemental material is fine, but if the main contribu-
780 tion of the paper involves human subjects, then as much detail as possible should
781 be included in the main paper.
782 • According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
783 tion, or other labor should be paid at least the minimum wage in the country of the
784 data collector.

785 15. Institutional review board (IRB) approvals or equivalent for research with human 786 subjects

787 Question: Does the paper describe potential risks incurred by study participants, whether
788 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
789 approvals (or an equivalent approval/review based on the requirements of your country or
790 institution) were obtained?

791 Answer: [NA]

792 Justification: Not Applicable.

793 Guidelines:

794 • The answer NA means that the paper does not involve crowdsourcing nor research
795 with human subjects.

796 • Depending on the country in which research is conducted, IRB approval (or equivalent)
797 may be required for any human subjects research. If you obtained IRB approval,
798 you should clearly state this in the paper.
799 • We recognize that the procedures for this may vary significantly between institutions
800 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
801 guidelines for their institution.
802 • For initial submissions, do not include any information that would break anonymity
803 (if applicable), such as the institution conducting the review.

804 **16. Declaration of LLM usage**

805 Question: Does the paper describe the usage of LLMs if it is an important, original, or
806 non-standard component of the core methods in this research? Note that if the LLM is used
807 only for writing, editing, or formatting purposes and does not impact the core methodology,
808 scientific rigorousness, or originality of the research, declaration is not required.

809 Answer: [NA]

810 Justification: Not Applicable

811 Guidelines:

812 • The answer NA means that the core method development in this research does not
813 involve LLMs as any important, original, or non-standard components.
814 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.