PATCH-AS-DECODABLE-TOKEN: TOWARDS UNIFIED MULTI-MODAL VISION TASKS IN MLLMS

Anonymous authorsPaper under double-blind review

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

023

025

026027028

029

031

033

034

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

Multimodal large language models (MLLMs) have advanced rapidly in recent years. However, existing approaches for vision tasks often rely on indirect representations, such as generating coordinates as text for detection, which limits performance and prevents dense prediction tasks like segmentation. To overcome these challenges, we introduce Patch-as-Decodable Token (PaDT), a unified paradigm that enables MLLMs to directly generate both textual and diverse visual outputs. Central to PaDT are Visual Reference Tokens (VRTs), derived from visual patch embeddings of query images and interleaved seamlessly with LLM's output textual tokens. A lightweight decoder then transforms LLM's outputs into detection, segmentation, and grounding predictions. Unlike prior methods, PaDT processes VRTs independently at each forward pass and dynamically expands the embedding table, thus improving localization and differentiation among similar objects. We further tailor a training strategy for PaDT by randomly selecting VRTs for supervised fine-tuning and introducing a robust per-token cross-entropy loss. Our empirical studies across four visual perception and understanding tasks suggest PaDT consistently achieving state-of-the-art performance, even compared with significantly larger MLLM models.

1 Introduction

Fine-grained image perception and understanding, which aim to associate specific image regions with contextual information, such as semantic or instance, is a fundamental task in computer vision and serves as a cornerstone for numerous applications. Classical vision models (Ren et al., 2015; Redmon et al., 2016; Carion et al., 2020) remain state-of-the-art for pure detection and segmentation tasks, but they lack flexible language interaction and understanding, thus prohibiting open vocabulary oriented visual reasoning tasks. At an earlier stage, inspired by CLIP (Radford et al., 2021), many vision-language detectors such as GLIP (Li et al., 2022b) and Grounding DINO (Ren et al., 2023) incorporate language information to detect arbitrary classes. However, these methods remain vision-centric backbones augmented with language, and thus struggle to handle more complex textual descriptions and are limited to structured output.

Recent advances have led to powerful multi-modal large language models (MLLMs) (Alayrac et al., 2022; Li et al., 2023; Liu et al., 2024c; Bai et al., 2025; Zhu et al., 2025) that couple vision encoders with Large Language Models(LLMs). Pretrained on massive multimodal datasets, these models encode rich prior knowledge and provide a strong foundation for visual perception and understanding, as illustrated in Fig. 1. To conform with the textual output space of LLMs, most existing MLLMs (Liu et al., 2025a; Bai et al., 2025; Zhu et al., 2025) serialize detected regions into bounding box coordinates, expressed in textual form, such as $[x_1, y_1, x_2, y_2]$. While straightforward, this strategy introduces several challenges. First, output formats are often inconsistent across samples even under the same prompt, as illustrated in Fig. 2(a), thereby increasing the difficulty of parsing and structured output. Second, numerical coordinate representations provide precise spatial descriptions but lack semantic alignment between textual and visual modalities, as shown in Fig. 2(b). This inherent misalignment can lead to repetition or hallucination between coordinate and actual visual targets (Jiang et al., 2024b). Moreover, since numerical coordinate representations are mapped into discrete textual tokens, a single coordinate value may be split into several unrelated tokens, as shown in Fig. 2(b). These discontinuous coordinate tokens can hinder prediction accuracy, e.g., fragmented numbers.

056

060

061

062

063

064 065

066

067

069

071

073

074

075

076

077

079

081

083

084

085

087

090

091

092

094

096

098

099

102

103

105

106

107



Figure 1: Illustration of unified visual/textual token prediction for MLLM powered visual perception and understanding.

In this work, we introduce a unified paradigm, **Patch-as-Decodable Token (PaDT)**, which enables MLLMs to directly generate both textual and diverse visual targets in a unified yet flexible way. For this purpose, we propose the **Visual Reference Tokens** (VRTs), which can be seamlessly interleaved with LLM's output textual tokens. VRTs are generated by the proposed Dynamic Embedding Module, adapted directly from the original visual patch embeddings. In this way, they occur in a feature space consistent with the original LLM, while each VRT explicitly corresponds to a specific image patch within the query image. Thus, VRTs can be naturally interpreted within the LLM's feature space, allowing detected objects to be represented by multiple VRTs in a fine-grained manner. Based on this design, PaDT owns the inherent ability to predict diverse visual outputs, e.g. semantic masks and bounding boxes. Specifically, MLLMs only need to predict a subset of VRTs, which are then decoded into the final structured visual outputs by a lightweight decoder. A prior art (Ma et al., 2025) attempted to empower LLMs to output image patch tokens, discretized by a global codebook, to represent the target within the image. However, this approach remains limited in flexibility and generality due to maintaining a global codebook. First, there is a risk of predicting visual tokens that do not appear in the query image. Moreover, the decoded visual token does not have unique correspondence in the query image, thus risking misalignment between predicted visual tokens and query image tokens, e.g. confusion between similar objects in the image. In contrast, PaDT processes VRTs independently at each forward pass, making it more efficient. By maintaining a high-level feature space aligned with that of LLMs and preserving unique positional information for each image region, PaDT ensures coherent predictions as illustrated Fig. 2(c). Moreover, as shown in Fig. 2(d), VRT predictions over objects exhibit great spatial continuity.

To enable PaDT to achieve strong performance, we design an effective fine-tuning strategy and propose a robust per-token cross-entropy loss tailored for the proposed visual reference token, which stabilizes training and mitigates overfitting. Notably, our 3B model surpasses the previous state-of-the-art by 19.0 mAP on COCO detection and achieves an average accuracy of 93.6 on the referring expression comprehension (REC) task, outperforming the much larger 78B InternVL3 model.

The main contributions of this work can be summarized as follows:

- We introduce a unified paradigm, Patch-as-Decodable Token (PaDT), which enables
 MLLMs to directly generate both textual and diverse visual targets in a unified yet flexible way. With the proposed Visual Reference Token (VRT), our method achieves superior
 performance across diverse fine-grained image perception and understanding
- We propose a lightweight yet robust VRT-based decoder, termed the PaDT Decoder. Given the generated VRTs, it can uniformly decode diverse fine-grained structured visual outputs, such as segmentation masks and bounding boxes.
- We propose an effective fine-tuning strategy together with a robust per-token cross-entropy
 loss. PaDT achieves the state-of-the-art performance on a wide range of visual perception
 and understanding tasks. The effectiveness is validated beyond perception tasks but also a
 customized image captioning task.

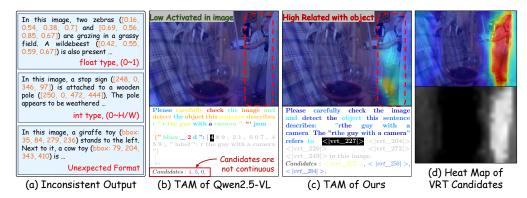


Figure 2: (a) Previous methods yield inconsistent output formats due to free-form box representations even under the same prompt. (b) Token Activation Map (TAM) (Li et al., 2025) reveals less semantic relationship between textual box representations and textual/visual information, while converting continuous numbers into discrete tokens further introduces discontinuities. (c) With PaDT denoting objects with VRTs, semantic alignment is preserved and the output becomes more unified and natural. (d) The heatmap of <VRT_227> further demonstrates continuous and object-consistent predictions within the input image.

2 RELATED WORK

Multimodal Large Language Models. With the rapid development of large language models (LLMs), multimodal LLMs (MLLMs) have emerged as powerful systems for vision-language reasoning (Li et al., 2022a; Alayrac et al., 2022; Achiam et al., 2023; Liu et al., 2023; Zhu et al., 2023; Bai et al., 2025; Ye et al., 2023). Early milestones such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) demonstrated the effectiveness of large-scale contrastive pretraining for joint vision-text representations. BLIP-2 (Li et al., 2022a) further improved alignment through the Q-former design. More recently, instruction-tuned MLLMs including LLaVA (Liu et al., 2023) and MiniGPT-4 (Zhu et al., 2023) leverage multimodal instruction data, yielding strong performance in open-ended visual question answering and reasoning. Building on these foundations, subsequent works extend capabilities to higher-resolution image understanding (e.g., LLaVA-Next (Liu et al., 2024c), LLaVA-UHD (Guo et al., 2024)), diverse instruction sets (Ye et al., 2023), multimage (Jiang et al., 2024a; Li et al., 2024) and video inputs (Lin et al., 2023a; Chen et al., 2024a), as well as new pretraining objectives and architectural designs (Fang et al., 2023; Wang et al., 2023b). Collectively, these advances establish MLLMs as versatile general-purpose models for multimodal reasoning.

MLLMs for Visual Perception & Understanding. Despite their broad capabilities, general-purpose MLLMs remain limited in fine-grained perception tasks. This stems largely from vision encoders' reliance on fixed patch grids (Dehghani et al., 2023; Fang et al., 2023; Wang et al., 2023b), which often blur local details and impair tasks such as object localization, counting, or OCR. To mitigate this, adaptive tiling strategies, such as NaViT-style patch dropping and AnyRes (Luo et al., 2023; Chen et al., 2024b; Liu et al., 2024a), allow flexible handling of variable-resolution image tiles, leading to improved spatial resolution. Another line of work explores reinforcement learning to enhance perception and reasoning, exemplified by VLM-R1 (Shen et al., 2025), Visual-RFT (Liu et al., 2025b), VisRL (Chen et al., 2025), and Seg-R1 (You & Wu, 2025). These approaches achieve better generalization and emergent capabilities such as segmentation and grounding. Prior works have primarily relied on reinforcement learning (Chen et al., 2025) or instruction tuning (Jiang et al., 2024b) to strengthen visual reasoning, yet the potential of leveraging learned queries as anchors for visual perception remains underexplored. Moreover, designing a unified architecture that seamlessly accommodates diverse vision tasks continues to be an open challenge.

Unified Visual Tokenization. A complementary research direction focuses on unifying visual and linguistic representations through multi-granular tokenization. At the region level, methods convert object boxes or masks into geometric tokens (Chen et al., 2023b; Xuan et al., 2024; Peng et al., 2023; You et al., 2023) or learnable proxies (Zhang et al., 2024a; Yuan et al., 2024; Chen et al., 2023a; Rasheed et al., 2024), often grounded by detectors or SAM (Kirillov et al., 2023), thereby enabling more precise vision-language grounding. At the patch level, models such as the Emu series (Sun et al., 2023) and LaVIT (Jin et al., 2024) treat CLIP-derived patch features as visual vocabularies for denser alignment. Recent works further introduce autoregressive quantization of

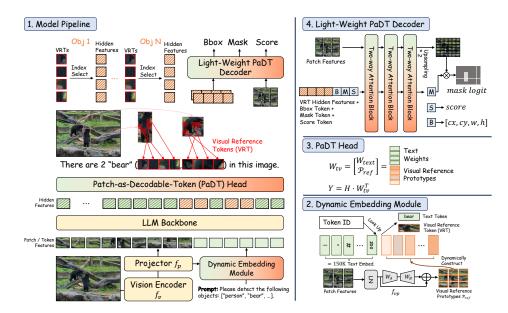


Figure 3: The framework of PaDT model.

image patches (Team, 2024; Sun et al., 2024), discretizing pixels into "visual sentences" to support efficient cross-modal modeling, with even finer-grained tokenization explored in (Ma et al., 2025). While these approaches approximate linguistic structures via region, instance, or pixel tokens, deeper semantic integration between vision and language is still limited. To address this, we propose a dynamic multimodal token space that enables close correspondence between language tokens and visual patches under a unified autoregressive modeling paradigm.

3 METHODOLOGY

3.1 REVISITING MULTIMODAL LARGE LANGUAGE MODELS

A Multimodal Large Language Model (MLLM) augments a Large Language Model (LLM) with a visual encoder, enabling it to perform not only general-purpose reasoning but also visual perception (Alayrac et al., 2022; Liu et al., 2024c; Bai et al., 2025). Given an image $I \in \mathbb{R}^{H \times W \times 3}$ and a text sequence $\mathbf{T} = (t_1, \dots, t_m)$, the MLLM autoregressively generates an output sequence $\mathbf{Y} = (y_1, \dots, y_t)$. An image encoder f_v , typically a Vision Transformer (ViT) (Dosovitskiy et al., 2020), partitions \mathbf{I} into N non-overlapping patches $\{P_n\}_{n=1}^N$, which are subsequently encoded into embeddings $F_v = f_v(I) \in \mathbb{R}^{N \times d_v}$. A projector f_p then aligns dimensions and downsamples, yielding $F_{patch} = f_p(F_v) \in \mathbb{R}^{N' \times d}$. For instance, Qwen2.5-VL adopts nearest-neighbor patch merging in the 2D patch space, resulting in $N' = \frac{1}{4}N$. The image embeddings are then fused with the text embeddings $E_{text}(\mathbf{T}) \in \mathbb{R}^{m \times d}$ to form a hybrid textual-visual representation $Z = [F_{patch}; E_{text}(\mathbf{T})]$. Here, $E_{text} \in \mathbb{R}^{V_{text} \times d}$ denotes the text embedding table that maps each text token to its corresponding feature vector. The resulting multimodal representation Z is subsequently fed into a transformer-based LLM (Alayrac et al., 2022; Liu et al., 2024c; Bai et al., 2025). At timestep t, the hidden state h_t produces the next-token distribution:

$$p(y_t|I, \mathbf{T}, y_{< t}) = \operatorname{softmax}(W_{text} \cdot h_t), \tag{1}$$

with $W_{text} \in \mathbb{R}^{V_{text} \times d}$ denoting classifier weights.

Limitations of Text-based Vision Prediction. Current MLLMs are restricted to accepting textual–visual representations as input and producing only textual outputs, owing to their compatibility with the underlying LLM architecture. This limitation is suboptimal for structured vision tasks such as object detection and image segmentation. Specifically, current MLLMs (e.g., Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu et al., 2025)) serialize visual targets into strings at output side. This leads to two major issues. First, outputs vary in format (absolute vs. normalized coordinates, JSON-style vs. free-form), complicating parsing and structured output, as shown in Fig. 2(a). Second, numerical coordinate representations are mapped into discrete textual tokens which are generated digit by digit (e.g., "489" \rightarrow "4, 8, 9"). This disrupts numerical continuity and may hinder prediction

accuracy (Fig. 2(b)). More importantly, while this numerical representation effectively describes spatial information precisely, it lacks semantic information, which is crucial for image understanding tasks. This inherent mismatch, revealed through token activation analyses (Li et al., 2025) as illustrated in Fig. 2(b), can lead to errors such as repetition or hallucination in dense prediction tasks (Jiang et al., 2024b).

3.2 VISUAL REFERENCE TOKEN

We propose the **Patch-as-Decodable-Token** (PaDT) framework, which introduces **Visual Reference Tokens** (VRTs), a unified tokenization scheme that embeds visual patches directly as decodable tokens within the autoregressive generation process. PaDT extends conventional MLLMs with three key components: (1) *Dynamic Embedding Module* augments the textual vocabulary codebook with visual patches, specific VRTs, at each forward pass, yielding a multi-modal codebook. (2) With this multi-modal codebook and the proposed *PaDT Head*, VRTs become both embeddable at the input side and decodable at the output side, resulting in a unified and natural format. (3) A lightweight *PaDT Decoder* is proposed to convert variable VRTs into diverse visual representations, such as bounding boxes and masks, enabling downstream tasks including detection, segmentation, and grounding. This further enhances both the robustness and flexibility of the proposed method.

3.2.1 Unified Multi-modal format with VRTs

A core challenge is to ensure that VRTs can by interpretable by LLMs, being both *embeddable* in the input space and *decodable* in the output space. Prior work, e.g., ClawMachine (Ma et al., 2025) relies on pretrained discrete visual tokenizers (Jin et al., 2024). It inserts the entire codebook, which contains a massive number of tokens, into the LLM embedding table and forces the LLM to map its high-level semantic feature space to tokens representing low-level image patches. Thus, this method is limited by (i) a fixed dataset-level codebook expansion which contains massive tokens that ignore patch-specific cues such as spatial location, and (ii) ambiguity arising from the lack of high-level semantics when visually similar patches from different objects maybe mapped to the same token.

Dynamic Multi-Modal Codebook Expansion. To avoid the above limitations, rather than introducing a standalone codebook, we reuse the extracted visual tokens from the input image, which already preserve rich semantic information. Since each visual token explicitly corresponds to an image patch, at each forward pass only the tokens from the current query image are dynamically expanded into the original textual codebook, instead of memorizing all possible visual patterns through a fixed codebook. Specifically, in the proposed *Dynamic Embedding Module*, original patch features $F_{patch} \in \mathbb{R}^{N' \times d}$ are projected by a lightweight module f_{vp} into visual reference prototypes \mathcal{P}_{ref} . f_{vp} consists of a LayerNorm and a low-rank linear projection. These prototypes are then concatenated with text embeddings to form a dynamic embedding table as,

$$E_{dyn} = [E_{text}; \mathcal{P}_{ref}], \quad \mathcal{P}_{ref} = f_{vp}(F_{patch}) \in \mathbb{R}^{N' \times d}.$$
 (2)

Unified Input and Output Format. With the above Multi-Modal Codebook, both textual and visual information can be input and output in a unified way. On the input side, query image tokens are indexed in the Multi-Modal Codebook and converted into the corresponding VRTs, which are then embedded into the textual input to the LLM. Since VRTs are adapted from the original image tokens, they share a feature space that is similar to the LLM's representation space, which simplifies training compared to ClawMachine (Ma et al., 2025). On the output side, to enable the original textual classifier to output expanded indices, the *PaDT Head* is proposed to augment the classifier with \mathcal{P}_{ref} , yielding

$$W_{tv} = [W_{text}; \mathcal{P}_{ref}] \in \mathbb{R}^{(V_{text} + N') \times d}.$$
 (3)

This joint design allows VRTs to be embedded as inputs and decoded as outputs, enabling the model to insert patch-level references directly into the autoregressive sequence. Building on this, we propose a robust strategy that represents detected objects with several (but not all) VRTs placed on them, and then decodes fine-grained representations such as bounding boxes or masks through the lightweight PaDT Decoder introduced below. This strategy is shown to be more robust and effective in our experiments. Template examples for each vision task are provided in Appendix A.2.

3.2.2 LIGHT-WEIGHT PADT DECODER

Considering that only several VRTs on a detected object are predicted, a visual decoder is needed to convert these predicted VRTs into task-specific outputs. For this purpose, we introduce a lightweight vision task decoder, implemented as a stack of three two-way attention blocks (Fig. 4(b)). The decoder takes as input the hidden features of predicted VRTs from the final LLM layer. These features are grouped into object queries, where each group corresponds to a sequence of VRTs separated by intervening text tokens (Fig. 4(a)). To enable task-specific

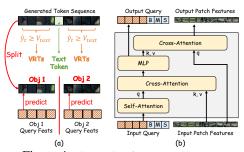


Figure 4: Illustration for PaDT decoder.

decoding, we inject three learnable tokens, *bounding box*, *mask*, and *score* tokens, into each group of object queries. After passing through the three attention blocks, each task token is projected into its respective output space, producing bounding boxes, segmentation masks, and confidence scores.

3.2.3 Training Strategy

Robust Per-token Cross-Entropy Loss. For the autoregressive output of the MLLM, we adopt the standard supervised fine-tuning paradigm with a per-token cross-entropy loss:

$$\mathcal{L}_{CE} = \frac{1}{T} \sum_{t} -\log p(\hat{y}_t \mid I, \mathbf{T}, y_{< t}) = -\log \operatorname{softmax}_{GT}(W_{tv} \cdot h_t), \tag{4}$$

where \hat{y}_t denotes the ground-truth token at step t, h_t is the hidden state, and W_{tv} projects to the token vocabulary. Unlike prior work that uses all foreground visual tokens as supervision (Ma et al., 2025), we propose to randomly sample N_{vrt} foreground tokens for each forward pass. This sampling strategy increases the diversity of supervision and prevents the model from overfitting to a fixed set of tokens, thereby improving generalization. To implement this, we introduce a foreground mask $M \in \{0,1\}^{T \times N'}$, where $M_{t,n} = 1$ indicates that token n at step t was not selected. For such tokens, we suppress their contribution to the loss by masking their logits:

$$l'_{t} = W_{tv} \cdot h_{t}, \quad l'_{t,n+V_{text}} = -\infty \text{ if } M_{t,n} = 1.$$
 (5)

This effectively removes the masked tokens from the softmax normalization, ensuring they are neither rewarded nor penalized. The resulting robust cross-entropy loss is:

$$\mathcal{L}_{CE}^{robust} = -\log \operatorname{softmax}_{GT}(l_t'). \tag{6}$$

By combining random sampling with masked supervision, this objective improves robustness and encourages the model to explore diverse valid visual references during training.

Task-specific Losses. For structured outputs from vision task decoder, we adopt task-specific objectives i.e. \mathcal{L}_{bbox} , \mathcal{L}_{mask} and \mathcal{L}_{score} following (Kamath et al., 2021; Kirillov et al., 2023). More implemented details about the task-specific losses are given in the Appendix A.4. The final training objective of PaDT is

$$\mathcal{L} = \mathcal{L}_{CE}^{robust} + \mathcal{L}_{bbox} + \mathcal{L}_{mask} + \mathcal{L}_{score}.$$
 (7)

4 EXPERIMENT

Tasks and Datasets. We evaluate PaDT across a diverse set of visual perception & understanding tasks. Specifically, we consider: (i) referring expression comprehension and referring expression segmentation on RefCOCO, RefCOCO+, and RefCOCOg (Mao et al., 2016; Yu et al., 2016); (ii) open-vocabulary detection on COCO 2017 (Lin et al., 2014); and (iii) referring image captioning (RIC), for which we construct a new benchmark by re-annotating COCO with vision—language model (VLM) supervision. Further dataset details are provided in Appendix A.1.

Architecture and Training Details. We adopt Qwen2.5-VL (Bai et al., 2025) as the base model and conduct experiments with both 3B and 7B variants to evaluate scalability. Based on existing dataset annotations, at each training step we randomly sample $N_{\rm vrt}=5$ visual reference tokens from the foreground mask of each target to construct the ground-truth MLLM sequence. If segmentation masks are unavailable, VRTs are instead sampled within the bounding box. The ground-truth token templates are provided in Appendix A.2. Training is performed on a single node with eight 96GB

GPUs, using a batch size of 16 per GPU. We set the learning rate to 2×10^{-5} and apply gradient checkpointing together with <code>bfloat16</code> mixed precision for memory efficiency. FlashAttention-2 (Dao, 2023) is further employed to accelerate attention computation.

Multi-Task Scalability. Joint training across tasks consistently improves performance, indicating strong cross-task generalization. To evaluate multi-task performance and analyze how performance scales with the number of tasks, we train PaDT jointly across all benchmarks, i.e., RefCOCO/+/g, COCO, and RIC, resulting in an enhanced multi-task variant denoted as **PaDT Pro**. Unlike task-specific PaDT models, PaDT Pro can seamlessly switch between tasks by simply altering the prompt.

4.1 VISUAL PERCEPTION & UNDERSTANDING TASKS

Referring Expression Comprehension. The Referring Expression Comprehension (REC) task evaluates an MLLM's ability to localize objects given natural language descriptions, where a prediction is considered correct if its IoU with the ground-truth box exceeds 50%. As shown in Tab. 1, PaDT and PaDT Pro achieve state-of-the-art performance at both 3B and 7B scales. In particular, PaDT Pro (3B) obtains 96.0/95.5/95.0 on RefCOCO, 91.8/94.8/88.4 on RefCOCO+, and 93.6/94.0 on RefCOCOg, surpassing all previous MLLM methods. The overall average of PaDT Pro (3B) reaches 93.6, which is further boosted to 94.5 with the 7B model. Remarkably, both PaDT and PaDT Pro (3B) already outperform the much larger 78B InternVL3 model. These results demon-

Table 1: Results of referring expression comprehension task on RefCOCO/+/g datasets.

	I	1	RefCOO	n	l R	efCOC	Ω+	RefC	OCOg	
Model Name	Param.	val		test-B			test-B		test	Overall
Grounding-DINO-L (Liu et al., 2024d)	-	90.6	93.2	88.2	82.8	89.0	75.9	86.1	87.0	86.6
UNINEXT-H (Lin et al., 2023b)	-	92.6	94.3	91.5	85.2	89.6	79.8	88.7	89.4	88.9
ONE-PEACE (Wang et al., 2023a)	-	92.6	94.2	89.3	88.8	92.2	83.2	89.2	89.3	89.9
InternVL3 (Zhu et al., 2025)	1B	85.8	90.1	81.7	76.6	84.1	69.2	82.8	82.6	81.6
InternVL3 (Zhu et al., 2025)	2B	89.8	92.6	86.4	84.0	89.2	76.5	87.6	87.2	86.7
Qwen2.5-VL (Bai et al., 2025)	3B	89.1	91.7	84.0	82.4	88.0	74.1	85.2	85.7	85.0
Qwen2.5-VL (SFT, (Shen et al., 2025))	3B	88.7	-	-	82.3	-	-	86.0	-	-
VLM-R1 (Shen et al., 2025)	3B	90.1	92.3	85.2	84.2	89.4	76.8	85.6	86.8	86.3
PaDT (Ours)	3B	93.2	<u>95.3</u>	90.1	88.5	<u>92.4</u>	<u>83.5</u>	88.2	88.5	90.0
PaDT Pro (Ours)	3B	96.0	95.5	95.0	91.8	94.8	88.4	93.6	94.0	93.6
Shikra (Chen et al., 2023b)	7B	87.0	90.6	80.2	81.6	87.4	72.1	82.3	82.2	82.9
Ferret-v2 (You et al., 2023)	7B	87.5	91.3	82.5	80.8	87.4	73.1	83.9	84.8	83.9
TextHawk2 (Yu et al., 2024)	7B	91.9	93.0	87.6	86.2	90.0	80.4	88.2	88.1	88.2
ClawMachineX (Ma et al., 2025)	7B	89.7	92.5	86.9	84.4	88.9	78.0	86.7	87.1	86.8
Qwen2.5-VL (Bai et al., 2025)	7B	90.0	92.5	85.4	94.2	89.1	76.9	87.2	87.2	86.6
InternVL3 (Zhu et al., 2025)	8B	92.5	94.6	88.0	88.2	92.5	81.8	89.6	90.0	89.6
PaDT (Ours)	7B	93.1	97.2	90.4	88.8	92.8	83.2	88.2	88.8	90.1
PaDT Pro (Ours)	7B	96.6	97.4	95.6	92.8	95.2	89.4	94.6	94.2	94.5
Ferret-v2 (You et al., 2023)	13B	92.6	95.0	88.9	87.4	92.1	81.4	89.4	90.0	89.6
InternVL3 (Zhu et al., 2025)	14B	92.0	94.4	87.8	87.4	92.1	81.5	88.6	89.3	89.1
CogVLM-Grounding (Wang et al., 2024)	17B	92.8	94.8	89.0	88.7	92.9	83.4	89.8	90.8	90.3
InternVL3 (Zhu et al., 2025)	78B	93.4	95.4	90.3	90.1	93.8	85.3	91.5	91.5	91.4

Table 2: Results of referring expression segmentation task on RefCOCO/+/g datasets.

Model Name	Param.	R	efCOC	CO	RefCOCO+			RefCOCOg		Overall
Wiodei Name	raram.	val	testA	testB	val	testA	testB	val	test	Overall
X-Decoder (Zou et al., 2023a)	-	-	-	-	-	-	-	64.6	-	-
SEEM (Zou et al., 2023b)	-	-	-	-	-	-	-	65.7	-	-
Seg-R1 (You & Wu, 2025)	3B	69.9	76.0	64.9	59.1	66.8	50.9	67.3	67.9	65.4
PaDT (Ours)	3B	<u>76.1</u>	<u>77.4</u>	<u>74.7</u>	<u>72.7</u>	<u>75.1</u>	<u>69.3</u>	<u>70.5</u>	<u>71.1</u>	<u>73.4</u>
PaDT Pro (Ours)	3B	81.3	81.5	82.2	77.6	79.4	76.3	78.1	78.5	79.4
LAVT (Ye et al., 2023)	7B	72.7	75.8	68.8	62.1	68.4	55.1	65.0	66.0	66.7
LISA (Lai et al., 2024)	7B	74.1	76.5	71.1	62.4	67.5	56.5	66.4	68.5	67.9
PixelLM (Ren et al., 2024)	7B	73.0	76.5	68.2	66.3	71.7	58.3	69.3	70.5	69.2
OMG-LLaVA (Zhang et al., 2024b)	7B	75.6	77.7	71.2	65.6	69.7	58.9	70.7	70.2	70.0
Seg-R1 (You & Wu, 2025)	7B	74.3	78.7	67.6	62.6	70.9	57.9	71.0	71.4	69.3
Text4Seg + CRF (Lan et al., 2025)	7B	71.3	73.7	69.6	65.9	70.4	61.9	69.3	69.3	68.9
Text4Seg + SAM (Lan et al., 2025)	7B	78.0	80.9	74.6	71.6	77.3	66.0	74.8	<u>74.7</u>	74.7
PaDT (Ours)	7B	<u>78.5</u>	79.8	<u>77.3</u>	<u>75.0</u>	<u>77.7</u>	71.3	73.0	73.9	<u>75.8</u>
PaDT Pro (Ours)	7B	86.0	86.1	86.4	82.5	84.1	80.7	83.5	83.3	84.1

Table 3: Results of open-vocabulary detection task on the whole COCO2017 validation set.

M
In Q Q V V Pa
Q LI
In

Model Name	Param.	AP@[50:95]	AP@50	AP@75	AR@[50:95]	AR@50	AR@75
InternVL3 (Zhu et al., 2025)	2B	6.9	11.2	7.0	14.9	20.8	15.6
Qwen2.5-VL (Bai et al., 2025)	3B	13.7	22.1	14.2	21.8	30.5	23.3
Qwen2.5-VL-SFT (Shen et al., 2025)	3B	17.1	27.5	17.3	25.4	35.6	26.4
VLM-R1 (Shen et al., 2025)	3B	19.2	33.1	19.0	32.2	46.9	33.6
PaDT (Ours)	3B	34.0	51.2	35.8	38.5	<u>56.1</u>	<u>40.4</u>
PaDT Pro (Ours)	3B	38.2	54.9	40.5	43.9	60.6	46.4
Qwen2.5-VL (Bai et al., 2025)	7B	18.2	30.4	17.9	28.1	40.3	29.3
LLaVa-NeXT (Liu et al., 2024b)	7B	0.7	2.2	0.3	1.3	3.3	0.8
LLaVa-OneVision (Li et al., 2024)	7B	2.2	5.8	1.1	4.1	8.8	3.2
InternVL3 (Zhu et al., 2025)	8B	17.5	26.6	18.2	28.0	37.3	29.7
PaDT (Ours)	7B	<u>36.5</u>	53.8	38.4	41.5	<u>59.2</u>	43.6
PaDT Pro (Ours)	7B	39.0	56.2	41.5	44.8	61.8	47.6

Table 4: Results of referring image captioning task on RIC validation set.

Model Name	Damama		Text	Metrics		Detect	ion Metrics
Wiodei Name	Param.	CIDEr-D	Meteor	ROUGE-L	BLEU-4	GP	GR
LLaVa-OneVision (Li et al., 2024)	0.5B	0.058	0.088	0.185	0.052	5.2	0.5
InternVL3 (Zhu et al., 2025)	2B	0.315	0.230	0.374	0.284	42.4	18.2
Qwen2.5-VL (Bai et al., 2025)	3B	0.386	0.241	0.369	0.261	61.8	6.2
PaDT (Ours)	3B	1.450	0.304	0.501	0.467	81.6	45.4
PaDT Pro (Ours)	3B	<u>1.412</u>	0.300	<u>0.495</u>	0.458	82.3	<u>45.1</u>
LLaVa-NeXT (Liu et al., 2024b)	7B	0.262	0.200	0.335	0.178	54.3	10.6
LLaVa-OneVision (Li et al., 2024)	7B	0.172	0.207	0.330	0.182	32.5	10.2
Qwen2.5-VL (Bai et al., 2025)	7B	0.266	0.251	0.369	0.257	60.8	19.8
InternVL3 (Zhu et al., 2025)	8B	0.208	0.207	0.373	0.249	56.6	32.1
LLaVa-NeXT (Liu et al., 2024b)	13B	0.283	0.212	0.347	0.172	55.7	6.2
PaDT (Ours)	7B	1.445	0.304	0.500	0.466	<u>77.0</u>	<u>45.2</u>
PaDT Pro (Ours)	7B	1.387	0.299	<u>0.491</u>	0.449	82.3	45.8

strate the effectiveness of the visual reference token paradigm, which substantially aligns textual semantics with image patches and thereby improves the precision of object localization in MLLMs.

Referring Expression Segmentation. Similar to REC, the Referring Expression Segmentation (RES) task evaluates an MLLM's ability to segment the target object mask given a natural language description. We adopt cIoU as the evaluation metric, and results are reported in Tab. 2. Both PaDT and PaDT Pro achieve the best performance compared with existing methods, even against approaches such as Seg-R1 and Text4Seg+SAM that leverage the powerful SAM segmentation model. With the lightweight PaDT decoder that translates unified visual reference tokens into segmentation masks, our models consistently outperform prior baselines. Additional qualitative examples are provided in the Appendix A.6.

Open-vocabulary Detection. This is a fundamental visual perception task that evaluates an MLLM's ability to perform semantic grounding. As shown in Table 3, most existing MLLMs struggle with this task, showing low precision and recall. For instance, Qwen2.5-VL (3B) achieves only 13.7 mAP, and InternVL3 (8B) reaches 17.5 mAP on the COCO2017 validation set. Our PaDT and PaDT Pro substantially advance the state of the art. PaDT Pro (3B) achieves 38.2 mAP, while the 7B variant further improves to 39.0 mAP, nearly doubling the performance of prior best methods. These gains highlight the effectiveness of visual reference tokens in strengthening semantic association and object localization.

Referring Image Captioning. To validate both the visual understanding and grounding ability, we conduct experiments on our RIC dataset. As shown in Table 4, PaDT and PaDT Pro (3B) deliver strong improvements, reaching 1.45 CIDEr, 0.304 Meteor, 0.501 ROUGE-L, 0.467 BLEU-4, and top detection scores of 82.3% GreedyPrecision (GP) and 45.1% GreddyRecall (GR). The 7B models further extend performance, with PaDT Pro (7B) maintaining competitive caption quality, i.e. 1.39 CIDEr, while achieving the best detection-oriented scores, i.e. 82.3% GP, 45.8% GR. These results suggest that PaDT generates not only fluent captions, but also semantically precise ones grounded in localized visual content.

4.2 Ablation Experiments

Ablation study of Proposed Components in PaDT. We conduct detailed ablation studies in Tab. 5 using the 3B model with the following observations. i) The first row without VRTs corresponds to

432

Table 5: The ablation study of the proposed components in PaDT. Training Strategy

433	
434	
435	
436	

Visual	Refere	nce Token	Traiı	RE	
using VRTs	f_{vp}	Task Decoder	$\mathcal{L}_{CE}^{robust}$	VRTs Selection	RefCO
_	_	_	l –	_	88
\checkmark	_	PaDT Decoder	✓	✓	91
\checkmark	\checkmark	PaDT Decoder	_	\checkmark	92
\checkmark	\checkmark	PaDT Decoder	-	All VRTs	76
\checkmark	\checkmark	PaDT Decoder	✓	All VRTs	49
\checkmark	\checkmark	PaDT Decoder	✓	✓	93

438 439 440

448

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475 476

477

478

479

480

481

482

483

484

485

437

Figure 5: The illustrations of the mask generations.

Table 6: Performance of using SAM2-L as mask refiner with 3 types of prompts.

REC

0.9

5.5 0.1

3.2

CO val 3.7 1

RES RefCOCO val

72.1

75.2

69.5

19.8

point	box	mask	RefCOCOg val
_	_	_	70.5
\checkmark	_	_	69.9
_	\checkmark	_	74.1
_	_	\checkmark	74.0
\checkmark	\checkmark	_	74.9
✓	✓	✓	76.3

Table 7: The generalization analysis and finetuning result of PaDT on COCO2017 validation set.

Model Name	Objects365	COCO2017	AP@[50:95]	AP@50	AP@75	AR@[50:95]	AR@50	AR@75
Qwen2.5-VL	-	-	13.7	22.1	14.2	21.8	30.5	23.3
PaDT (Zero Shot)	✓	_	16.9	23.7	18.0	21.5	30.6	22.7
PaDT (Task Specific)	_	✓	34.0	51.2	35.8	38.5	56.1	40.4
PaDT (FineTuned)	✓	✓	36.5	52.2	38.8	41.3	57.4	43.6

supervised fine-tuning on Qwen2.5-VL, directly predicting bounding box coordinates. By inegrating VRTs with robust CE loss and random VRTs selection, we observe noticeable improvement in REC (detection task) and RES (segmentation task) being enabled. ii) We further notice that both projection module f_{vv} and robust CE loss are necessary for achieving improved performance. iii) Alternative choice of including all foreground VRTs during training may even harm the performance, probably due to bias towards high density regions.

Effectiveness of Mask Refinement with SAM2-L. We further analyze the compability of PaDT output with segmentation foundation model, SAM2-L under three schemes. i) Given the VRTs generated by PaDT, we extract their coordinates as point prompts to SAM2-L, denoted as point. ii) Using the bounding box and mask generated by PaDT, respectively, as prompt for SAM2-L. We explored different combinations with results in Tab. 6. First, we observe that using point prompt fails to improve upon PaDT, due to the sparse prior information. However, both box and mask prompts are conducive to further improving the results under the help of SAM. Combining multiple prompts yields more significant improvement. Visualizations in Fig. 5 corroborate these findings. The results suggest the segmentation performance can be further enhanced with expert foundation model at the expense of additional inference cost.

Effectiveness of Pretraining and Task-specific Finetuning. To evaluate the generalization and data-scaling properties of the PaDT framework, we pretrain on Objects365 (Shao et al., 2019) and subsequently finetune on the COCO dataset. As shown in Tab. 7, PaDT exhibits stronger zero-shot performance than the Qwen2.5-VL base model, and its finetuned version consistently outperforms direct training on task-specific data.

5 Conclusion

In this work, we proposed Patch-as-Decodable Token (PaDT), a unified paradigm that equips MLLMs with the ability to generate both textual and visual outputs through Visual Reference Tokens (VRTs). By dynamically embedding VRTs into the LLM output space, PaDT ensures semantically coherent and visually grounded predictions, overcoming the inefficiency and misalignment issues of prior codebook-based methods. A light-weight decoder and an effective training strategy are further introduced to enable visual perception and understanding tasks within PaDT. Extensive experiments across detection, segmentation, grounding, and captioning demonstrate state-of-the-art performance, highlighting directly predicting visual tokens as an effective and scalable paradigm toward general-purpose multimodal reasoning systems.

ETHICS STATEMENT

We affirm that all authors have read and adhered to the ICLR Code of Ethics. Our research does not involve human subjects, personally identifiable data, or sensitive information. The datasets used are publicly available and cited appropriately. We have considered potential risks, including issues related to fairness, privacy, and security, and have taken steps to mitigate any possible negative impact. No conflicts of interest or external sponsorship have influenced the work. We commit to respecting research integrity and legal compliance throughout the research process.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. The main text provides a detailed description of our proposed method and experimental setup, including all hyperparameters, datasets, and evaluation protocols. Additional results and dataset details are included in the appendix. We also provide the detailed process for constructing the Referring Image Caption dataset in the appendix. We will release all of our implemented code and reproduction instructions to further support the reproducibility of our findings.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023.
- Jean-Baptiste Alayrac, Giorgio Donato, and et al. Flamingo: a Visual Language Model for Few-Shot Learning. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2.5-VL Technical Report. *arXiv preprint arXiv:2502.13923*, 2025.
- Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-End Object Detection with Transformers. In *European Conference on Computer Vision (ECCV)*, 2020.
- Chi Chen, Ruoyu Qin, Fuwen Luo, Xiaoyue Mi, Peng Li, Maosong Sun, and Yang Liu. Position-Enhanced Visual Instruction Tuning for Multimodal Large Language Models. *arXiv preprint arXiv:2308.13437*, 2023a.
- Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing Multimodal LLM's Referential Dialogue Magic. *arXiv preprint arXiv:2306.15195*, 2023b.
- Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian Tang, Shang Yang, Zhijian Liu, et al. LongVILA: Scaling Long-Context Visual Language Models for Long Videos. *arXiv preprint arXiv:2408.10188*, 2024a.
- Zhangquan Chen, Xufang Luo, and Dongsheng Li. VisRL: Intention-Driven Visual Perception via Reinforced Reasoning. *arXiv preprint arXiv:2503.07523*, 2025.
- Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Intern VL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24185–24198, 2024b.
- Tri Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. *arXiv* preprint arXiv:2307.08691, 2023.
- Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling Vision Transformers to 22 Billion Parameters. In *International Conference on Machine Learning*, pp. 7480–7512. PMLR, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. *arXiv preprint arXiv:2010.11929*, 2020.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. EVA: Exploring the Limits of Masked Visual Representation Learning at Scale. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19358–19369, 2023.

- Zonghao Guo, Ruyi Xu, Yuan Yao, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu, and Gao Huang. LLaVA-UHD: an LMM Perceiving Any Aspect Ratio and High-Resolution Images. In *European Conference on Computer Vision*, pp. 390–406. Springer, 2024.
- Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision. In *International Conference on Machine Learning*, pp. 4904–4916. PMLR, 2021.
- Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max Ku, Qian Liu, and Wenhu Chen. MANTIS: Interleaved Multi-Image Instruction Tuning. *arXiv preprint arXiv:2405.01483*, 2024a.
- Qing Jiang, Gen Luo, Yuqin Yang, Yuda Xiong, Yihao Chen, Zhaoyang Zeng, Tianhe Ren, and Lei Zhang. ChatRex: Taming Multimodal LLM for Joint Perception and Understanding. *arXiv* preprint arXiv:2411.18363, 2024b.
- Yang Jin, Kun Xu, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, Bin CHEN, Chengru Song, dai meng, Di ZHANG, Wenwu Ou, Kun Gai, and Yadong MU. Unified language-vision pretraining in LLM with dynamic discrete visual tokenization. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=FlvtjAB0ql.
- Aishwarya Kamath, Mannat Singh, Marcus Rohrbach, Nicolas Carion, Vedanuj Sharma, Zhecan Peng, Chunjie Li, Yuwei Kim, Alaaeldin El-Nouby, Ali Hassani, and et al. MDETR Modulated Detection for End-to-End Multi-Modal Understanding. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2021.
- Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Courtney Rolland, Lucas Gustafson, Tete Xiao, Spencer Whitehead, Alexander Berg, Wan-Yen Lo, and et al. Segment Anything. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2023.
- Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. LISA: Reasoning Segmentation via Large Language Model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9579–9589, 2024.
- Mengcheng Lan, Chaofeng Chen, Yue Zhou, Jiaxing Xu, Yiping Ke, Xinjiang Wang, Litong Feng, and Wayne Zhang. Text4Seg: Reimagining Image Segmentation as Text Generation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=vkakKdznFS.
- Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. LLaVA-OneVision: Easy Visual Task Transfer. *arXiv preprint arXiv:2408.03326*, 2024.
- Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping Language-Image Pretraining for Unified Vision-Language Understanding and Generation. In *International Conference* on Machine Learning, pp. 12888–12900. PMLR, 2022a.
- Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models. In *International Conference on Machine Learning (ICML)*, 2023.

- Xiang Li, Wenhai Zhang, Yue Cao, Han Hu, Jinhui Guo, Haibing Ling, and Wei Fudan. Grounded
 Language-Image Pre-training. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022b.
 - Yi Li, Hualiang Wang, Xinpeng Ding, Haonan Wang, and Xiaomeng Li. Token Activation Map to Visually Explain Multimodal LLMs, 2025. URL https://arxiv.org/abs/2506.23270.
 - Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-LLaVA: Learning United Visual Representation by Alignment Before Projection. *arXiv preprint arXiv:2311.10122*, 2023a.
 - Fangjian Lin, Jianlong Yuan, Sitong Wu, Fan Wang, and Zhibin Wang. UniNeXt: Exploring A Unified Architecture for Vision Recognition. In *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 3200–3208, 2023b.
 - Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In *European Conference on Computer Vision*, pp. 740–755. Springer, 2014.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual Instruction Tuning. *Advances in Neural Information Processing Systems (NeurIPS)*, 36:34892–34916, 2023.
 - Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved Baselines with Visual Instruction Tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26296–26306, 2024a.
 - Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. LLaVA-NeXT: Improved reasoning, OCR, and world knowledge, January 2024b. URL https://llava-vl.github.io/blog/2024-01-30-llava-next/.
 - Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang Su, Jun Zhu, et al. LLaVA-Plus: Learning to Use Tools for Creating Multimodal Agents. In *European Conference on Computer Vision*, pp. 126–142. Springer, 2024c.
 - Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang, Hang Su, et al. Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. In *European Conference on Computer Vision*, pp. 38–55. Springer, 2024d.
 - Yuqi Liu, Tianyuan Qu, Zhisheng Zhong, Bohao Peng, Shu Liu, Bei Yu, and Jiaya Jia. Vision-Reasoner: Unified Visual Perception and Reasoning via Reinforcement Learning. *arXiv* preprint *arXiv*:2505.12081, 2025a.
 - Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang. Visual-RFT: Visual Reinforcement Fine-Tuning. *arXiv preprint arXiv:2503.01785*, 2025b.
 - Gen Luo, Yiyi Zhou, Tianhe Ren, Shengxin Chen, Xiaoshuai Sun, and Rongrong Ji. Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large Language Models. *Advances in Neural Information Processing Systems*, 36:29615–29627, 2023.
 - Tianren Ma, Lingxi Xie, Yunjie Tian, Boyu Yang, and Qixiang Ye. ClawMachine: Learning to Fetch Visual Tokens for Referential Comprehension. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=TOtk9dTYGG.
 - Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy. Generation and Comprehension of Unambiguous Object Descriptions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11–20, 2016.
 - Bo Peng, Dongdong Yu, et al. Kosmos-2: Grounding Multimodal Large Language Models to the World. *arXiv preprint arXiv:2306.14824*, 2023.

- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning Transferable Visual Models From Natural Language Supervision. In *International Conference on Machine Learning*, pp. 8748–8763. PmLR, 2021.
 - Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham Cholakkal, Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. GLaMM: Pixel Grounding Large Multimodal Model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13009–13018, 2024.
 - Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once: Unified, Real-Time Object Detection. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
 - Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2015.
 - Tianhe Ren, Jinyu Zhao, Shilong Yang, Feng Li, Xiang Li, and Han Hu. Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.
 - Zhongwei Ren, Zhicheng Huang, Yunchao Wei, Yao Zhao, Dongmei Fu, Jiashi Feng, and Xiaojie Jin. PixelLM: Pixel Reasoning with Large Multimodal Model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26374–26383, 2024.
 - Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 8430–8439, 2019.
 - Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang, Kangjia Zhao, Qianqian Zhang, et al. VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model. *arXiv preprint arXiv:2504.07615*, 2025.
 - Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation. *arXiv preprint arXiv:2406.06525*, 2024.
 - Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Emu: Generative Pretraining in Multimodality. *arXiv preprint arXiv:2307.05222*, 2023.
 - Chameleon Team. Chameleon: Mixed-Modal Early-Fusion Foundation Models. *arXiv preprint arXiv:2405.09818*, 2024.
 - Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xiaohuan Zhou, Jingren Zhou, Xinggang Wang, and Chang Zhou. ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities. *arXiv preprint arXiv:2305.11172*, 2023a.
 - Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei Zhao, Song XiXuan, et al. CogVLM: Visual Expert for Pretrained Language Models. *Advances in Neural Information Processing Systems*, 37:121475–121499, 2024.
 - Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu, Hongsheng Li, et al. InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14408–14419, 2023b.
 - Shiyu Xuan, Qingpei Guo, Ming Yang, and Shiliang Zhang. Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13838–13848, 2024.

- Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, et al. mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality. *arXiv preprint arXiv:2304.14178*, 2023.
- Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity. In *The Twelfth International Conference on Learning Representations*, 2023.
- Zuyao You and Zuxuan Wu. Seg-r1: Segmentation can be surprisingly simple with reinforcement learning. *arXiv preprint arXiv:2506.22624*, 2025.
- Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling Context in Referring Expressions. In *European Conference on Computer Vision*, pp. 69–85. Springer, 2016
- Ya-Qi Yu, Minghui Liao, Jiwen Zhang, and Jihao Wu. TextHawk2: A Large Vision-Language Model Excels in Bilingual OCR and Grounding with 16x Fewer Tokens. *arXiv* preprint arXiv:2410.05261, 2024.
- Yuqian Yuan, Wentong Li, Jian Liu, Dongqi Tang, Xinjie Luo, Chi Qin, Lei Zhang, and Jianke Zhu. Osprey: Pixel Understanding with Visual Instruction Tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 28202–28211, 2024.
- Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, Wenqi Shao, Wenwei Zhang, Yu Liu, Kai Chen, and Ping Luo. GPT4RoI: Instruction Tuning Large Language Model on Region-of-Interest. In *European Conference on Computer Vision*, pp. 52–70. Springer, 2024a.
- Tao Zhang, Xiangtai Li, Hao Fei, Haobo Yuan, Shengqiong Wu, Shunping Ji, Chen Change Loy, and Shuicheng Yan. OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding. *Advances in Neural Information Processing Systems*, 37:71737–71767, 2024b.
- Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models. *arXiv preprint arXiv:2304.10592*, 2023.
- Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie Su, Jie Shao, et al. InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models. *arXiv preprint arXiv:2504.10479*, 2025.
- Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat Behl, Jianfeng Wang, Lu Yuan, et al. Generalized Decoding for Pixel, Image, and Language. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15116–15127, 2023a.
- Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang, Jianfeng Gao, and Yong Jae Lee. Segment Everything Everywhere All at Once. *Advances in Neural Information Processing Systems*, 36:19769–19782, 2023b.

A APPENDIX

A.1 REFERRING IMAGE CAPTIONING (RIC) DATASET

A.1.1 DATASET CONSTRUCTION

Image captioning is a fundamental benchmark for evaluating the vision understanding ability of MLLMs. In the conventional setting, given an input image, the model generates a pure textual description that summarizes the main subject and its activity, trained on large-scale image-text pairs. However, such descriptions provide little supervision regarding object-level grounding, making it difficult to assess whether the model accurately captures the spatial locations of entities. To address this limitation, we re-annotate the COCO2017 dataset with more fine-grained annotations and propose our Referring Image Captioning (RIC) dataset. Specifically, we leverage Qwen2.5-VL-72B (prompt provided below) and feed each image together with its box-level annotations, instructing the model to produce enriched captions that explicitly reference the corresponding box IDs. Examples of the resulting training samples are shown in Fig. 6.

Prompt for generating RIC dataset

Prompt: <image>Please describe the image, focusing on the main objects (instances) present. After mentioning an object in the caption, immediately append its instance ID(s) in parentheses, using the format (<box_id: ID/>). You MUST ONLY use the instance IDs provided in the list below. Do NOT invent or make up any IDs. If there are multiple instance IDs for the same object, list all IDs within the same parentheses, separated by commas. For example: 'A man (<box_id: ID/>) is standing by the table (<box_id: ID/>). Two ovens (<box_id: ID/>, <box_id: ID/>) are visible.' Here are the optional instances in the image (id: ID, format: category: name, bbox: [x1, y1, x2, y2]):

- 200887, person, [389, 70, 498, 348]
- {list all annotations within this query image.}

IMPORTANT: Only use the instance IDs listed above in your caption. Do NOT invent or make up any new IDs. Generate a fluent English caption that includes the main objects and their instance IDs as specified. You don't have to include all instances from the list above, as they are optional; only describe the main elements of the image. The caption should be no more than 100 words and should not contain any information irrelevant to the image.

Qwen2.5-VL-72B: (Example) A bustling kitchen scene features a person (<box_id: 200887/>) working near a sink (<box_id: 2196309/>). The dining table (<box_id: 119568/>) holds various cooking items, including a bowl (<box_id: 713388/>) and a bottle (<box_id: 82445/>). Two ovens (<box_id: 1125079/>, <box_id: 2139366/>) are visible in the background. Another person (<box_id: 1218137/>) appears partially on the left. The table also has a cup (<box_id: 1883614/>) and a knife (<box_id: 693231/>). The kitchen is equipped with hanging pots and a well-used workspace, emphasizing a busy cooking environment.

A.2 TEMPLATE EXAMPLE FOR EACH VISION TASK

Here we present the interaction templates used in our PaDT framework, covering open-vocabulary detection, referring expression comprehension, and referring image captioning tasks. The prompts are designed to be concise and efficient, allowing PaDT to naturally interleave textual tokens and VRT predictions during task training.

Open Vocabulary Detection Task

USER: <image>Please carefully check the image and detect the following objects: [{target list}]. ASSISTANT: In this image, there are {number} "{category}" (<VRT_0><VRT_1><VRT_2> <VRT_3><VRT_4>, <VRT_5><VRT_6><VRT_7><VRT_8><VRT_9>, ...) and ...

Referring Expression Comprehension / Segmentation Task

USER: <image>Please carefully check the image and detect the object this sentence describes: "{question}".

A man (<0>) rides a motorcycle (<1>) on a dirt path. He is wearing a red shirt, black shorts, and a helmet. The motorcycle has a rugged design with a rear storage box. The background features lush greenery, a large mountain partially covered in mist, and a bridge spanning the scene. Another person (<2>) and a bicycle (<3>) are visible in the distance, adding to the rural setting. The atmosphere is serene, with natural elements dominating the landscape.

A woman (<0>) stands in a kitchen, holding a cat (<1>). She is near a sink (<2>) with a bowl of ora (<3>) and a bottle (<4>). A refrigerator (<5>) is visible to her right. A handbag (<6>) rests on the floor by her feet. The kitchen features wooden cabinets and a stove with a pan (<7>). A potted plant (<8>) and a clock (<9>) adorn the counter. The scene varm and homey

A man (<0>) is riding a bicycle (<1>) on a path near a train (<2>). The train, with a red and white design, is positioned on the tracks behind the cyclist. A stop sign (<3>) is visible to the right of the man, and overhead electrical lines run above the train. The scene is set in a well-lit area with some greenery along the path. The overall atmosphere suggests a calm, possibly suburban environment.

A young girl (<0>) is eagerly eating from a bowl (<1>) on a dining table (<2>). She uses a spoon (<3>) to scoop food, which appears to be melting. The table is covered with a red-checkered tablecloth. In the background, an adult (<4>) sits with arms crossed, and a wine glass (<5>) is partially visible. The scene is illuminated by natural light, creating a warm and casual dining atmosphere.

A woman (<0>) is eating from a spoon (<1>) in a kitchen. She holds a plate of food, including what appears to be broccoli. Behind her, there is an oven (<2>) and a microwave (<3>). A bottle (<4>) is visible on the counter near the oven. The setting is a home kitchen with light-colored cabinets and a tiled backsplash. The woman is wearing glasses and a blue top.

Figure 6: The training samples of RIC dataset. For each image, there are 3-5 captions, in which we ask the MLLMs to refer to the object (via bounding box or visual reference tokens) following each object's subject.

Referring Image Captioning Task

USER: <image>Please describe this image.

ASSISTANT: ... {object1} (<VRT_0><VRT_1><VRT_2><VRT_3><VRT_4>) ... {object2} (<VRT_5><VRT_6><VRT_7><VRT_8><VRT_9>) ...

PROMPT USED FOR COMPETING METHODS

864

865 866

867

868

870

871

872

873 874 875

876

877

878 879

880

883

885

887

888

889 890

891

892 893

894

895

897

899 900 901

902 903

904

905

906

907

908

909 910

911 912

913

914

915

916

917

To guide MLLMs (e.g., Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu et al., 2025), and the LLaVA series (Liu et al., 2024c)) in predicting bounding box coordinates in each task, we append a boxspecific and format-specific instruction to the task prompt, as detailed below.

Open Vocabulary Detection Task (with box and format instruction)

USER: <image>Please carefully check the image and detect the following objects: [{target list}]. Output each detected target's bbox coordinates in JSON format. For example, "'json [{"bbox_2d": [x1, y1, x2, y2], "label": "target name"}]
". If no targets are detected in the image, simply respond with None.

Referring Expression Comprehension / Segmentation Task (with format instruction)

USER: <image>Please carefully check the image and detect the object this sentence describes: "{question}". Output the final answer in JSON format.

Referring Image Captioning Task (with box instruction)

USER: <image>Please describe this image. You should include the corresponding bounding box of the objects within the sentence. For example, "In this image, a cat ([x1, y1, x2, y2]) is sitting on the wooden table ([x1, y1, x2, y2]), ...".

THE FORMULA OF THE TASK-SPECIFIC LOSSES ON THE PADT DECODER OUTPUT

Let $\mathcal{B}^{pred} \in \mathbb{R}^{L \times 4}$ denote predicted bounding boxes with ground truth \mathcal{B}^{gt} , $\mathcal{M}^{pred} \in \mathbb{R}^{L \times H \times W}$ predicted masks with ground truth \mathcal{M}^{gt} , and $\mathcal{S}^{pred} \in \mathbb{R}^{L \times 1}$ predicted confidence scores with ground truth \mathcal{S}^{gt} . The \mathcal{L}_{bbox} , \mathcal{L}_{mask} and \mathcal{L}_{score} objectives are:

$$\mathcal{L}_{bbox} = \frac{1}{L} \sum_{l}^{L} \mathcal{L}_{iou}(\mathcal{B}_{l}^{pred}, \mathcal{B}_{l}^{gt}) + ||\mathcal{B}_{l}^{pred} - \mathcal{B}_{l}^{gt}||_{1}, \tag{8}$$

$$\mathcal{L}_{mask} = \frac{1}{L} \sum_{l}^{L} \mathcal{L}_{dice}(\mathcal{M}_{l}^{pred}, \mathcal{M}_{l}^{gt}) + \sum_{l}^{L} \mathcal{L}_{focal}(\mathcal{M}_{l}^{pred}, \mathcal{M}_{l}^{gt}), \tag{9}$$

$$\mathcal{L}_{score} = \frac{1}{L} \sum_{l}^{L} ||\mathcal{S}_{l}^{pred} - \mathcal{S}_{l}^{gt}||_{2}^{2}. \tag{10}$$

ADDITIONAL ABLATION STUDY

TOKEN ACTIVATION MAP ANALYSIS

We provide additional Token Activation Map (TAM) visualizations, as illustrated in Fig. 7, comparing Qwen2.5-VL and the PaDT Pro 7B model, showing that visual reference tokens establish much stronger associations with target image patches than digit-by-digit coordinate predictions. These results further highlight the robust semantic alignment and precise object localization achieved by visual reference tokens.

ABLATION STUDY OF OTHER USED LOSSES

As shown in Table 8, we conduct ablations on the loss components \mathcal{L}_{bbox} , \mathcal{L}_{mask} , and \mathcal{L}_{score} . PaDT achieves the best average performance when all visual task losses are combined. In particular, removing the dynamic embedding module or omitting any individual loss ($\mathcal{L}_{mask}, \mathcal{L}_{bhox}, \mathcal{L}_{score}$) consistently degrades performance on both referring expression comprehension and segmentation. Notably, using all components yields the highest accuracy (93.2% REC and 76.1 mask cIoU) and the strongest multi-task ability, underscoring that each module and loss is essential and complementary for optimal task performance.

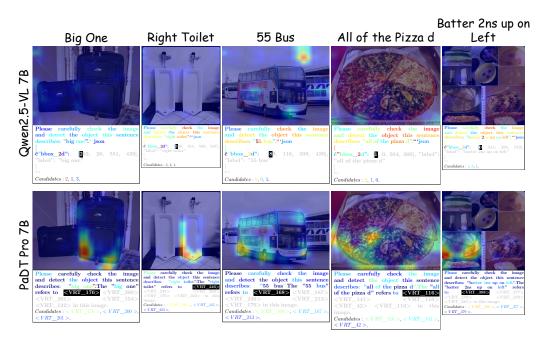


Figure 7: More TAM visualizations of Qwen2.5-VL and our PaDT Pro 7B models.

Table 8: Ablation study of each individual components (with the analysis of additional losses).

VRT	Dynamic Embedding Module	Visual Task Loss			Detection	Segmentation	
VKI	f_{vp}	\mathcal{L}_{mask}	\mathcal{L}_{bbox}	\mathcal{L}_{score}	RefCOCO val (REC)	COCO val	RefCOCO val (RES)
_	_	-	_	_	88.7	17.1	_
\checkmark	_	✓	\checkmark	\checkmark	91.1	27.5	72.1
\checkmark	✓	-	\checkmark	\checkmark	91.7	<u>32.3</u>	=
\checkmark	✓	✓	_	_	_	_	78.0
\checkmark	✓	✓	\checkmark	_	<u>92.7</u>	24.4	75.2
\checkmark	✓	✓	\checkmark	\checkmark	93.2	34.0	<u>76.1</u>

A.5.3 ABLATION STUDY OF THE NUMBER OF SELECTED VRTS PER TARGET

We analyze how the number of selected visual patches per target impacts performance. As shown in Table 9, increasing the number of patches from 1 to 5 steadily improves both bounding box accuracy and mask cIoU across all datasets. The best results are obtained with 5 patches per target, while further increasing to 8 patches yields diminishing or even negative returns. This indicates that a moderate number of representative patches provides richer representations, whereas excessive patches introduce noise and redundancy, leading to unstable training of PaDT.

We also investigate the case of using all foreground patches as ground-truth VRTs during training. As shown in Fig. 8, this configuration produces the worst results. Although the number of output VRTs increases, the PaDT decoder exhibits clear performance degradation. We attribute this to the redundancy (that makes the PaDT hard to predict all VRTs at the inference stage) and low resolution of patch-level features: when all foreground patches are used, the decoder is forced to decode trivial and overlapping regions, which prevents it from learning accurate target boundaries and masks, especially when only a limited number of VRTs are predicted at inference. Consequently, selecting a moderate number of informative patches proves more effective than training with all foreground patches.

Table 9: Ablation study of the number of selected visual patches per target.

#Patche	s / Target	1	3	5	8	ALL
RefCOCO val	Bbox Acc@0.5 Bbox Acc@0.75 Mask cIoU	92.4 82.7 67.3	93.2 86.1 75.2	93.2 87.1 76.1	92.6 85.9 75.7	49.1 15.5 19.8
RefCOCO+ val	Bbox Acc@0.5 Bbox Acc@0.75 Mask cIoU	87.5 78.8 63.7	88.1 82.1 71.4	88.5 82.8 72.7	87.5 81.7 71.6	_ _ _ _
RefCOCOg val	Bbox Acc@0.5 Bbox Acc@0.75 Mask cIoU	88.1 78.7 62.7	88.2 80.7 69.7	88.2 81.1 70.5	86.8 79.9 70.0	<u>-</u>

X PaDT trained with all foreground VRTs

✓ PaDT trained with 5 random foreground VRTs

Figure 8: Qualitative analysis between training PaDT with all foreground VRTs and 5 randomly selected foreground VRTs.

A.6 QUALITATIVE EVALUATION

A.6.1 OPEN VOCABULARY DETECTION ON COCO2017 DATASET

Comparison with representative MLLMs. In this section, we present qualitative results for open-vocabulary detection on the COCO2017 dataset, comparing PaDT against representative MLLMs. As shown in Fig. 9, several key observations can be made.

- **Higher recall**. PaDT consistently detects a larger number of objects in the scene, demonstrating stronger recall. This improvement stems from its ability to directly predict visual reference tokens (VRTs) that are anchored to image patches, enabling more reliable coverage of relevant objects.
- **Robustness in cluttered scenes**. Competing MLLMs, which predict serialized bounding box coordinates, often struggle in scenes with many repetitive or similar-looking objects. Their predictions may miss valid instances or collapse onto a few candidates, whereas PaDT maintains distinct references to multiple targets.
- Avoiding invalid outputs. Existing MLLMs occasionally fail to produce valid detections, labeled as "Error" in Fig. 9. In such cases, the models tend to generate repetitive text sequences until reaching the maximum output length, i.e. 2048 tokens. PaDT avoids this failure mode by grounding predictions directly in visual tokens rather than relying solely on text-based serialization.

Overall, these qualitative comparisons reinforce the advantages of PaDT: directly predicting visual tokens not only improves recall but also enhances robustness and stability in open-vocabulary detection.

Visualization of PaDT results on REC/RES and OVD tasks. In Fig. 10, we present extensive qualitative examples generated by the proposed PaDT framework. For Referring Expression Comprehension (REC) and Referring Expression Segmentation (RES), PaDT first parses the user query and identifies the corresponding target within the image. As illustrated in the top-left subfigure of each example, PaDT generates five visual reference tokens (VRTs), each directly correlated with specific image patches and thus easily localizable. These VRTs are subsequently passed into the PaDT decoder to produce the corresponding bounding box and segmentation mask. The overall pipeline is simple yet effective. Compared to character-by-character coordinate generation, PaDT requires far fewer tokens (only five VRTs per target) while providing stronger semantic and spatial grounding with respect to the object.

Similar observations are made in the Open-Vocabulary Detection (OVD) task. Unlike REC/RES, OVD requires PaDT to predict multiple targets along with their category labels. In our response template, both categories and VRTs are naturally interleaved within the output sequence, enabling efficient multimodal reasoning. This training strategy strengthens the semantic alignment between text and image patches, thereby improving both precision and recall in detection task.

A.6.2 REFERRING IMAGE CAPTIONING ON RIC DATASET

Comparison with representative MLLMs. In this section, we present qualitative results for open-vocabulary detection on the Referring Image Captioning (RIC) dataset, comparing PaDT with representative MLLMs, including InternVL3 8B and Qwen2.5-VL 7B models. As shown in Fig. 11, PaDT exhibits clear advantages in both bounding box accuracy and object recall. Detailed qualitative comparisons are provided in the figure, further demonstrating the effectiveness of leveraging visual reference tokens as a bridge between high-level text semantics and low-level object localization.

Visualization of PaDT results on RIC task. We further present qualitative examples generated by the proposed PaDT framework. As shown in Fig. 12, visual reference tokens are automatically generated alongside the subject, illustrating a natural interleaving between semantic text and image patches. This design further enhances object-level alignment between textual descriptions and visual elements, thereby strengthening the co-reasoning ability across text and image modalities.

Figure 9: Qualitative comparison on COCO2017 open-vocabulary detection. We compare PaDT with representative MLLMs including InternVL3 and Qwen2.5-VL. Competing models frequently fail to produce valid outputs, leading to "Error" cases or repetitive text generation. In contrast, PaDT achieves higher recall and correctly identifies multiple objects, even in cluttered scenes with repetitive instances. These results highlight the benefit of directly predicting visual reference tokens over serialized bounding box coordinates.

Figure 10: Qualitative visualization of PaDT generated examples on referring expression comprehension/segmentation tasks.

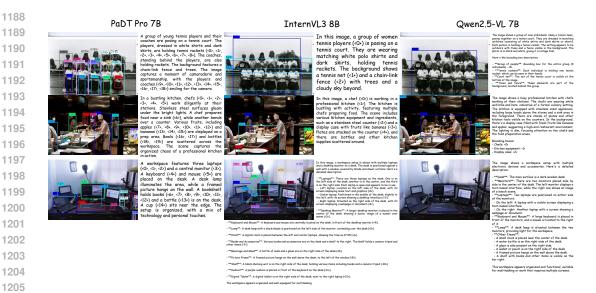


Figure 11: Qualitative comparison on the Referring Image Captioning (RIC) dataset. We compare PaDT with representative MLLMs, including InternVL3 and Qwen2.5-VL. PaDT shows clear advantages in both bounding box accuracy and object recall over competing methods.

Figure 12: Qualitative visualization of PaDT generated examples on referring image captioning task.