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ABSTRACT

Multimodal large language models (MLLMs) have advanced rapidly in recent
years. However, existing approaches for vision tasks often rely on indirect rep-
resentations, such as generating coordinates as text for detection, which limits
performance and prevents dense prediction tasks like segmentation. To over-
come these challenges, we introduce Patch-as-Decodable Token (PaDT), a unified
paradigm that enables MLLMs to directly generate both textual and diverse visual
outputs. Central to PaDT are Visual Reference Tokens (VRTs), derived from vi-
sual patch embeddings of query images and interleaved seamlessly with LLM’s
output textual tokens. A lightweight decoder then transforms LLLM’s outputs into
detection, segmentation, and grounding predictions. Unlike prior methods, PaDT
processes VRTs independently at each forward pass and dynamically expands the
embedding table, thus improving localization and differentiation among similar
objects. We further tailor a training strategy for PaDT by randomly selecting
VRTs for supervised fine-tuning and introducing a robust per-token cross-entropy
loss. Our empirical studies across four visual perception and understanding tasks
suggest PaDT consistently achieving state-of-the-art performance, even compared
with significantly larger MLLM models.

1 INTRODUCTION

Fine-grained image perception and understanding, which aim to associate specific image regions
with contextual information, such as semantic or instance, is a fundamental task in computer vision
and serves as a cornerstone for numerous applications. Classical vision models (Ren et al., 2015}
Redmon et al.| 2016} (Carion et al., 2020) remain state-of-the-art for pure detection and segmentation
tasks, but they lack flexible language interaction and understanding, thus prohibiting open vocab-
ulary oriented visual reasoning tasks. At an earlier stage, inspired by CLIP (Radford et al., |2021),
many vision-language detectors such as GLIP (Li et al., |2022b) and Grounding DINO (Ren et al.,
2023)) incorporate language information to detect arbitrary classes. However, these methods remain
vision-centric backbones augmented with language, and thus struggle to handle more complex tex-
tual descriptions and are limited to structured output.

Recent advances have led to powerful multi-modal large language models (MLLMs) (Alayrac et al.}
2022;|L1 et al.L|2023; [Liu et al.| [2024c; [Bai et al., 2025} [Zhu et al.,|[2025)) that couple vision encoders
with Large Language Models(LLMs). Pretrained on massive multimodal datasets, these models
encode rich prior knowledge and provide a strong foundation for visual perception and understand-
ing, as illustrated in Fig. [II To conform with the textual output space of LLMs, most existing
MLLMs (Liu et al.l 20254} [Bai et al., 2025} |Zhu et al., |2025)) serialize detected regions into bound-
ing box coordinates, expressed in textual form, such as [z1,y1, 2, y2]. While straightforward, this
strategy introduces several challenges. First, output formats are often inconsistent across samples
even under the same prompt, as illustrated in Fig. [J[(a), thereby increasing the difficulty of parsing
and structured output. Second, numerical coordinate representations provide precise spatial descrip-
tions but lack semantic alignment between textual and visual modalities, as shown in Fig.[2(b). This
inherent misalignment can lead to repetition or hallucination between coordinate and actual visual
targets (Jiang et al., [2024b)). Moreover, since numerical coordinate representations are mapped into
discrete textual tokens, a single coordinate value may be split into several unrelated tokens, as shown
in Fig.2[b). These discontinuous coordinate tokens can hinder prediction accuracy, e.g., fragmented
numbers.



Under review as a conference paper at ICLR 2026

Open Vocabulary Detection Referring Expression Comprehension Referring Image Captioning
Query: Please carefully check the image and Query: Please carefully check the image and Query: Please describe this image.
detect the following objects: ["person", detect the object this sentence describes: Response: A meal is set on a dining table (==
"bicycle",..., "toothbrush"]. "blue dish with cats painted on it". —- 7). It includes a bowl of salad (/% & ®

e 2 “person” (W& &) acupof soup ( w | * ) anda
&S ., NWWME 1), 1 "sports ball" (AQAAA) and 1 Response: The "blue dish with cats painted sandwich with a sesame seed bun (B M = H =
"tennis racket" (IRREEN) on it" refers fo NEMEME in this image. ). A wine glass (™ l = = M ) and a bottle of
sauce (i k. 4 B &) are also present. The table
is neatly arranged with napkins and coasters,
creating an elegant dining setup. The meal
appears fo be served in a restaurant or a
formal dining environment.

Image with visual Image with bounding Image with visual Image with bounding
reference tokens boxes reference tokens box

Referring Expression Segmentation

Query: Please carefully check the image
and detect the object this sentence
describes: " silver suv with black roof K
rails".

Mentioned Objects:
+ Dining Table: @™ - Salad:
=
+ Soup: + Sandwich:
4@

rails” refers to = M & in this image. Image with visual reference Image with segmentation « Wine Glass: I o GanEm H
tokens mask

Response: The “silver suv with black roof

Figure 1: Illustration of unified visual/textual token prediction for MLLM powered visual perception and
understanding.

In this work, we introduce a unified paradigm, Patch-as-Decodable Token (PaDT), which enables
MLLMs to directly generate both textual and diverse visual targets in a unified yet flexible way.
For this purpose, we propose the Visual Reference Tokens (VRTS), which can be seamlessly inter-
leaved with LLM’s output textual tokens. VRTs are generated by the proposed Dynamic Embedding
Module, adapted directly from the original visual patch embeddings. In this way, they occur in a
feature space consistent with the original LLM, while each VRT explicitly corresponds to a specific
image patch within the query image. Thus, VRTs can be naturally interpreted within the LLMs
feature space, allowing detected objects to be represented by multiple VRTs in a fine-grained man-
ner. Based on this design, PaDT owns the inherent ability to predict diverse visual outputs, e.g.
semantic masks and bounding boxes. Specifically, MLLMs only need to predict a subset of VRTs,
which are then decoded into the final structured visual outputs by a lightweight decoder. A prior
art attempted to empower LLMs to output image patch tokens, discretized by a
global codebook, to represent the target within the image. However, this approach remains limited
in flexibility and generality due to maintaining a global codebook. First, there is a risk of predicting
visual tokens that do not appear in the query image. Moreover, the decoded visual token does not
have unique correspondence in the query image, thus risking misalignment between predicted visual
tokens and query image tokens, e.g. confusion between similar objects in the image. In contrast,
PaDT processes VRTs independently at each forward pass, making it more efficient. By maintaining
a high-level feature space aligned with that of LLMs and preserving unique positional information
for each image region, PaDT ensures coherent predictions as illustrated Fig. 2(c). Moreover, as
shown in Fig. d), VRT predictions over objects exhibit great spatial continuity.

To enable PaDT to achieve strong performance, we design an effective fine-tuning strategy and
propose a robust per-token cross-entropy loss tailored for the proposed visual reference token, which
stabilizes training and mitigates overfitting. Notably, our 3B model surpasses the previous state-of-
the-art by 19.0 mAP on COCO detection and achieves an average accuracy of 93.6 on the referring
expression comprehension (REC) task, outperforming the much larger 78B InternVL3 model.

The main contributions of this work can be summarized as follows:

* We introduce a unified paradigm, Patch-as-Decodable Token (PaDT), which enables
MLLMs to directly generate both textual and diverse visual targets in a unified yet flex-
ible way. With the proposed Visual Reference Token (VRT), our method achieves superior
performance across diverse fine-grained image perception and understanding

* We propose a lightweight yet robust VRT-based decoder, termed the PaDT Decoder. Given
the generated VRTs, it can uniformly decode diverse fine-grained structured visual outputs,
such as segmentation masks and bounding boxes.

* We propose an effective fine-tuning strategy together with a robust per-token cross-entropy
loss. PaDT achieves the state-of-the-art performance on a wide range of visual perception
and understanding tasks. The effectiveness is validated beyond perception tasks but also a
customized image captioning task.
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Figure 2: (a) Previous methods yield inconsistent output formats due to free-form box representations even
under the same prompt. (b) Token Activation Map (TAM) [2025)) reveals less semantic relationship
between textual box representations and textual/visual information, while converting continuous numbers into
discrete tokens further introduces discontinuities. (c) With PaDT denoting objects with VRTs, semantic align-
ment is preserved and the output becomes more unified and natural. (d) The heatmap of <VRT_227> further
demonstrates continuous and object-consistent predictions within the input image.

2 RELATED WORK

Multimodal Large Language Models. With the rapid development of large language models
(LLMs), multimodal LLMs (MLLMs) have emerged as powerful systems for vision-language rea-
soning (Alayrac et al 2022} [Achiam et al.| 2023} [Liu et al] 2023} [Zhu et al] 2023} [Zhang et al.
[2024a; [Lian et al.| 2025} Bai et al.|[2025)). Early milestones such as CLIP (Radford et al., 2021) and
ALIGN (Jia et al., [2021) demonstrated the effectiveness of large-scale contrastive pretraining for
joint vision-text representations. BLIP-2 further improved alignment through the
Q-former design. More recently, instruction-tuned MLLM:s including LLaVA 2023) and
MiniGPT-4 leverage multimodal instruction data, yielding strong performance
in open-ended visual question answering and reasoning. Building on these foundations, subse-
quent works extend capabilities to higher-resolution image understanding (e.g., LLaVA-Next

2024¢), LLaVA-UHD (Guo et al. 2024)), diverse instruction sets (Ye et all, [2023), multi-

image (Jiang et al.,[20244a}; [Li et al.,[2024) and video inputs (Lin et al.} 2023a; [Chen et al |, [2024a)), as
well as new pretraining objectives and architectural designs (Fang et al., 2023} Wang et al.,[2023Db).

Collectively, these advances establish MLLMs as versatile general-purpose models for multimodal
reasoning.

MLLMs for Visual Perception & Understanding. Despite their broad capabilities, general-
purpose MLLMs remain limited in fine-grained perception tasks. This stems largely from vision
encoders reliance on fixed patch grids (Dehghani et all, 2023}, [Fang et al.} 2023} [Wang et al.| [2023b),
which often blur local details and impair tasks such as object localization, counting, or OCR. To
mitigate this, adaptive tiling strategies, such as NaViT-style patch dropping and AnyRes
[2023}, [Chen et all, [2024D}; [Liu et al, 2024a)), allow flexible handling of variable-resolution image
tiles, leading to improved spatial resolution. Another line of work explores reinforcement learning
to enhance perception and reasoning, exemplified by VLM-R1 2025), Visual-RFT
2025b), VisRL [2025), and Seg-R1 2025). These approaches achieve
better generalization and emergent capabilities such as segmentation and grounding. Prior works
have primarily relied on reinforcement learning or instruction tuning
[2024b) to strengthen visual reasoning, yet the potential of leveraging learned queries as anchors for
visual perception remains underexplored. Moreover, designing a unified architecture that seamlessly
accommodates diverse vision tasks continues to be an open challenge.

Unified Visual Tokenization. A complementary research direction focuses on unifying visual and
linguistic representations through multi-granular tokenization. At the region level, methods con-
vert object boxes or masks into geometric tokens (Chen et al. [Xuan et al., 2024} |Peng
et all 2023} [You et al| [2023) or learnable proxies (Zhang et al., [2024b; [Yuan et al., [2024; |Chen
et al.| 2023a; Rasheed et al., [2024), often grounded by detectors or SAM (Kirillov et al., [2023),
thereby enabling more precise vision-language grounding. At the patch level, models such as the

Emu series 2023) and LaVIT 2024) treat CLIP-derived patch features as vi-

sual vocabularies for denser alignment. Recent works further introduce autoregressive quantization
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of image patches (Team| 2024} [Sun et al), [2024)), discretizing pixels into visual sentences to sup-
port efficient cross-modal modeling, with even finer-grained tokenization explored in
[2025). While these approaches approximate linguistic structures via region, instance, or pixel to-
kens, deeper semantic integration between vision and language is still limited. To address this, we
propose a dynamic multimodal token space that enables close correspondence between language
tokens and visual patches under a unified autoregressive modeling paradigm.

3 METHODOLOGY

3.1 REVISITING MULTIMODAL LARGE LANGUAGE MODELS

A Multimodal Large Language Model (MLLM) augments a Large Language Model (LLM) with a
visual encoder, enabling it to perform not only general-purpose reasoning but also visual percep-
tion (Alayrac et al., 2022; Liu et al., 2024c; [Bai et al., [2025). Given an image I € RZ*Wx3
and a text sequence T = (¢1,...,t,), the MLLM autoregressively generates an output sequence
Y = (y1,--.,Y:). Animage encoder f,, typically a Vision Transformer (ViT) (Dosovitskiy et al.,
, partitions I into N non-overlapping patches {P,})_;, which are subsequently encoded
into embeddings F,, = f,(I) € RV*%. A projector f, then aligns dimensions and downsam-
ples, yielding Fpoer, = fp(Fu) € RN'*d_ For instance, Qwen2.5-VL adopts nearest-neighbor
patch merging in the 2D patch space, resulting in N’ = %N . The image embeddings are then
fused with the text embeddings E}...(T) € R™*4 to form a hybrid textual-visual representation
Z = [Fpatch; Frext(T)]. Here, Epepy € RVies¢X4 denotes the text embedding table that maps each
text token to its corresponding feature vector. The resulting multimodal representation Z is subse-

quently fed into a transformer-based LLM (Alayrac et al.| 2022} [Liu et al.}, 2024}, Bai et al.,[2025).

At timestep ¢, the hidden state h; produces the next-token distribution:
p(yell, T, y<) = softmax(Wieas - hy), (1)

with Wiegr € RVee=t >4 denoting classifier weights.

Limitations of Text-based Vision Prediction. Current MLLMs are restricted to accepting textu-
alvisual representations as input and producing only textual outputs, owing to their compatibility
with the underlying LLM architecture. This limitation is suboptimal for structured vision tasks such
as object detection and image segmentation. Specifically, current MLLMs (e.g., Qwen2.5-VL
2025), InternVL3 2025)) serialize visual targets into strings at output side. This
leads to two major issues. First, outputs vary in format (absolute vs. normalized coordinates, JSON-
style vs. free-form), complicating parsing and structured output, as shown in Fig. Z(a). Second,
numerical coordinate representations are mapped into discrete textual tokens which are generated
digit by digit (e.g., “489” “4, 8, 9”). This disrupts numerical continuity and may hinder prediction
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accuracy (Fig. 2[b)). More importantly, while this numerical representation effectively describes
spatial information precisely, it lacks semantic information, which is crucial for image understand-
ing tasks. This inherent mismatch, revealed through token activation analyses (L1 et al., 2025)) as
illustrated in Fig. 2(b), can lead to errors such as repetition or hallucination in dense prediction
tasks (Jiang et al., 2024b)).

3.2 VISUAL REFERENCE TOKEN

We propose the Patch-as-Decodable-Token (PaDT) framework, which introduces Visual Refer-
ence Tokens (VRTs), a unified tokenization scheme that embeds visual patches directly as decod-
able tokens within the autoregressive generation process. PaDT extends conventional MLLMs with
three key components: (1) Dynamic Embedding Module augments the textual vocabulary codebook
with visual patches, specific VRTs, at each forward pass, yielding a multi-modal codebook. (2)
With this multi-modal codebook and the proposed PaDT Head, VRTs become both embeddable at
the input side and decodable at the output side, resulting in a unified and natural format. (3) A
lightweight PaDT Decoder is proposed to convert variable VRTs into diverse visual representations,
such as bounding boxes and masks, enabling downstream tasks including detection, segmentation,
and grounding. This further enhances both the robustness and flexibility of the proposed method.

3.2.1 UNIFIED MULTI-MODAL FORMAT WITH VRTS

A core challenge is to ensure that VRTs can by interpretable by LLMs, being both embeddable in
the input space and decodable in the output space. Prior work, e.g., ClawMachine (Ma et al., [2025)
relies on pretrained discrete visual tokenizers (Jin et al.,[2024)). It inserts the entire codebook, which
contains a massive number of tokens, into the LLM embedding table and forces the LLM to map its
high-level semantic feature space to tokens representing low-level image patches. Thus, this method
is limited by (i) a fixed dataset-level codebook expansion which contains massive tokens that ignore
patch-specific cues such as spatial location, and (ii) ambiguity arising from the lack of high-level
semantics when visually similar patches from different objects maybe mapped to the same token.

Dynamic Multi-Modal Codebook Expansion. To avoid the above limitations, rather than intro-
ducing a standalone codebook, we reuse the extracted visual tokens from the input image, which
already preserve rich semantic information. Since each visual token explicitly corresponds to an
image patch, at each forward pass only the tokens from the current query image are dynamically ex-
panded into the original textual codebook, instead of memorizing all possible visual patterns through
a fixed codebook. Specifically, in the proposed Dynamic Embedding Module, original patch features
Fpatenn € RN "xd are projected by a lightweight module f,, into visual reference prototypes Py .
fup consists of a LayerNorm and a low-rank linear projection. These prototypes are then concate-
nated with text embeddings to form a dynamic embedding table as,

Edyn = [Ete:rt; Pref] y Pref = fvp(Fpatch) € IR/N,Xd- )

Unified Input and Output Format. With the above Multi-Modal Codebook, both textual and
visual information can be input and output in a unified way. On the input side, query image tokens
are indexed in the Multi-Modal Codebook and converted into the corresponding VRTs, which are
then embedded into the textual input to the LLM. Since VRTs are adapted from the original image
tokens, they share a feature space that is similar to the LLMs representation space, which simplifies
training compared to ClawMachine (Ma et al.l 2025). On the output side, to enable the original
textual classifier to output expanded indices, the PaDT Head is proposed to augment the classifier
with P,.c ¢, yielding

Wiy = [Wieat; Preg] € RVierttNDxd, 3)

This joint design allows VRTs to be embedded as inputs and decoded as outputs, enabling the
model to insert patch-level references directly into the autoregressive sequence. Building on this,
we propose a robust strategy that represents detected objects with several (but not all) VRTs placed
on them, and then decodes fine-grained representations such as bounding boxes or masks through
the lightweight PaDT Decoder introduced below. This strategy is shown to be more robust and
effective in our experiments. Template examples for each vision task are provided in Appendix [A.2]

3.2.2 LIGHT-WEIGHT PADT DECODER
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ing text tokens (Fig. df(a)). To enable task-specific

decoding, we inject three learnable tokens, bounding box, mask, and score tokens, into each group
of object queries. After passing through the three attention blocks, each task token is projected into
its respective output space, producing bounding boxes, segmentation masks, and confidence scores.

3.2.3 TRAINING STRATEGY

Robust Per-token Cross-Entropy Loss. For the autoregressive output of the MLLM, we adopt the
standard supervised fine-tuning paradigm with a per-token cross-entropy loss:

1 N
Lep =7 > —logp(ii | I, T, y<) = —log softmaxar (Wi - hy), “4)

t

where ¢; denotes the ground-truth token at step ¢, h; is the hidden state, and W, projects to the
token vocabulary. Unlike prior work that uses all foreground visual tokens as supervision (Ma et al.,
2025]), we propose to randomly sample NV, foreground tokens for each forward pass. This sampling
strategy increases the diversity of supervision and prevents the model from overfitting to a fixed set
of tokens, thereby improving generalization. To implement this, we introduce a foreground mask
M € Ao, 1}TXN ' , where M, ,, = 1 indicates that token n at step ¢ was not selected. For such tokens,
we suppress their contribution to the loss by masking their logits:

lé = th . ht, £7n+Vtcxt = —o0 if Mt,n =1. (5)

This effectively removes the masked tokens from the softmax normalization, ensuring they are nei-
ther rewarded nor penalized. The resulting robust cross-entropy loss is:

Lrehust — —log softmaxgr (1}). (6)

By combining random sampling with masked supervision, this objective improves robustness and
encourages the model to explore diverse valid visual references during training.

Task-specific Losses. For structured outputs from vision task decoder, we adopt task-specific ob-
jectives i.e. Lypor, Lmask and Lgeore following (Kamath et al., 2021} |Kirillov et al. [2023). More
implemented details about the task-specific losses are given in the Appendix [A.4] The final training
objective of PaDT is

L= »CTCOg'uSt + ['bbo:n + ﬁmask + ﬁsco’r‘e (7)

4 EXPERIMENT

Tasks and Datasets. We evaluate PaDT across a diverse set of visual perception & understanding
tasks. Specifically, we consider: (i) referring expression comprehension and referring expression
segmentation on RefCOCO, RefCOCO+, and RefCOCOg (Mao et al., [2016; |Yu et al.l 2016); (ii)
open-vocabulary detection on COCO 2017 (Lin et al.l [2014); and (iii) referring image captioning
(RIC), for which we construct a new benchmark by re-annotating COCO with visionlanguage model
(VLM) supervision. Further dataset details are provided in Appendix

Architecture and Training Details. We adopt Qwen2.5-VL (Bai et al.,[2025)) as the base model and
conduct experiments with both 3B and 7B variants to evaluate scalability. Based on existing dataset
annotations, at each training step we randomly sample N,y = 5 visual reference tokens from the
foreground mask of each target to construct the ground-truth MLLM sequence. If segmentation
masks are unavailable, VRTs are instead sampled within the bounding box. The ground-truth token
templates are provided in Appendix Training is performed on a single node with eight 96GB
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GPUs, using a batch size of 16 per GPU. We set the learning rate to 2 x 10~° and apply gradient
checkpointing together with bfloat16 mixed precision for memory efficiency. FlashAttention-
2 (Dao| |2023) is further employed to accelerate attention computation.

Multi-Task Scalability. Joint training across tasks consistently improves performance, indicating
strong cross-task generalization. To evaluate multi-task performance and analyze how performance
scales with the number of tasks, we train PaDT jointly across all benchmarks, i.e., RefCOCO/+/g,
COCO, and RIC, resulting in an enhanced multi-task variant denoted as PaDT Pro. Unlike task-
specific PaDT models, PaDT Pro can seamlessly switch between tasks by simply altering the prompt.

4.1 VISUAL PERCEPTION & UNDERSTANDING TASKS

Referring Expression Comprehension. The Referring Expression Comprehension (REC) task
evaluates an MLLMs ability to localize objects given natural language descriptions, where a predic-
tion is considered correct if its [oU with the ground-truth box exceeds 50%. As shown in Tab.
PaDT and PaDT Pro achieve state-of-the-art performance at both 3B and 7B scales. In particular,
PaDT Pro (3B) obtains 96.0/95.5/95.0 on RefCOCO, 91.8/94.8/88.4 on RefCOCO+, and 93.6/94.0
on RefCOCOg, surpassing all previous MLLM methods. The overall average of PaDT Pro (3B)
reaches 93.6, which is further boosted to 94.5 with the 7B model. Remarkably, both PaDT and

Table 1: Results of referring expression comprehension task on RefCOCO/+/g datasets.

RefCOCO RefCOCO+ RefCOCOg

Model Name Param. val test-A test-B| val test-A test-B| val test ‘ Overall
Grounding-DINO-L (Liu et al.|[2024d) - 90.6 932 882 828 89.0 759 |86.1 87.0 86.6
UNINEXT-H (Lin et al.|[2023b) - 926 943 915|852 89.6 79.8 |88.7 89.4 88.9
ONE-PEACE (Wang et al.[[2023a) - 926 942 89.3 |88.8 922 832 |89.2 89.3 89.9
InternVL3 (Zhu et al.|2025) 1B [85.8 90.1 81.7 |76.6 84.1 69.2 |82.8 82.6 81.6
InternVL3 (Zhu et al.|[2025) 2B (89.8 92.6 86.4 |84.0 89.2 765 |87.6 87.2 86.7
Qwen2.5-VL (Bai et al.|[2025) 3B [89.1 91.7 84.0 |824 88.0 74.1 |852 85.7 85.0
Qwen2.5-VL (SFT, (Shen et al.|[2025)) 3B |88.7 - - 1823 - - 186.0 - -
VLM-R1 (Shen et al.||2025) 3B [90.1 923 852 |842 894 768 |85.6 86.8 86.3
PaDT (Ours) 3B (932 953 90.1 (885 924 835 |82 88.5 | 90.0
PaDT Pro (Ours) 3B [96.0 955 950 |91.8 94.8 884 |93.6 94.0 93.6
Shikra (Chen et al.|2023b) 7B |87.0 90.6 80.2 |81.6 874 72.1 |82.3 82.2 82.9
Ferret (You et al.|[2023) 7B 87.5 914 825 |80.8 874 73.1 |83.9 84.8 83.9
Ferret-v2 (Zhang et al.[[2024a) 7B 192.8 947 88.7 |874 928 794 |89.4 893 89.3
TextHawk2 (Yu et al.[|2024) 7B 1919 93.0 87.6 |86.2 90.0 804 |88.2 88.1 88.2
ClawMachineX (Ma et al.||2025) 7B 89.7 925 86.9 |84.4 889 78.0 |86.7 87.1 86.8
Qwen2.5-VL (Bai et al.|[2025) 7B [90.0 92.5 854 |942 89.1 769 |87.2 87.2 86.6
InternVL3 (Zhu et al.[[2025) 8B (925 946 88.0 (882 925 81.8 [89.6 90.0 89.6
PaDT (Ours) 7B 193.1 97.2 904 |88.8 92.8 83.2 [88.2 88.8 | 90.1
PaDT Pro (Ours) 7B |96.6 97.4 956 |92.8 95.2 894 |94.6 94.2 9.5
Ferret (You et al.|[2023) 13B |89.5 924 84.4 828 88.1 752 (858 863 85.6
Ferret-v2 (Zhang et al.[|2024a) 13B |92.6 950 889 (874 92.1 814 (894 90.0 89.6
InternVL3 (Zhu et al.|[2025) 14B 920 944 87.8 |87.4 92.1 81.5 |88.6 89.3 89.1
CogVLM-Grounding (Wang et al.|[2024)| 17B 192.8 94.8 89.0 |88.7 929 834 |89.8 90.8 90.3
InternVL3 (Zhu et al.|[2025) 78B |93.4 954 90.3 {90.1 93.8 853 |91.5 915 91.4

Table 2: Results of referring expression segmentation task on RefCOCO/+/g datasets.
RefCOCO RefCOCO+ | RefCOCOg

Model Name Param. val testA testB| val testA testB| val test Overall
X-Decoder (Zou et al.|[2023a) - - - - - - - |64.6 - -
SEEM (Zou et al.|[2023b) - - - - - - - 657 - -
Seg-R1 (You & Wu![2025) 3B (699 76.0 649 (59.1 66.8 509 |67.3 679 65.4
PaDT (Ours) 3B |76.1 774 74.7|72.7 751 69.3|70.5 71.1 | 734
PaDT Pro (Ours) 3B |81.3 81.5 82.2|77.6 794 763 |78.1 78.5 79.4
LAVT (Ye et al.|[2023) 7B |72.7 75.8 68.8|62.1 68.4 55.1|65.0 66.0 66.7
LISA (Lai et al.|[2024) 7B |74.1 76.5 71.1|62.4 67.5 56.5 664 68.5 67.9
PixelLM (Ren et al.|[2024) 7B [73.0 76.5 68.2 (663 71.7 583|693 70.5 69.2
OMG-LLaVA (Zhang et al.|2024c)| 7B |75.6 77.7 71.2 {65.6 69.7 589 |70.7 70.2 70.0
Seg-R1 (You & Wu![2025) 7B 743 78.7 67.6(62.6 709 579 |71.0 714 69.3
Text4Seg + CRF (Lan et al.|[2025) 7B |71.3 73.7 69.6 659 704 619 693 69.3 68.9
Text4Seg + SAM (Lan et al.|[2025) 7B |78.0 809 74.6|71.6 773 66.0 |74.8 74.7 74.7
PaDT (Ours) 7B |78.5 79.8 773 |75.0 77.7 713 |73.0 739 75.8
PaDT Pro (Ours) 7B [86.0 86.1 86.4 |82.5 84.1 80.7 |83.5 833 84.1
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Table 3: Results of open-vocabulary detection task on the whole COC0O2017 validation set.

Model Name | Param. | AP@[50:95] AP@50 AP@75 AR@[50:95] AR@50 AR@75
InternVL3 (Zhu et al.;[2025) 2B 6.9 11.2 7.0 14.9 20.8 15.6
Qwen2.5-VL (Bai et al.||2025) 3B 13.7 22.1 14.2 21.8 30.5 233
Qwen2.5-VL-SFT (Shen et al..[2025)| 3B 17.1 275 17.3 25.4 35.6 26.4
VLM-RI (Shen et al.|[2025) 3B 19.2 33.1 19.0 322 46.9 33.6
PaDT (Ours) 3B 34.0 512 358 385 561 404
PaDT Pro (Ours) 3B 38.2 54.9 40.5 43.9 60.6 46.4
Qwen2.5-VL (Bai et al.|[2025) 7B 18.2 30.4 17.9 28.1 40.3 29.3
LLaVa-NeXT (Liu et al.[|2024b) 7B 0.7 22 0.3 1.3 33 0.8
LLaVa-OneVision (Li et al.||2024) 7B 22 5.8 1.1 4.1 8.8 32
InternVL3 (Zhu et al.[|2025) 8B 17.5 26.6 18.2 28.0 37.3 29.7
PaDT (Ours) B 36.5 53.8 384 41.5 592 436
PaDT Pro (Ours) 7B 39.0 56.2 41.5 44.8 61.8 47.6

Table 4: Results of referring image captioning task on RIC validation set.

Model Name Param. Text Metrics Detection Metrics
CIDEr-D Meteor ROUGE-L BLEU-4 | GP GR
LLaVa-OneVision (Li et al.|[2024) | 0.5B 0.058  0.088 0.185 0.052 | 5.2 0.5
InternVL3 (Zhu et al.[[2025) 2B 0.315 0.230 0.374 0.284 |42.4 18.2
Qwen2.5-VL (Bai et al.||2025) 3B 0.386  0.241 0.369 0.261 |61.8 6.2
PaDT (Ours) 3B 1450  0.304 0.501 0.467 |81.6 454
PaDT Pro (Ours) 3B 1412 0.300 0.495 0458 |82.3 45.1
LLaVa-NeXT (Liu et al.|[2024b) 7B 0262  0.200 0.335 0.178 |54.3 10.6
LLaVa-OneVision (Li et al.|[2024) | 7B 0.172  0.207 0.330 0.182 |32.5 10.2
Qwen2.5-VL (Bai et al.||2025) 7B 0.266  0.251 0.369 0.257 |60.8 19.8
InternVL3 (Zhu et al.[[2025) 8B 0.208  0.207 0.373 0.249 |56.6 32.1
LLaVa-NeXT (Liu et al.[[2024b) 13B 0.283  0.212 0.347 0.172 |55.7 6.2
PaDT (Ours) 7B 1.445  0.304 0.500 0.466 |77.0 45.2
PaDT Pro (Ours) 7B 1.387  0.299 0.491 0.449 |82.3 45.8

PaDT Pro (3B) already outperform the much larger 78B InternVL3 model. These results demon-
strate the effectiveness of the visual reference token paradigm, which substantially aligns textual
semantics with image patches and thereby improves the precision of object localization in MLLM:s.

Referring Expression Segmentation. Similar to REC, the Referring Expression Segmentation
(RES) task evaluates an MLLMs ability to segment the target object mask given a natural language
description. We adopt cloU as the evaluation metric, and results are reported in Tab. 2| Both PaDT
and PaDT Pro achieve the best performance compared with existing methods, even against ap-
proaches such as Seg-R1 and Text4Seg+SAM that leverage the powerful SAM segmentation model.
With the lightweight PaDT decoder that translates unified visual reference tokens into segmenta-
tion masks, our models consistently outperform prior baselines. Additional qualitative examples are
provided in the Appendix [A.8]

Open-vocabulary Detection. This is a fundamental visual perception task that evaluates an MLLMs
ability to perform semantic grounding. As shown in Table [3] most existing MLLMs struggle with
this task, showing low precision and recall. For instance, Qwen2.5-VL (3B) achieves only 13.7
mAP, and InternVL3 (8B) reaches 17.5 mAP on the COCO2017 validation set. Our PaDT and
PaDT Pro substantially advance the state of the art. PaDT Pro (3B) achieves 38.2 mAP, while the 7B
variant further improves to 39.0 mAP, nearly doubling the performance of prior best methods. These
gains highlight the effectiveness of visual reference tokens in strengthening semantic association and
object localization.

Referring Image Captioning. To validate both the visual understanding and grounding ability, we
conduct experiments on our RIC dataset. As shown in Table El, PaDT and PaDT Pro (3B) deliver
strong improvements, reaching 1.45 CIDEr, 0.304 Meteor, 0.501 ROUGE-L, 0.467 BLEU-4, and
top detection scores of 82.3% GreedyPrecision (GP) and 45.1% GreddyRecall (GR). The 7B models
further extend performance, with PaDT Pro (7B) maintaining competitive caption quality, i.e. 1.39
CIDEr, while achieving the best detection-oriented scores, i.e. 82.3% GP, 45.8% GR. These results
suggest that PaDT generates not only fluent captions, but also semantically precise ones grounded
in localized visual content.

4.2 ABLATION EXPERIMENTS

Ablation study of Proposed Components in PaDT. We conduct detailed ablation studies in Tab.
using the 3B model with the following observations. i) The first row without VRTs corresponds to
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Table 5: The ablation study of the proposed components in PaDT.

Visual Reference Token \ Training Strategy \ REC RES
using VRTs  f,, Task Decoder | £79%“s' VRTs Selection | RefCOCO val RefCOCO val

- - - - - 88.7 -

v —  PaDT Decoder v v 91.1 72.1
v v' PaDT Decoder - v 92.0 75.2
v v' PaDT Decoder - All VRTs 76.5 69.5
v v' PaDT Decoder v All VRTs 49.1 19.8
v v' PaDT Decoder v v 93.2 76.1

Figure 5: The illustrations of the mask generations.

Table 6: Performance of using SAM2-L as mask
| refiner with 3 types of prompts.

point box mask | RefCOCOg val

- - 70.5
69.9
74.1
74.0
74.9
76.3

N

\
NN
<A

Model Name | Objects365 COCO2017 | AP@[50:95] AP@50 AP@75 AR@[50:95] AR@S0 AR@75
Qwen2.5-VL - - 13.7 2.1 142 218 30.5 233
PaDT (Zero Shot) v - 16.9 23.7 18.0 215 30.6 2.7
PaDT (Task Specific) - v 34.0 51.2 358 38.5 56.1 40.4
PaDT (FineTuned) v v 36.5 522 388 413 57.4 436

supervised fine-tuning on Qwen2.5-VL, directly predicting bounding box coordinates. By inegrat-
ing VRTs with robust CE loss and random VRTs selection, we observe noticeable improvement
in REC (detection task) and RES (segmentation task) being enabled. ii) We further notice that both
projection module f,,, and robust CE loss are necessary for achieving improved performance. iii) Al-
ternative choice of including all foreground VRTSs during training may even harm the performance,
probably due to bias towards high density regions.

Effectiveness of Mask Refinement with SAM2-L. We further analyze the compability of PaDT
output with segmentation foundation model, SAM2-L under three schemes. i) Given the VRTs
generated by PaDT, we extract their coordinates as point prompts to SAM2-L, denoted as point.
ii) Using the bounding box and mask generated by PaDT, respectively, as prompt for SAM2-L. We
explored different combinations with results in Tab.[6] First, we observe that using point prompt fails
to improve upon PaDT, due to the sparse prior information. However, both box and mask prompts
are conducive to further improving the results under the help of SAM. Combining multiple prompts
yields more significant improvement. Visualizations in Fig. [5|corroborate these findings. The results
suggest the segmentation performance can be further enhanced with expert foundation model at the
expense of additional inference cost.

Effectiveness of Pretraining and Task-specific Finetuning. To evaluate the generalization and
data-scaling properties of the PaDT framework, we pretrain on Objects365 and
subsequently finetune on the COCO dataset. As shown in Tab. [7} PaDT exhibits stronger zero-shot
performance than the Qwen2.5-VL base model, and its finetuned version consistently outperforms
direct training on task-specific data.

5 CONCLUSION

In this work, we proposed Patch-as-Decodable Token (PaDT), a unified paradigm that equips
MLLM:s with the ability to generate both textual and visual outputs through Visual Reference Tokens
(VRTs). By dynamically embedding VRTs into the LLM output space, PaDT ensures semantically
coherent and visually grounded predictions, overcoming the inefficiency and misalignment issues
of prior codebook-based methods. A light-weight decoder and an effective training strategy are
further introduced to enable visual perception and understanding tasks within PaDT. Extensive ex-
periments across detection, segmentation, grounding, and captioning demonstrate state-of-the-art
performance, highlighting directly predicting visual tokens as an effective and scalable paradigm
toward general-purpose multimodal reasoning systems.
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A APPENDIX

A.1 REFERRING IMAGE CAPTIONING (RIC) DATASET
A.1.1 DATASET CONSTRUCTION

Image captioning is a fundamental benchmark for evaluating the vision understanding ability of
MLLMs. In the conventional setting, given an input image, the model generates a pure textual de-
scription that summarizes the main subject and its activity, trained on large-scale image-text pairs.
However, such descriptions provide little supervision regarding object-level grounding, making it
difficult to assess whether the model accurately captures the spatial locations of entities. To ad-
dress this limitation, we re-annotate the COCO2017 dataset with more fine-grained annotations and
propose our Referring Image Captioning (RIC) dataset. Specifically, we leverage Qwen2.5-VL-72B
(prompt provided below) and feed each image together with its box-level annotations, instructing the
model to produce enriched captions that explicitly reference the corresponding box IDs. Examples
of the resulting training samples are shown in Fig. [f]

Prompt for generating RIC dataset

Prompt: <image>Please describe the image, focusing on the main objects (instances) present. After
mentioning an object in the caption, immediately append its instance ID(s) in parentheses, using the
format (<box_id: ID/>). You MUST ONLY use the instance IDs provided in the list below. Do NOT
invent or make up any IDs. If there are multiple instance IDs for the same object, list all IDs within
the same parentheses, separated by commas. For example: *A man (<box_id: ID/>) is standing by
the table (<box-id: ID/>). Two ovens (<box_id: ID/>, <box_id: ID/>) are visible.” Here are the
optional instances in the image (id: ID, format: category: name, bbox: [x1, y1, x2, y2]):

- 200887, person, [389, 70, 498, 348]

- {list all annotations within this query image. }

IMPORTANT: Only use the instance IDs listed above in your caption. Do NOT invent or
make up any new IDs. Generate a fluent English caption that includes the main objects and their
instance IDs as specified.You don’t have to include all instances from the list above, as they are
optional; only describe the main elements of the image. The caption should be no more than 100
words and should not contain any information irrelevant to the image.

Qwen2.5-VL-72B: (Example) A bustling kitchen scene features a person (<box-id: 200887/>)
working near a sink (<box-id: 2196309/>). The dining table (<box_id: 119568/>) holds vari-
ous cooking items, including a bowl (<box_id: 713388/>) and a bottle (<box_id: 82445/>). Two
ovens (<box_id: 1125079/>, <box_id: 2139366/>) are visible in the background. Another person
(<box_id: 1218137/>) appears partially on the left. The table also has a cup (<box_id: 1883614 />)
and a knife (<box.id: 693231/>). The kitchen is equipped with hanging pots and a well-used
workspace, emphasizing a busy cooking environment.

A.2 TEMPLATE EXAMPLE FOR EACH VISION TASK

Here we present the interaction templates used in our PaDT framework, covering open-vocabulary
detection, referring expression comprehension, and referring image captioning tasks. The prompts
are designed to be concise and efficient, allowing PaDT to naturally interleave textual tokens and
VRT predictions during task training.

Open Vocabulary Detection Task

USER: <image>Please carefully check the image and detect the following objects: [{target list}].
ASSISTANT: In this image, there are {number} “{category}” (<VRT_-0><VRT_1><VRT_2>
<VRT_3><VRT 4>, <VRT_5><VRT_6><VRT_7><VRT_8><VRT.9>, ...) and ...

Referring Expression Comprehension / Segmentation Task

USER: <image>Please carefully check the image and detect the object this sentence describes:
“{question}”.

ASSISTANT: The “{question}” refers to <VRT_0><VRT_1><VRT2><VRT_3><VRT_4> in
this image.
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A man (<0>) rides a motorcycle (<1>) on a dirt path. He
is wearing a red shirt, black shorts, and a helmet. The
motorcycle has a rugged design with a rear storage
8| box. The background features lush greenery, a large
mountain partially covered in mist, and a bridge
" spanning the scene. Another person (<2>) and a bicycle
(¢<3>) are visible in the distance, adding to the rural
¢ setting. The atmosphere is serene, with natural
B clements dominating the landscape.

A woman (<0>) stands in a
| kitchen, holding a cat (<1>).
§ She is near a sink (<2>)
with a bowl of oranges
(x3>) and a bottle (<4>). A
‘| refrigerator (<5>) is visible
to her right. A handbag
(<6>) rests on the floor by

. her feet. The kitchen
= features wooden cabinets
and a stove with a pan
(<7>). A potted plant (<8>)
and a clock (<9>) adorn the
counter. The scene is
warm and homey.

A man (<0>) is riding a bicycle
(<1>) on a path near a train
(x2>). The train, with a red
and white design, is
positioned on the tracks
behind the cyclist. A stop
sign (<3>) is visible to the
right of the man, and
overhead electrical lines run

B above the train. The scene is

g set in a well-lit area with
§ some greenery along the
path. The overall atmosphere
suggests a calm, possibly
& suburban environment.

A young girl (<0>) is eagerly eating from a bowl
(<1>) on a dining table (<2>). She uses a spoon
(«<3>) to scoop food, which appears to be melting.
Bl The table is covered with a red-checkered
| tablecloth. In the background, an adult (<4>) sits
with arms crossed, and a wine glass (<5>) is
partially visible. The scene is illuminated by
natural light, creating a warm and casual dining
atmosphere.

A woman (<0>) is eating from a spoon (<1>) in
a kitchen. She holds a plate of food,
including what appears to be broccoli.
Behind her, there is an oven (<2>) and a
microwave (<3>). A bottle (<4>) is visible on
the counter near the oven. The setting is a
home kitchen with light-colored cabinets
and a tiled backsplash. The woman is
wearing glasses and a blue top.

Figure 6: The training samples of RIC dataset. For each image, there are 3-5 captions, in which we
ask the MLLMs to refer to the object (via bounding box or visual reference tokens) following each
object’s subject.

Referring Image Captioning Task

USER: <image>Please describe this image.

ASSISTANT: ... {objectl} (KVRT_-0><VRT_1><VRT_2><VRT_3><VRT.4>) ... {object2}
(<VRT_5><VRT_6><VRT.7><VRT_8><VRT_9>) ...
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A.3 PROMPT USED FOR COMPETING METHODS

To guide MLLMs (e.g., Qwen2.5-VL (Bai et al., 2025)), InternVL3 (Zhu et al.;,|2025)), and the LLaVA
series (Liu et al., [2024c)) in predicting bounding box coordinates in each task, we append a box-
specific and format-specific instruction to the task prompt, as detailed below.

Open Vocabulary Detection Task (with box and format instruction)

USER: <image>Please carefully check the image and detect the following objects: [{target list}].
Output each detected target’s bbox coordinates in JSON format. For example, “‘json

[{"bbox_2d”: [x1, y1, X2, y2], "label”: "target name”}]

“‘. If no targets are detected in the image, simply respond with None.

Referring Expression Comprehension / Segmentation Task (with format instruction)
USER: <image>Please carefully check the image and detect the object this sentence describes:
“{question}”. Output the final answer in JSON format.

Referring Image Captioning Task (with box instruction)

USER: <image>Please describe this image. You should include the corresponding bounding box of
the objects within the sentence. For example, “’In this image, a cat ([x1, y1, x2, y2]) is sitting on the
wooden table ([x1, y1, x2, y2]), ...”.

A.4 THE FORMULA OF THE TASK-SPECIFIC LOSSES ON THE PADT DECODER OUTPUT

Let BPred ¢ RE*4 denote predicted bounding boxes with ground truth B9, Mpred ¢ REXHXW
predicted masks with ground truth M9, and SP™*? € R’*! predicted confidence scores with
ground truth S9¢. The Lypow, Limast and Leore Objectives are:

L
1 re re
£bboa: = Zzﬂwu(lgf daBi{]t)+ HBf d_B;]tHla (8)
l
1 L L
‘Cmask = Z Z ACdice (Mg)red7 M?t) + Z Efocal (M;;)Ted’ M?t)y (9)
l l
1 L
Escore = Z Z ||Sfred — SlgtH% (10)
l

A.5 ADDITIONAL ABLATION STUDY
A.5.1 TOKEN ACTIVATION MAP ANALYSIS

We provide additional Token Activation Map (TAM) visualizations, as illustrated in Fig.[7] compar-
ing Qwen2.5-VL and the PaDT Pro 7B model, showing that visual reference tokens establish much
stronger associations with target image patches than digit-by-digit coordinate predictions. These
results further highlight the robust semantic alignment and precise object localization achieved by
visual reference tokens.

A.5.2 ABLATION STUDY OF OTHER USED LOSSES

As shown in Table [8] we conduct ablations on the loss components Lyboz, Lmask, and Lscore.
PaDT achieves the best average performance when all visual task losses are combined. In particular,
removing the dynamic embedding module or omitting any individual loss (Lasks Loboxs Lscore)
consistently degrades performance on both referring expression comprehension and segmentation.
Notably, using all components yields the highest accuracy (93.2% REC and 76.1 mask cloU) and the
strongest multi-task ability, underscoring that each module and loss is essential and complementary
for optimal task performance.
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Figure 7: More TAM visualizations of Qwen2.5-VL and our PaDT Pro 7B models.

Table 8: Ablation study of each individual components (with the analysis of additional losses).

VRT Dynamic Embedding Module Visual Task Loss Detection Segmentation
fop Limask  Lobor  Lscore | RefCOCO val (REC) COCO val | RefCOCO val (RES)

- - - - - 88.7 17.1 -

v - v v v 91.1 27.5 72.1
v v - v v 91.7 323 -

v v v - - - - 78.0
v v v v - 92.7 24.4 75.2
v v v v v 93.2 34.0 76.1

A.5.3 ABLATION STUDY OF THE NUMBER OF SELECTED VRTS PER TARGET

We analyze how the number of selected visual patches per target impacts performance. As shown
in Table 0] increasing the number of patches from 1 to 5 steadily improves both bounding box
accuracy and mask cloU across all datasets. The best results are obtained with 5 patches per target,
while further increasing to 8 patches yields diminishing or even negative returns. This indicates
that a moderate number of representative patches provides richer representations, whereas excessive
patches introduce noise and redundancy, leading to unstable training of PaDT.

We also investigate the case of using all foreground patches as ground-truth VRTs during training.
As shown in Fig. [§] this configuration produces the worst results. Although the number of output
VRTs increases, the PaDT decoder exhibits clear performance degradation. We attribute this to the
redundancy (that makes the PaDT hard to predict all VRTs at the inference stage) and low resolution
of patch-level features: when all foreground patches are used, the decoder is forced to decode trivial
and overlapping regions, which prevents it from learning accurate target boundaries and masks,
especially when only a limited number of VRTs are predicted at inference. Consequently, selecting
a moderate number of informative patches proves more effective than training with all foreground
patches.

A.5.4 ABLATION STUDY OF DIFFERENT SAMPLING STRATEGY
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Table 9: Ablation study of the number of selected visual patches per target and different sampling
strategy.

#Patches / Target | 1 3 5 8 ALL | Border-aware Sampling

Bbox Acc@0.5 | 924 932 932 926 49.1 92.1
RefCOCO val  Bbox Acc@0.75 | 82.7 86.1 87.1 859 155 -

Mask cloU 673 752 761 757 19.8 70.9

Bbox Acc@0.5 | 87.5 88.1 88.5 875 - 86.6
RefCOCO+ val Bbox Acc@0.75 | 78.8 82.1 828 81.7 - -

Mask cloU 63.7 714 727 716 - 66.9

Bbox Acc@0.5 | 88.1 88.2 88.2 86.8 - 87.0
RefCOCOg val Bbox Acc@0.75 | 78.7 80.7 81.1 799 - -

Mask cloU 627 69.7 705 70.0 - 65.6

We present a detailed comparison among different sampling strategies, including random sampling
(18 patches), using all foreground patches, and border-aware sampling (four tokens from left, top,
right and bottom boundaries). The results are summarized in Table 0]

We make the following key observations:

* Using all foreground patches as ground-truth VRTs leads to performance collapse.
When all foreground patches are provided during training, the task decoder tends to overfit
to the ground-truth VRTs and relies heavily on the MLLM’s predicted VRTs during infer-
ence. As the decoder simply learns to produce trivial bounding boxes or masks that cover
all foreground areas, it no longer needs to truly understand object boundaries, thus failing
to generalize.

* Random sampling consistently benefits performance. As the number of randomly sam-
pled patches increases from 1 to 5, the performance consistently improves. The best results
are achieved with 5 randomly sampled patches, indicating that this strategy strikes a bal-
ance between coverage and model generalization.

* Boundary-aware sampling underperforms random sampling. Sampling exclusively
from the four boundaries (left, top, right, bottom) yields weaker results. We hypothesize
that boundary patches often contain ambiguous semantics, especially when segmentation
annotations are unavailable. This increases training difficulty and again makes the task
decoder overly dependent on MLLM’s predicted boundary VRTs.

A.6 SCALABILITY TO HIGH-RESOLUTION IMAGES

A.6.1 COMPATIBILITY WITH HIGH-RESOLUTION IMAGES: YES, FULLY SUPPORTED

PaDT is fully compatible with high-resolution images and supports native resolutions. Our PaDT
framework inherits from Qwen2.5-VL, and just like Qwen2.5-VL, it supports image inputs at their
original resolution. For instance, in our experiments, we did not perform any resizing operations on
training images and we directly use their native resolutions.

¢ COCO dataset: multiple resolutions, such as 640 480, 480 640, 640 573, 500 333, etc.
(Tab. [TJ2I3).

* Objects365 dataset: high-resolution images such as 1024 727, 4608 3072, 768 1024,
5152 3864, etc. (Tab.[7).

Table [/| further shows the results of training PaDT on Objects365 (with highly dynamic high-

resolution inputs) and transferring to COCO dataset. Both Zero-Shot and Fine-Tuned results
(mAP50) outperform Qwen2.5-VL models on the same scale.
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A.6.2 ADDITIONAL COMPUTATION OVERHEAD INTRODUCED BY PADT: VERY LOow

High-resolution images naturally introduce more visual tokens, leading to increased computation
and GPU memory, which is inherent to all MLLM models, including PaDT, Qwen2.5-VL, and
InternVL3. Importantly, the additional overhead introduced by PaDT, compared to Qwen2.5-VL, is
negligible. We quantify these additional costs as follows:

1. Number of Visual Tokens / Patches: For an input image of size H x W, the number of VRTs
is: #VRTs = h x w, where h = round(H/28), w = round(W/28). This is identical to the
patch extraction process used in Qwen2.5-VL and InternVL3. Thus, PaDT does not introduce new

resolution-dependent costs beyond standard visual encoder usage.

2. Dynamic Embedding Table:

* Qwenz2.5-VL-7B Text Embeddings:
Memory: 152,064 = 3584

x PaDT Dynamic Embedding Table:

X PaDT trained with all
foreground VRTs

Please carefully
check the image and
detect the object
this sentence
describes: "white
| car on the left".

carefully
check the image and
B E detect the object
----- e W fhis sentence
e . describes: " front
bowl wearrots in it".

Please carefully
check the image and
detect the object
this sentence
describes: “tall
= suitcase'.

Figure 8: Qualitative analysis between training PaDT with all foreground VRTs and 5 randomly

selected foreground VRTs.

PaDT trained with 5
random foreground VRTs

Please carefully
check the image and
| detect the object
this sentence
describes: "white
car on the left".

carefully
check the image and
detect the object
this sentence
describes: " front
bowl! wearrots in it".

Please carefully
check the image and
detect the object
this sentence
describes: "tall
g suitcase”.
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Memory: (152,064 + hw) =% 3584
Additional memory: hw = 3584
Increasing rate = hw / 152,064

For a 1024 x 1024 image:

h = w = round (1024 / 28) = 37
Extra memory = 37 % 37 * 3584 x 2 Bytes (bfloatl6) = 8 MB
Increasing rate = 0.009 (i.e., <1%)

3. Projection Module f,,: Negligible Cost:

LayerNorm:
Memory: 3584 * 2

Two Linear Projections (W_A, W_B):
Memory: 3584 « 64 * 2

This overhead is less than 0.02% of the LLM backbone parameters (3B), thus negligible.

4. No Extra Overhead in the LLM Forward Pass: VRTs are treated identically to text tokens
during embedding lookup. Once embedded, they are processed by the LLM backbone without any
additional computation. No structural modification or auxiliary branch is added to the forward pass.

5. PaDT Head Overhead: Let H € RE*35%4 be the backbone output:

* Qwen2.5-VL-7B:
FLOPs = L % 3584 * 152,064

* PaDT:
FLOPs = L % 3584 x (152,064 + hw)

Increasing Rate: hw / 152,064 (= 0.009 for a 1024 » 1024 image)

Again, the overhead remains less than 1% even for high-resolution images.

6. Lightweight Decoder Head: The decoder consists of only three 2-way attention modules, with
95M parameters, significantly smaller than the 37B LLM backbone. Moreover, all VRTs are de-
coded in a single forward pass, no iterative decoding is required.

Overall: PaDT preserves the inference speed and memory footprint of standard multimodal LLMs.
The only resolution-dependent cost comes from visual patch extraction, which is inherent to all
high-resolution MLLM:s.

A.6.3 PADT Is EVEN MORE EFFICIENT THAN QWEN2.5-VL

Although PaDT introduces negligible overhead, it is more efficient during inference and training.
This is because PaDT represents an object with fewer tokens:

Qwen2.5-VL:
[100, 200, 300, 400] -> "[", "1", ..., '0", "]" -> 17 tokens

PaDT:
<|VRT_O|><|VRT_1|><|VRT_2|><|VRT_3|><|VRT_4|> -> 5 tokens

During inference (autoregressive decoding), PaDT saves 12 forward passes per object. During
training, it reduces 12 forward tokens per object. These savings greatly outweigh the small mem-
ory / computation overhead analyzed above. Therefore, overall, PaDT is both more efficient and
more effective than Qwen2.5-VL. More quantitative analysis is shown as Tab. we benchmarked
inference on RefCOCO val set (averaged over 100 samples) and scaled the images by 2x (e.g.,
448 x 644 — 896 x 1288).
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Table 10: The quantitative analysis of computation cost and memory allocation for different image
resolutions.

Model | Image Resolution | A Whole Generation Process | Single-Pass Forward | Sequence Length | Peek Memory Allocation
Qwen2.5-VL (3B) 1x 1.127 s 0.027 s 4222 8,186 MB

PaDT (3B) 1x 0.661 s (-0.466 s) 0.034 s (+0.007 s) 19.44 (-22.78) 8,530 MB (+344 MB)
Qwen2.5-VL (3B) 2x 1.373 s 0.032s 42.96 9,470 MB

PaDT (3B) 2x 0.905 s (-0.468 s) 0.046 s (+0.014 s) 19.44 (-23.52) 9,446 MB (-24 MB)

A.7 COMPARISON WITH QWEN2.5-VL USING DIFFERENT POST-TRAINING STRATEGY

We compare PaDT with Qwen2.5-VL under different post-training strategies (i.e., SFT or GRPO)
on the task-specific datasets. The results in Table |1 1|and Table [12|show that: 1. PaDT consistently
outperforms post-trained Qwen2.5-VL across both tasks; 2. PaDT achieves superior zero-shot per-
formance; and 3. PaDT demonstrates stronger transferability, as pretraining on Objects365 followed
by finetuning on COCO yields better results than training on COCO alone.

Table 11: The results on Referring Expression Comprehension (REC) task.

Model Name | Setting | RefCOCO val RefCOCO+ val RefCOCOg val
Qwen2.5-VL Zero-Shot 89.1 82.4 85.2
Qwen2.5-VL SFT 88.7 82.3 86.0
Qwen2.5-VL | GRPO (Shen et al.|[2025) 90.1 84.2 85.6
PaDT SFT 93.2 88.5 88.2
PaDT-Pro SFT 96.0 91.8 93.6
Table 12: The results on Open-Vocabulary Detection (OVD) task.
Model Name | Setting | mAP@[50:95]
Qwen2.5-VL Zero-Shot 13.7
PaDT Zero-Shot (Pretrained on Objects365) 16.9
Qwen2.5-VL SFT 17.1
Qwen2.5-VL GRPO (Shen et al.||2025) 19.2
PaDT Task-Specific SFT 34.0
PaDT Objects365 — COCO 36.5
PaDT-Pro SFT 38.2

A.8 QUALITATIVE EVALUATION
A.8.1 OPEN VOCABULARY DETECTION ON COCO2017 DATASET

Comparison with representative MLLMs. In this section, we present qualitative results for open-
vocabulary detection on the COCO2017 dataset, comparing PaDT against representative MLLMs.
As shown in Fig.[9] several key observations can be made.

* Higher recall. PaDT consistently detects a larger number of objects in the scene, demon-
strating stronger recall. This improvement stems from its ability to directly predict visual
reference tokens (VRTs) that are anchored to image patches, enabling more reliable cover-
age of relevant objects.

* Robustness in cluttered scenes. Competing MLLMs, which predict serialized bounding
box coordinates, often struggle in scenes with many repetitive or similar-looking objects.
Their predictions may miss valid instances or collapse onto a few candidates, whereas
PaDT maintains distinct references to multiple targets.

* Avoiding invalid outputs. Existing MLLMs occasionally fail to produce valid detections,
labeled as Error in Fig. 0] In such cases, the models tend to generate repetitive text se-
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quences until reaching the maximum output length, i.e. 2048 tokens. PaDT avoids this
failure mode by grounding predictions directly in visual tokens rather than relying solely
on text-based serialization.

Overall, these qualitative comparisons reinforce the advantages of PaDT: directly predicting visual
tokens not only improves recall but also enhances robustness and stability in open-vocabulary de-
tection.

Visualization of PaDT results on REC/RES and OVD tasks. In Fig. we present extensive
qualitative examples generated by the proposed PaDT framework. For Referring Expression Com-
prehension (REC) and Referring Expression Segmentation (RES), PaDT first parses the user query
and identifies the corresponding target within the image. As illustrated in the top-left subfigure of
each example, PaDT generates five visual reference tokens (VRTs), each directly correlated with
specific image patches and thus easily localizable. These VRTs are subsequently passed into the
PaDT decoder to produce the corresponding bounding box and segmentation mask. The overall
pipeline is simple yet effective. Compared to character-by-character coordinate generation, PaDT
requires far fewer tokens (only five VRTs per target) while providing stronger semantic and spatial
grounding with respect to the object.

Similar observations are made in the Open-Vocabulary Detection (OVD) task. Unlike REC/RES,
OVD requires PaDT to predict multiple targets along with their category labels. In our response
template, both categories and VRTs are naturally interleaved within the output sequence, enabling
efficient multimodal reasoning. This training strategy strengthens the semantic alignment between
text and image patches, thereby improving both precision and recall in detection task.

A.8.2 REFERRING IMAGE CAPTIONING ON RIC DATASET

Comparison with representative MLLMs. In this section, we present qualitative results for open-
vocabulary detection on the Referring Image Captioning (RIC) dataset, comparing PaDT with rep-
resentative MLLMs, including InternVL3 8B and Qwen2.5-VL 7B models. As shown in Fig.
PaDT exhibits clear advantages in both bounding box accuracy and object recall. Detailed qualitative
comparisons are provided in the figure, further demonstrating the effectiveness of leveraging visual
reference tokens as a bridge between high-level text semantics and low-level object localization.

Visualization of PaDT results on RIC task. We further present qualitative examples generated
by the proposed PaDT framework. As shown in Fig. visual reference tokens are automatically
generated alongside the subject, illustrating a natural interleaving between semantic text and image
patches. This design further enhances object-level alignment between textual descriptions and visual
elements, thereby strengthening the co-reasoning ability across text and image modalities.
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Image 6T PaDTPro78  InternVL3 8B  Qwen25-VL78 VLM-R1

Figure 9: Qualitative comparison on COCO2017 open-vocabulary detection. We compare PaDT
with representative MLLMs including InternVL3 and Qwen2.5-VL. Competing models frequently
fail to produce valid outputs, leading to Error cases or repetitive text generation. In contrast, PaDT
achieves higher recall and correctly identifies multiple objects, even in cluttered scenes with repeti-
tive instances. These results highlight the benefit of directly predicting visual reference tokens over
serialized bounding box coordinates.
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Referring Expression Comprehension / Segmentation
o

User: Please carefully check the
image and detect the object this
sentence describes: "a pizza with
fresh mozzarella and halved cherry
tomatoes".

User: Please carefully check the
image and detect the object this
sentence describes: "a dark gray
couch'".

Assistant: The "a dark gray couch"
refers fo

<VRT_202>

<VRT_297> in this image.

Assistant: The "a pizza with fresh
mozzarella and halved cherry
% tomatoes" refers to
<VRT_176>

<VRT_151> in this image.

User: Please carefully check
the image and detect the
object this sentence
describes: "a bow/ of healthy
food with a spoon and napkin
next to it".

Assistant: The "a bow! of
healthy food with a spoon
and napkin next to it" refers
to

<VRT_170>
<VRT_258> in
this image.
In this image, there are 3 "person" (<VRT_109> <VRT_19>,
<VRT_66> <VRT_89>, <VRT_31> <VRT_9>), 2 "cup"
(<VRT_242> <VRT_2445, <VRT_94> <VRT_293>),
3 "fork" (<VRT_325> <VRT_325>,
<VRT_303> <VRT_278>,
<VRT_373> <VRT_373>),1"cake"
(<VRT_388> <VRT 343>), 5 "chair"
(<VRT_150> <VRT_106>, <VRT_101> <VRT_99>,
<VRT_17> <VRT_17>,<VRT_60> <VRT_15>,
R <VRT_197> <VRT_197>) and 2 "dining table"
N (<VRT_296> <VRT_217>, <VRT_65> <VRT_65>).

In this image, there are 2 "apple"

(<VRT_130> <WRT_1

?\K/Q'T_sm VRT_119> 3

)and 5 "orange" .

(VRT_191> VRT_1 There are 6 "donut"

RT_152> ART 1 (<VRT_282>

i\z;ﬁ' 80> AP,

<VRT_45> <VRT_361>

<VRT_93> < VRT7364>’
<VRT_247>

o <VRT_230>,

<VRT_192>

oronge or <VRT_226>,
<VRT_105>
<VRT_62>

<VRT_77>) in this image.

'3runqe

-

Figure 10: Qualitative visualization of PaDT generated examples on referring expression compre-
hension/segmentation tasks.
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PaDT Pro 7B InternVL3 8B Qwen2.5-VL 7B
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Figure 11: Qualitative comparison on the Referring Image Captioning (RIC) dataset. We compare
PaDT with representative MLLMs, including InternVL3 and Qwen2.5-VL. PaDT shows clear ad-
vantages in both bounding box accuracy and object recall over competing methods.

Referring Image Captioning

A car
(<VRT_204> <R
4 1_201>) is parked on a narrow road, with several
horses blocking the way. The horses
(<VRT_199> <VRT
176>,
<VRT_150> <VRT

cat

(<VRT_62>
<VRT_62>) is lounging on the hood
of a black Mercedes-Benz car

(<VRT_187>
<VRT_183>). The car's shiny
surface reflects the surrounding
buildings and greenery. The cat, with
§ its orange and white fur, appears
relaxed as it gazes into the distance.
#= Behind the car, a fence and lush
bushes add a touch of nature to the
urban setting. The scene captures a
peaceful moment in a residential area.

1
<VRT_155> WRT

1555,
VRT_172> <VRT
170,

<VR

170> <VRT

are standing calmly, some near the
center of the road while others are closer to
the fence. The road is lined with a wooden fence
on one side and trees on the other, creating a
shaded, rural setting. The scene suggests a
peaceful interaction between the vehicle and
the animals in a countryside environment.

mall dog

A E
person (<VRT_248>

A
(<VRT_166>

<VRT_168>) is driving a horse-
drawn racing cart. The horse
(<VRT_216>

<VRT_127>) is a bay with a
white blaze on its face, wearing a
bridle and harness. The cart is red
and white, and the driver is wearing a
helmet and a yellow and blue jacket.
They are on a dirt track with grassy
areas and advertisements in the
background. The scene suggests a
harness racing event. The horse
| appears to be in motion, pulling the
cart steadily.

T_275)  is
lying on a rug in a bathroom,
looking up. The bathroom
features  a  white  sink
(<VRT_176>

R

VRT_150:) with a
| faucet and a bottle of soap
(<VRT_153>

>) on it. A
| toilet
(<VRT_246>
<VRT_2465) is
| positioned next to the sink. An

shower area. The floor is
wooden, and a small white toilet
brush is placed near the foilet.
The scene is cozy and well-lt.

A white bird
(<VRT_79>

<VRT_153>) perches

gracefully on the roof of a car
(<VRT_227>

<VRT_2265). The

car is parked in a lot with a

In the image, a serene rural scene unfolds
with a horse
(<VRT_296>

<VRT_203>) in the foreground, partially
obstructed by a wooden fence. Another

(e ' building and trees in the

(«VRT_236> background. The bird's
LVRT 312>) grazes pe:ce:ully u:‘ the reflection is visible on the car's

backgroun A ir orse i

(VR 186> shiny surface. Another car

<VRT_185>) is visible further back, near ((VRT—léb .
a rustic stone building. The backdrop - J f\(RTf;61>) . Is
features a weathered castle ruin, adding a EEERE partially visible in the distance.
touch of historical charm to the A The scene captures a serene
landscape. The dark, moody sky enhances moment in an outdoor setting,

the atmospheric quality of the scene, " with the bird as the focal point
while the lush green grass contrasts .

beautifully with the earthy tones of the
architecture and animals.

Figure 12: Qualitative visualization of PaDT generated examples on referring image captioning task.
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