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ABSTRACT

Multimodal large language models (MLLMs) have advanced rapidly in recent
years. However, existing approaches for vision tasks often rely on indirect rep-
resentations, such as generating coordinates as text for detection, which limits
performance and prevents dense prediction tasks like segmentation. To over-
come these challenges, we introduce Patch-as-Decodable Token (PaDT), a unified
paradigm that enables MLLMs to directly generate both textual and diverse visual
outputs. Central to PaDT are Visual Reference Tokens (VRTs), derived from vi-
sual patch embeddings of query images and interleaved seamlessly with LLM’s
output textual tokens. A lightweight decoder then transforms LLM’s outputs into
detection, segmentation, and grounding predictions. Unlike prior methods, PaDT
processes VRTs independently at each forward pass and dynamically expands the
embedding table, thus improving localization and differentiation among similar
objects. We further tailor a training strategy for PaDT by randomly selecting
VRTs for supervised fine-tuning and introducing a robust per-token cross-entropy
loss. Our empirical studies across four visual perception and understanding tasks
suggest PaDT consistently achieving state-of-the-art performance, even compared
with significantly larger MLLM models.

1 INTRODUCTION

Fine-grained image perception and understanding, which aim to associate specific image regions
with contextual information, such as semantic or instance, is a fundamental task in computer vision
and serves as a cornerstone for numerous applications. Classical vision models (Ren et al., 2015;
Redmon et al., 2016; Carion et al., 2020) remain state-of-the-art for pure detection and segmentation
tasks, but they lack flexible language interaction and understanding, thus prohibiting open vocab-
ulary oriented visual reasoning tasks. At an earlier stage, inspired by CLIP (Radford et al., 2021),
many vision-language detectors such as GLIP (Li et al., 2022b) and Grounding DINO (Ren et al.,
2023) incorporate language information to detect arbitrary classes. However, these methods remain
vision-centric backbones augmented with language, and thus struggle to handle more complex tex-
tual descriptions and are limited to structured output.

Recent advances have led to powerful multi-modal large language models (MLLMs) (Alayrac et al.,
2022; Li et al., 2023; Liu et al., 2024c; Bai et al., 2025; Zhu et al., 2025) that couple vision encoders
with Large Language Models(LLMs). Pretrained on massive multimodal datasets, these models
encode rich prior knowledge and provide a strong foundation for visual perception and understand-
ing, as illustrated in Fig. 1. To conform with the textual output space of LLMs, most existing
MLLMs (Liu et al., 2025a; Bai et al., 2025; Zhu et al., 2025) serialize detected regions into bound-
ing box coordinates, expressed in textual form, such as [x1, y1, x2, y2]. While straightforward, this
strategy introduces several challenges. First, output formats are often inconsistent across samples
even under the same prompt, as illustrated in Fig. 2(a), thereby increasing the difficulty of parsing
and structured output. Second, numerical coordinate representations provide precise spatial descrip-
tions but lack semantic alignment between textual and visual modalities, as shown in Fig. 2(b). This
inherent misalignment can lead to repetition or hallucination between coordinate and actual visual
targets (Jiang et al., 2024b). Moreover, since numerical coordinate representations are mapped into
discrete textual tokens, a single coordinate value may be split into several unrelated tokens, as shown
in Fig. 2(b). These discontinuous coordinate tokens can hinder prediction accuracy, e.g., fragmented
numbers.
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Mentioned Objects:
• Dining Table:

• Soup:

• Wine Glass:

• Salad:

• Sandwich:

• Sauce: 

Open Vocabulary Detection
Query: Please carefully check the image and
detect the following objects: ["person",
"bicycle",…, "toothbrush"].
Response: In this image, there are 2 “person” (

, ), 1 “sports ball” ( ) and 1
"tennis racket" ( ).

Image with visual 
reference tokens

Image with bounding 
boxes

Referring Expression Comprehension
Query: Please carefully check the image and
detect the object this sentence describes:
"blue dish with cats painted on it".

Response: The "blue dish with cats painted
on it" refers to in this image.

Image with visual 
reference tokens

Image with bounding 
box

Referring Expression Segmentation
Query: Please carefully check the image
and detect the object this sentence
describes: " silver suv with black roof
rails".

Response: The “silver suv with black roof
rails” refers to in this image. Image with visual reference 

tokens
Image with segmentation 

mask

Referring Image Captioning
Query: Please describe this image.
Response: A meal is set on a dining table (

). It includes a bowl of salad (
), a cup of soup ( ), and a

sandwich with a sesame seed bun (
). A wine glass ( ) and a bottle of
sauce ( ) are also present. The table
is neatly arranged with napkins and coasters,
creating an elegant dining setup. The meal
appears to be served in a restaurant or a
formal dining environment.

Figure 1: Illustration of unified visual/textual token prediction for MLLM powered visual perception and
understanding.

In this work, we introduce a unified paradigm, Patch-as-Decodable Token (PaDT), which enables
MLLMs to directly generate both textual and diverse visual targets in a unified yet flexible way.
For this purpose, we propose the Visual Reference Tokens (VRTs), which can be seamlessly inter-
leaved with LLM’s output textual tokens. VRTs are generated by the proposed Dynamic Embedding
Module, adapted directly from the original visual patch embeddings. In this way, they occur in a
feature space consistent with the original LLM, while each VRT explicitly corresponds to a specific
image patch within the query image. Thus, VRTs can be naturally interpreted within the LLMs
feature space, allowing detected objects to be represented by multiple VRTs in a fine-grained man-
ner. Based on this design, PaDT owns the inherent ability to predict diverse visual outputs, e.g.
semantic masks and bounding boxes. Specifically, MLLMs only need to predict a subset of VRTs,
which are then decoded into the final structured visual outputs by a lightweight decoder. A prior
art (Ma et al., 2025) attempted to empower LLMs to output image patch tokens, discretized by a
global codebook, to represent the target within the image. However, this approach remains limited
in flexibility and generality due to maintaining a global codebook. First, there is a risk of predicting
visual tokens that do not appear in the query image. Moreover, the decoded visual token does not
have unique correspondence in the query image, thus risking misalignment between predicted visual
tokens and query image tokens, e.g. confusion between similar objects in the image. In contrast,
PaDT processes VRTs independently at each forward pass, making it more efficient. By maintaining
a high-level feature space aligned with that of LLMs and preserving unique positional information
for each image region, PaDT ensures coherent predictions as illustrated Fig. 2(c). Moreover, as
shown in Fig. 2(d), VRT predictions over objects exhibit great spatial continuity.

To enable PaDT to achieve strong performance, we design an effective fine-tuning strategy and
propose a robust per-token cross-entropy loss tailored for the proposed visual reference token, which
stabilizes training and mitigates overfitting. Notably, our 3B model surpasses the previous state-of-
the-art by 19.0 mAP on COCO detection and achieves an average accuracy of 93.6 on the referring
expression comprehension (REC) task, outperforming the much larger 78B InternVL3 model.

The main contributions of this work can be summarized as follows:

• We introduce a unified paradigm, Patch-as-Decodable Token (PaDT), which enables
MLLMs to directly generate both textual and diverse visual targets in a unified yet flex-
ible way. With the proposed Visual Reference Token (VRT), our method achieves superior
performance across diverse fine-grained image perception and understanding

• We propose a lightweight yet robust VRT-based decoder, termed the PaDT Decoder. Given
the generated VRTs, it can uniformly decode diverse fine-grained structured visual outputs,
such as segmentation masks and bounding boxes.

• We propose an effective fine-tuning strategy together with a robust per-token cross-entropy
loss. PaDT achieves the state-of-the-art performance on a wide range of visual perception
and understanding tasks. The effectiveness is validated beyond perception tasks but also a
customized image captioning task.
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High Related with object

Please carefully check the image
and detect the object this sentence
describes: ”rthe guy with a
camera”.The ”rthe guy with a camera”
refers to <|vrt_227|> <|vrt_204|>
<|vrt_226|> <|vrt_272|>
<|vrt_249|> in this image.
Candidates : < |vrt_227| >, < |vrt_250| >,
< |vrt_204| >,

Please carefully check the image and
detect the object this sentence describes
: ” r the guy with a camera ”. “‘ json
[
{” bbox _ 2 d ”: [ 4 8 9 , 2 1 , 6 0 7 , 4

5 9 ], ” label ”: r the guy with a camera
”}
]
“‘
Candidates : 4, 5, 0,

Low Activated in image

Candidates are 
not continuous

In this image, two zebras ([0.16,
0.54, 0.38, 0.7] and [0.69, 0.56,
0.85, 0.67]) are grazing in a grassy
field. A wildebeest ([0.42, 0.55,
0.59, 0.67]) is also present …

float type, (0~1)

In this image, a stop sign ([248, 0,
346, 97]) is attached to a wooden
pole ([250, 0, 472, 444]). The pole
appears to be weathered …

int type, (0~H/W)

In this image, a giraffe toy (bbox:
35, 84, 279, 236) stands to the left.
Next to it, a cow toy (bbox: 79, 204,
343, 410) is …

Unexpected Format

(a) Inconsistent Output (b) TAM of Qwen2.5-VL (c) TAM of Ours
(d) Heat Map of 
VRT Candidates

Figure 2: (a) Previous methods yield inconsistent output formats due to free-form box representations even
under the same prompt. (b) Token Activation Map (TAM) (Li et al., 2025) reveals less semantic relationship
between textual box representations and textual/visual information, while converting continuous numbers into
discrete tokens further introduces discontinuities. (c) With PaDT denoting objects with VRTs, semantic align-
ment is preserved and the output becomes more unified and natural. (d) The heatmap of <VRT 227> further
demonstrates continuous and object-consistent predictions within the input image.

2 RELATED WORK

Multimodal Large Language Models. With the rapid development of large language models
(LLMs), multimodal LLMs (MLLMs) have emerged as powerful systems for vision-language rea-
soning (Alayrac et al., 2022; Achiam et al., 2023; Liu et al., 2023; Zhu et al., 2023; Zhang et al.,
2024a; Lian et al., 2025; Bai et al., 2025). Early milestones such as CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) demonstrated the effectiveness of large-scale contrastive pretraining for
joint vision-text representations. BLIP-2 (Li et al., 2022a) further improved alignment through the
Q-former design. More recently, instruction-tuned MLLMs including LLaVA (Liu et al., 2023) and
MiniGPT-4 (Zhu et al., 2023) leverage multimodal instruction data, yielding strong performance
in open-ended visual question answering and reasoning. Building on these foundations, subse-
quent works extend capabilities to higher-resolution image understanding (e.g., LLaVA-Next (Liu
et al., 2024c), LLaVA-UHD (Guo et al., 2024)), diverse instruction sets (Ye et al., 2023), multi-
image (Jiang et al., 2024a; Li et al., 2024) and video inputs (Lin et al., 2023a; Chen et al., 2024a), as
well as new pretraining objectives and architectural designs (Fang et al., 2023; Wang et al., 2023b).
Collectively, these advances establish MLLMs as versatile general-purpose models for multimodal
reasoning.

MLLMs for Visual Perception & Understanding. Despite their broad capabilities, general-
purpose MLLMs remain limited in fine-grained perception tasks. This stems largely from vision
encoders reliance on fixed patch grids (Dehghani et al., 2023; Fang et al., 2023; Wang et al., 2023b),
which often blur local details and impair tasks such as object localization, counting, or OCR. To
mitigate this, adaptive tiling strategies, such as NaViT-style patch dropping and AnyRes (Luo et al.,
2023; Chen et al., 2024b; Liu et al., 2024a), allow flexible handling of variable-resolution image
tiles, leading to improved spatial resolution. Another line of work explores reinforcement learning
to enhance perception and reasoning, exemplified by VLM-R1 (Shen et al., 2025), Visual-RFT (Liu
et al., 2025b), VisRL (Chen et al., 2025), and Seg-R1 (You & Wu, 2025). These approaches achieve
better generalization and emergent capabilities such as segmentation and grounding. Prior works
have primarily relied on reinforcement learning (Chen et al., 2025) or instruction tuning (Jiang et al.,
2024b) to strengthen visual reasoning, yet the potential of leveraging learned queries as anchors for
visual perception remains underexplored. Moreover, designing a unified architecture that seamlessly
accommodates diverse vision tasks continues to be an open challenge.

Unified Visual Tokenization. A complementary research direction focuses on unifying visual and
linguistic representations through multi-granular tokenization. At the region level, methods con-
vert object boxes or masks into geometric tokens (Chen et al., 2023b; Xuan et al., 2024; Peng
et al., 2023; You et al., 2023) or learnable proxies (Zhang et al., 2024b; Yuan et al., 2024; Chen
et al., 2023a; Rasheed et al., 2024), often grounded by detectors or SAM (Kirillov et al., 2023),
thereby enabling more precise vision-language grounding. At the patch level, models such as the
Emu series (Sun et al., 2023) and LaVIT (Jin et al., 2024) treat CLIP-derived patch features as vi-
sual vocabularies for denser alignment. Recent works further introduce autoregressive quantization
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Figure 3: The framework of PaDT model.

of image patches (Team, 2024; Sun et al., 2024), discretizing pixels into visual sentences to sup-
port efficient cross-modal modeling, with even finer-grained tokenization explored in (Ma et al.,
2025). While these approaches approximate linguistic structures via region, instance, or pixel to-
kens, deeper semantic integration between vision and language is still limited. To address this, we
propose a dynamic multimodal token space that enables close correspondence between language
tokens and visual patches under a unified autoregressive modeling paradigm.

3 METHODOLOGY

3.1 REVISITING MULTIMODAL LARGE LANGUAGE MODELS

A Multimodal Large Language Model (MLLM) augments a Large Language Model (LLM) with a
visual encoder, enabling it to perform not only general-purpose reasoning but also visual percep-
tion (Alayrac et al., 2022; Liu et al., 2024c; Bai et al., 2025). Given an image I ∈ R

H×W×3

and a text sequence T = (t1, . . . , tm), the MLLM autoregressively generates an output sequence
Y = (y1, . . . , yt). An image encoder fv , typically a Vision Transformer (ViT) (Dosovitskiy et al.,
2020), partitions I into N non-overlapping patches {Pn}Nn=1, which are subsequently encoded
into embeddings Fv = fv(I) ∈ RN×dv . A projector fp then aligns dimensions and downsam-
ples, yielding Fpatch = fp(Fv) ∈ RN ′×d. For instance, Qwen2.5-VL adopts nearest-neighbor
patch merging in the 2D patch space, resulting in N ′ = 1

4N . The image embeddings are then
fused with the text embeddings Etext(T) ∈ Rm×d to form a hybrid textual-visual representation
Z = [Fpatch;Etext(T)]. Here, Etext ∈ RVtext×d denotes the text embedding table that maps each
text token to its corresponding feature vector. The resulting multimodal representation Z is subse-
quently fed into a transformer-based LLM (Alayrac et al., 2022; Liu et al., 2024c; Bai et al., 2025).
At timestep t, the hidden state ht produces the next-token distribution:

p(yt|I,T, y<t) = softmax(Wtext · ht), (1)

with Wtext ∈ RVtext×d denoting classifier weights.

Limitations of Text-based Vision Prediction. Current MLLMs are restricted to accepting textu-
alvisual representations as input and producing only textual outputs, owing to their compatibility
with the underlying LLM architecture. This limitation is suboptimal for structured vision tasks such
as object detection and image segmentation. Specifically, current MLLMs (e.g., Qwen2.5-VL (Bai
et al., 2025), InternVL3 (Zhu et al., 2025)) serialize visual targets into strings at output side. This
leads to two major issues. First, outputs vary in format (absolute vs. normalized coordinates, JSON-
style vs. free-form), complicating parsing and structured output, as shown in Fig. 2(a). Second,
numerical coordinate representations are mapped into discrete textual tokens which are generated
digit by digit (e.g., “489” “4, 8, 9”). This disrupts numerical continuity and may hinder prediction
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accuracy (Fig. 2(b)). More importantly, while this numerical representation effectively describes
spatial information precisely, it lacks semantic information, which is crucial for image understand-
ing tasks. This inherent mismatch, revealed through token activation analyses (Li et al., 2025) as
illustrated in Fig. 2(b), can lead to errors such as repetition or hallucination in dense prediction
tasks (Jiang et al., 2024b).

3.2 VISUAL REFERENCE TOKEN

We propose the Patch-as-Decodable-Token (PaDT) framework, which introduces Visual Refer-
ence Tokens (VRTs), a unified tokenization scheme that embeds visual patches directly as decod-
able tokens within the autoregressive generation process. PaDT extends conventional MLLMs with
three key components: (1) Dynamic Embedding Module augments the textual vocabulary codebook
with visual patches, specific VRTs, at each forward pass, yielding a multi-modal codebook. (2)
With this multi-modal codebook and the proposed PaDT Head, VRTs become both embeddable at
the input side and decodable at the output side, resulting in a unified and natural format. (3) A
lightweight PaDT Decoder is proposed to convert variable VRTs into diverse visual representations,
such as bounding boxes and masks, enabling downstream tasks including detection, segmentation,
and grounding. This further enhances both the robustness and flexibility of the proposed method.

3.2.1 UNIFIED MULTI-MODAL FORMAT WITH VRTS

A core challenge is to ensure that VRTs can by interpretable by LLMs, being both embeddable in
the input space and decodable in the output space. Prior work, e.g., ClawMachine (Ma et al., 2025)
relies on pretrained discrete visual tokenizers (Jin et al., 2024). It inserts the entire codebook, which
contains a massive number of tokens, into the LLM embedding table and forces the LLM to map its
high-level semantic feature space to tokens representing low-level image patches. Thus, this method
is limited by (i) a fixed dataset-level codebook expansion which contains massive tokens that ignore
patch-specific cues such as spatial location, and (ii) ambiguity arising from the lack of high-level
semantics when visually similar patches from different objects maybe mapped to the same token.

Dynamic Multi-Modal Codebook Expansion. To avoid the above limitations, rather than intro-
ducing a standalone codebook, we reuse the extracted visual tokens from the input image, which
already preserve rich semantic information. Since each visual token explicitly corresponds to an
image patch, at each forward pass only the tokens from the current query image are dynamically ex-
panded into the original textual codebook, instead of memorizing all possible visual patterns through
a fixed codebook. Specifically, in the proposed Dynamic Embedding Module, original patch features
Fpatch ∈ RN ′×d are projected by a lightweight module fvp into visual reference prototypes Pref .
fvp consists of a LayerNorm and a low-rank linear projection. These prototypes are then concate-
nated with text embeddings to form a dynamic embedding table as,

Edyn = [Etext;Pref ] , Pref = fvp(Fpatch) ∈ RN ′×d. (2)

Unified Input and Output Format. With the above Multi-Modal Codebook, both textual and
visual information can be input and output in a unified way. On the input side, query image tokens
are indexed in the Multi-Modal Codebook and converted into the corresponding VRTs, which are
then embedded into the textual input to the LLM. Since VRTs are adapted from the original image
tokens, they share a feature space that is similar to the LLMs representation space, which simplifies
training compared to ClawMachine (Ma et al., 2025). On the output side, to enable the original
textual classifier to output expanded indices, the PaDT Head is proposed to augment the classifier
with Pref , yielding

Wtv = [Wtext;Pref ] ∈ R(Vtext+N ′)×d. (3)

This joint design allows VRTs to be embedded as inputs and decoded as outputs, enabling the
model to insert patch-level references directly into the autoregressive sequence. Building on this,
we propose a robust strategy that represents detected objects with several (but not all) VRTs placed
on them, and then decodes fine-grained representations such as bounding boxes or masks through
the lightweight PaDT Decoder introduced below. This strategy is shown to be more robust and
effective in our experiments. Template examples for each vision task are provided in Appendix A.2.

3.2.2 LIGHT-WEIGHT PADT DECODER

5
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Figure 4: Illustration for PaDT decoder.

Considering that only several VRTs on a detected
object are predicted, a visual decoder is needed to
convert these predicted VRTs into task-specific out-
puts. For this purpose, we introduce a lightweight
vision task decoder, implemented as a stack of
three two-way attention blocks (Fig. 4(b)). The de-
coder takes as input the hidden features of predicted
VRTs from the final LLM layer. These features are
grouped into object queries, where each group corre-
sponds to a sequence of VRTs separated by interven-
ing text tokens (Fig. 4(a)). To enable task-specific
decoding, we inject three learnable tokens, bounding box, mask, and score tokens, into each group
of object queries. After passing through the three attention blocks, each task token is projected into
its respective output space, producing bounding boxes, segmentation masks, and confidence scores.

3.2.3 TRAINING STRATEGY

Robust Per-token Cross-Entropy Loss. For the autoregressive output of the MLLM, we adopt the
standard supervised fine-tuning paradigm with a per-token cross-entropy loss:

LCE =
1

T

∑
t

− log p(ŷt | I,T, y<t) = − log softmaxGT (Wtv · ht), (4)

where ŷt denotes the ground-truth token at step t, ht is the hidden state, and Wtv projects to the
token vocabulary. Unlike prior work that uses all foreground visual tokens as supervision (Ma et al.,
2025), we propose to randomly sample Nvrt foreground tokens for each forward pass. This sampling
strategy increases the diversity of supervision and prevents the model from overfitting to a fixed set
of tokens, thereby improving generalization. To implement this, we introduce a foreground mask
M ∈ {0, 1}T×N ′

, where Mt,n = 1 indicates that token n at step t was not selected. For such tokens,
we suppress their contribution to the loss by masking their logits:

l′t = Wtv · ht, l′t,n+Vtext
= −∞ if Mt,n = 1. (5)

This effectively removes the masked tokens from the softmax normalization, ensuring they are nei-
ther rewarded nor penalized. The resulting robust cross-entropy loss is:

Lrobust
CE = − log softmaxGT (l

′
t). (6)

By combining random sampling with masked supervision, this objective improves robustness and
encourages the model to explore diverse valid visual references during training.

Task-specific Losses. For structured outputs from vision task decoder, we adopt task-specific ob-
jectives i.e. Lbbox, Lmask and Lscore following (Kamath et al., 2021; Kirillov et al., 2023). More
implemented details about the task-specific losses are given in the Appendix A.4. The final training
objective of PaDT is

L = Lrobust
CE + Lbbox + Lmask + Lscore. (7)

4 EXPERIMENT

Tasks and Datasets. We evaluate PaDT across a diverse set of visual perception & understanding
tasks. Specifically, we consider: (i) referring expression comprehension and referring expression
segmentation on RefCOCO, RefCOCO+, and RefCOCOg (Mao et al., 2016; Yu et al., 2016); (ii)
open-vocabulary detection on COCO 2017 (Lin et al., 2014); and (iii) referring image captioning
(RIC), for which we construct a new benchmark by re-annotating COCO with visionlanguage model
(VLM) supervision. Further dataset details are provided in Appendix A.1.

Architecture and Training Details. We adopt Qwen2.5-VL (Bai et al., 2025) as the base model and
conduct experiments with both 3B and 7B variants to evaluate scalability. Based on existing dataset
annotations, at each training step we randomly sample Nvrt = 5 visual reference tokens from the
foreground mask of each target to construct the ground-truth MLLM sequence. If segmentation
masks are unavailable, VRTs are instead sampled within the bounding box. The ground-truth token
templates are provided in Appendix A.2. Training is performed on a single node with eight 96GB
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GPUs, using a batch size of 16 per GPU. We set the learning rate to 2 × 10−5 and apply gradient
checkpointing together with bfloat16 mixed precision for memory efficiency. FlashAttention-
2 (Dao, 2023) is further employed to accelerate attention computation.

Multi-Task Scalability. Joint training across tasks consistently improves performance, indicating
strong cross-task generalization. To evaluate multi-task performance and analyze how performance
scales with the number of tasks, we train PaDT jointly across all benchmarks, i.e., RefCOCO/+/g,
COCO, and RIC, resulting in an enhanced multi-task variant denoted as PaDT Pro. Unlike task-
specific PaDT models, PaDT Pro can seamlessly switch between tasks by simply altering the prompt.

4.1 VISUAL PERCEPTION & UNDERSTANDING TASKS

Referring Expression Comprehension. The Referring Expression Comprehension (REC) task
evaluates an MLLMs ability to localize objects given natural language descriptions, where a predic-
tion is considered correct if its IoU with the ground-truth box exceeds 50%. As shown in Tab. 1,
PaDT and PaDT Pro achieve state-of-the-art performance at both 3B and 7B scales. In particular,
PaDT Pro (3B) obtains 96.0/95.5/95.0 on RefCOCO, 91.8/94.8/88.4 on RefCOCO+, and 93.6/94.0
on RefCOCOg, surpassing all previous MLLM methods. The overall average of PaDT Pro (3B)
reaches 93.6, which is further boosted to 94.5 with the 7B model. Remarkably, both PaDT and

Table 1: Results of referring expression comprehension task on RefCOCO/+/g datasets.

Model Name Param. RefCOCO RefCOCO+ RefCOCOg Overallval test-A test-B val test-A test-B val test

Grounding-DINO-L (Liu et al., 2024d) - 90.6 93.2 88.2 82.8 89.0 75.9 86.1 87.0 86.6
UNINEXT-H (Lin et al., 2023b) - 92.6 94.3 91.5 85.2 89.6 79.8 88.7 89.4 88.9
ONE-PEACE (Wang et al., 2023a) - 92.6 94.2 89.3 88.8 92.2 83.2 89.2 89.3 89.9

InternVL3 (Zhu et al., 2025) 1B 85.8 90.1 81.7 76.6 84.1 69.2 82.8 82.6 81.6
InternVL3 (Zhu et al., 2025) 2B 89.8 92.6 86.4 84.0 89.2 76.5 87.6 87.2 86.7
Qwen2.5-VL (Bai et al., 2025) 3B 89.1 91.7 84.0 82.4 88.0 74.1 85.2 85.7 85.0
Qwen2.5-VL (SFT, (Shen et al., 2025)) 3B 88.7 - - 82.3 - - 86.0 - -
VLM-R1 (Shen et al., 2025) 3B 90.1 92.3 85.2 84.2 89.4 76.8 85.6 86.8 86.3
PaDT (Ours) 3B 93.2 95.3 90.1 88.5 92.4 83.5 88.2 88.5 90.0
PaDT Pro (Ours) 3B 96.0 95.5 95.0 91.8 94.8 88.4 93.6 94.0 93.6
Shikra (Chen et al., 2023b) 7B 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2 82.9
Ferret (You et al., 2023) 7B 87.5 91.4 82.5 80.8 87.4 73.1 83.9 84.8 83.9
Ferret-v2 (Zhang et al., 2024a) 7B 92.8 94.7 88.7 87.4 92.8 79.4 89.4 89.3 89.3
TextHawk2 (Yu et al., 2024) 7B 91.9 93.0 87.6 86.2 90.0 80.4 88.2 88.1 88.2
ClawMachineX (Ma et al., 2025) 7B 89.7 92.5 86.9 84.4 88.9 78.0 86.7 87.1 86.8
Qwen2.5-VL (Bai et al., 2025) 7B 90.0 92.5 85.4 94.2 89.1 76.9 87.2 87.2 86.6
InternVL3 (Zhu et al., 2025) 8B 92.5 94.6 88.0 88.2 92.5 81.8 89.6 90.0 89.6
PaDT (Ours) 7B 93.1 97.2 90.4 88.8 92.8 83.2 88.2 88.8 90.1
PaDT Pro (Ours) 7B 96.6 97.4 95.6 92.8 95.2 89.4 94.6 94.2 94.5
Ferret (You et al., 2023) 13B 89.5 92.4 84.4 82.8 88.1 75.2 85.8 86.3 85.6
Ferret-v2 (Zhang et al., 2024a) 13B 92.6 95.0 88.9 87.4 92.1 81.4 89.4 90.0 89.6
InternVL3 (Zhu et al., 2025) 14B 92.0 94.4 87.8 87.4 92.1 81.5 88.6 89.3 89.1
CogVLM-Grounding (Wang et al., 2024) 17B 92.8 94.8 89.0 88.7 92.9 83.4 89.8 90.8 90.3
InternVL3 (Zhu et al., 2025) 78B 93.4 95.4 90.3 90.1 93.8 85.3 91.5 91.5 91.4

Table 2: Results of referring expression segmentation task on RefCOCO/+/g datasets.

Model Name Param. RefCOCO RefCOCO+ RefCOCOg Overallval testA testB val testA testB val test

X-Decoder (Zou et al., 2023a) - - - - - - - 64.6 - -
SEEM (Zou et al., 2023b) - - - - - - - 65.7 - -
Seg-R1 (You & Wu, 2025) 3B 69.9 76.0 64.9 59.1 66.8 50.9 67.3 67.9 65.4
PaDT (Ours) 3B 76.1 77.4 74.7 72.7 75.1 69.3 70.5 71.1 73.4
PaDT Pro (Ours) 3B 81.3 81.5 82.2 77.6 79.4 76.3 78.1 78.5 79.4
LAVT (Ye et al., 2023) 7B 72.7 75.8 68.8 62.1 68.4 55.1 65.0 66.0 66.7
LISA (Lai et al., 2024) 7B 74.1 76.5 71.1 62.4 67.5 56.5 66.4 68.5 67.9
PixelLM (Ren et al., 2024) 7B 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5 69.2
OMG-LLaVA (Zhang et al., 2024c) 7B 75.6 77.7 71.2 65.6 69.7 58.9 70.7 70.2 70.0
Seg-R1 (You & Wu, 2025) 7B 74.3 78.7 67.6 62.6 70.9 57.9 71.0 71.4 69.3
Text4Seg + CRF (Lan et al., 2025) 7B 71.3 73.7 69.6 65.9 70.4 61.9 69.3 69.3 68.9
Text4Seg + SAM (Lan et al., 2025) 7B 78.0 80.9 74.6 71.6 77.3 66.0 74.8 74.7 74.7
PaDT (Ours) 7B 78.5 79.8 77.3 75.0 77.7 71.3 73.0 73.9 75.8
PaDT Pro (Ours) 7B 86.0 86.1 86.4 82.5 84.1 80.7 83.5 83.3 84.1
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Table 3: Results of open-vocabulary detection task on the whole COCO2017 validation set.
Model Name Param. AP@[50:95] AP@50 AP@75 AR@[50:95] AR@50 AR@75
InternVL3 (Zhu et al., 2025) 2B 6.9 11.2 7.0 14.9 20.8 15.6
Qwen2.5-VL (Bai et al., 2025) 3B 13.7 22.1 14.2 21.8 30.5 23.3
Qwen2.5-VL-SFT (Shen et al., 2025) 3B 17.1 27.5 17.3 25.4 35.6 26.4
VLM-R1 (Shen et al., 2025) 3B 19.2 33.1 19.0 32.2 46.9 33.6
PaDT (Ours) 3B 34.0 51.2 35.8 38.5 56.1 40.4
PaDT Pro (Ours) 3B 38.2 54.9 40.5 43.9 60.6 46.4
Qwen2.5-VL (Bai et al., 2025) 7B 18.2 30.4 17.9 28.1 40.3 29.3
LLaVa-NeXT (Liu et al., 2024b) 7B 0.7 2.2 0.3 1.3 3.3 0.8
LLaVa-OneVision (Li et al., 2024) 7B 2.2 5.8 1.1 4.1 8.8 3.2
InternVL3 (Zhu et al., 2025) 8B 17.5 26.6 18.2 28.0 37.3 29.7
PaDT (Ours) 7B 36.5 53.8 38.4 41.5 59.2 43.6
PaDT Pro (Ours) 7B 39.0 56.2 41.5 44.8 61.8 47.6

Table 4: Results of referring image captioning task on RIC validation set.

Model Name Param. Text Metrics Detection Metrics
CIDEr-D Meteor ROUGE-L BLEU-4 GP GR

LLaVa-OneVision (Li et al., 2024) 0.5B 0.058 0.088 0.185 0.052 5.2 0.5
InternVL3 (Zhu et al., 2025) 2B 0.315 0.230 0.374 0.284 42.4 18.2
Qwen2.5-VL (Bai et al., 2025) 3B 0.386 0.241 0.369 0.261 61.8 6.2
PaDT (Ours) 3B 1.450 0.304 0.501 0.467 81.6 45.4
PaDT Pro (Ours) 3B 1.412 0.300 0.495 0.458 82.3 45.1

LLaVa-NeXT (Liu et al., 2024b) 7B 0.262 0.200 0.335 0.178 54.3 10.6
LLaVa-OneVision (Li et al., 2024) 7B 0.172 0.207 0.330 0.182 32.5 10.2
Qwen2.5-VL (Bai et al., 2025) 7B 0.266 0.251 0.369 0.257 60.8 19.8
InternVL3 (Zhu et al., 2025) 8B 0.208 0.207 0.373 0.249 56.6 32.1
LLaVa-NeXT (Liu et al., 2024b) 13B 0.283 0.212 0.347 0.172 55.7 6.2
PaDT (Ours) 7B 1.445 0.304 0.500 0.466 77.0 45.2
PaDT Pro (Ours) 7B 1.387 0.299 0.491 0.449 82.3 45.8

PaDT Pro (3B) already outperform the much larger 78B InternVL3 model. These results demon-
strate the effectiveness of the visual reference token paradigm, which substantially aligns textual
semantics with image patches and thereby improves the precision of object localization in MLLMs.

Referring Expression Segmentation. Similar to REC, the Referring Expression Segmentation
(RES) task evaluates an MLLMs ability to segment the target object mask given a natural language
description. We adopt cIoU as the evaluation metric, and results are reported in Tab. 2. Both PaDT
and PaDT Pro achieve the best performance compared with existing methods, even against ap-
proaches such as Seg-R1 and Text4Seg+SAM that leverage the powerful SAM segmentation model.
With the lightweight PaDT decoder that translates unified visual reference tokens into segmenta-
tion masks, our models consistently outperform prior baselines. Additional qualitative examples are
provided in the Appendix A.8.

Open-vocabulary Detection. This is a fundamental visual perception task that evaluates an MLLMs
ability to perform semantic grounding. As shown in Table 3, most existing MLLMs struggle with
this task, showing low precision and recall. For instance, Qwen2.5-VL (3B) achieves only 13.7
mAP, and InternVL3 (8B) reaches 17.5 mAP on the COCO2017 validation set. Our PaDT and
PaDT Pro substantially advance the state of the art. PaDT Pro (3B) achieves 38.2 mAP, while the 7B
variant further improves to 39.0 mAP, nearly doubling the performance of prior best methods. These
gains highlight the effectiveness of visual reference tokens in strengthening semantic association and
object localization.

Referring Image Captioning. To validate both the visual understanding and grounding ability, we
conduct experiments on our RIC dataset. As shown in Table 4, PaDT and PaDT Pro (3B) deliver
strong improvements, reaching 1.45 CIDEr, 0.304 Meteor, 0.501 ROUGE-L, 0.467 BLEU-4, and
top detection scores of 82.3% GreedyPrecision (GP) and 45.1% GreddyRecall (GR). The 7B models
further extend performance, with PaDT Pro (7B) maintaining competitive caption quality, i.e. 1.39
CIDEr, while achieving the best detection-oriented scores, i.e. 82.3% GP, 45.8% GR. These results
suggest that PaDT generates not only fluent captions, but also semantically precise ones grounded
in localized visual content.

4.2 ABLATION EXPERIMENTS

Ablation study of Proposed Components in PaDT. We conduct detailed ablation studies in Tab. 5
using the 3B model with the following observations. i) The first row without VRTs corresponds to
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Table 5: The ablation study of the proposed components in PaDT.

Visual Reference Token Training Strategy REC RES

using VRTs fvp Task Decoder Lrobust
CE VRTs Selection RefCOCO val RefCOCO val

– – – – – 88.7 –
✓ – PaDT Decoder ✓ ✓ 91.1 72.1
✓ ✓ PaDT Decoder – ✓ 92.0 75.2
✓ ✓ PaDT Decoder – All VRTs 76.5 69.5
✓ ✓ PaDT Decoder ✓ All VRTs 49.1 19.8
✓ ✓ PaDT Decoder ✓ ✓ 93.2 76.1

Figure 5: The illustrations of the mask generations.
Decoder Output Only MaskOnly Points

Only Box Points + Box Points + Box + Mask

cIoU: 87.8 cIoU: 33.9 cIoU: 91.3

cIoU: 93.0 cIoU: 91.9 cIoU: 96.2

Table 6: Performance of using SAM2-L as mask
refiner with 3 types of prompts.

point box mask RefCOCOg val
– – – 70.5
✓ – – 69.9
– ✓ – 74.1
– – ✓ 74.0
✓ ✓ – 74.9
✓ ✓ ✓ 76.3

Table 7: The generalization analysis and finetuning result of PaDT on COCO2017 validation set.
Model Name Objects365 COCO2017 AP@[50:95] AP@50 AP@75 AR@[50:95] AR@50 AR@75
Qwen2.5-VL – – 13.7 22.1 14.2 21.8 30.5 23.3
PaDT (Zero Shot) ✓ – 16.9 23.7 18.0 21.5 30.6 22.7
PaDT (Task Specific) – ✓ 34.0 51.2 35.8 38.5 56.1 40.4
PaDT (FineTuned) ✓ ✓ 36.5 52.2 38.8 41.3 57.4 43.6

supervised fine-tuning on Qwen2.5-VL, directly predicting bounding box coordinates. By inegrat-
ing VRTs with robust CE loss and random VRTs selection, we observe noticeable improvement
in REC (detection task) and RES (segmentation task) being enabled. ii) We further notice that both
projection module fvp and robust CE loss are necessary for achieving improved performance. iii) Al-
ternative choice of including all foreground VRTs during training may even harm the performance,
probably due to bias towards high density regions.

Effectiveness of Mask Refinement with SAM2-L. We further analyze the compability of PaDT
output with segmentation foundation model, SAM2-L under three schemes. i) Given the VRTs
generated by PaDT, we extract their coordinates as point prompts to SAM2-L, denoted as point.
ii) Using the bounding box and mask generated by PaDT, respectively, as prompt for SAM2-L. We
explored different combinations with results in Tab. 6. First, we observe that using point prompt fails
to improve upon PaDT, due to the sparse prior information. However, both box and mask prompts
are conducive to further improving the results under the help of SAM. Combining multiple prompts
yields more significant improvement. Visualizations in Fig. 5 corroborate these findings. The results
suggest the segmentation performance can be further enhanced with expert foundation model at the
expense of additional inference cost.

Effectiveness of Pretraining and Task-specific Finetuning. To evaluate the generalization and
data-scaling properties of the PaDT framework, we pretrain on Objects365 (Shao et al., 2019) and
subsequently finetune on the COCO dataset. As shown in Tab. 7, PaDT exhibits stronger zero-shot
performance than the Qwen2.5-VL base model, and its finetuned version consistently outperforms
direct training on task-specific data.

5 CONCLUSION

In this work, we proposed Patch-as-Decodable Token (PaDT), a unified paradigm that equips
MLLMs with the ability to generate both textual and visual outputs through Visual Reference Tokens
(VRTs). By dynamically embedding VRTs into the LLM output space, PaDT ensures semantically
coherent and visually grounded predictions, overcoming the inefficiency and misalignment issues
of prior codebook-based methods. A light-weight decoder and an effective training strategy are
further introduced to enable visual perception and understanding tasks within PaDT. Extensive ex-
periments across detection, segmentation, grounding, and captioning demonstrate state-of-the-art
performance, highlighting directly predicting visual tokens as an effective and scalable paradigm
toward general-purpose multimodal reasoning systems.
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A APPENDIX

A.1 REFERRING IMAGE CAPTIONING (RIC) DATASET

A.1.1 DATASET CONSTRUCTION

Image captioning is a fundamental benchmark for evaluating the vision understanding ability of
MLLMs. In the conventional setting, given an input image, the model generates a pure textual de-
scription that summarizes the main subject and its activity, trained on large-scale image-text pairs.
However, such descriptions provide little supervision regarding object-level grounding, making it
difficult to assess whether the model accurately captures the spatial locations of entities. To ad-
dress this limitation, we re-annotate the COCO2017 dataset with more fine-grained annotations and
propose our Referring Image Captioning (RIC) dataset. Specifically, we leverage Qwen2.5-VL-72B
(prompt provided below) and feed each image together with its box-level annotations, instructing the
model to produce enriched captions that explicitly reference the corresponding box IDs. Examples
of the resulting training samples are shown in Fig. 6.

Prompt for generating RIC dataset
Prompt: <image>Please describe the image, focusing on the main objects (instances) present. After
mentioning an object in the caption, immediately append its instance ID(s) in parentheses, using the
format (<box id: ID/>). You MUST ONLY use the instance IDs provided in the list below. Do NOT
invent or make up any IDs. If there are multiple instance IDs for the same object, list all IDs within
the same parentheses, separated by commas. For example: ’A man (<box id: ID/>) is standing by
the table (<box id: ID/>). Two ovens (<box id: ID/>, <box id: ID/>) are visible.’ Here are the
optional instances in the image (id: ID, format: category: name, bbox: [x1, y1, x2, y2]):
- 200887, person, [389, 70, 498, 348]
- {list all annotations within this query image.}

IMPORTANT: Only use the instance IDs listed above in your caption. Do NOT invent or
make up any new IDs. Generate a fluent English caption that includes the main objects and their
instance IDs as specified.You don’t have to include all instances from the list above, as they are
optional; only describe the main elements of the image. The caption should be no more than 100
words and should not contain any information irrelevant to the image.

Qwen2.5-VL-72B: (Example) A bustling kitchen scene features a person (<box id: 200887/>)
working near a sink (<box id: 2196309/>). The dining table (<box id: 119568/>) holds vari-
ous cooking items, including a bowl (<box id: 713388/>) and a bottle (<box id: 82445/>). Two
ovens (<box id: 1125079/>, <box id: 2139366/>) are visible in the background. Another person
(<box id: 1218137/>) appears partially on the left. The table also has a cup (<box id: 1883614/>)
and a knife (<box id: 693231/>). The kitchen is equipped with hanging pots and a well-used
workspace, emphasizing a busy cooking environment.

A.2 TEMPLATE EXAMPLE FOR EACH VISION TASK

Here we present the interaction templates used in our PaDT framework, covering open-vocabulary
detection, referring expression comprehension, and referring image captioning tasks. The prompts
are designed to be concise and efficient, allowing PaDT to naturally interleave textual tokens and
VRT predictions during task training.

Open Vocabulary Detection Task
USER: <image>Please carefully check the image and detect the following objects: [{target list}].
ASSISTANT: In this image, there are {number} “{category}” (<VRT 0><VRT 1><VRT 2>
<VRT 3><VRT 4>, <VRT 5><VRT 6><VRT 7><VRT 8><VRT 9>, ...) and ...

Referring Expression Comprehension / Segmentation Task
USER: <image>Please carefully check the image and detect the object this sentence describes:
“{question}”.
ASSISTANT: The “{question}” refers to <VRT 0><VRT 1><VRT 2><VRT 3><VRT 4> in
this image.
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A man (<0>) rides a motorcycle (<1>) on a dirt path. He
is wearing a red shirt, black shorts, and a helmet. The
motorcycle has a rugged design with a rear storage
box. The background features lush greenery, a large
mountain partially covered in mist, and a bridge
spanning the scene. Another person (<2>) and a bicycle
(<3>) are visible in the distance, adding to the rural
setting. The atmosphere is serene, with natural
elements dominating the landscape.

A woman (<0>) stands in a
kitchen, holding a cat (<1>).
She is near a sink (<2>)
with a bowl of oranges
(<3>) and a bottle (<4>). A
refrigerator (<5>) is visible
to her right. A handbag
(<6>) rests on the floor by
her feet. The kitchen
features wooden cabinets
and a stove with a pan
(<7>). A potted plant (<8>)
and a clock (<9>) adorn the
counter. The scene is
warm and homey.

A young girl (<0>) is eagerly eating from a bowl
(<1>) on a dining table (<2>). She uses a spoon
(<3>) to scoop food, which appears to be melting.
The table is covered with a red-checkered
tablecloth. In the background, an adult (<4>) sits
with arms crossed, and a wine glass (<5>) is
partially visible. The scene is illuminated by
natural light, creating a warm and casual dining
atmosphere.

A man (<0>) is riding a bicycle
(<1>) on a path near a train
(<2>). The train, with a red
and white design, is
positioned on the tracks
behind the cyclist. A stop
sign (<3>) is visible to the
right of the man, and
overhead electrical lines run
above the train. The scene is
set in a well-lit area with
some greenery along the
path. The overall atmosphere
suggests a calm, possibly
suburban environment.

A woman (<0>) is eating from a spoon (<1>) in
a kitchen. She holds a plate of food,
including what appears to be broccoli.
Behind her, there is an oven (<2>) and a
microwave (<3>). A bottle (<4>) is visible on
the counter near the oven. The setting is a
home kitchen with light-colored cabinets
and a tiled backsplash. The woman is
wearing glasses and a blue top.

Figure 6: The training samples of RIC dataset. For each image, there are 3-5 captions, in which we
ask the MLLMs to refer to the object (via bounding box or visual reference tokens) following each
object’s subject.

Referring Image Captioning Task
USER: <image>Please describe this image.
ASSISTANT: ... {object1} (<VRT 0><VRT 1><VRT 2><VRT 3><VRT 4>) ... {object2}
(<VRT 5><VRT 6><VRT 7><VRT 8><VRT 9>) ...
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A.3 PROMPT USED FOR COMPETING METHODS

To guide MLLMs (e.g., Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu et al., 2025), and the LLaVA
series (Liu et al., 2024c)) in predicting bounding box coordinates in each task, we append a box-
specific and format-specific instruction to the task prompt, as detailed below.

Open Vocabulary Detection Task (with box and format instruction)
USER: <image>Please carefully check the image and detect the following objects: [{target list}].
Output each detected target’s bbox coordinates in JSON format. For example, “‘json
[{”bbox 2d”: [x1, y1, x2, y2], ”label”: ”target name”}]
“‘. If no targets are detected in the image, simply respond with None.

Referring Expression Comprehension / Segmentation Task (with format instruction)
USER: <image>Please carefully check the image and detect the object this sentence describes:
“{question}”. Output the final answer in JSON format.

Referring Image Captioning Task (with box instruction)
USER: <image>Please describe this image. You should include the corresponding bounding box of
the objects within the sentence. For example, ”In this image, a cat ([x1, y1, x2, y2]) is sitting on the
wooden table ([x1, y1, x2, y2]), ...”.

A.4 THE FORMULA OF THE TASK-SPECIFIC LOSSES ON THE PADT DECODER OUTPUT

Let Bpred ∈ RL×4 denote predicted bounding boxes with ground truth Bgt, Mpred ∈ RL×H×W

predicted masks with ground truth Mgt, and Spred ∈ R
L×1 predicted confidence scores with

ground truth Sgt. The Lbbox, Lmask and Lscore objectives are:

Lbbox =
1

L

L∑
l

Liou(Bpred
l ,Bgt

l ) + ||Bpred
l − Bgt

l ||1, (8)

Lmask =
1

L

L∑
l

Ldice(Mpred
l ,Mgt

l ) +

L∑
l

Lfocal(Mpred
l ,Mgt

l ), (9)

Lscore =
1

L

L∑
l

||Spred
l − Sgt

l ||22. (10)

A.5 ADDITIONAL ABLATION STUDY

A.5.1 TOKEN ACTIVATION MAP ANALYSIS

We provide additional Token Activation Map (TAM) visualizations, as illustrated in Fig. 7, compar-
ing Qwen2.5-VL and the PaDT Pro 7B model, showing that visual reference tokens establish much
stronger associations with target image patches than digit-by-digit coordinate predictions. These
results further highlight the robust semantic alignment and precise object localization achieved by
visual reference tokens.

A.5.2 ABLATION STUDY OF OTHER USED LOSSES

As shown in Table 8, we conduct ablations on the loss components Lbbox, Lmask, and Lscore.
PaDT achieves the best average performance when all visual task losses are combined. In particular,
removing the dynamic embedding module or omitting any individual loss (Lmask,Lbbox,Lscore)
consistently degrades performance on both referring expression comprehension and segmentation.
Notably, using all components yields the highest accuracy (93.2% REC and 76.1 mask cIoU) and the
strongest multi-task ability, underscoring that each module and loss is essential and complementary
for optimal task performance.
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Please carefully check the image
and detect the object this sentence
describes: ”55 bus”.“‘json
[
ĉ”bbox_2d”: [89, 116, 509, 430],
”label”: ”55 bus”
]
“‘
Candidates : 8, 9, 1,

Please carefully check the image
and detect the object this sentence
describes: ”all of the pizza d”.“‘json
[
ĉ”bbox_2d”: [1, 0, 504, 360], ”label”:
”all of the pizza d”
]
“‘
Candidates : 2, 1, 0,

Please carefully check the image
and detect the object this sentence
describes: ”batter 2ns up on left”.“‘json
[
ĉ”bbox_2d”: [0, 314, 295, 518],
”label”: ”batter 2ns up on left”
]
“‘
Candidates : 2, 0, 1,

Please carefully check the image
and detect the object this sentence
describes: ”big one”.“‘json
[
ĉ”bbox_2d”: [263, 28, 551, 439],
”label”: ”big one”
]
“‘
Candidates : 2, 1, 3,

Please carefully check the image
and detect the object this sentence
describes: ”55 bus”.The ”55 bus”
refers to <VRT_168> <VRT_167>
<VRT_240> <VRT_213>
<VRT_170> in this image.
Candidates : < V RT_168 >, < V RT_167 >,
< V RT_213 >,

Please carefully check the image
and detect the object this sentence
describes: ”all of the pizza d”.The ”all
of the pizza d” refers to <VRT_116>
<VRT_141> <VRT_116>
<VRT_42> <VRT_116> in this
image.
Candidates : < V RT_116 >, < V RT_141 >,
< V RT_42 >,

Please carefully check the image
and detect the object this sentence
describes: ”batter 2ns up on left”.The
”batter 2ns up on left” refers
to <VRT_398> <VRT_277>
<VRT_279> <VRT_278>
<VRT_281> in this image.
Candidates : < V RT_398 >, < V RT_277 >,
< V RT_279 >,

Please carefully check the image
and detect the object this sentence
describes: ”big one”.The ”big one”
refers to <VRT_176> <VRT_200>
<VRT_201> <VRT_154>
<VRT_132> in this image.
Candidates : < V RT_176 >, < V RT_200 >,
< V RT_201 >,

Please carefully check the image
and detect the object this sentence
describes: ”right toilet”.The ”right
toilet” refers to <VRT_246>
<VRT_245> <VRT_269>
<VRT_176> <VRT_223> in this
image.
Candidates : < V RT_246 >, < V RT_245 >,
< V RT_223 >,

Please carefully check the image
and detect the object this sentence
describes: ”right toilet”.“‘json
[
ĉ”bbox_2d”: [330, 184, 500, 567],
”label”: ”right toilet”
]
“‘
Candidates : 3, 2, 1,

Big One Right Toilet 55 Bus All of the Pizza d
Batter 2ns up on 
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Figure 7: More TAM visualizations of Qwen2.5-VL and our PaDT Pro 7B models.

Table 8: Ablation study of each individual components (with the analysis of additional losses).

VRT Dynamic Embedding Module Visual Task Loss Detection Segmentation
fvp Lmask Lbbox Lscore RefCOCO val (REC) COCO val RefCOCO val (RES)

– – – – – 88.7 17.1 –
✓ – ✓ ✓ ✓ 91.1 27.5 72.1
✓ ✓ – ✓ ✓ 91.7 32.3 –
✓ ✓ ✓ – – – – 78.0
✓ ✓ ✓ ✓ – 92.7 24.4 75.2
✓ ✓ ✓ ✓ ✓ 93.2 34.0 76.1

A.5.3 ABLATION STUDY OF THE NUMBER OF SELECTED VRTS PER TARGET

We analyze how the number of selected visual patches per target impacts performance. As shown
in Table 9, increasing the number of patches from 1 to 5 steadily improves both bounding box
accuracy and mask cIoU across all datasets. The best results are obtained with 5 patches per target,
while further increasing to 8 patches yields diminishing or even negative returns. This indicates
that a moderate number of representative patches provides richer representations, whereas excessive
patches introduce noise and redundancy, leading to unstable training of PaDT.

We also investigate the case of using all foreground patches as ground-truth VRTs during training.
As shown in Fig. 8, this configuration produces the worst results. Although the number of output
VRTs increases, the PaDT decoder exhibits clear performance degradation. We attribute this to the
redundancy (that makes the PaDT hard to predict all VRTs at the inference stage) and low resolution
of patch-level features: when all foreground patches are used, the decoder is forced to decode trivial
and overlapping regions, which prevents it from learning accurate target boundaries and masks,
especially when only a limited number of VRTs are predicted at inference. Consequently, selecting
a moderate number of informative patches proves more effective than training with all foreground
patches.

A.5.4 ABLATION STUDY OF DIFFERENT SAMPLING STRATEGY
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Table 9: Ablation study of the number of selected visual patches per target and different sampling
strategy.

#Patches / Target 1 3 5 8 ALL Border-aware Sampling

RefCOCO val
Bbox Acc@0.5 92.4 93.2 93.2 92.6 49.1 92.1
Bbox Acc@0.75 82.7 86.1 87.1 85.9 15.5 –
Mask cIoU 67.3 75.2 76.1 75.7 19.8 70.9

RefCOCO+ val
Bbox Acc@0.5 87.5 88.1 88.5 87.5 – 86.6
Bbox Acc@0.75 78.8 82.1 82.8 81.7 – –
Mask cIoU 63.7 71.4 72.7 71.6 – 66.9

RefCOCOg val
Bbox Acc@0.5 88.1 88.2 88.2 86.8 – 87.0
Bbox Acc@0.75 78.7 80.7 81.1 79.9 – –
Mask cIoU 62.7 69.7 70.5 70.0 – 65.6

We present a detailed comparison among different sampling strategies, including random sampling
(18 patches), using all foreground patches, and border-aware sampling (four tokens from left, top,
right and bottom boundaries). The results are summarized in Table 9.

We make the following key observations:

• Using all foreground patches as ground-truth VRTs leads to performance collapse.
When all foreground patches are provided during training, the task decoder tends to overfit
to the ground-truth VRTs and relies heavily on the MLLM’s predicted VRTs during infer-
ence. As the decoder simply learns to produce trivial bounding boxes or masks that cover
all foreground areas, it no longer needs to truly understand object boundaries, thus failing
to generalize.

• Random sampling consistently benefits performance. As the number of randomly sam-
pled patches increases from 1 to 5, the performance consistently improves. The best results
are achieved with 5 randomly sampled patches, indicating that this strategy strikes a bal-
ance between coverage and model generalization.

• Boundary-aware sampling underperforms random sampling. Sampling exclusively
from the four boundaries (left, top, right, bottom) yields weaker results. We hypothesize
that boundary patches often contain ambiguous semantics, especially when segmentation
annotations are unavailable. This increases training difficulty and again makes the task
decoder overly dependent on MLLM’s predicted boundary VRTs.

A.6 SCALABILITY TO HIGH-RESOLUTION IMAGES

A.6.1 COMPATIBILITY WITH HIGH-RESOLUTION IMAGES: YES, FULLY SUPPORTED

PaDT is fully compatible with high-resolution images and supports native resolutions. Our PaDT
framework inherits from Qwen2.5-VL, and just like Qwen2.5-VL, it supports image inputs at their
original resolution. For instance, in our experiments, we did not perform any resizing operations on
training images and we directly use their native resolutions.

• COCO dataset: multiple resolutions, such as 640 480, 480 640, 640 573, 500 333, etc.
(Tab. 1,2,3).

• Objects365 dataset: high-resolution images such as 1024 727, 4608 3072, 768 1024,
5152 3864, etc. (Tab. 7).

Table 7 further shows the results of training PaDT on Objects365 (with highly dynamic high-
resolution inputs) and transferring to COCO dataset. Both Zero-Shot and Fine-Tuned results
(mAP50) outperform Qwen2.5-VL models on the same scale.
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A.6.2 ADDITIONAL COMPUTATION OVERHEAD INTRODUCED BY PADT: VERY LOW

High-resolution images naturally introduce more visual tokens, leading to increased computation
and GPU memory, which is inherent to all MLLM models, including PaDT, Qwen2.5-VL, and
InternVL3. Importantly, the additional overhead introduced by PaDT, compared to Qwen2.5-VL, is
negligible. We quantify these additional costs as follows:

1. Number of Visual Tokens / Patches: For an input image of size H ×W , the number of VRTs
is: #VRTs = h × w, where h = round(H/28), w = round(W/28). This is identical to the
patch extraction process used in Qwen2.5-VL and InternVL3. Thus, PaDT does not introduce new
resolution-dependent costs beyond standard visual encoder usage.

2. Dynamic Embedding Table:

* Qwen2.5-VL-7B Text Embeddings:
Memory: 152,064 * 3584

* PaDT Dynamic Embedding Table:

Please carefully
check the image and
detect the object
this sentence
describes: "white
car on the left”.

Please carefully
check the image and
detect the object
this sentence
describes: "front
bowl wcarrots in it”.

Please carefully
check the image and
detect the object
this sentence
describes: "tall
suitcase”.

Please carefully
check the image and
detect the object
this sentence
describes: "white
car on the left”.

Please carefully
check the image and
detect the object
this sentence
describes: "front
bowl wcarrots in it”.

Please carefully
check the image and
detect the object
this sentence
describes: "tall
suitcase”.

❌ PaDT trained with all 
foreground VRTs

✅ PaDT trained with 5 
random foreground VRTs

Figure 8: Qualitative analysis between training PaDT with all foreground VRTs and 5 randomly
selected foreground VRTs.
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Memory: (152,064 + hw) * 3584
Additional memory: hw * 3584
Increasing rate = hw / 152,064

For a 1024× 1024 image:

h = w = round(1024 / 28) = 37
Extra memory = 37 * 37 * 3584 * 2 Bytes (bfloat16) = 8 MB
Increasing rate = 0.009 (i.e., <1%)

3. Projection Module fvp: Negligible Cost:

LayerNorm:
Memory: 3584 * 2

Two Linear Projections (W_A, W_B):
Memory: 3584 * 64 * 2

This overhead is less than 0.02% of the LLM backbone parameters (3B), thus negligible.

4. No Extra Overhead in the LLM Forward Pass: VRTs are treated identically to text tokens
during embedding lookup. Once embedded, they are processed by the LLM backbone without any
additional computation. No structural modification or auxiliary branch is added to the forward pass.

5. PaDT Head Overhead: Let H ∈ RL×3584 be the backbone output:

* Qwen2.5-VL-7B:
FLOPs = L * 3584 * 152,064

* PaDT:
FLOPs = L * 3584 * (152,064 + hw)

Increasing Rate: hw / 152,064 (= 0.009 for a 1024 * 1024 image)

Again, the overhead remains less than 1% even for high-resolution images.

6. Lightweight Decoder Head: The decoder consists of only three 2-way attention modules, with
95M parameters, significantly smaller than the 37B LLM backbone. Moreover, all VRTs are de-
coded in a single forward pass, no iterative decoding is required.

Overall: PaDT preserves the inference speed and memory footprint of standard multimodal LLMs.
The only resolution-dependent cost comes from visual patch extraction, which is inherent to all
high-resolution MLLMs.

A.6.3 PADT IS EVEN MORE EFFICIENT THAN QWEN2.5-VL

Although PaDT introduces negligible overhead, it is more efficient during inference and training.
This is because PaDT represents an object with fewer tokens:

Qwen2.5-VL:
[100, 200, 300, 400] -> ’[’, ’1’, ..., ’0’, ’]’ -> 17 tokens

PaDT:
<|VRT_0|><|VRT_1|><|VRT_2|><|VRT_3|><|VRT_4|> -> 5 tokens

During inference (autoregressive decoding), PaDT saves 12 forward passes per object. During
training, it reduces 12 forward tokens per object. These savings greatly outweigh the small mem-
ory / computation overhead analyzed above. Therefore, overall, PaDT is both more efficient and
more effective than Qwen2.5-VL. More quantitative analysis is shown as Tab. 10, we benchmarked
inference on RefCOCO val set (averaged over 100 samples) and scaled the images by 2x (e.g.,
448× 644 → 896× 1288).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: The quantitative analysis of computation cost and memory allocation for different image
resolutions.

Model Image Resolution A Whole Generation Process Single-Pass Forward Sequence Length Peek Memory Allocation
Qwen2.5-VL (3B) 1x 1.127 s 0.027 s 42.22 8,186 MB
PaDT (3B) 1x 0.661 s (-0.466 s) 0.034 s (+0.007 s) 19.44 (-22.78) 8,530 MB (+344 MB)

Qwen2.5-VL (3B) 2x 1.373 s 0.032 s 42.96 9,470 MB
PaDT (3B) 2x 0.905 s (-0.468 s) 0.046 s (+0.014 s) 19.44 (-23.52) 9,446 MB (-24 MB)

A.7 COMPARISON WITH QWEN2.5-VL USING DIFFERENT POST-TRAINING STRATEGY

We compare PaDT with Qwen2.5-VL under different post-training strategies (i.e., SFT or GRPO)
on the task-specific datasets. The results in Table 11 and Table 12 show that: 1. PaDT consistently
outperforms post-trained Qwen2.5-VL across both tasks; 2. PaDT achieves superior zero-shot per-
formance; and 3. PaDT demonstrates stronger transferability, as pretraining on Objects365 followed
by finetuning on COCO yields better results than training on COCO alone.

Table 11: The results on Referring Expression Comprehension (REC) task.

Model Name Setting RefCOCO val RefCOCO+ val RefCOCOg val

Qwen2.5-VL Zero-Shot 89.1 82.4 85.2
Qwen2.5-VL SFT 88.7 82.3 86.0
Qwen2.5-VL GRPO (Shen et al., 2025) 90.1 84.2 85.6

PaDT SFT 93.2 88.5 88.2
PaDT-Pro SFT 96.0 91.8 93.6

Table 12: The results on Open-Vocabulary Detection (OVD) task.

Model Name Setting mAP@[50:95]

Qwen2.5-VL Zero-Shot 13.7
PaDT Zero-Shot (Pretrained on Objects365) 16.9

Qwen2.5-VL SFT 17.1
Qwen2.5-VL GRPO (Shen et al., 2025) 19.2

PaDT Task-Specific SFT 34.0
PaDT Objects365 → COCO 36.5

PaDT-Pro SFT 38.2

A.8 QUALITATIVE EVALUATION

A.8.1 OPEN VOCABULARY DETECTION ON COCO2017 DATASET

Comparison with representative MLLMs. In this section, we present qualitative results for open-
vocabulary detection on the COCO2017 dataset, comparing PaDT against representative MLLMs.
As shown in Fig. 9, several key observations can be made.

• Higher recall. PaDT consistently detects a larger number of objects in the scene, demon-
strating stronger recall. This improvement stems from its ability to directly predict visual
reference tokens (VRTs) that are anchored to image patches, enabling more reliable cover-
age of relevant objects.

• Robustness in cluttered scenes. Competing MLLMs, which predict serialized bounding
box coordinates, often struggle in scenes with many repetitive or similar-looking objects.
Their predictions may miss valid instances or collapse onto a few candidates, whereas
PaDT maintains distinct references to multiple targets.

• Avoiding invalid outputs. Existing MLLMs occasionally fail to produce valid detections,
labeled as Error in Fig. 9. In such cases, the models tend to generate repetitive text se-
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quences until reaching the maximum output length, i.e. 2048 tokens. PaDT avoids this
failure mode by grounding predictions directly in visual tokens rather than relying solely
on text-based serialization.

Overall, these qualitative comparisons reinforce the advantages of PaDT: directly predicting visual
tokens not only improves recall but also enhances robustness and stability in open-vocabulary de-
tection.

Visualization of PaDT results on REC/RES and OVD tasks. In Fig. 10, we present extensive
qualitative examples generated by the proposed PaDT framework. For Referring Expression Com-
prehension (REC) and Referring Expression Segmentation (RES), PaDT first parses the user query
and identifies the corresponding target within the image. As illustrated in the top-left subfigure of
each example, PaDT generates five visual reference tokens (VRTs), each directly correlated with
specific image patches and thus easily localizable. These VRTs are subsequently passed into the
PaDT decoder to produce the corresponding bounding box and segmentation mask. The overall
pipeline is simple yet effective. Compared to character-by-character coordinate generation, PaDT
requires far fewer tokens (only five VRTs per target) while providing stronger semantic and spatial
grounding with respect to the object.

Similar observations are made in the Open-Vocabulary Detection (OVD) task. Unlike REC/RES,
OVD requires PaDT to predict multiple targets along with their category labels. In our response
template, both categories and VRTs are naturally interleaved within the output sequence, enabling
efficient multimodal reasoning. This training strategy strengthens the semantic alignment between
text and image patches, thereby improving both precision and recall in detection task.

A.8.2 REFERRING IMAGE CAPTIONING ON RIC DATASET

Comparison with representative MLLMs. In this section, we present qualitative results for open-
vocabulary detection on the Referring Image Captioning (RIC) dataset, comparing PaDT with rep-
resentative MLLMs, including InternVL3 8B and Qwen2.5-VL 7B models. As shown in Fig. 11,
PaDT exhibits clear advantages in both bounding box accuracy and object recall. Detailed qualitative
comparisons are provided in the figure, further demonstrating the effectiveness of leveraging visual
reference tokens as a bridge between high-level text semantics and low-level object localization.

Visualization of PaDT results on RIC task. We further present qualitative examples generated
by the proposed PaDT framework. As shown in Fig. 12, visual reference tokens are automatically
generated alongside the subject, illustrating a natural interleaving between semantic text and image
patches. This design further enhances object-level alignment between textual descriptions and visual
elements, thereby strengthening the co-reasoning ability across text and image modalities.
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PaDT Pro 7B InternVL3 8B Qwen2.5-VL 7B

Error

VLM-R1GTImage

Error

Error

Error

Error

Figure 9: Qualitative comparison on COCO2017 open-vocabulary detection. We compare PaDT
with representative MLLMs including InternVL3 and Qwen2.5-VL. Competing models frequently
fail to produce valid outputs, leading to Error cases or repetitive text generation. In contrast, PaDT
achieves higher recall and correctly identifies multiple objects, even in cluttered scenes with repeti-
tive instances. These results highlight the benefit of directly predicting visual reference tokens over
serialized bounding box coordinates.
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Referring Expression Comprehension / Segmentation
User: Please carefully check the 
image and detect the object this 
sentence describes: "a dark gray 
couch”.

Assistant: The "a dark gray couch" 
refers to 
<VRT_202><VRT_224><VRT_250><VR
T_272><VRT_297> in this image.

User: Please carefully check the 
image and detect the object this 
sentence describes: "a pizza with 
fresh mozzarella and halved cherry 
tomatoes”.

Assistant: The "a pizza with fresh 
mozzarella and halved cherry 
tomatoes" refers to 
<VRT_176><VRT_199><VRT_222><VRT
_153><VRT_151> in this image.

User: Please carefully check 
the image and detect the 
object this sentence 
describes: "a bowl of healthy 
food with a spoon and napkin 
next to it”.

Assistant: The "a bowl of 
healthy food with a spoon 
and napkin next to it" refers 
to 
<VRT_170><VRT_183><VRT_2
13><VRT_228><VRT_258> in 
this image.

Open Vocabulary Detection
In this image, there are 3 "person" (<VRT_109><VRT_86><VRT_42><VRT_41><VRT_19>, 
<VRT_66><VRT_67><VRT_46><VRT_1><VRT_89>, <VRT_31><VRT_10><VRT_32><VRT_10><VRT_9>), 2 "cup" 
(<VRT_242><VRT_243><VRT_222><VRT_177><VRT_244>, <VRT_94><VRT_93><VRT_138><VRT_314><VRT_293>), 
3 "fork" (<VRT_325><VRT_276><VRT_277><VRT_325><VRT_325>, 
<VRT_303><VRT_255><VRT_326><VRT_302><VRT_278>, 
<VRT_373><VRT_350><VRT_395><VRT_373><VRT_373>), 1 "cake" 
(<VRT_388><VRT_387><VRT_363><VRT_409><VRT_343>), 5 "chair" 
(<VRT_150><VRT_128><VRT_149><VRT_150><VRT_106>, <VRT_101><VRT_78><VRT_76><VRT_77><VRT_99>, 
<VRT_17><VRT_39><VRT_17><VRT_17><VRT_17>, <VRT_60><VRT_38><VRT_15><VRT_37><VRT_15>, 
<VRT_197><VRT_197><VRT_219><VRT_175><VRT_197>) and 2 "dining table" 
(<VRT_296><VRT_212><VRT_188><VRT_190><VRT_217>, <VRT_65><VRT_42><VRT_65><VRT_65><VRT_65>).

In this image, there are 2 "apple" 
(<VRT_130><VRT_148><VRT_147><VRT_186><VRT_1
49>, 
<VRT_66><VRT_84><VRT_86><VRT_102><VRT_119>
) and 5 "orange" 
(<VRT_191><VRT_175><VRT_194><VRT_176><VRT_1
95>, 
<VRT_152><VRT_134><VRT_153><VRT_170><VRT_1
17>, 
<VRT_80><VRT_61><VRT_116><VRT_79><VRT_115>, 
<VRT_45><VRT_44><VRT_42><VRT_26><VRT_62>, 
<VRT_93><VRT_94><VRT_92><VRT_112><VRT_75>).

There are 6 "donut" 
(<VRT_282><VRT_283><VRT_28
4><VRT_334><VRT_318>, 
<VRT_361><VRT_327><VRT_33
0><VRT_347><VRT_364>, 
<VRT_247><VRT_213><VRT_24
8><VRT_215><VRT_230>, 
<VRT_192><VRT_191><VRT_211>
<VRT_175><VRT_226>, 
<VRT_105><VRT_103><VRT_104
><VRT_57><VRT_56>, 
<VRT_62><VRT_63><VRT_61><V
RT_78><VRT_77>) in this image.

Figure 10: Qualitative visualization of PaDT generated examples on referring expression compre-
hension/segmentation tasks.
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A group of young tennis players and their
coaches are posing on a tennis court. The
players, dressed in white shirts and dark
skirts, are holding tennis rackets (<0>, <1>,
<2>, <3>, <4>, <5>, <6>, <7>, <8>). The coaches,
standing behind the players, are also
holding rackets. The background features a
chain-link fence and trees. The image
captures a moment of camaraderie and
sportsmanship, with the players and
coaches (<9>, <10>, <11>, <12>, <13>, <14>, <15>,
<16>, <17>, <18>) smiling for the camera.

In this image, a group of women
tennis players (<0>) is posing on a
tennis court. They are wearing
matching white polo shirts and
dark skirts, holding tennis
rackets. The background shows
a tennis net (<1>) and a chain-link
fence (<2>) with trees and a
cloudy sky beyond.

The image shows a group of nine individuals, likely a tennis team,
posing together on a tennis court. They are dressed in matching
uniforms consisting of white shirts and dark skirts or shorts.
Each person is holding a tennis racket. The setting appears to be
outdoors with trees and a fence visible in the background. The
photo is in black and white, giving it a vintage feel.

Here's the bounding box description:

- **Group of people**: Bounding box for the entire group (9
individuals) - <0>
- **Tennis rackets**: Each individual is holding one tennis
racket, which can be seen in their hands.
- **Court net**: The net of the tennis court is visible at the
bottom of the image.
- **Trees and fence**: These elements are part of the
background, located behind the group.

In a bustling kitchen, chefs (<0>, <1>, <2>,
<3>, <4>, <5>) work diligently at their
stations. Stainless steel surfaces gleam
under the bright lights. A chef prepares
food near a sink (<6>), while another bends
over a counter. Various fruits, including
apples (<7>, <8>, <9>, <10>, <11>, <12>) and
bananas (<13>, <14>, <15>) are displayed on a
prep area. Bowls (<16>, <17>) and bottles
(<18>, <19>) are scattered across the
workspace. The scene captures the
organized chaos of a professional kitchen
in action.

In this image, a chef (<0>) is working in a
professional kitchen (<1>). The kitchen is
bustling with activity, featuring multiple
chefs preparing food. The scene includes
various kitchen equipment and ingredients,
such as a stainless steel counter (<2>) and a
display case with fruits like bananas (<3>).
Plates are stacked on the counter (<4>), and
there are bottles and other kitchen
supplies scattered around.

The image shows a busy professional kitchen with chefs
working at their stations. The chefs are wearing white
uniforms and hats, indicative of a formal culinary setting.
The kitchen is equipped with stainless steel appliances,
including large hoods above the stoves and a sink area in
the foreground. There are stacks of plates and other
kitchen tools visible on the counters. In the background,
there's a display case filled with fresh fruits like bananas
and apples, suggesting a high-end restaurant environment.
The lighting is dim, focusing attention on the chefs and
the food preparation areas.

Bounding boxes:
- Chefs: <0>
- Kitchen equipment: <1>
- Display case: <2>

A workspace features three laptops
(<0>, <1>, <2>) and a central monitor (<3>).
A keyboard (<4>) and mouse (<5>) are
placed on the desk. A desk lamp
illuminates the area, while a framed
picture hangs on the wall. A bookshelf
holds books (<6>, <7>, <8>, <9>, <10>, <11>,
<12>) and a bottle (<13>) is on the desk.
A cup (<14>) sits near the edge. The
setup is organized, with a mix of
technology and personal touches.

In this image, a workspace setup is shown with multiple laptops
and a desktop monitor on a desk. The desk is positioned against a
wall with a window covered by blinds and sheer curtains. Here's a
detailed description:

- **Laptops**: There are three laptops on the desk. One is on
the left side of the desk, another is in the center, and the third
is on the right side. Each laptop is open and appears to be in use.
- Left laptop: Located on the left side of the desk, with its

screen displaying some text and graphics (<0>).
- Center laptop: Positioned in the middle of the desk, slightly to

the left, with its screen showing a desktop interface (<1>).
- Right laptop: Situated on the right side of the desk, with its

screen displaying a webpage or document (<2>).

- **Desktop Monitor**: A larger desktop monitor is placed in the
center of the desk, showing a scenic image of a sunset over
water (<3>).

- **Keyboard and Mouse**: A keyboard and mouse are centrally located on the desk, in front of the desktop monitor (<4>).

- **Lamp**: A desk lamp with a black shade is positioned on the left side of the monitor, extending over the desk (<5>).

- **Clock**: A digital clock is placed between the left and center laptops, showing the time as 17:05 (<6>).

- **Books and Accessories**: Various books and accessories are on the desk and a shelf to the right. The shelf holds a camera tripod and
other items (<7>).

- **Beverage and Glass**: A bottle of soda and a glass are on the right side of the desk (<8>).

- **Picture Frame**: A framed picture hangs on the wall above the desk, to the left of the window (<9>).

- **Shelf**: A black shelving unit is on the right side of the desk, holding various items including books and a camera tripod (<10>).

- **Cushion**: A purple cushion is placed in front of the keyboard on the desk (<11>).

- **Digital Tablet**: A digital tablet is on the right side of the desk, next to the right laptop (<12>).

The workspace appears organized and well-equipped for multitasking.

The image shows a workspace setup with multiple
electronic devices and accessories. Here's a detailed
description:

- **Desk**: The main surface is a dark wooden desk.
- **Monitors**: There are two monitors placed side by
side in the center of the desk. The left monitor displays a
text-based interface, while the right one shows an image
of a beach scene.
- **Laptops**: Two laptops are positioned on either side
of the monitors:
- On the left: A laptop with a visible screen displaying a

text-based interface.
- On the right: Another laptop with a screen showing a

webpage or document.
- **Keyboard and Mouse**: A large keyboard is placed in
front of the monitors, and a mouse is located to the right
of it.
- **Lamp**: A desk lamp is situated between the two
monitors, providing light for the workspace.
- **Other Items**:
- A small clock is placed near the center of the desk.
- A water bottle is on the right side of the desk.
- A glass is also present on the right side.
- A wallet or pouch is on the right side of the desk.
- A framed picture hangs on the wall above the desk.
- A shelf with books and other items is visible on the

far right.

This workspace appears organized and functional, suitable
for multitasking or work that requires multiple screens.

PaDT Pro 7B InternVL3 8B Qwen2.5-VL 7B

Figure 11: Qualitative comparison on the Referring Image Captioning (RIC) dataset. We compare
PaDT with representative MLLMs, including InternVL3 and Qwen2.5-VL. PaDT shows clear ad-
vantages in both bounding box accuracy and object recall over competing methods.

Referring Image Captioning
A car
(<VRT_204><VRT_251><VRT_179><VRT_178><VR
T_201>) is parked on a narrow road, with several
horses blocking the way. The horses
(<VRT_199><VRT_151><VRT_198><VRT_174><VRT
_176>,
<VRT_150><VRT_196><VRT_173><VRT_197><VRT
_196>,
<VRT_155><VRT_155><VRT_155><VRT_155><VRT
_155>,
<VRT_172><VRT_171><VRT_171><VRT_171><VRT_
171>,
<VRT_170><VRT_170><VRT_170><VRT_170><VRT
_170>) are standing calmly, some near the
center of the road while others are closer to
the fence. The road is lined with a wooden fence
on one side and trees on the other, creating a
shaded, rural setting. The scene suggests a
peaceful interaction between the vehicle and
the animals in a countryside environment.

A cat
(<VRT_62><VRT_81><VRT_80><VRT_6
2><VRT_62>) is lounging on the hood
of a black Mercedes-Benz car
(<VRT_187><VRT_205><VRT_169><VR
T_84><VRT_183>). The car's shiny
surface reflects the surrounding
buildings and greenery. The cat, with
its orange and white fur, appears
relaxed as it gazes into the distance.
Behind the car, a fence and lush
bushes add a touch of nature to the
urban setting. The scene captures a
peaceful moment in a residential area.

A person
(<VRT_166><VRT_189><VRT_143><VR
T_145><VRT_168>) is driving a horse-
drawn racing cart. The horse
(<VRT_216><VRT_153><VRT_176><VR
T_105><VRT_127>) is a bay with a
white blaze on its face, wearing a
bridle and harness. The cart is red
and white, and the driver is wearing a
helmet and a yellow and blue jacket.
They are on a dirt track with grassy
areas and advertisements in the
background. The scene suggests a
harness racing event. The horse
appears to be in motion, pulling the
cart steadily.

A small dog
(<VRT_248><VRT_249><VRT_23
5><VRT_236><VRT_275>) is
lying on a rug in a bathroom,
looking up. The bathroom
features a white sink
(<VRT_176><VRT_176><VRT_163
><VRT_162><VRT_150>) with a
faucet and a bottle of soap
(<VRT_153><VRT_153><VRT_153
><VRT_153><VRT_153>) on it. A
toilet
(<VRT_246><VRT_243><VRT_28
2><VRT_259><VRT_246>) is
positioned next to the sink. An
orange curtain hangs from the
ceiling, partially covering the
shower area. The floor is
wooden, and a small white toilet
brush is placed near the toilet.
The scene is cozy and well-lit.

In the image, a serene rural scene unfolds
with a horse
(<VRT_296><VRT_181><VRT_205><VRT_20
4><VRT_203>) in the foreground, partially
obstructed by a wooden fence. Another
horse
(<VRT_236><VRT_235><VRT_282><VRT_2
59><VRT_212>) grazes peacefully in the
background. A third horse
(<VRT_186><VRT_208><VRT_209><VRT_18
4><VRT_185>) is visible further back, near
a rustic stone building. The backdrop
features a weathered castle ruin, adding a
touch of historical charm to the
landscape. The dark, moody sky enhances
the atmospheric quality of the scene,
while the lush green grass contrasts
beautifully with the earthy tones of the
architecture and animals.

A white bird
(<VRT_79><VRT_134><VRT_135>
<VRT_116><VRT_153>) perches
gracefully on the roof of a car
(<VRT_227><VRT_229><VRT_20
7><VRT_208><VRT_226>). The
car is parked in a lot with a
building and trees in the
background. The bird's
reflection is visible on the car's
shiny surface. Another car
(<VRT_161><VRT_161><VRT_161>
<VRT_161><VRT_161>) is
partially visible in the distance.
The scene captures a serene
moment in an outdoor setting,
with the bird as the focal point.

Figure 12: Qualitative visualization of PaDT generated examples on referring image captioning task.
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