

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PATCH-AS-DECODABLE-TOKEN: TOWARDS UNIFIED MULTI-MODAL VISION TASKS IN MLLMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal large language models (MLLMs) have advanced rapidly in recent years. However, existing approaches for vision tasks often rely on indirect representations, such as generating coordinates as text for detection, which limits performance and prevents dense prediction tasks like segmentation. To overcome these challenges, we introduce Patch-as-Decodable Token (PaDT), a unified paradigm that enables MLLMs to directly generate both textual and diverse visual outputs. Central to PaDT are Visual Reference Tokens (VRTs), derived from visual patch embeddings of query images and interleaved seamlessly with LLM's output textual tokens. A lightweight decoder then transforms LLM's outputs into detection, segmentation, and grounding predictions. Unlike prior methods, PaDT processes VRTs independently at each forward pass and dynamically expands the embedding table, thus improving localization and differentiation among similar objects. We further tailor a training strategy for PaDT by randomly selecting VRTs for supervised fine-tuning and introducing a robust per-token cross-entropy loss. Our empirical studies across four visual perception and understanding tasks suggest PaDT consistently achieving state-of-the-art performance, even compared with significantly larger MLLM models.

1 INTRODUCTION

Fine-grained image perception and understanding, which aim to associate specific image regions with contextual information, such as semantic or instance, is a fundamental task in computer vision and serves as a cornerstone for numerous applications. Classical vision models (Ren et al., 2015; Redmon et al., 2016; Carion et al., 2020) remain state-of-the-art for pure detection and segmentation tasks, but they lack flexible language interaction and understanding, thus prohibiting open vocabulary oriented visual reasoning tasks. At an earlier stage, inspired by CLIP (Radford et al., 2021), many vision-language detectors such as GLIP (Li et al., 2022b) and Grounding DINO (Ren et al., 2023) incorporate language information to detect arbitrary classes. However, these methods remain vision-centric backbones augmented with language, and thus struggle to handle more complex textual descriptions and are limited to structured output.

Recent advances have led to powerful multi-modal large language models (MLLMs) (Alayrac et al., 2022; Li et al., 2023; Liu et al., 2024c; Bai et al., 2025; Zhu et al., 2025) that couple vision encoders with Large Language Models(LLMs). Pretrained on massive multimodal datasets, these models encode rich prior knowledge and provide a strong foundation for visual perception and understanding, as illustrated in Fig. 1. To conform with the textual output space of LLMs, most existing MLLMs (Liu et al., 2025a; Bai et al., 2025; Zhu et al., 2025) serialize detected regions into bounding box coordinates, expressed in textual form, such as $[x_1, y_1, x_2, y_2]$. While straightforward, this strategy introduces several challenges. First, output formats are often inconsistent across samples even under the same prompt, as illustrated in Fig. 2(a), thereby increasing the difficulty of parsing and structured output. Second, numerical coordinate representations provide precise spatial descriptions but lack semantic alignment between textual and visual modalities, as shown in Fig. 2(b). This inherent misalignment can lead to repetition or hallucination between coordinate and actual visual targets (Jiang et al., 2024b). Moreover, since numerical coordinate representations are mapped into discrete textual tokens, a single coordinate value may be split into several unrelated tokens, as shown in Fig. 2(b). These discontinuous coordinate tokens can hinder prediction accuracy, e.g., fragmented numbers.

Figure 1: Illustration of unified visual/textual token prediction for MLLM powered visual perception and understanding.

In this work, we introduce a unified paradigm, **Patch-as-Decodable Token (PaDT)**, which enables MLLMs to directly generate both textual and diverse visual targets in a unified yet flexible way. For this purpose, we propose the **Visual Reference Tokens (VRTs)**, which can be seamlessly interleaved with LLM’s output textual tokens. VRTs are generated by the proposed Dynamic Embedding Module, adapted directly from the original visual patch embeddings. In this way, they occur in a feature space consistent with the original LLM, while each VRT explicitly corresponds to a specific image patch within the query image. Thus, VRTs can be naturally interpreted within the LLMs feature space, allowing detected objects to be represented by multiple VRTs in a fine-grained manner. Based on this design, PaDT owns the inherent ability to predict diverse visual outputs, e.g. semantic masks and bounding boxes. Specifically, MLLMs only need to predict a subset of VRTs, which are then decoded into the final structured visual outputs by a lightweight decoder. A prior art (Ma et al., 2025) attempted to empower LLMs to output image patch tokens, discretized by a global codebook, to represent the target within the image. However, this approach remains limited in flexibility and generality due to maintaining a global codebook. First, there is a risk of predicting visual tokens that do not appear in the query image. Moreover, the decoded visual token does not have unique correspondence in the query image, thus risking misalignment between predicted visual tokens and query image tokens, e.g. confusion between similar objects in the image. In contrast, PaDT processes VRTs independently at each forward pass, making it more efficient. By maintaining a high-level feature space aligned with that of LLMs and preserving unique positional information for each image region, PaDT ensures coherent predictions as illustrated Fig. 2(c). Moreover, as shown in Fig. 2(d), VRT predictions over objects exhibit great spatial continuity.

To enable PaDT to achieve strong performance, we design an effective fine-tuning strategy and propose a robust per-token cross-entropy loss tailored for the proposed visual reference token, which stabilizes training and mitigates overfitting. Notably, our 3B model surpasses the previous state-of-the-art by 19.0 mAP on COCO detection and achieves an average accuracy of 93.6 on the referring expression comprehension (REC) task, outperforming the much larger 78B InternVL3 model.

The main contributions of this work can be summarized as follows:

- We introduce a unified paradigm, Patch-as-Decodable Token (PaDT), which enables MLLMs to directly generate both textual and diverse visual targets in a unified yet flexible way. With the proposed Visual Reference Token (VRT), our method achieves superior performance across diverse fine-grained image perception and understanding
- We propose a lightweight yet robust VRT-based decoder, termed the PaDT Decoder. Given the generated VRTs, it can uniformly decode diverse fine-grained structured visual outputs, such as segmentation masks and bounding boxes.
- We propose an effective fine-tuning strategy together with a robust per-token cross-entropy loss. PaDT achieves the state-of-the-art performance on a wide range of visual perception and understanding tasks. The effectiveness is validated beyond perception tasks but also a customized image captioning task.

Figure 2: (a) Previous methods yield inconsistent output formats due to free-form box representations even under the same prompt. (b) Token Activation Map (TAM) (Li et al., 2025) reveals less semantic relationship between textual box representations and textual/visual information, while converting continuous numbers into discrete tokens further introduces discontinuities. (c) With PaDT denoting objects with VRTs, semantic alignment is preserved and the output becomes more unified and natural. (d) The heatmap of $\langle \text{VRT_227} \rangle$ further demonstrates continuous and object-consistent predictions within the input image.

2 RELATED WORK

Multimodal Large Language Models. With the rapid development of large language models (LLMs), multimodal LLMs (MLLMs) have emerged as powerful systems for *vision-language reasoning* (Alayrac et al., 2022; Achiam et al., 2023; Liu et al., 2023; Zhu et al., 2023; Zhang et al., 2024a; Lian et al., 2025; Bai et al., 2025). Early milestones such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) demonstrated the effectiveness of large-scale contrastive pretraining for joint vision-text representations. BLIP-2 (Li et al., 2022a) further improved alignment through the Q-former design. More recently, instruction-tuned MLLMs including LLaVA (Liu et al., 2023) and MiniGPT-4 (Zhu et al., 2023) leverage multimodal instruction data, yielding strong performance in open-ended visual question answering and reasoning. Building on these foundations, subsequent works extend capabilities to higher-resolution image understanding (e.g., LLaVA-Next (Liu et al., 2024c), LLaVA-UHD (Guo et al., 2024)), diverse instruction sets (Ye et al., 2023), multi-image (Jiang et al., 2024a; Li et al., 2024) and video inputs (Lin et al., 2023a; Chen et al., 2024a), as well as new pretraining objectives and architectural designs (Fang et al., 2023; Wang et al., 2023b). Collectively, these advances establish MLLMs as versatile general-purpose models for multimodal reasoning.

MLLMs for Visual Perception & Understanding. Despite their broad capabilities, general-purpose MLLMs remain limited in fine-grained perception tasks. This stems largely from vision encoders reliance on fixed patch grids (Dehghani et al., 2023; Fang et al., 2023; Wang et al., 2023b), which often blur local details and impair tasks such as object localization, counting, or OCR. To mitigate this, adaptive tiling strategies, such as NaViT-style patch dropping and AnyRes (Luo et al., 2023; Chen et al., 2024b; Liu et al., 2024a), allow flexible handling of variable-resolution image tiles, leading to improved spatial resolution. Another line of work explores reinforcement learning to enhance perception and reasoning, exemplified by VLM-R1 (Shen et al., 2025), Visual-RFT (Liu et al., 2025b), VisRL (Chen et al., 2025), and Seg-R1 (You & Wu, 2025). These approaches achieve better generalization and emergent capabilities such as segmentation and grounding. Prior works have primarily relied on reinforcement learning (Chen et al., 2025) or instruction tuning (Jiang et al., 2024b) to strengthen visual reasoning, yet the potential of leveraging learned queries as anchors for visual perception remains underexplored. Moreover, designing a unified architecture that seamlessly accommodates diverse vision tasks continues to be an open challenge.

Unified Visual Tokenization. A complementary research direction focuses on unifying visual and linguistic representations through multi-granular tokenization. At the region level, methods convert object boxes or masks into geometric tokens (Chen et al., 2023b; Xuan et al., 2024; Peng et al., 2023; You et al., 2023) or learnable proxies (Zhang et al., 2024b; Yuan et al., 2024; Chen et al., 2023a; Rasheed et al., 2024), often grounded by detectors or SAM (Kirillov et al., 2023), thereby enabling more precise vision-language grounding. At the patch level, models such as the Emu series (Sun et al., 2023) and LaVIT (Jin et al., 2024) treat CLIP-derived patch features as visual vocabularies for denser alignment. Recent works further introduce autoregressive quantization

Figure 3: The framework of PaDT model.

of image patches (Team, 2024; Sun et al., 2024), discretizing pixels into visual sentences to support efficient cross-modal modeling, with even finer-grained tokenization explored in (Ma et al., 2025). While these approaches approximate linguistic structures via region, instance, or pixel tokens, deeper semantic integration between vision and language is still limited. To address this, we propose a dynamic multimodal token space that enables close correspondence between language tokens and visual patches under a unified autoregressive modeling paradigm.

3 METHODOLOGY

3.1 REVISITING MULTIMODAL LARGE LANGUAGE MODELS

A Multimodal Large Language Model (MLLM) augments a Large Language Model (LLM) with a visual encoder, enabling it to perform not only general-purpose reasoning but also visual perception (Alayrac et al., 2022; Liu et al., 2024c; Bai et al., 2025). Given an image $I \in \mathbb{R}^{H \times W \times 3}$ and a text sequence $\mathbf{T} = (t_1, \dots, t_m)$, the MLLM autoregressively generates an output sequence $\mathbf{Y} = (y_1, \dots, y_t)$. An image encoder f_v , typically a Vision Transformer (ViT) (Dosovitskiy et al., 2020), partitions \mathbf{I} into N non-overlapping patches $\{P_n\}_{n=1}^N$, which are subsequently encoded into embeddings $F_v = f_v(I) \in \mathbb{R}^{N \times d_v}$. A projector f_p then aligns dimensions and downsamples, yielding $F_{patch} = f_p(F_v) \in \mathbb{R}^{N' \times d}$. For instance, Qwen2.5-VL adopts nearest-neighbor patch merging in the 2D patch space, resulting in $N' = \frac{1}{4}N$. The image embeddings are then fused with the text embeddings $E_{text}(\mathbf{T}) \in \mathbb{R}^{m \times d}$ to form a hybrid textual-visual representation $Z = [F_{patch}; E_{text}(\mathbf{T})]$. Here, $E_{text} \in \mathbb{R}^{V_{text} \times d}$ denotes the text embedding table that maps each text token to its corresponding feature vector. The resulting multimodal representation Z is subsequently fed into a transformer-based LLM (Alayrac et al., 2022; Liu et al., 2024c; Bai et al., 2025). At timestep t , the hidden state h_t produces the next-token distribution:

$$p(y_t | I, \mathbf{T}, y_{<t}) = \text{softmax}(W_{text} \cdot h_t), \quad (1)$$

with $W_{text} \in \mathbb{R}^{V_{text} \times d}$ denoting classifier weights.

Limitations of Text-based Vision Prediction. Current MLLMs are restricted to accepting textual-visual representations as input and producing only textual outputs, owing to their compatibility with the underlying LLM architecture. This limitation is suboptimal for structured vision tasks such as object detection and image segmentation. Specifically, current MLLMs (e.g., Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu et al., 2025)) serialize visual targets into strings at output side. This leads to two major issues. First, outputs vary in format (absolute vs. normalized coordinates, JSON-style vs. free-form), complicating parsing and structured output, as shown in Fig. 2(a). Second, numerical coordinate representations are mapped into discrete textual tokens which are generated digit by digit (e.g., “489” “4, 8, 9”). This disrupts numerical continuity and may hinder prediction

accuracy (Fig. 2(b)). More importantly, while this numerical representation effectively describes spatial information precisely, it lacks semantic information, which is crucial for image understanding tasks. This inherent mismatch, revealed through token activation analyses (Li et al., 2025) as illustrated in Fig. 2(b), can lead to errors such as repetition or hallucination in dense prediction tasks (Jiang et al., 2024b).

3.2 VISUAL REFERENCE TOKEN

We propose the **Patch-as-Decodable-Token** (PaDT) framework, which introduces **Visual Reference Tokens** (VRTs), a unified tokenization scheme that embeds visual patches directly as decodable tokens within the autoregressive generation process. PaDT extends conventional MLLMs with three key components: (1) *Dynamic Embedding Module* augments the textual vocabulary codebook with visual patches, specific VRTs, at each forward pass, yielding a multi-modal codebook. (2) With this multi-modal codebook and the proposed *PaDT Head*, VRTs become both embeddable at the input side and decodable at the output side, resulting in a unified and natural format. (3) A lightweight *PaDT Decoder* is proposed to convert variable VRTs into diverse visual representations, such as bounding boxes and masks, enabling downstream tasks including detection, segmentation, and grounding. This further enhances both the robustness and flexibility of the proposed method.

3.2.1 UNIFIED MULTI-MODAL FORMAT WITH VRTS

A core challenge is to ensure that VRTs can be interpretable by LLMs, being both *embeddable* in the input space and *decodable* in the output space. Prior work, e.g., ClawMachine (Ma et al., 2025) relies on pretrained discrete visual tokenizers (Jin et al., 2024). It inserts the entire codebook, which contains a massive number of tokens, into the LLM embedding table and forces the LLM to map its high-level semantic feature space to tokens representing low-level image patches. Thus, this method is limited by (i) a fixed dataset-level codebook expansion which contains massive tokens that ignore patch-specific cues such as spatial location, and (ii) ambiguity arising from the lack of high-level semantics when visually similar patches from different objects maybe mapped to the same token.

Dynamic Multi-Modal Codebook Expansion. To avoid the above limitations, rather than introducing a standalone codebook, we reuse the extracted visual tokens from the input image, which already preserve rich semantic information. Since each visual token explicitly corresponds to an image patch, at each forward pass only the tokens from the current query image are dynamically expanded into the original textual codebook, instead of memorizing all possible visual patterns through a fixed codebook. Specifically, in the proposed *Dynamic Embedding Module*, original patch features $F_{patch} \in \mathbb{R}^{N' \times d}$ are projected by a lightweight module f_{vp} into visual reference prototypes \mathcal{P}_{ref} . f_{vp} consists of a LayerNorm and a low-rank linear projection. These prototypes are then concatenated with text embeddings to form a dynamic embedding table as,

$$E_{dyn} = [E_{text}; \mathcal{P}_{ref}], \quad \mathcal{P}_{ref} = f_{vp}(F_{patch}) \in \mathbb{R}^{N' \times d}. \quad (2)$$

Unified Input and Output Format. With the above Multi-Modal Codebook, both textual and visual information can be input and output in a unified way. On the input side, query image tokens are indexed in the Multi-Modal Codebook and converted into the corresponding VRTs, which are then embedded into the textual input to the LLM. Since VRTs are adapted from the original image tokens, they share a feature space that is similar to the LLMs representation space, which simplifies training compared to ClawMachine (Ma et al., 2025). On the output side, to enable the original textual classifier to output expanded indices, the *PaDT Head* is proposed to augment the classifier with \mathcal{P}_{ref} , yielding

$$W_{tv} = [W_{text}; \mathcal{P}_{ref}] \in \mathbb{R}^{(V_{text}+N') \times d}. \quad (3)$$

This joint design allows VRTs to be embedded as inputs and decoded as outputs, enabling the model to insert patch-level references directly into the autoregressive sequence. Building on this, we propose a robust strategy that represents detected objects with several (but not all) VRTs placed on them, and then decodes fine-grained representations such as bounding boxes or masks through the lightweight PaDT Decoder introduced below. This strategy is shown to be more robust and effective in our experiments. Template examples for each vision task are provided in Appendix A.2.

3.2.2 LIGHT-WEIGHT PADT DECODER

Considering that only several VRTs on a detected object are predicted, a visual decoder is needed to convert these predicted VRTs into task-specific outputs. For this purpose, we introduce a lightweight vision task decoder, implemented as a stack of three two-way attention blocks (Fig. 4(b)). The decoder takes as input the hidden features of predicted VRTs from the final LLM layer. These features are grouped into object queries, where each group corresponds to a sequence of VRTs separated by intervening text tokens (Fig. 4(a)). To enable task-specific decoding, we inject three learnable tokens, *bounding box*, *mask*, and *score* tokens, into each group of object queries. After passing through the three attention blocks, each task token is projected into its respective output space, producing bounding boxes, segmentation masks, and confidence scores.

3.2.3 TRAINING STRATEGY

Robust Per-token Cross-Entropy Loss. For the autoregressive output of the MLLM, we adopt the standard supervised fine-tuning paradigm with a per-token cross-entropy loss:

$$\mathcal{L}_{CE} = \frac{1}{T} \sum_t -\log p(\hat{y}_t | I, \mathbf{T}, y_{<t}) = -\log \text{softmax}_{GT}(W_{tv} \cdot h_t), \quad (4)$$

where \hat{y}_t denotes the ground-truth token at step t , h_t is the hidden state, and W_{tv} projects to the token vocabulary. Unlike prior work that uses all foreground visual tokens as supervision (Ma et al., 2025), we propose to randomly sample N_{vrt} foreground tokens for each forward pass. This sampling strategy increases the diversity of supervision and prevents the model from overfitting to a fixed set of tokens, thereby improving generalization. To implement this, we introduce a foreground mask $M \in \{0, 1\}^{T \times N'}$, where $M_{t,n} = 1$ indicates that token n at step t was not selected. For such tokens, we suppress their contribution to the loss by masking their logits:

$$l'_t = W_{tv} \cdot h_t, \quad l'_{t,n+V_{text}} = -\infty \text{ if } M_{t,n} = 1. \quad (5)$$

This effectively removes the masked tokens from the softmax normalization, ensuring they are neither rewarded nor penalized. The resulting robust cross-entropy loss is:

$$\mathcal{L}_{CE}^{robust} = -\log \text{softmax}_{GT}(l'_t). \quad (6)$$

By combining random sampling with masked supervision, this objective improves robustness and encourages the model to explore diverse valid visual references during training.

Task-specific Losses. For structured outputs from vision task decoder, we adopt task-specific objectives i.e. \mathcal{L}_{bbox} , \mathcal{L}_{mask} and \mathcal{L}_{score} following (Kamath et al., 2021; Kirillov et al., 2023). More implemented details about the task-specific losses are given in the Appendix A.4. The final training objective of PaDT is

$$\mathcal{L} = \mathcal{L}_{CE}^{robust} + \mathcal{L}_{bbox} + \mathcal{L}_{mask} + \mathcal{L}_{score}. \quad (7)$$

4 EXPERIMENT

Tasks and Datasets. We evaluate PaDT across a diverse set of visual perception & understanding tasks. Specifically, we consider: (i) referring expression comprehension and referring expression segmentation on RefCOCO, RefCOCO+, and RefCOCOg (Mao et al., 2016; Yu et al., 2016); (ii) open-vocabulary detection on COCO 2017 (Lin et al., 2014); and (iii) referring image captioning (RIC), for which we construct a new benchmark by re-annotating COCO with visionlanguage model (VLM) supervision. Further dataset details are provided in Appendix A.1.

Architecture and Training Details. We adopt Qwen2.5-VL (Bai et al., 2025) as the base model and conduct experiments with both 3B and 7B variants to evaluate scalability. Based on existing dataset annotations, at each training step we randomly sample $N_{vrt} = 5$ visual reference tokens from the foreground mask of each target to construct the ground-truth MLLM sequence. If segmentation masks are unavailable, VRTs are instead sampled within the bounding box. The ground-truth token templates are provided in Appendix A.2. Training is performed on a single node with eight 96GB

324 GPUs, using a batch size of 16 per GPU. We set the learning rate to 2×10^{-5} and apply gradient
 325 checkpointing together with `bf16` mixed precision for memory efficiency. FlashAttention-
 326 2 (Dao, 2023) is further employed to accelerate attention computation.

327 **Multi-Task Scalability.** Joint training across tasks consistently improves performance, indicating
 328 strong cross-task generalization. To evaluate multi-task performance and analyze how performance
 329 scales with the number of tasks, we train PaDT jointly across all benchmarks, i.e., RefCOCO/+g,
 330 COCO, and RIC, resulting in an enhanced multi-task variant denoted as **PaDT Pro**. Unlike task-
 331 specific PaDT models, PaDT Pro can seamlessly switch between tasks by simply altering the prompt.

333 4.1 VISUAL PERCEPTION & UNDERSTANDING TASKS

335 **Referring Expression Comprehension.** The Referring Expression Comprehension (REC) task
 336 evaluates an MLLMs ability to localize objects given natural language descriptions, where a prediction
 337 is considered correct if its IoU with the ground-truth box exceeds 50%. As shown in Tab. 1,
 338 PaDT and PaDT Pro achieve state-of-the-art performance at both 3B and 7B scales. In particular,
 339 PaDT Pro (3B) obtains 96.0/95.5/95.0 on RefCOCO, 91.8/94.8/88.4 on RefCOCO+, and 93.6/94.0
 340 on RefCOCOg, surpassing all previous MLLM methods. The overall average of PaDT Pro (3B)
 341 reaches 93.6, which is further boosted to 94.5 with the 7B model. Remarkably, both PaDT and

343 Table 1: Results of referring expression comprehension task on RefCOCO/+g datasets.

344 Model Name	345 Param.	346 RefCOCO			347 RefCOCO+			348 RefCOCOg		349 Overall
		350 val	351 test-A	352 test-B	353 val	354 test-A	355 test-B	356 val	357 test	
358 Grounding-DINO-L (Liu et al., 2024d)	359 -	360 90.6	361 93.2	362 88.2	363 82.8	364 89.0	365 75.9	366 86.1	367 87.0	368 86.6
369 UNINEXT-H (Lin et al., 2023b)	370 -	371 92.6	372 94.3	373 91.5	374 85.2	375 89.6	376 79.8	377 88.7	378 89.4	379 88.9
380 ONE-PEACE (Wang et al., 2023a)	381 -	382 92.6	383 94.2	384 89.3	385 88.8	386 92.2	387 83.2	388 89.2	389 89.3	390 89.9
391 InternVL3 (Zhu et al., 2025)	392 1B	393 85.8	394 90.1	395 81.7	396 76.6	397 84.1	398 69.2	399 82.8	400 82.6	401 81.6
402 InternVL3 (Zhu et al., 2025)	403 2B	404 89.8	405 92.6	406 86.4	407 84.0	408 89.2	409 76.5	410 87.6	411 87.2	412 86.7
413 Qwen2.5-VL (Bai et al., 2025)	414 3B	415 89.1	416 91.7	417 84.0	418 82.4	419 88.0	420 74.1	421 85.2	422 85.7	423 85.0
424 Qwen2.5-VL (SFT, (Shen et al., 2025))	425 3B	426 88.7	427 -	428 -	429 82.3	430 -	431 -	432 86.0	433 -	434 -
435 VLM-R1 (Shen et al., 2025)	436 3B	437 90.1	438 92.3	439 85.2	440 84.2	441 89.4	442 76.8	443 85.6	444 86.8	445 86.3
446 PaDT (Ours)	447 3B	448 93.2	449 95.3	450 90.1	451 88.5	452 92.4	453 83.5	454 88.2	455 88.5	456 90.0
457 PaDT Pro (Ours)	458 3B	459 96.0	460 95.5	461 95.0	462 91.8	463 94.8	464 88.4	465 93.6	466 94.0	467 93.6
468 Shikra (Chen et al., 2023b)	469 7B	470 87.0	471 90.6	472 80.2	473 81.6	474 87.4	475 72.1	476 82.3	477 82.2	478 82.9
479 Ferret (You et al., 2023)	480 7B	481 87.5	482 91.4	483 82.5	484 80.8	485 87.4	486 73.1	487 83.9	488 84.8	489 83.9
490 Ferret-v2 (Zhang et al., 2024a)	491 7B	492 92.8	493 94.7	494 88.7	495 87.4	496 92.8	497 79.4	498 89.4	499 89.3	500 89.3
501 TextHawk2 (Yu et al., 2024)	502 7B	503 91.9	504 93.0	505 87.6	506 86.2	507 90.0	508 80.4	509 88.2	510 88.1	511 88.2
512 ClawMachineX (Ma et al., 2025)	513 7B	514 89.7	515 92.5	516 86.9	517 84.4	518 88.9	519 78.0	520 86.7	521 87.1	522 86.8
523 Qwen2.5-VL (Bai et al., 2025)	524 7B	525 90.0	526 92.5	527 85.4	528 94.2	529 89.1	530 76.9	531 87.2	532 87.2	533 86.6
534 InternVL3 (Zhu et al., 2025)	535 8B	536 92.5	537 94.6	538 88.0	539 88.2	540 92.5	541 81.8	542 89.6	543 90.0	544 89.6
545 PaDT (Ours)	546 7B	547 93.1	548 97.2	549 90.4	550 88.8	551 92.8	552 83.2	553 88.2	554 88.8	555 90.1
556 PaDT Pro (Ours)	557 7B	558 96.6	559 97.4	560 95.6	561 92.8	562 95.2	563 89.4	564 94.6	565 94.2	566 94.5
567 Ferret (You et al., 2023)	568 13B	569 89.5	570 92.4	571 84.4	572 82.8	573 88.1	574 75.2	575 85.8	576 86.3	577 85.6
578 Ferret-v2 (Zhang et al., 2024a)	579 13B	580 92.6	581 95.0	582 88.9	583 87.4	584 92.1	585 81.4	586 89.4	587 90.0	588 89.6
589 InternVL3 (Zhu et al., 2025)	590 14B	591 92.0	592 94.4	593 87.8	594 87.4	595 92.1	596 81.5	597 88.6	598 89.3	599 89.1
600 CogVLM-Grounding (Wang et al., 2024)	601 17B	602 92.8	603 94.8	604 89.0	605 88.7	606 92.9	607 83.4	608 89.8	609 90.8	610 90.3
611 InternVL3 (Zhu et al., 2025)	612 78B	613 93.4	614 95.4	615 90.3	616 90.1	617 93.8	618 85.3	619 91.5	620 91.5	621 91.4

364 Table 2: Results of referring expression segmentation task on RefCOCO/+g datasets.

365 Model Name	366 Param.	367 RefCOCO			368 RefCOCO+			369 RefCOCOg		370 Overall
		371 val	372 testA	373 testB	374 val	375 testA	376 testB	377 val	378 test	
379 X-Decoder (Zou et al., 2023a)	380 -	381 -	382 -	383 -	384 -	385 -	386 -	387 64.6	388 -	389 -
390 SEEM (Zou et al., 2023b)	391 -	392 -	393 -	394 -	395 -	396 -	397 -	398 65.7	399 -	400 -
401 Seg-R1 (You & Wu, 2025)	402 3B	403 69.9	404 76.0	405 64.9	406 59.1	407 66.8	408 50.9	409 67.3	410 67.9	411 65.4
413 PaDT (Ours)	414 3B	415 76.1	416 77.4	417 74.7	418 72.7	419 75.1	420 69.3	421 70.5	422 71.1	423 73.4
425 PaDT Pro (Ours)	426 3B	427 81.3	428 81.5	429 82.2	430 77.6	431 79.4	432 76.3	433 78.1	434 78.5	435 79.4
437 LAVT (Ye et al., 2023)	438 7B	439 72.7	440 75.8	441 68.8	442 62.1	443 68.4	444 55.1	445 65.0	446 66.0	447 66.7
448 LISA (Lai et al., 2024)	449 7B	450 74.1	451 76.5	452 71.1	453 62.4	454 67.5	455 56.5	456 66.4	457 68.5	458 67.9
459 PixelLM (Ren et al., 2024)	460 7B	461 73.0	462 76.5	463 68.2	464 66.3	465 71.7	466 58.3	467 69.3	468 70.5	469 69.2
470 OMG-LLaVA (Zhang et al., 2024c)	471 7B	472 75.6	473 77.7	474 71.2	475 65.6	476 69.7	477 58.9	478 70.7	479 70.2	480 70.0
481 Seg-R1 (You & Wu, 2025)	482 7B	483 74.3	484 78.7	485 67.6	486 62.6	487 70.9	488 57.9	489 71.0	490 71.4	491 69.3
492 Text4Seg + CRF (Lan et al., 2025)	493 7B	494 71.3	495 73.7	496 69.6	497 65.9	498 70.4	499 61.9	500 69.3	501 69.3	502 68.9
503 Text4Seg + SAM (Lan et al., 2025)	504 7B	505 78.0	506 80.9	507 74.6	508 71.6	509 77.3	510 66.0	511 74.8	512 74.7	513 74.7
514 PaDT (Ours)	515 7B	516 78.5	517 79.8	518 77.3	519 75.0	520 77.7	521 71.3	522 73.0	523 73.9	524 75.8
525 PaDT Pro (Ours)	526 7B	527 86.0	528 86.1	529 86.4	530 82.5	531 84.1	532 80.7	533 83.5	534 83.3	535 84.1

378 Table 3: Results of open-vocabulary detection task on the whole COCO2017 validation set.
379

Model Name	Param.	AP@[50:95]	AP@50	AP@75	AR@[50:95]	AR@50	AR@75
InternVL3 (Zhu et al., 2025)	2B	6.9	11.2	7.0	14.9	20.8	15.6
Qwen2.5-VL (Bai et al., 2025)	3B	13.7	22.1	14.2	21.8	30.5	23.3
Qwen2.5-VL-SFT (Shen et al., 2025)	3B	17.1	27.5	17.3	25.4	35.6	26.4
VLM-R1 (Shen et al., 2025)	3B	19.2	33.1	19.0	32.2	46.9	33.6
PaDT (Ours)	3B	34.0	51.2	35.8	38.5	56.1	40.4
PaDT Pro (Ours)	3B	38.2	54.9	40.5	43.9	60.6	46.4
Qwen2.5-VL (Bai et al., 2025)	7B	18.2	30.4	17.9	28.1	40.3	29.3
LLaVa-NeXT (Liu et al., 2024b)	7B	0.7	2.2	0.3	1.3	3.3	0.8
LLaVa-OneVision (Li et al., 2024)	7B	2.2	5.8	1.1	4.1	8.8	3.2
InternVL3 (Zhu et al., 2025)	8B	17.5	26.6	18.2	28.0	37.3	29.7
PaDT (Ours)	7B	36.5	53.8	38.4	41.5	59.2	43.6
PaDT Pro (Ours)	7B	39.0	56.2	41.5	44.8	61.8	47.6

385 Table 4: Results of referring image captioning task on RIC validation set.
386

Model Name	Param.	Text Metrics				Detection Metrics	
		CIDEr-D	Meteor	ROUGE-L	BLEU-4	GP	GR
LLaVa-OneVision (Li et al., 2024)	0.5B	0.058	0.088	0.185	0.052	5.2	0.5
InternVL3 (Zhu et al., 2025)	2B	0.315	0.230	0.374	0.284	42.4	18.2
Qwen2.5-VL (Bai et al., 2025)	3B	0.386	0.241	0.369	0.261	61.8	6.2
PaDT (Ours)	3B	1.450	0.304	0.501	0.467	81.6	45.4
PaDT Pro (Ours)	3B	1.412	0.300	0.495	0.458	82.3	45.1
LLaVa-NeXT (Liu et al., 2024b)	7B	0.262	0.200	0.335	0.178	54.3	10.6
LLaVa-OneVision (Li et al., 2024)	7B	0.172	0.207	0.330	0.182	32.5	10.2
Qwen2.5-VL (Bai et al., 2025)	7B	0.266	0.251	0.369	0.257	60.8	19.8
InternVL3 (Zhu et al., 2025)	8B	0.208	0.207	0.373	0.249	56.6	32.1
LLaVa-NeXT (Liu et al., 2024b)	13B	0.283	0.212	0.347	0.172	55.7	6.2
PaDT (Ours)	7B	1.445	0.304	0.500	0.466	77.0	45.2
PaDT Pro (Ours)	7B	1.387	0.299	0.491	0.449	82.3	45.8

403 PaDT Pro (3B) already outperform the much larger 78B InternVL3 model. These results demon-
404 strate the effectiveness of the visual reference token paradigm, which substantially aligns textual
405 semantics with image patches and thereby improves the precision of object localization in MLLMs.

406 **Referring Expression Segmentation.** Similar to REC, the Referring Expression Segmentation
407 (RES) task evaluates an MLLMs ability to segment the target object mask given a natural language
408 description. We adopt cloU as the evaluation metric, and results are reported in Tab. 2. Both PaDT
409 and PaDT Pro achieve the best performance compared with existing methods, even against ap-
410 proaches such as Seg-R1 and Text4Seg+SAM that leverage the powerful SAM segmentation model.
411 With the lightweight PaDT decoder that translates unified visual reference tokens into segmenta-
412 tion masks, our models consistently outperform prior baselines. Additional qualitative examples are
413 provided in the Appendix A.8.

414 **Open-vocabulary Detection.** This is a fundamental visual perception task that evaluates an MLLMs
415 ability to perform semantic grounding. As shown in Table 3, most existing MLLMs struggle with
416 this task, showing low precision and recall. For instance, Qwen2.5-VL (3B) achieves only 13.7
417 mAP, and InternVL3 (8B) reaches 17.5 mAP on the COCO2017 validation set. Our PaDT and
418 PaDT Pro substantially advance the state of the art. PaDT Pro (3B) achieves 38.2 mAP, while the 7B
419 variant further improves to 39.0 mAP, nearly doubling the performance of prior best methods. These
420 gains highlight the effectiveness of visual reference tokens in strengthening semantic association and
421 object localization.

422 **Referring Image Captioning.** To validate both the visual understanding and grounding ability, we
423 conduct experiments on our RIC dataset. As shown in Table 4, PaDT and PaDT Pro (3B) deliver
424 strong improvements, reaching 1.45 CIDEr, 0.304 Meteor, 0.501 ROUGE-L, 0.467 BLEU-4, and
425 top detection scores of 82.3% GreedyPrecision (GP) and 45.1% GreddyRecall (GR). The 7B models
426 further extend performance, with PaDT Pro (7B) maintaining competitive caption quality, i.e. 1.39
427 CIDEr, while achieving the best detection-oriented scores, i.e. 82.3% GP, 45.8% GR. These results
428 suggest that PaDT generates not only fluent captions, but also semantically precise ones grounded
429 in localized visual content.

4.2 ABLATION EXPERIMENTS

431 **Ablation study of Proposed Components in PaDT.** We conduct detailed ablation studies in Tab. 5
432 using the 3B model with the following observations. i) The first row without VRTs corresponds to

432
433 Table 5: The ablation study of the proposed components in PaDT.
434

435	Visual Reference Token	436	Training Strategy	437	REC	438	RES
439 using VRTs	f_{vp}	440 Task Decoder	$\mathcal{L}_{CE}^{robust}$	441 VRTs Selection	442 RefCOCO val	443 RefCOCO val	444
445 \checkmark	446 \checkmark	447 \checkmark	448 \checkmark	449 \checkmark	450 \checkmark	451 \checkmark	452
453 \checkmark	454 \checkmark	455 \checkmark	456 \checkmark	457 All VRTs	458 76.5	459 69.5	460
461 \checkmark	462 \checkmark	463 \checkmark	464 \checkmark	465 All VRTs	466 49.1	467 19.8	468
469 \checkmark	470 \checkmark	471 \checkmark	472 \checkmark	473 \checkmark	474 93.2	475 76.1	476

477 Figure 5: The illustrations of the mask generations.
478479 Table 6: Performance of using SAM2-L as mask
480 refiner with 3 types of prompts.
481

482 point	483 box	484 mask	485 RefCOCOg val
486 \checkmark	487 \checkmark	488 \checkmark	489 70.5
490 \checkmark	491 \checkmark	492 \checkmark	493 69.9
494 \checkmark	495 \checkmark	496 \checkmark	497 74.1
498 \checkmark	499 \checkmark	500 \checkmark	501 74.0
502 \checkmark	503 \checkmark	504 \checkmark	505 74.9
506 \checkmark	507 \checkmark	508 \checkmark	509 76.3

510 Table 7: The generalization analysis and finetuning result of PaDT on COCO2017 validation set.
511

512 Model Name	513 Objects365	514 COCO2017	515 AP@[50:95]	516 AP@50	517 AP@75	518 AR@[50:95]	519 AR@50	520 AR@75
521 Qwen2.5-VL	522 \checkmark	523 \checkmark	524 13.7	525 22.1	526 14.2	527 21.8	528 30.5	529 23.3
530 PaDT (Zero Shot)	531 \checkmark	532 \checkmark	533 16.9	534 23.7	535 18.0	536 21.5	537 30.6	538 22.7
539 PaDT (Task Specific)	540 \checkmark	541 \checkmark	542 34.0	543 51.2	544 35.8	545 38.5	546 56.1	547 40.4
548 PaDT (FineTuned)	549 \checkmark	550 \checkmark	551 36.5	552 52.2	553 38.8	554 41.3	555 57.4	556 43.6

557 supervised fine-tuning on Qwen2.5-VL, directly predicting bounding box coordinates. By integrating
558 VRTs with robust CE loss and random VRTs selection, we observe noticeable improvement
559 in REC (detection task) and RES (segmentation task) being enabled. ii) We further notice that both
560 projection module f_{vp} and robust CE loss are necessary for achieving improved performance. iii) Alternative choice of including all foreground VRTs during training may even harm the performance,
561 probably due to bias towards high density regions.

562 **Effectiveness of Mask Refinement with SAM2-L.** We further analyze the compatibility of PaDT
563 output with segmentation foundation model, SAM2-L under three schemes. i) Given the VRTs
564 generated by PaDT, we extract their coordinates as point prompts to SAM2-L, denoted as **point**.
565 ii) Using the bounding box and mask generated by PaDT, respectively, as prompt for SAM2-L. We
566 explored different combinations with results in Tab. 6. First, we observe that using point prompt fails
567 to improve upon PaDT, due to the sparse prior information. However, both box and mask prompts
568 are conducive to further improving the results under the help of SAM. Combining multiple prompts
569 yields more significant improvement. Visualizations in Fig. 5 corroborate these findings. The results
570 suggest the segmentation performance can be further enhanced with expert foundation model at the
571 expense of additional inference cost.

572 **Effectiveness of Pretraining and Task-specific Finetuning.** To evaluate the generalization and
573 data-scaling properties of the PaDT framework, we pretrain on Objects365 (Shao et al., 2019) and
574 subsequently finetune on the COCO dataset. As shown in Tab. 7, PaDT exhibits stronger zero-shot
575 performance than the Qwen2.5-VL base model, and its finetuned version consistently outperforms
576 direct training on task-specific data.

577 5 CONCLUSION

578 In this work, we proposed Patch-as-Decodable Token (PaDT), a unified paradigm that equips
579 MLLMs with the ability to generate both textual and visual outputs through Visual Reference Tokens
580 (VRTs). By dynamically embedding VRTs into the LLM output space, PaDT ensures semantically
581 coherent and visually grounded predictions, overcoming the inefficiency and misalignment issues
582 of prior codebook-based methods. A light-weight decoder and an effective training strategy are
583 further introduced to enable visual perception and understanding tasks within PaDT. Extensive
584 experiments across detection, segmentation, grounding, and captioning demonstrate state-of-the-art
585 performance, highlighting directly predicting visual tokens as an effective and scalable paradigm
586 toward general-purpose multimodal reasoning systems.

486
487 ETHICS STATEMENT

488 We affirm that all authors have read and adhered to the ICLR Code of Ethics. Our research does
 489 not involve human subjects, personally identifiable data, or sensitive information. The datasets used
 490 are publicly available and cited appropriately. We have considered potential risks, including issues
 491 related to fairness, privacy, and security, and have taken steps to mitigate any possible negative
 492 impact. No conflicts of interest or external sponsorship have influenced the work. We commit to
 493 respecting research integrity and legal compliance throughout the research process.

494
495 REPRODUCIBILITY STATEMENT

496 We are committed to ensuring the reproducibility of our results. The main text provides a detailed
 497 description of our proposed method and experimental setup, including all hyperparameters, datasets,
 498 and evaluation protocols. Additional results and dataset details are included in the appendix. We also
 499 provide the detailed process for constructing the Referring Image Caption dataset in the appendix.
 500 We will release all of our implemented code and reproduction instructions to further support the
 501 reproducibility of our findings.

502
503 REFERENCES

504 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 505 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Techni-
 506 cal Report. *arXiv preprint arXiv:2303.08774*, 2023.

507 Jean-Baptiste Alayrac, Giorgio Donato, and et al. Flamingo: a Visual Language Model for Few-Shot
 508 Learning. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

509 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 510 Shijie Wang, Jun Tang, et al. Qwen2.5-VL Technical Report. *arXiv preprint arXiv:2502.13923*,
 511 2025.

512 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
 513 Sergey Zagoruyko. End-to-End Object Detection with Transformers. In *European Conference on
 514 Computer Vision (ECCV)*, 2020.

515 Chi Chen, Ruoyu Qin, Fuwen Luo, Xiaoyue Mi, Peng Li, Maosong Sun, and Yang Liu. Position-
 516 Enhanced Visual Instruction Tuning for Multimodal Large Language Models. *arXiv preprint
 517 arXiv:2308.13437*, 2023a.

518 Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
 519 Multimodal LLM’s Referential Dialogue Magic. *arXiv preprint arXiv:2306.15195*, 2023b.

520 Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 521 Tang, Shang Yang, Zhijian Liu, et al. LongVILA: Scaling Long-Context Visual Language Models
 522 for Long Videos. *arXiv preprint arXiv:2408.10188*, 2024a.

523 Zhangquan Chen, Xufang Luo, and Dongsheng Li. VisRL: Intention-Driven Visual Perception via
 524 Reinforced Reasoning. *arXiv preprint arXiv:2503.07523*, 2025.

525 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 526 Zhang, Xizhou Zhu, Lewei Lu, et al. Intern VL: Scaling up Vision Foundation Models and
 527 Aligning for Generic Visual-Linguistic Tasks. In *Proceedings of the IEEE/CVF Conference on
 528 Computer Vision and Pattern Recognition*, pp. 24185–24198, 2024b.

529 Tri Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. *arXiv
 530 preprint arXiv:2307.08691*, 2023.

531 Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
 532 Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
 533 Vision Transformers to 22 Billion Parameters. In *International Conference on Machine Learning*,
 534 pp. 7480–7512. PMLR, 2023.

540 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 541 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 542 Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. *arXiv preprint*
 543 *arXiv:2010.11929*, 2020.

544 Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
 545 Wang, and Yue Cao. EVA: Exploring the Limits of Masked Visual Representation Learning at
 546 Scale. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 547 pp. 19358–19369, 2023.

549 Zonghao Guo, Ruyi Xu, Yuan Yao, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan
 550 Liu, and Gao Huang. LLaVA-UHD: an LMM Perceiving Any Aspect Ratio and High-Resolution
 551 Images. In *European Conference on Computer Vision*, pp. 390–406. Springer, 2024.

552 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 553 Sung, Zhen Li, and Tom Duerig. Scaling Up Visual and Vision-Language Representation Learning
 554 With Noisy Text Supervision. In *International Conference on Machine Learning*, pp. 4904–
 555 4916. PMLR, 2021.

557 Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max Ku, Qian Liu, and Wenhui Chen. MANTIS:
 558 Interleaved Multi-Image Instruction Tuning. *arXiv preprint arXiv:2405.01483*, 2024a.

560 Qing Jiang, Gen Luo, Yuqin Yang, Yuda Xiong, Yihao Chen, Zhaoyang Zeng, Tianhe Ren, and
 561 Lei Zhang. ChatRex: Taming Multimodal LLM for Joint Perception and Understanding. *arXiv*
 562 *preprint arXiv:2411.18363*, 2024b.

563 Yang Jin, Kun Xu, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, Bin CHEN,
 564 Chengru Song, dai meng, Di ZHANG, Wenwu Ou, Kun Gai, and Yadong MU. Unified language-
 565 vision pretraining in LLM with dynamic discrete visual tokenization. In *The Twelfth International*
 566 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=F1vtjAB0gl>.

567 Aishwarya Kamath, Mannat Singh, Marcus Rohrbach, Nicolas Carion, Vedanuj Sharma, Zhecan
 568 Peng, Chunjie Li, Yuwei Kim, Alaaeldin El-Nouby, Ali Hassani, and et al. MDETR – Modulated
 569 Detection for End-to-End Multi-Modal Understanding. In *Proceedings of the IEEE International*
 570 *Conference on Computer Vision (ICCV)*, 2021.

573 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Courtney Rolland, Lucas Gustafson,
 574 Tete Xiao, Spencer Whitehead, Alexander Berg, Wan-Yen Lo, and et al. Segment Anything. In
 575 *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2023.

577 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. LISA: Rea-
 578 soning Segmentation via Large Language Model. In *Proceedings of the IEEE/CVF Conference*
 579 *on Computer Vision and Pattern Recognition*, pp. 9579–9589, 2024.

580 Mengcheng Lan, Chaofeng Chen, Yue Zhou, Jiaxing Xu, Yiping Ke, Xinjiang Wang, Litong
 581 Feng, and Wayne Zhang. Text4Seg: Reimagining Image Segmentation as Text Generation. In
 582 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=vkakKdznFS>.

585 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 586 Zhang, Yanwei Li, Ziwei Liu, et al. LLaVA-OneVision: Easy Visual Task Transfer. *arXiv preprint*
 587 *arXiv:2408.03326*, 2024.

588 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping Language-Image Pre-
 589 training for Unified Vision-Language Understanding and Generation. In *International Conference*
 590 *on Machine Learning*, pp. 12888–12900. PMLR, 2022a.

592 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP-2: Bootstrapping Language-Image
 593 Pre-training with Frozen Image Encoders and Large Language Models. In *International Confer-
 ence on Machine Learning (ICML)*, 2023.

594 Xiang Li, Wenhui Zhang, Yue Cao, Han Hu, Jinhui Guo, Haibing Ling, and Wei Fudan. Grounded
 595 Language-Image Pre-training. In *Proceedings of the IEEE Conference on Computer Vision and*
 596 *Pattern Recognition (CVPR)*, 2022b.

597

598 Yi Li, Hualiang Wang, Xinpeng Ding, Haonan Wang, and Xiaomeng Li. Token Activation Map
 599 to Visually Explain Multimodal LLMs, 2025. URL <https://arxiv.org/abs/2506.23270>.

600

601 Long Lian, Yifan Ding, Yunhao Ge, Sifei Liu, Hanzi Mao, Boyi Li, Marco Pavone, Ming-Yu Liu,
 602 Trevor Darrell, Adam Yala, and Yin Cui. Describe anything: Detailed localized image and video
 603 captioning. *arXiv preprint arXiv:2504.16072*, 2025.

604

605 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-LLaVA: Learning
 606 United Visual Representation by Alignment Before Projection. *arXiv preprint arXiv:2311.10122*,
 607 2023a.

608

609 Fangjian Lin, Jianlong Yuan, Sitong Wu, Fan Wang, and Zhibin Wang. UniNeXt: Exploring A
 610 Unified Architecture for Vision Recognition. In *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 3200–3208, 2023b.

611

612 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 613 Dollár, and C Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In *European Conference on Computer Vision*, pp. 740–755. Springer, 2014.

614

615 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual Instruction Tuning. *Advances in Neural Information Processing Systems (NeurIPS)*, 36:34892–34916, 2023.

616

617 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved Baselines with Visual In-
 618 struction Tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 619 *Recognition*, pp. 26296–26306, 2024a.

620

621 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 622 LLaVA-NeXT: Improved reasoning, OCR, and world knowledge, January 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

623

624 Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang,
 625 Hang Su, Jun Zhu, et al. LLaVA-Plus: Learning to Use Tools for Creating Multimodal Agents.
 626 In *European Conference on Computer Vision*, pp. 126–142. Springer, 2024c.

627

628 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li,
 629 Jianwei Yang, Hang Su, et al. Grounding DINO: Marrying DINO with Grounded Pre-Training for
 630 Open-Set Object Detection. In *European Conference on Computer Vision*, pp. 38–55. Springer,
 631 2024d.

632

633 Yuqi Liu, Tianyuan Qu, Zhisheng Zhong, Bohao Peng, Shu Liu, Bei Yu, and Jiaya Jia. Vision-
 634 Reasoner: Unified Visual Perception and Reasoning via Reinforcement Learning. *arXiv preprint arXiv:2505.12081*, 2025a.

635

636 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 637 Wang. Visual-RFT: Visual Reinforcement Fine-Tuning. *arXiv preprint arXiv:2503.01785*, 2025b.

638

639 Gen Luo, Yiyi Zhou, Tianhe Ren, Shengxin Chen, Xiaoshuai Sun, and Rongrong Ji. Cheap and
 640 Quick: Efficient Vision-Language Instruction Tuning for Large Language Models. *Advances in Neural Information Processing Systems*, 36:29615–29627, 2023.

641

642 Tianren Ma, Lingxi Xie, Yunjie Tian, Boyu Yang, and Qixiang Ye. ClawMachine: Learning to
 643 Fetch Visual Tokens for Referential Comprehension. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=T0tk9dTYYGG>.

644

645 Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
 646 Generation and Comprehension of Unambiguous Object Descriptions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11–20, 2016.

648 Bo Peng, Dongdong Yu, et al. Kosmos-2: Grounding Multimodal Large Language Models to the
 649 World. *arXiv preprint arXiv:2306.14824*, 2023.

650

651 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 652 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning Transferable Visual
 653 Models From Natural Language Supervision. In *International Conference on Machine Learning*,
 654 pp. 8748–8763. PmLR, 2021.

655 Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
 656 Cholakkal, Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. GLaMM: Pixel
 657 Grounding Large Multimodal Model. In *Proceedings of the IEEE/CVF Conference on Computer
 658 Vision and Pattern Recognition*, pp. 13009–13018, 2024.

659 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once: Unified,
 660 Real-Time Object Detection. In *Proceedings of the IEEE Conference on Computer Vision and
 661 Pattern Recognition (CVPR)*, 2016.

662

663 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time
 664 Object Detection with Region Proposal Networks. In *Advances in Neural Information Processing
 665 Systems (NeurIPS)*, 2015.

666 Tianhe Ren, Jinyu Zhao, Shilong Yang, Feng Li, Xiang Li, and Han Hu. Grounding DINO: Marrying
 667 DINO with Grounded Pre-Training for Open-Set Object Detection. In *Proceedings of the IEEE
 668 Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.

669

670 Zhongwei Ren, Zhicheng Huang, Yunchao Wei, Yao Zhao, Dongmei Fu, Jiashi Feng, and Xiaojie
 671 Jin. PixelLM: Pixel Reasoning with Large Multimodal Model. In *Proceedings of the IEEE/CVF
 672 Conference on Computer Vision and Pattern Recognition*, pp. 26374–26383, 2024.

673 Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
 674 Sun. Objects365: A large-scale, high-quality dataset for object detection. In *Proceedings of the
 675 IEEE/CVF international conference on computer vision*, pp. 8430–8439, 2019.

676 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 677 Zhang, Kangjia Zhao, Qianqian Zhang, et al. VLM-R1: A Stable and Generalizable R1-style
 678 Large Vision-Language Model. *arXiv preprint arXiv:2504.07615*, 2025.

679

680 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 681 Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation. *arXiv preprint
 682 arXiv:2406.06525*, 2024.

683 Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao,
 684 Jingjing Liu, Tiejun Huang, and Xinlong Wang. Emu: Generative Pretraining in Multimodality.
 685 *arXiv preprint arXiv:2307.05222*, 2023.

686

687 Chameleon Team. Chameleon: Mixed-Modal Early-Fusion Foundation Models. *arXiv preprint
 688 arXiv:2405.09818*, 2024.

689

690 Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xiaohuan Zhou, Jingren Zhou, Xinggang Wang,
 691 and Chang Zhou. ONE-PEACE: Exploring One General Representation Model Toward Unlimited
 692 Modalities. *arXiv preprint arXiv:2305.11172*, 2023a.

693

694 Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
 695 Lei Zhao, Song XiXuan, et al. CogVLM: Visual Expert for Pretrained Language Models. *Ad-
 696 vances in Neural Information Processing Systems*, 37:121475–121499, 2024.

697

698 Wenhui Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong
 699 Lu, Lewei Lu, Hongsheng Li, et al. InternImage: Exploring Large-Scale Vision Foundation Mod-
 700 els with Deformable Convolutions. In *Proceedings of the IEEE/CVF Conference on Computer
 701 Vision and Pattern Recognition*, pp. 14408–14419, 2023b.

702

703 Shiyu Xuan, Qingpei Guo, Ming Yang, and Shiliang Zhang. Pink: Unveiling the Power of Refer-
 704 ential Comprehension for Multi-modal LLMs. In *Proceedings of the IEEE/CVF Conference on
 705 Computer Vision and Pattern Recognition*, pp. 13838–13848, 2024.

702 Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
 703 Hu, Pengcheng Shi, Yaya Shi, et al. mPLUG-Owl: Modularization Empowers Large Language
 704 Models with Multimodality. *arXiv preprint arXiv:2304.14178*, 2023.

705 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
 706 Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
 707 In *The Twelfth International Conference on Learning Representations*, 2023.

708 Zuyao You and Zuxuan Wu. Seg-r1: Segmentation can be surprisingly simple with reinforcement
 709 learning. *arXiv preprint arXiv:2506.22624*, 2025.

710 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling Context
 711 in Referring Expressions. In *European Conference on Computer Vision*, pp. 69–85. Springer,
 712 2016.

713 Ya-Qi Yu, Minghui Liao, Jiwen Zhang, and Jihao Wu. TextHawk2: A Large Vision-Language
 714 Model Excels in Bilingual OCR and Grounding with 16x Fewer Tokens. *arXiv preprint
 715 arXiv:2410.05261*, 2024.

716 Yuqian Yuan, Wentong Li, Jian Liu, Dongqi Tang, Xinjie Luo, Chi Qin, Lei Zhang, and Jianke Zhu.
 717 Osprey: Pixel Understanding with Visual Instruction Tuning. In *Proceedings of the IEEE/CVF
 718 Conference on Computer Vision and Pattern Recognition*, pp. 28202–28211, 2024.

719 Haotian Zhang, Haoxuan You, Philipp Dufter, Bowen Zhang, Chen Chen, Hong-You Chen, Tsu-Jui
 720 Fu, William Yang Wang, Shih-Fu Chang, Zhe Gan, and Yinfei Yang. Ferret-v2: An improved
 721 baseline for referring and grounding with large language models. In *First Conference on Lan-
 722 guage Modeling*, 2024a. URL <https://openreview.net/forum?id=EEPBOB2Xww>.

723 Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, Wenqi Shao, Wenwei Zhang, Yu Liu, Kai Chen,
 724 and Ping Luo. GPT4ROI: Instruction Tuning Large Language Model on Region-of-Interest. In
 725 *European Conference on Computer Vision*, pp. 52–70. Springer, 2024b.

726 Tao Zhang, Xiangtai Li, Hao Fei, Haobo Yuan, Shengqiong Wu, Shunping Ji, Chen Change Loy, and
 727 Shuicheng Yan. OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and
 728 Understanding. *Advances in Neural Information Processing Systems*, 37:71737–71767, 2024c.

729 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhanc-
 730 ing Vision-Language Understanding with Advanced Large Language Models. *arXiv preprint
 731 arXiv:2304.10592*, 2023.

732 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 733 Duan, Weijie Su, Jie Shao, et al. InternVL3: Exploring Advanced Training and Test-Time Recipes
 734 for Open-Source Multimodal Models. *arXiv preprint arXiv:2504.10479*, 2025.

735 Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat
 736 Behl, Jianfeng Wang, Lu Yuan, et al. Generalized Decoding for Pixel, Image, and Language.
 737 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 738 15116–15127, 2023a.

739 Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang, Jianfeng
 740 Gao, and Yong Jae Lee. Segment Everything Everywhere All at Once. *Advances in Neural
 741 Information Processing Systems*, 36:19769–19782, 2023b.

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 REFERRING IMAGE CAPTIONING (RIC) DATASET**
759760 **A.1.1 DATASET CONSTRUCTION**
761

762 Image captioning is a fundamental benchmark for evaluating the vision understanding ability of
763 MLLMs. In the conventional setting, given an input image, the model generates a pure textual de-
764 scription that summarizes the main subject and its activity, trained on large-scale image-text pairs.
765 However, such descriptions provide little supervision regarding object-level grounding, making it
766 difficult to assess whether the model accurately captures the spatial locations of entities. To ad-
767 dress this limitation, we re-annotate the COCO2017 dataset with more fine-grained annotations and
768 propose our Referring Image Captioning (RIC) dataset. Specifically, we leverage Qwen2.5-VL-72B
769 (prompt provided below) and feed each image together with its box-level annotations, instructing the
770 model to produce enriched captions that explicitly reference the corresponding box IDs. Examples
771 of the resulting training samples are shown in Fig. 6.

772 **Prompt for generating RIC dataset**
773

774 **Prompt:** <image>Please describe the image, focusing on the main objects (instances) present. After
775 mentioning an object in the caption, immediately append its instance ID(s) in parentheses, using the
776 format (<box_id: ID/>). You MUST ONLY use the instance IDs provided in the list below. Do NOT
777 invent or make up any IDs. If there are multiple instance IDs for the same object, list all IDs within
778 the same parentheses, separated by commas. For example: 'A man (<box_id: ID/>) is standing by
779 the table (<box_id: ID/>). Two ovens (<box_id: ID/>, <box_id: ID/>) are visible.' Here are the
780 optional instances in the image (id: ID, format: category: name, bbox: [x1, y1, x2, y2]):
- 200887, person, [389, 70, 498, 348]
- {list all annotations within this query image.}

781 **IMPORTANT:** Only use the instance IDs listed above in your caption. Do NOT invent or
782 make up any new IDs. Generate a fluent English caption that includes the main objects and their
783 instance IDs as specified. You don't have to include all instances from the list above, as they are
784 optional; only describe the main elements of the image. The caption should be no more than 100
785 words and should not contain any information irrelevant to the image.

786 **Qwen2.5-VL-72B:** (Example) A bustling kitchen scene features a person (<box_id: 200887/>)
787 working near a sink (<box_id: 2196309/>). The dining table (<box_id: 119568/>) holds vari-
788 ous cooking items, including a bowl (<box_id: 713388/>) and a bottle (<box_id: 82445/>). Two
789 ovens (<box_id: 1125079/>, <box_id: 2139366/>) are visible in the background. Another person
790 (<box_id: 1218137/>) appears partially on the left. The table also has a cup (<box_id: 1883614/>)
791 and a knife (<box_id: 693231/>). The kitchen is equipped with hanging pots and a well-used
792 workspace, emphasizing a busy cooking environment.

793
794 **A.2 TEMPLATE EXAMPLE FOR EACH VISION TASK**
795

796 Here we present the interaction templates used in our PaDT framework, covering open-vocabulary
797 detection, referring expression comprehension, and referring image captioning tasks. The prompts
798 are designed to be concise and efficient, allowing PaDT to naturally interleave textual tokens and
799 VRT predictions during task training.

800 **Open Vocabulary Detection Task**
801

802 **USER:** <image>Please carefully check the image and detect the following objects: [{target list}].

803 **ASSISTANT:** In this image, there are {number} “{category}” (<VRT_0><VRT_1><VRT_2>
<VRT_3><VRT_4>, <VRT_5><VRT_6><VRT_7><VRT_8><VRT_9>, ...) and ...

845 **Referring Expression Comprehension / Segmentation Task**
846

847 **USER:** <image>Please carefully check the image and detect the object this sentence describes:
848 “{question}”.

849 **ASSISTANT:** The “{question}” refers to <VRT_0><VRT_1><VRT_2><VRT_3><VRT_4> in
850 this image.

851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 6: The training samples of RIC dataset. For each image, there are 3-5 captions, in which we ask the MLLMs to refer to the object (via bounding box or visual reference tokens) following each object's subject.

Referring Image Captioning Task

USER: <image>Please describe this image.

ASSISTANT: ... {object1} (<VRT_0><VRT_1><VRT_2><VRT_3><VRT_4>) ... {object2} (<VRT_5><VRT_6><VRT_7><VRT_8><VRT_9>) ...

864 A.3 PROMPT USED FOR COMPETING METHODS
865866 To guide MLLMs (e.g., Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu et al., 2025), and the LLaVA
867 series (Liu et al., 2024c)) in predicting bounding box coordinates in each task, we append a box-
868 specific and format-specific instruction to the task prompt, as detailed below.
869870 **Open Vocabulary Detection Task (with box and format instruction)**
871872 **USER:** <image>Please carefully check the image and detect the following objects: [{target list}].
873 Output each detected target’s bbox coordinates in JSON format. For example, “json
874 [{"bbox_2d": [x1, y1, x2, y2], "label": "target name"}]
875 “. If no targets are detected in the image, simply respond with None.
876877 **Referring Expression Comprehension / Segmentation Task (with format instruction)**
878879 **USER:** <image>Please carefully check the image and detect the object this sentence describes:
880 “{question}”. Output the final answer in JSON format.
881882 **Referring Image Captioning Task (with box instruction)**
883884 **USER:** <image>Please describe this image. You should include the corresponding bounding box of
885 the objects within the sentence. For example, “In this image, a cat ([x1, y1, x2, y2]) is sitting on the
886 wooden table ([x1, y1, x2, y2]), ...”.
887888 A.4 THE FORMULA OF THE TASK-SPECIFIC LOSSES ON THE PaDT DECODER OUTPUT
889890 Let $\mathcal{B}^{pred} \in \mathbb{R}^{L \times 4}$ denote predicted bounding boxes with ground truth \mathcal{B}^{gt} , $\mathcal{M}^{pred} \in \mathbb{R}^{L \times H \times W}$
891 predicted masks with ground truth \mathcal{M}^{gt} , and $\mathcal{S}^{pred} \in \mathbb{R}^{L \times 1}$ predicted confidence scores with
892 ground truth \mathcal{S}^{gt} . The \mathcal{L}_{bbox} , \mathcal{L}_{mask} and \mathcal{L}_{score} objectives are:
893

894
$$\mathcal{L}_{bbox} = \frac{1}{L} \sum_l^L \mathcal{L}_{iou}(\mathcal{B}_l^{pred}, \mathcal{B}_l^{gt}) + \|\mathcal{B}_l^{pred} - \mathcal{B}_l^{gt}\|_1, \quad (8)$$

895

896
$$\mathcal{L}_{mask} = \frac{1}{L} \sum_l^L \mathcal{L}_{dice}(\mathcal{M}_l^{pred}, \mathcal{M}_l^{gt}) + \sum_l^L \mathcal{L}_{focal}(\mathcal{M}_l^{pred}, \mathcal{M}_l^{gt}), \quad (9)$$

897

898
$$\mathcal{L}_{score} = \frac{1}{L} \sum_l^L \|\mathcal{S}_l^{pred} - \mathcal{S}_l^{gt}\|_2^2. \quad (10)$$

899

900 A.5 ADDITIONAL ABLATION STUDY
901902 A.5.1 TOKEN ACTIVATION MAP ANALYSIS
903904 We provide additional Token Activation Map (TAM) visualizations, as illustrated in Fig. 7, comparing
905 Qwen2.5-VL and the PaDT Pro 7B model, showing that visual reference tokens establish much
906 stronger associations with target image patches than digit-by-digit coordinate predictions. These
907 results further highlight the robust semantic alignment and precise object localization achieved by
908 visual reference tokens.
909910 A.5.2 ABLATION STUDY OF OTHER USED LOSSES
911912 As shown in Table 8, we conduct ablations on the loss components \mathcal{L}_{bbox} , \mathcal{L}_{mask} , and \mathcal{L}_{score} .
913 PaDT achieves the best average performance when all visual task losses are combined. In particular,
914 removing the dynamic embedding module or omitting any individual loss (\mathcal{L}_{mask} , \mathcal{L}_{bbox} , \mathcal{L}_{score})
915 consistently degrades performance on both referring expression comprehension and segmentation.
916 Notably, using all components yields the highest accuracy (93.2% REC and 76.1 mask cIoU) and the
917 strongest multi-task ability, underscoring that each module and loss is essential and complementary
918 for optimal task performance.
919

Figure 7: More TAM visualizations of Qwen2.5-VL and our PaDT Pro 7B models.

Table 8: Ablation study of each individual components (with the analysis of additional losses).

VRT	Dynamic Embedding Module f_{vp}	Visual Task Loss			Detection		Segmentation
		\mathcal{L}_{mask}	\mathcal{L}_{bbox}	\mathcal{L}_{score}	RefCOCO val (REC)	COCO val	RefCOCO val (RES)
—	—	—	—	—	88.7	17.1	—
✓	—	✓	✓	✓	91.1	27.5	72.1
✓	✓	—	✓	✓	91.7	32.3	—
✓	✓	✓	—	—	—	—	78.0
✓	✓	✓	✓	—	92.7	24.4	75.2
✓	✓	✓	✓	✓	93.2	34.0	76.1

A.5.3 ABLATION STUDY OF THE NUMBER OF SELECTED VRTS PER TARGET

We analyze how the number of selected visual patches per target impacts performance. As shown in Table 9, increasing the number of patches from 1 to 5 steadily improves both bounding box accuracy and mask cIoU across all datasets. The best results are obtained with 5 patches per target, while further increasing to 8 patches yields diminishing or even negative returns. This indicates that a moderate number of representative patches provides richer representations, whereas excessive patches introduce noise and redundancy, leading to unstable training of PaDT.

We also investigate the case of using all foreground patches as ground-truth VRTs during training. As shown in Fig. 8, this configuration produces the worst results. Although the number of output VRTs increases, the PaDT decoder exhibits clear performance degradation. We attribute this to the redundancy (that makes the PaDT hard to predict all VRTs at the inference stage) and low resolution of patch-level features: when all foreground patches are used, the decoder is forced to decode trivial and overlapping regions, which prevents it from learning accurate target boundaries and masks, especially when only a limited number of VRTs are predicted at inference. Consequently, selecting a moderate number of informative patches proves more effective than training with all foreground patches.

A.5.4 ABLATION STUDY OF DIFFERENT SAMPLING STRATEGY

972 Table 9: **Ablation study of the number of selected visual patches per target and different sampling**
973 **strategy.**

#Patches / Target		1	3	5	8	ALL	Border-aware Sampling
RefCOCO val	Bbox Acc@0.5	92.4	93.2	93.2	92.6	49.1	92.1
	Bbox Acc@0.75	82.7	86.1	87.1	85.9	15.5	—
	Mask cIoU	67.3	75.2	76.1	75.7	19.8	70.9
RefCOCO+ val	Bbox Acc@0.5	87.5	88.1	88.5	87.5	—	86.6
	Bbox Acc@0.75	78.8	82.1	82.8	81.7	—	—
	Mask cIoU	63.7	71.4	72.7	71.6	—	66.9
RefCOCOg val	Bbox Acc@0.5	88.1	88.2	88.2	86.8	—	87.0
	Bbox Acc@0.75	78.7	80.7	81.1	79.9	—	—
	Mask cIoU	62.7	69.7	70.5	70.0	—	65.6

986
987 We present a detailed comparison among different sampling strategies, including random sampling
988 (18 patches), using all foreground patches, and border-aware sampling (four tokens from left, top,
989 right and bottom boundaries). The results are summarized in Table 9.

990 We make the following key observations:

- 992 • **Using all foreground patches as ground-truth VRTs leads to performance collapse.** When all foreground patches are provided during training, the task decoder tends to overfit
993 to the ground-truth VRTs and relies heavily on the MLLM’s predicted VRTs during inference.
994 As the decoder simply learns to produce trivial bounding boxes or masks that cover
995 all foreground areas, it no longer needs to truly understand object boundaries, thus failing
996 to generalize.
- 997 • **Random sampling consistently benefits performance.** As the number of randomly sam-
998 pled patches increases from 1 to 5, the performance consistently improves. The best results
999 are achieved with 5 randomly sampled patches, indicating that this strategy strikes a bal-
1000 ance between coverage and model generalization.
- 1001 • **Boundary-aware sampling underperforms random sampling.** Sampling exclusively
1002 from the four boundaries (left, top, right, bottom) yields weaker results. We hypothesize
1003 that boundary patches often contain ambiguous semantics, especially when segmentation
1004 annotations are unavailable. This increases training difficulty and again makes the task
1005 decoder overly dependent on MLLM’s predicted boundary VRTs.

1008 A.6 SCALABILITY TO HIGH-RESOLUTION IMAGES

1012 A.6.1 COMPATIBILITY WITH HIGH-RESOLUTION IMAGES: YES, FULLY SUPPORTED

1013 PaDT is fully compatible with high-resolution images and supports native resolutions. Our PaDT
1014 framework inherits from Qwen2.5-VL, and just like Qwen2.5-VL, it supports image inputs at their
1015 original resolution. For instance, in our experiments, we did not perform any resizing operations on
1016 training images and we directly use their native resolutions.

- 1017 • **COCO** dataset: multiple resolutions, such as 640 480, 480 640, 640 573, 500 333, etc.
(Tab. 1,2,3).
- 1019 • **Objects365** dataset: high-resolution images such as 1024 727, 4608 3072, 768 1024,
1020 5152 3864, etc. (Tab. 7).

1022 Table 7 further shows the results of training PaDT on Objects365 (with highly dynamic high-
1023 resolution inputs) and transferring to COCO dataset. Both Zero-Shot and Fine-Tuned results
1024 (mAP50) outperform Qwen2.5-VL models on the same scale.

1026
1027

A.6.2 ADDITIONAL COMPUTATION OVERHEAD INTRODUCED BY PaDT: VERY LOW

1028
1029
1030
1031

High-resolution images naturally introduce more visual tokens, leading to increased computation and GPU memory, which is inherent to all MLLM models, including PaDT, Qwen2.5-VL, and InternVL3. Importantly, the additional overhead introduced by PaDT, compared to Qwen2.5-VL, is negligible. We quantify these additional costs as follows:

1032
1033
1034
1035

1. Number of Visual Tokens / Patches: For an input image of size $H \times W$, the number of VRTs is: $\#VRTs = h \times w$, where $h = \text{round}(H/28)$, $w = \text{round}(W/28)$. This is identical to the patch extraction process used in Qwen2.5-VL and InternVL3. Thus, PaDT does not introduce new resolution-dependent costs beyond standard visual encoder usage.

1036

2. Dynamic Embedding Table:

1037

* Qwen2.5-VL-7B Text Embeddings:
Memory: 152,064 * 3584

1040
1041

* PaDT Dynamic Embedding Table:

1042
1043
1044
1045

✗ PaDT trained with all foreground VRTs

1078
1079

Figure 8: Qualitative analysis between training PaDT with all foreground VRTs and 5 randomly selected foreground VRTs.

✓ PaDT trained with 5 random foreground VRTs


```

1080     Memory: (152,064 + hw) * 3584
1081     Additional memory: hw * 3584
1082     Increasing rate = hw / 152,064
1083

```

1084 For a 1024×1024 image:

```

1085     h = w = round(1024 / 28) = 37
1086     Extra memory = 37 * 37 * 3584 * 2 Bytes (bfloat16) = 8 MB
1087     Increasing rate = 0.009 (i.e., <1%)
1088

```

3. Projection Module f_{vp} : Negligible Cost:

```

1090     LayerNorm:
1091         Memory: 3584 * 2
1092
1093     Two Linear Projections (W_A, W_B):
1094         Memory: 3584 * 64 * 2
1095

```

1096 This overhead is less than 0.02% of the LLM backbone parameters (3B), thus negligible.

1097 **4. No Extra Overhead in the LLM Forward Pass:** VRTs are treated identically to text tokens
1098 during embedding lookup. Once embedded, they are processed by the LLM backbone without any
1099 additional computation. No structural modification or auxiliary branch is added to the forward pass.

1100 **5. PaDT Head Overhead:** Let $H \in R^{L \times 3584}$ be the backbone output:

```

1101
1102     * Qwen2.5-VL-7B:
1103         FLOPs = L * 3584 * 152,064
1104
1105     * PaDT:
1106         FLOPs = L * 3584 * (152,064 + hw)
1107
1108     Increasing Rate: hw / 152,064 (= 0.009 for a 1024 * 1024 image)

```

1109 Again, the overhead remains less than 1% even for high-resolution images.

1110 **6. Lightweight Decoder Head:** The decoder consists of only three 2-way attention modules, with
1111 95M parameters, significantly smaller than the 37B LLM backbone. Moreover, all VRTs are de-
1112 coded in a single forward pass, no iterative decoding is required.

1113 **Overall:** PaDT preserves the inference speed and memory footprint of standard multimodal LLMs.
1114 The only resolution-dependent cost comes from visual patch extraction, which is inherent to all
1115 high-resolution MLLMs.

A.6.3 PaDT IS EVEN MORE EFFICIENT THAN QWEN2.5-VL

1118 Although PaDT introduces negligible overhead, it is more efficient during inference and training.
1119 This is because PaDT represents an object with fewer tokens:

```

1120     Qwen2.5-VL:
1121         [100, 200, 300, 400] -> '[', '1', ..., '0', ']' -> 17 tokens
1122
1123     PaDT:
1124         <|VRT_0|><|VRT_1|><|VRT_2|><|VRT_3|><|VRT_4|> -> 5 tokens

```

1125 During inference (autoregressive decoding), PaDT saves 12 forward passes per object. During
1126 training, it reduces 12 forward tokens per object. These savings greatly outweigh the small mem-
1127 ory / computation overhead analyzed above. Therefore, overall, PaDT is both more efficient and
1128 more effective than Qwen2.5-VL. More quantitative analysis is shown as Tab. 10, we benchmarked
1129 inference on RefCOCO val set (averaged over 100 samples) and scaled the images by 2x (e.g.,
1130 $448 \times 644 \rightarrow 896 \times 1288$).

1134 Table 10: The quantitative analysis of computation cost and memory allocation for different image
1135 resolutions.
1136

Model	Image Resolution	A Whole Generation Process	Single-Pass Forward	Sequence Length	Peak Memory Allocation
Qwen2.5-VL (3B) PaDT (3B)	1x 1x	1.127 s 0.661 s (-0.466 s)	0.027 s 0.034 s (+0.007 s)	42.22 19.44 (-22.78)	8,186 MB 8,530 MB (+344 MB)
Qwen2.5-VL (3B) PaDT (3B)	2x 2x	1.373 s 0.905 s (-0.468 s)	0.032 s 0.046 s (+0.014 s)	42.96 19.44 (-23.52)	9,470 MB 9,446 MB (-24 MB)

1141
1142 A.7 COMPARISON WITH QWEN2.5-VL USING DIFFERENT POST-TRAINING STRATEGY
1143

1144 We compare PaDT with Qwen2.5-VL under different post-training strategies (i.e., SFT or GRPO)
1145 on the task-specific datasets. The results in Table 11 and Table 12 show that: 1. PaDT consistently
1146 outperforms post-trained Qwen2.5-VL across both tasks; 2. PaDT achieves superior zero-shot per-
1147 formance; and 3. PaDT demonstrates stronger transferability, as pretraining on Objects365 followed
1148 by finetuning on COCO yields better results than training on COCO alone.

1149 Table 11: The results on Referring Expression Comprehension (REC) task.
1150

Model Name	Setting	RefCOCO val	RefCOCO+ val	RefCOCOg val
Qwen2.5-VL	Zero-Shot	89.1	82.4	85.2
Qwen2.5-VL	SFT	88.7	82.3	86.0
Qwen2.5-VL	GRPO (Shen et al., 2025)	90.1	84.2	85.6
PaDT	SFT	93.2	88.5	88.2
PaDT-Pro	SFT	96.0	91.8	93.6

1159 Table 12: The results on Open-Vocabulary Detection (OVD) task.
1160

Model Name	Setting	mAP@[50:95]
Qwen2.5-VL	Zero-Shot	13.7
PaDT	Zero-Shot (Pretrained on Objects365)	16.9
Qwen2.5-VL	SFT	17.1
Qwen2.5-VL	GRPO (Shen et al., 2025)	19.2
PaDT	Task-Specific SFT	34.0
PaDT	Objects365 → COCO	36.5
PaDT-Pro	SFT	38.2

1171
1172 A.8 QUALITATIVE EVALUATION

1173 A.8.1 OPEN VOCABULARY DETECTION ON COCO2017 DATASET

1175 **Comparison with representative MLLMs.** In this section, we present qualitative results for open-
1176 vocabulary detection on the COCO2017 dataset, comparing PaDT against representative MLLMs.
1177 As shown in Fig. 9, several key observations can be made.

1178

- 1179 • **Higher recall.** PaDT consistently detects a larger number of objects in the scene, demon-
1180 strating stronger recall. This improvement stems from its ability to directly predict visual
1181 reference tokens (VRTs) that are anchored to image patches, enabling more reliable cover-
1182 age of relevant objects.
- 1183 • **Robustness in cluttered scenes.** Competing MLLMs, which predict serialized bounding
1184 box coordinates, often struggle in scenes with many repetitive or similar-looking objects.
1185 Their predictions may miss valid instances or collapse onto a few candidates, whereas
1186 PaDT maintains distinct references to multiple targets.
- 1187 • **Avoiding invalid outputs.** Existing MLLMs occasionally fail to produce valid detections,
1188 labeled as Error in Fig. 9. In such cases, the models tend to generate repetitive text se-

1188 quences until reaching the maximum output length, i.e. 2048 tokens. PaDT avoids this
 1189 failure mode by grounding predictions directly in visual tokens rather than relying solely
 1190 on text-based serialization.

1191
 1192 Overall, these qualitative comparisons reinforce the advantages of PaDT: directly predicting visual
 1193 tokens not only improves recall but also enhances robustness and stability in open-vocabulary de-
 1194 tection.

1195 **Visualization of PaDT results on REC/RES and OVD tasks.** In Fig. 10, we present extensive
 1196 qualitative examples generated by the proposed PaDT framework. For Referring Expression Com-
 1197 prehension (REC) and Referring Expression Segmentation (RES), PaDT first parses the user query
 1198 and identifies the corresponding target within the image. As illustrated in the top-left subfigure of
 1199 each example, PaDT generates five visual reference tokens (VRTs), each directly correlated with
 1200 specific image patches and thus easily localizable. These VRTs are subsequently passed into the
 1201 PaDT decoder to produce the corresponding bounding box and segmentation mask. The overall
 1202 pipeline is simple yet effective. Compared to character-by-character coordinate generation, PaDT
 1203 requires far fewer tokens (only five VRTs per target) while providing stronger semantic and spatial
 1204 grounding with respect to the object.

1205 Similar observations are made in the Open-Vocabulary Detection (OVD) task. Unlike REC/RES,
 1206 OVD requires PaDT to predict multiple targets along with their category labels. In our response
 1207 template, both categories and VRTs are naturally interleaved within the output sequence, enabling
 1208 efficient multimodal reasoning. This training strategy strengthens the semantic alignment between
 1209 text and image patches, thereby improving both precision and recall in detection task.

1210 A.8.2 REFERRING IMAGE CAPTIONING ON RIC DATASET

1211
 1212 **Comparison with representative MLLMs.** In this section, we present qualitative results for open-
 1213 vocabulary detection on the Referring Image Captioning (RIC) dataset, comparing PaDT with rep-
 1214 resentative MLLMs, including InternVL3 8B and Qwen2.5-VL 7B models. As shown in Fig. 11,
 1215 PaDT exhibits clear advantages in both bounding box accuracy and object recall. Detailed qualitative
 1216 comparisons are provided in the figure, further demonstrating the effectiveness of leveraging visual
 1217 reference tokens as a bridge between high-level text semantics and low-level object localization.

1218 **Visualization of PaDT results on RIC task.** We further present qualitative examples generated
 1219 by the proposed PaDT framework. As shown in Fig. 12, visual reference tokens are automatically
 1220 generated alongside the subject, illustrating a natural interleaving between semantic text and image
 1221 patches. This design further enhances object-level alignment between textual descriptions and visual
 1222 elements, thereby strengthening the co-reasoning ability across text and image modalities.

1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242

1243

1244

1245

1246 Image

GT

PaDT Pro 7B

InternVL3 8B

Qwen2.5-VL 7B

VLM-R1

Figure 9: Qualitative comparison on COCO2017 open-vocabulary detection. We compare PaDT with representative MLLMs including InternVL3 and Qwen2.5-VL. Competing models frequently fail to produce valid outputs, leading to Error cases or repetitive text generation. In contrast, PaDT achieves higher recall and correctly identifies multiple objects, even in cluttered scenes with repetitive instances. These results highlight the benefit of directly predicting visual reference tokens over serialized bounding box coordinates.

1293

1294

1295

Figure 10: Qualitative visualization of PaDT generated examples on referring expression comprehension/segmentation tasks.

Figure 11: Qualitative comparison on the Referring Image Captioning (RIC) dataset. We compare PaDT with representative MLLMs, including InternVL3 and Qwen2.5-VL. PaDT shows clear advantages in both bounding box accuracy and object recall over competing methods.

