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ABSTRACT

We present a novel operator-based framework for learning coherent temporal rep-
resentations of cellular dynamics from live-cell imaging data. Recognizing the
inherent stochasticity and measurement limitations in biological systems, our ap-
proach shifts the focus from predicting exact trajectories to characterizing key
dynamical properties that shape cellular behaviors at the population level. By
leveraging spectral analysis of the Koopman operator and smoothing via Markov
semigroups of kernel integral operators, we identify near-resonant patterns and
transient coherent structures that persist across different experimental conditions.
This methodology effectively captures fundamental dynamics, providing insights
into mechanisms of heterogeneous cell responses without the need to model pre-
cise transformation laws. We demonstrate the efficacy of our framework on a
dataset of retinal pigment epithelial cells with an inducible oncogene, revealing
conserved dynamical patterns across varying levels of ERK inhibition. Our work
offers interpretable learned representations, even with limited and noisy single-
cell-resolved recordings, advancing machine learning for dynamical systems and
opening new avenues for understanding and predicting cellular behavior in re-
sponse to external stimuli.

1 INTRODUCTION

Understanding complex dynamical behaviors of cellular signaling networks remains a fundamental
challenge in computational biology and machine learning [[deker et al] (2001)). Unlike engineered
systems with deterministic functions and precise equations of motion, cellular dynamics emerge
from the interactions of small numbers of molecules whose combinatorial complexity leads to in-
herent stochasticity [Eldar & Elowitz] (2010); [Altschuler & Wu| (2010). More precisely, operating far
from thermodynamic limits where large numbers would average out fluctuations, these subcellular
systems exhibit pronounced stochastic effects - from spontaneous switching between cellular states
to heterogeneous responses to perturbations [Elowitz et al| (2002)); [Spencer et al.| (2009).

Factors such as interacting signaling pathways, varying mRNA half-lives, and fluctuating environ-
ments contribute to intrinsic stochasticity within genetically identical (isogenic) cell populations
[Eldar & Elowitz| (2010); [Altschuler & Wu| (2010). Rather than viewing this stochasticity as exper-
imental noise to be filtered out, we recognize it as a fundamental feature that both enables cellular
decision-making and induces signatures for identifying robust dynamical patterns
(2013); [Cevine et al] (2013). A striking example is how cells achieve coordination among groups
of co-regulated genes (regulons) through noise-driven mechanisms [Eldar & Elowitz| (2010). These
mechanisms operate across multiple scales, from molecular fluctuations that trigger gene expression
switches to population-level coordination of cellular states [Elowitz et al] (2002). Capturing these
complex dynamics is further complicated by limitations in measurement technologies. Traditional
high-throughput single-cell technologies enable rapid collection of distributions across diverse con-
ditions [Cin et al| (2013} [2016)) but lack temporal pairing between cells[Weinreb et al] (2018). While
live-cell imaging provides time-resolved measurements [Cutrale et al.|(2017)), it is limited to tracking
only a few variables simultaneously due to technical constraints [Stewart et al| (2016)). Consequently,
analyzing cellular dynamics from live-cell imaging presents significant challenges due to both in-
trinsic stochastic fluctuations and extrinsic heterogeneity between cells. This heterogeneity, which




Under review as a conference paper at ICLR 2025

single-cell analysis aims to uncover, makes it particularly difficult to distinguish between transient
behaviors and to build predictive models. Current approaches often average out cell-to-cell varia-
tions, obscuring the very heterogeneity that single cell data is designed to uncover and only provide
phenomenological descriptions without mechanistic insights [Snijder & Pelkmans| (201T).

While several methods have been developed for analyzing live-cell data, none fully addresses the
challenges of modeling cellular dynamics. CODEX (Jacques et al.l 2021)) employs convolutional
neural networks for pattern recognition in time-series data. However, it treats cellular trajecto-
ries as static patterns for classification rather than as evolving dynamical systems. While effec-
tive at identifying recurring motifs, CODEX does not explicitly model the underlying dynamics or
stochastic processes, requires large training datasets, and produces models that are challenging to
interpret mechanistically. Functional principal component analysis (fPCA) has been applied to an-
alyze variability in live-cell imaging data (Sampattavanich et al. 2018)), particularly for studying
temporal changes in molecular concentrations between nucleus and cytoplasm. While fPCA effec-
tively decomposes trajectories into orthogonal modes capturing dominant patterns, its optimization
for variance explained rather than dynamical features means these components may not correspond
to meaningful biological processes. Moreover, fPCA cannot predict beyond the observed time win-
dow as it does not model the generating system, and manual selection of components can introduce
bias.

More established tools in system identification have attempted to address similar limitations. Sta-
ble linear dynamical systems (LDS) (Boots| and its extensions for high-dimensional settings
(Chen et al] 2017) provide computationally tractable methods through reduced-rank approxima-
tions. However, these methods make restrictive assumptions that limit their ability to capture
complex nonlinear dynamics. Their linear evolution assumptions cannot capture nonlinear inter-
actions such as transitions present in biological data, their Gaussian noise models may not reflect
true stochastic processes, and their dimensionality reduction can discard important dynamical infor-
mation. In contrast, our operator-based approach using the Koopman framework explicitly models
system evolution without linearity assumptions. By lifting nonlinear dynamics into a linear frame-
work through the action on observables, and regularizing through Markov semigroups, we obtain
a mathematically rigorous method with provable convergence properties. Rather than relying on
predetermined dimensionality reduction, our method adaptively determines relevant modes through
spectral analysis of the regularized operator. This allows us to capture rich nonlinear behaviors while
maintaining computational tractability and providing theoretical guarantees about convergence to
the true dynamics - key features lacking in current approaches.

Operator-theoretic approaches combined with data-driven learning offer a promising alternative by
identifying patterns directly from single-cell measurements while preserving the essential hetero-
geneity that drives cellular decision-making |Das & Giannakis| (2019); Mezi¢| (2005)). Rather than
attempting to learn all behaviors, most of which are unpredictable, we focus on identifying coherent
temporal patterns that persist for finite times—analogous to studying coherent structures in turbulent
flows (2013). The Koopman operator approach is particularly promising in this context. By
representing dynamics through the action on functions, e.g. fluorescent readouts of protein levels,
and through spectral analysis, we can identify near-resonances that shape transient responses to
perturbations like drug treatments. Our approach combines and extends several powerful concepts:

1. The Koopman operator framework, which enables study of nonlinear dynamics through
linear methods while naturally handling stochastic effects [Mezic|(2005)); Das & Giannakis
(2019)

2. Kernel methods that transform complex data into spaces where dynamical patterns become

apparent|Berry et al.{(2015))

3. Regularization techniques via Markov semigroups that make infinite-dimensional problems
computationally tractable while preserving biologically relevant features (20715)

We demonstrate our framework’s effectiveness using live-cell imaging data from cells under various
perturbations [Chen et al (2023), showing how it captures coherent temporal patterns that persist
despite high variability while highlighting condition-specific dynamics.




Under review as a conference paper at ICLR 2025

2 DYNAMICAL SYSTEM REPRESENTATION

In this section, we present our Operator-Based Dynamics Framework for learning coherent tempo-
ral representations from live-cell trajectory data. By coherent temporal patterns, we refer to robust,
recurring, and interpretable structures in the time evolution of the system that persist across dif-
ferent temporal scales and encapsulate the intrinsic organization of the dynamics, such as periodic
cycles, stable trends, attracting sets, or patterns of variability. We demonstrate through our results
that the coherent patterns significantly enhance the transferability and generalization capability of
the constructed models across diverse datasets. We consider the cellular signaling response as a
dynamical system characterized by a state space X C R¢ and a flow map ® : X x T — X, where
T C R represents time. The flow map ®(x, At) = ®>!(x) describes the evolution of an initial
state x € X over time At € T, encapsulating the deterministic dynamics of the system. However,
due to inherent uncertainties such as molecular noise and environmental fluctuations, the cellular
dynamics exhibit stochastic behavior that cannot be fully captured by a deterministic flow map. To
model this uncertainty, we consider the state of the system at time ¢ as a random variable X, with an
associated probability distribution over X. The evolution of the system is thus described in terms of
the probabilistic transition of states over time.

To model the probabilistic evolution of the system, we introduce the transition density function
pat : X x X = [0, 00), which describes the probability density of transitioning from state = € X at
time ¢ to state y € X at time ¢ + At. For a measurable subset A C X, the probability of the system
transitioning from state x to A over time At is given by:

PO (x,) € A | x, = 2] = /A pac(e,y) uldy), )

where /1 is a measure on X, typically the Lebesgue measure when X is a subset of R%. The proba-
bilistic evolution of densities over time can be described using the Perron-Frobenius operator (also
known as the transfer operator) P~t. This operator acts on functions f € L'(X, 1) and describes
how a probability density evolves under the dynamics induced by ®2*. Formally, for a measure
space (X, B, i), where B is the Borel sigma-algebra on X, and for any measurable subset A € B,
the Perron-Frobenius operator P2t : L1(X, 1) — LY(X, p) satisfies:

[Pen@utin = [ pw)utde). @
A P—A(A)

This equation states that the total probability mass in set A at time ¢ + At is equal to the total
probability mass in the pre-image ®~2%(A) at time ¢, where ®~2* denotes the backward flow over
time At. The operator P2 is linear and preserves total probability, i.e., if f is a probability density
function, so is P2 f. Alternatively, when the transition density function pa;(x, %) exists, the action
of the Perron—Frobenius operator can be expressed as:

(PO f)(y) = / pac(z,y) f(@)u(dz). 3)

Koopman Operator: Complementary to the Perron—Frobenius operator, which describes the evo-
lution of densities, the Koopman operator IC™* acts on observables (functions of the state) and cap-
tures how these observables evolve under the dynamics. Specifically, for an observable function
g € L>=(X, 1), the Koopman operator A% : L°°(X, p1) — L (X, p) is defined as:

(KAtg)(x) = Elg(®@(x,)) | x; = 2] = / o(y)pac(a. y) p(dy). @)

The Koopman operator is also linear, even if the underlying dynamics are nonlinear and stochastic.
It provides a linear representation of the evolution of observables under the dynamics. Moreover, the
Koopman operator is the adjoint of the Perron-Frobenius operator with respect to the inner product
in L2(X, p), i.e., for f € L} (X, p) and g € L (X, p),

/X (K2%9)(2) f(2) pldz) = / 9(x) (P2 ) () p(da). (5)

X

This duality allows us to study the dynamics either through the evolution of densities (Perron-
Frobenius operator) or through the evolution of observables (Koopman operator).
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2.1 SPECTRAL ANALYSIS OF THE KOOPMAN OPERATOR

As a linear operator, the Koopman operator ** can be decomposed into its eigenfunctions and
eigenvalues. Specifically, we seek eigenfunctions ¢y, € L°°(X, 1) and corresponding eigenvalues
A € C satisfying:
A

K2 o = A i (6)
These eigenfunctions represent modes of the system that evolve linearly over time. By approxi-
mating these eigenfunctions and eigenvalues, we can decompose complex, nonlinear, and stochastic
dynamics into a superposition of simpler, linear modes.

Pseudospectra of the Koopman: Given the stochastic and transient nature of cellular dynam-
ics and the limitations in predicting exact trajectories, we adopt a pseudospectrum approach to
identify coherent dynamical patterns that are robust to perturbations and uncertainties. The e-
pseudospectrum of the Koopman operator 2, denoted by o (K2?), consists of all complex num-
bers A € C for which the resolvent norm is large:

o (KA = {A eC ‘ |2t —an ™| = i} Q)

However, working directly with resolvents can be computationally challenging (Sharma et al., 2016;
Giannakis & Valval, 2024; (Colbrook & Townsend, 2021} |Colbrook et al., [2023). Therefore, in the
subsequent sections, we adopt an alternative approach to analyze finite-time dynamics and transient
behaviors by employing a method based on smoothing via a Markov semigroup of kernel integral
operators (Valva & Giannakis, 2024). While this approach may not yield the exact pseudospectrum
due to the regularization of the Koopman operator, the eigenfunctions of the smoothed operator
still represent coherent temporal patterns that persist over finite timescales. While this approach
yields a different spectrum from the original Koopman operator or its pseudospectrum, it effectively
captures near-resonant behaviors and coherent transient patterns in the dynamics, similar to the
pseudospectrum approach.

Identification of Coherent Dynamical Patterns Approximate eigenfunctions obtained from the
smoothing method represent coherent temporal patterns in the cellular dynamics that persist over
finite timescales. These patterns evolve nearly linearly and can be used to decompose the complex
dynamics into a sum of simpler, predictable components. For an approximate eigenfunction ¢;, the
evolution under the Koopman operator satisfies:

K"3tg ~ \'g, ®)

for n € N. This approximation holds over finite timescales where the patterns remain coherent.
By expressing observables as linear combinations of these approximate eigenfunctions, we obtain a
spectral decomposition of the dynamics:

g(z) = Z o;(x)cy, 9)

where ¢; are the approximate eigenfunctions and c; are coefficients. The evolution of g is then
approximated by:

Knitg(z) ~ Z Aidj(z)e;. (10)
J

This decomposition allows us to capture the dominant temporal patterns in the data, even when
exact trajectory prediction is impossible. The approximate eigenfunctions ¢; correspond to modes
that represent collective behaviors of the system, providing insights into the mechanisms underlying
cellular responses.

2.2 LEARNING THE SPECTRAL COMPONENTS OF THE DYNAMICS

To extract coherent temporal patterns from live-cell trajectory data, we employ a data-driven ap-
proach to approximate the Koopman operator. Before detailing the approximation method, we first
describe the data and the experimental conditions under which it was collected.
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Experimental Conditions Let {C},}/, denote the different experimental conditions under which

live-cell imaging data were collected. Each condition C, represents a specific perturbation or treat-
ment applied to the cells, such as varying doses of an inhibitor or other perturbations. For each con-
dition, we observe Ny, cell trajectories, where each trajectory consists of time-series measurements

over T' time points. The measurements are denoted by {xii’k) M, for the i-th cell in condition C,

where zﬁ“’“) € RY represents the state vector of observable quantities (e.g., fluorescence intensities

corresponding to signaling molecule activities) at time ¢.

Delay-Coordinate Embedding To capture the underlying dynamics of the system and obtain a
data-informed geometry suitable for constructing a Markov operator, we employ delay-coordinate
embedding. This method reconstructs the phase space of the dynamical system using time-
delayed observations of the measured variables, effectively unfolding the dynamics into a higher-
dimensional space (Takens| [1996). For each trajectory, we construct a delay-coordinate map
Fg : X — R%@? defined by

T
FQ (xt) = x;l" x;rfAtv 1’:72At7 ce "T;rf(Qfl)At} ’ Y

where ( is the number of delays and At is the sampling interval. The delay-coordinate embedding
captures the temporal structure of the data, allowing us to reconstruct the dynamics even when only
a few variables are measured.

Kernel Function and Integral Operator Using the embedded data, we define a kernel function
k: R?? x R — R, to quantify the similarity between points. We employ a self-tuning kernel
that adapts to the local data density (Berry & Harlim, [2016):

|z — yl*
k(z,y) = exp <— ; (12)
v 7@ )
where || - || denotes the Euclidean norm, and o(x) is a local bandwidth parameter. This kernel

captures local structures while being robust to variations in data density.

We then construct an integral operator K acting on functions f : R4 — R:

(Kf)(x) = k(x,y)f(y) du(y), (13)

RQd
where (i is the empirical measure derived from the data.
Markov Operator and Eigenvalue Problem To analyze the dynamics in probability spaces, we

normalize the kernel to construct a Markov operator. The normalization involves computing the
degree function

d(x) = k(. y) du(y), (14)
RQd
and then normalizing the kernel:
7. _ k(xa y)
The normalized kernel defines a Markov operator P:
(P10 = [ Fawa) ) duto) 16)

This Markov operator P forms the basis for constructing the Markov semigroup P, parameterized
by 7 > 0, which we will use for smoothing in our spectral approximation. In discrete form, for N
data points z; ij\il, the Markov matrix P has entries:

K. N
P = : — y i = K, o))
(ZkN:l Kirqy 1/2)%1'/2 ;
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We compute the eigenvalues 7; and corresponding eigenvectors ¢; of P by solving the eigenvalue
problem:

Poj = Ajp;. (18)
The eigenvalues are real and satisfy 1 = v; > 5 > --- > vy > —1. The leading eigenvector ¢

corresponds to the stationary distribution of the Markov chain. These eigenvectors ¢; will serve as
the basis for our Galerkin approximation of the smoothed Koopman operator.

Sparse Representation To handle large datasets efficiently, we construct a k-nearest neighbor
graph to sparsify the kernel matrix. For each data point ;, we connect it to its k nearest neighbors
based on the Euclidean distance in the embedded space. The kernel function is then applied only to
these neighboring pairs, resulting in a sparse kernel matrix /& and, consequently, a sparse Markov
matrix P. This sparsity reduces computational complexity and storage requirements, making the
method scalable to large datasets. While the Markov operator P captures the dynamics of the system,
direct spectral analysis may be sensitive to noise and perturbations. To address this, we introduce
a smoothing approach using a Markov semigroup, which will be detailed in the following Galerkin
approximation section.

Markov Semigroup for Smoothing To enhance the robustness of our spectral analysis to noise
and perturbations, we introduce a Markov semigroup P,. This semigroup is generated by the
Markov operator P and is defined for 7 > 0 as:

P, =e"PD) (19)

where [ is the identity operator. The semigroup satisfies the properties: Py = I, Pr, P, = Pr 4.,
for all 71, 79 > 0 and strongly continuous at 0, i.e. lim,_,g+ |P-f — f| = 0 for all f in the domain
of P.

The parameter 7 controls the amount of smoothing: as 7 increases, P, becomes increasingly diffu-
sive, smoothing out fine-scale features in the data.

Galerkin Approach and Smoothing by Markov Semigroup To approximate the Koopman op-
erator and its eigenfunctions, we employ a Galerkin method (Rowley et al. |2009; |Klus| 2020) in-
corporating smoothing by a Markov semigroup of kernel integral operators (Valva & Giannakis}
2024). We project the smoothed Koopman operator onto the subspace spanned by the leading L
eigenvectors of the Markov operator P, denoted as {¢, }le. The smoothing process is achieved
through the application of the Markov semigroup P;, parameterized by 7 > 0. We approximate the
eigenfunctions of the smoothed operator as linear combinations:

L
b= s 20)
j=1

The coefficients c¢; are determined by enforcing that the action of the smoothed Koopman operator
on ¢, is approximated within the chosen subspace. Specifically, we consider the finite-dimensional
approximation of the smoothed Koopman operator K-, defined by:

K,.=G A, (21

where G is the Gram matrix and A ;- is the smoothed covariance matrix, with entries:

Gij = (pispj),  Arij = (@i, Pr2KPrja0;). (22)

Here, P, /5 represents the action of the Markov semigroup, which smooths the Koopman operator.
The inner product (-, -) is approximated using the empirical data as before.

To compute the entries of A, we approximate the action of the smoothed Koopman operator on
the basis functions using the time-series data and the kernel integral operator. Assuming that x,,;
follows x,, in the data, we have:
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Algorithm 1 Koopman Eigenfunction Approximation

Require: Time series {x;} € RY, delays @, neighbors ky,,, Markov eigenfunctions I < N, regularization
0 > 0, output dim " <[
Ensure: Koopman eigenvalues {)\k}%zl € C, frequencies {wk}%zl € R, eigenfunctions {wk}%zl ec¥
: Compute pairwise distances dg) (z;, ;) = é Zsz_ol | 2iok — x|
. Retain ky» nearest neighbors for each point ¢ in set N, , (x;)
: Symmetrize distances by augmenting if x; € Ny, (z;) but z; & N, (z:)
: Compute bandwidth €(x;, z;) (Berry & Harlim| [2016)
: Form kernel matrix K; = exp(—dg) (x4, z;5)/€)
—1/2

: Compute normalized matrix P;; = Ki; /(3" Kirq, )qjl./z, g =, Kix
: Find [ largest eigenvalues y; and eigenfunctions ¢ of P

: Form Galerkin matrices A;; = (@i, VE&;) — 0 (@i, AE;), Gij = (pi, &)

: Solve Ac = AGe for coefficients ¢, and eigenvalues A

10: Compute eigenfunctions v; = 22:1 CjiP;

11: Calculate Dirichlet energies E(1;) = (s, At;) /||

12: Order (A, ¢x) by increasing E(t)y,)

13: Compute frequencies wy = Im(Ax)

O 01N N W —

(Pr 2K P j2p5)(w0) = / bz j2 (T, 9) 05 (Y1 )dp(y), (23)

where ]NCT /2 is the normalized kernel function associated with P /5. Thus, the entries of A, become:

1 N—-1 .
Aviy =3 3 0iCon) [ Eepplaa e om)duty). @)
n=1

Solving the generalized eigenvalue problem
A c=)\Ge, (25)

yields approximations of the eigenvalues A and eigenfunctions ¢, of the smoothed Koopman oper-
ator. This approach allows us to extract coherent dynamical patterns that are robust to perturbations
and noise, while still capturing the essential features of the underlying dynamics.

Computational Considerations This approach enables the efficient handling of large datasets by
optimizing computational resources. In Algorithm [I] the most computationally intensive steps are
the calculation of the kernel matrix K;; (step 5) and the solution of two eigenvalue problems: one
for P (step 7) and another for the Galerkin solution (step 9). By employing sparse representa-
tions—such as moderating the nearest neighbors k,,,,—and limiting the number of eigenfunctions
l, we effectively reduce the computational burden of the eigenvalue problems while preserving the
system’s essential dynamics. What facilitates effective work with a limited number of modes is the
fact that the extracted eigenfunctions represent intrinsic dynamical patterns, allowing just a few of
them to capture the system’s dynamical behavior effectively. Additionally, by managing the kernel
matrix K;; using techniques like random Fourier features (Giannakis et al] [2023)), we can scale ker-
nel computations with the size of the data. This results in a highly efficient computational approach,
offering significantly faster training compared to contemporary deep learning and neural network
methods while maintaining robust performance in capturing the system’s dynamics
2023).

3 RESULTS

In this section, we apply our spectral operator-based framework to live-cell imaging data to extract
coherent temporal patterns in cellular dynamics. We begin by describing the dataset and performing
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a preliminary analysis to understand the divergence of cellular trajectories under different experi-
mental conditions. We then demonstrate how our framework captures these dynamics and evalu-
ate the representation performance in reconstructing and predicting ERK activity trajectories. The
pseudo-code used to generate the Koopman results is reported in Algorithm [T}

3.1 PRELIMINARY ANALYSIS

Dataset Description We applied our methodology to a live-cell imaging dataset of retinal pig-
ment epithelial (RPE) cells engineered with a doxycycline (DOX)-inducible BRAFV%E oncogene
(Chen et al., 2023). The BRAFVS"E mutation is known to activate the mitogen-activated protein
kinase (MAPK) signaling pathway, leading to increased extracellular signal-regulated kinase (ERK)
activity, which plays a crucial role in cell proliferation and differentiation. The cells were also en-
gineered to express the ERK activity reporter EKARENS and a cell cycle indicator (mCherry-dE2F
PIP). This setup allowed simultaneous monitoring of ERK signaling dynamics and cell cycle pro-
gression. Live-cell imaging was performed every 10 minutes over a period of four days, capturing
the temporal evolution of ERK activity in individual cells.

To investigate the effect of ERK inhibition on cellular dynamics, the experiment included varying
concentrations of the ERK inhibitor SCH772984 (ERKi). We focused on three experimental condi-
tions:

1. DOX + DMSO: Cells induced with DOX without ERK inhibition (control condition).
2. DOX + Low ERKi: Cells induced with DOX and treated with a low concentration of ERK
inhibitor.

3. DOX + High ERK:i: Cells induced with DOX and treated with a high concentration of ERK
inhibitor.

These conditions allowed us to study how varying levels of ERK inhibition affect the dynamics of
ERK activity and cellular responses.

3.2 APPLICATION OF OPERATOR-BASED REPRESENTATION FOR SUBCELLULAR DYNAMICS

We applied our spectral operator-based dynamics framework to
the live-cell imaging data to represent coherent temporal patterns
and model the dynamics of ERK activity under the different ex-
perimental conditions. 300

Kernel Operator and Block Structure Using the delay-
coordinate embedding with () delays, we constructed the kernel
matrix for the DOX + Low ERKi condition. The self-tuning ker-

data point
[}
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(=)
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nel function captured the similarities between data points in the ) 100 200 300
embedded space, and the resulting kernel matrix exhibited a dis- data point
tinct block-diagonal structure, as shown in Figure ??. o1

=——mode 1 =—=mode 2

where the block-diagonal structure of the kernel matrix suggests  0.05

the presence of distinct dynamical regimes or attractors in the cel-
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lular state space. This implies that cells transition between dif-

ferent states over time, and these transitions are captured by the  -0.05

coherent patterns in the data. 0.1
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Principal Koopman Modes The extracted principal Koopman Time

modes capture the dominant temporal patterns in the ERK signal-

ing dynamics at the level of individual cells. Figure ?? displays Figure 1: (op) Kernel operator
the first two Koopman modes obtained under the Low ERKi con- mairix showing block-diagonal
dition. The first Koopman mode describes a smooth shift over Structure, indicating distinct dy-
time, suggesting a state transition within individual cells. This 7amical regimes. (bottom) The
shift likely reflects the progressive inhibition of ERK activity due first two  principal Koopman
to the introduction of the ERK inhibitor. The mode captures the odes extracted from the data.
overarching trend of cells moving from a state of high ERK activity to a suppressed state, aligning
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with known mechanisms where cells adjust their signaling pathways in response to external pertur-
bations (Eldar & Elowitz, 2010). This collective response demonstrates how cells probabilistically
shift states in response to external cues—a hallmark of stochastic differentiation systems. The sec-
ond Koopman mode exhibits oscillatory behavior, alternating between positive and negative values
periodically. This pattern indicates the presence of intrinsic cyclical dynamics within the ERK sig-
naling network, possibly related to fluctuations inherent in cellular processes with low copy number
molecules (Elowitz et al., [2002). Such oscillations may correspond to cell cycle phases or other
regulatory feedback loops that generate transient responses.

Model Reconstruction and Predictions Utilizing a sparse representation with only the 10
smoothest modes, we constructed a model to represent the individual cell ERK activity trajecto-
ries. This approach acknowledges the inherent stochasticity in cellular signaling by focusing on the
most significant modes that capture essential dynamics while filtering out less predictable variations.
We evaluated the model’s performance on both the training set (Low ERKi condition) and unseen
data—including data after frame 400 in the Low ERKi condition (with one frame every 10 minutes).

TRAINING SET PERFORMANCE  Figure 2] (the left plot) compares the model predictions with the
observed ERK activity data for a randomly chosen cell under the Low ERKi condition. The model
effectively captures the overall trends and key fluctuations in ERK activity, demonstrating a close
match with the observed trajectory. This indicates that the dominant Koopman modes effectively
encapsulate both the deterministic response to the inhibitor and the stochastic variations arising from
intrinsic noise. By reconstructing the dynamics using a limited number of modes, the framework
demonstrates its capacity to distill complex, noisy biological data into interpretable and predictive
components.

—Actual —PLDS reconstructed — Koopman reconstructed —PL DS predicted — Koopman predicted

4 : I
! |
I
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Figure 2: Performance examples of model prediction for ERK activity trajectories in the Low ERKi
condition (left, training set) and High ERKi condition (right, test set).

GENERALIZATION TO UNSEEN DATA We applied the model trained on the Low ERKIi condition
to the High ERKi condition without retraining, as shown in Figure 2] (right). The model predictions
(red) align well with the observed data (green), capturing the general behavior of ERK activity
under a higher level of inhibition. Despite the increased perturbation, the principal Koopman modes
learned from the Low ERKi data remain relevant, suggesting that the fundamental dynamics of ERK
signaling persist across different inhibition levels. This model transfer property is absent in modern
approaches like PLDS, as illustrated in Figure[2]

This generalization implies that the Koopman eigenfunctions encapsulate conserved patterns in the
cellular response, reflecting core mechanisms of how cells adapt to varying degrees of external
stress. The persistence of these modes across conditions indicates that our framework effectively
identifies the underlying structures governing the stochastic and nonlinear dynamics of ERK signal-
ing. By capturing these essential features, the model enhances its applicability to various experimen-
tal conditions, offering a robust tool for understanding and predicting cellular behavior in response
to different perturbations.
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COMPARISON OF DIFFERENT METRICS A comprehensive comparison of different metrics with
two contemporary approaches, i.e., CODEX (Jacques et al., |2021) and PLDS (Chen et al., [2017),
is seen in Table |1} In predicting cell dynamics, capturing intricate temporal behaviors is essential
for understanding complex biological processes. While CODEX may show lower average error, its
inability to represent detailed dynamic variations limits their utility in applications requiring high
fidelity in transient behaviors. The inconsistent behavior of CODEX becomes apparent when com-
paring its predictions for LowERKi and HighERKi in Table[I] Intuitively, CODEX should perform
more accurately on the seen dataset (LowERKi) than on the unseen dataset (HighERKi). However,
the results in Table [I]do not reflect this anticipated trend, raising questions about the method’s con-
sistency.The Koopman-based method, by contrast, excels in capturing these fine-grained dynamics,
providing deeper insights into cell behavior and enhancing the predictive accuracy for applications
where such precision is critical. The datasets were also analyzed using fPCA, which highlighted
the advantages of the Koopman operator in capturing intrinsic dynamical modes. However, fPCA
is omitted from Table |1| because it lacks predictive or forecasting capabilities. Its primary role is
to describe observed variation, offering insights into existing patterns rather than enabling forward-
looking predictions.

Table 1: Performance Metrics comparison in heldout data for LowERKIi and unseen data for High-
ERKi Tests

Metric Koopman CODEX (Jacques et al.,2021) PLDS (Chen et al.,|2017)
LowERKi HighERKi LowERKi HighERKi LowERKi HighERKi
RMSE 1.00(0.37)  1.16(0.26)  1.04(0.42) 0.82(0.31) 1.45(0.48) 1.70(0.46)
MAE 0.78(0.27)  1.00(0.28)  0.81(0.33) 0.67(0.26) 1.18(0.43) 1.42(0.43)
MAPE (%) 448(1742) 382(465) 672(2074) 387(418) 1233(4482) 870(150)
R-squared -1.08(3.20) -4.31(6.06) -1.16(2.68) -1.70(4) -7.50(24.34) -11.44(15.39)
DTW Distance 62(23) 317(96) 61(26) 50(21) 68(33) 295(105)

Implications and Further Considerations In cells expressing the mutated oncogene BRAFV60°F,

the ERK pathway plays a critical role in regulating cell proliferation and survival. The signaling
in these cells can be highly variable due to intrinsic stochasticity and the activation of alternative
pathways, leading to heterogeneous cell decisions. When ERK inhibition is absent, as in the DOX
+ DMSO condition, cells may exhibit increased variability that is not captured by the Koopman
modes derived from the ERK-inhibited condition. This variability results in dynamics that require
additional modes or joint analysis methods to fully capture. In future work, we plan to incorpo-
rate the Jointly Smooth Functions method across all conditions with BRAFV®%F expression to aid in
identifying shared patterns and separating different activated mechanisms (Sroczynski et al., [2024).
By integrating data from multiple conditions and employing joint analysis techniques, we aim to
enhance the model’s ability to capture the full range of cellular behaviors, especially when different
signaling pathways are involved. This approach will allow us to account for the complex interplay
between pathways and the stochastic nature of cellular signaling, providing a more comprehensive
understanding of how cells adapt and make decisions in varying environments. By leveraging these
methods in future studies, we expect to better capture the dynamics in conditions where the signaling
is highly variable and heterogeneous, such as in the absence of ERK inhibition. This will not only
improve the predictive power of our models but also deepen our insight into the fundamental mech-
anisms driving cellular responses, particularly in systems where noise plays a significant functional
role.

4 CONCLUSION

In this study, we developed a spectral operator-based framework that extracts coherent temporal
patterns from live-cell trajectory data to represent cellular responses to perturbations. Our find-
ings demonstrate that conserved temporal patterns exist within cellular dynamics, even amidst the
inherent stochasticity and variability of biological systems. By focusing on probabilistic repre-
sentations and utilizing Koopman eigenfunctions, our framework effectively captures fundamental
aspects of the dynamics that persist across varying external conditions, providing meaningful in-
sights into complex biological processes. Compared to approaches using functional data analysis or
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deep learning architectures, our framework offers significant advantages. It provides interpretable
representations through Koopman eigenfunctions, corresponding to meaningful temporal patterns
in the data, unlike black-box models. Additionally, it operates efficiently with the limited variables
measured in live-cell imaging, addressing common data limitations in biological experiments. By
capturing conserved dynamical patterns and accounting for stochasticity, our approach contributes
to a deeper comprehension of the mechanisms underlying cellular decision-making and adaptation.
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