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ABSTRACT

Modelling the behaviours of other agents (opponents) is essential for understanding
how agents interact and making effective decisions. Existing methods for opponent
modelling commonly assume knowledge of the local observations and chosen
actions of the modelled opponents, which can significantly limit their applicability.
We propose a new modelling technique based on variational autoencoders, which
are trained to reconstruct the local actions and observations of the opponent based
on embeddings which depend only on the local observations of the modelling agent
(its observed world state, chosen actions, and received rewards). The embeddings
are used to augment the modelling agent’s decision policy which is trained via
deep reinforcement learning; thus the policy does not require access to opponent
observations. We provide a comprehensive evaluation and ablation study in diverse
multi-agent tasks, showing that our method achieves comparable performance to
an ideal baseline which has full access to opponent’s information, and significantly
higher returns than a baseline method which does not use the learned embeddings.

1 INTRODUCTION

An important aspect of autonomous decision-making agents is the ability to reason about the unknown
intentions and behaviours of other agents. Much research has been devoted to this opponent modelling
problem [2], with recent works focused on the use of deep learning architectures for opponent
modelling and reinforcement learning (RL) [20, 34, 16, 33].

A common assumption in existing methods is that the modelling agent has access to the local
trajectory of the modelled agents [2], which may include their local observations of the environment
state, their past actions, and possibly their received rewards. While it is certainly desirable to be
able to observe an agent’s local context in order to reason about its past and future decisions, in
practice such an assumption may be too restrictive. Agents may only have a limited view of their
surroundings, communication with other agents may not be feasible or reliable [40], and knowledge
of the perception system of other agents may not be available [13]. In such cases, an agent must
reason with only locally available information.

We consider the question: Can effective opponent modelling be achieved using only the locally
available information of the modelling agent during execution? A strength of deep learning techniques
is their ability to identify informative features in data. Here, we use deep learning techniques to extract
informative features from a stream of local observations for the purpose of opponent modelling.

Specifically, we consider multi-agent settings in which we control a single agent which must learn to
interact with a set of opponent agents (we use the term “opponent” in a neutral sense). We assume a
given set of possible policies for opponent agents and that these policies are fixed (that is, other agents
do not simultaneously learn, such as in multi-agent RL [32]). We propose an opponent modelling
method which is able to extract a compact yet informative representation of opponents given only the
local information of the controlled agent, which includes its local state observations, past actions,
and rewards. To this end, we use an encoder-decoder architecture based on variational autoencoders
(VAE) [26]. The VAE model is trained to replicate opponent actions and observations from the local
information only. During training, the opponent’s observations are utilised as reconstruction targets
for the decoder; after training, only the encoder component is retained which generates embeddings
using local observations of the controlled agent. The learned embeddings condition the policy of the
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controlled agent in addition to its local observation, and the policy and VAE model are optimised
concurrently during the RL learning process.

We evaluate our proposed method, called Local Information Opponent Modelling (LIOM), in two
benchmark environments used in multi-agent systems research, the multi-agent particle environment
[31, 28] and level-based foraging (LBF) [1]. Our results support the idea that effective opponent
modelling can be achieved using only local information during execution: the same RL algorithm
generally achieved higher average returns when combined with our opponent embeddings than
without, and in some cases the average returns are comparable to those achieved by an ideal baseline
which has full access to the opponent’s trajectory. We evaluate the method’s ability to predict the
opponent’s actions, and provide an ablation study on the different types of local information used by
the encoder.

2 RELATED WORK

Learning Opponent Models: We are interested in opponent modelling methods that use neural
networks to learn representations of the opponents. He et al. [20] proposed a method which learns a
modelling network to reconstruct an opponent’s actions given the opponent’s observations. Raileanu
et al. [34] developed an algorithm for learning to infer an opponents’ intentions using the policy
of the controlled agent. Grover et al. [16] proposed an encoder-decoder method for modelling the
opponent’s policy. The encoder learns a point-based representation of different opponent trajectories,
and the decoder learns to reconstruct the opponent’s policy. In addition, the authors introduced an
objective to separate embeddings of different agents into different clusters. Rabinowitz et al. [33]
proposed the Theory of mind Network (TomNet), which learns embedding-based representations
of opponents for meta-learning. Tacchetti et al. [42] proposed relational forward models to model
opponents using graph neural networks. A common assumption in these methods, which our work
aims to eliminate, is that the modelling agent has full access to the opponent’s local information
during execution, including their observations, chosen actions, and received rewards.

Opponent modelling from local information has been researched under the I-POMDP model [13]
and in the Poker domain research. In contrast to our work, I-POMDPs utilise recursive reasoning [2]
which assumes knowledge of the observation models of the modelled agents (which is not available in
our setting). In the Poker domain, Johanson et al. [24] proposed Restricted Nash Response (RNR) for
computing robust counter-strategies to opponents. Additionally, they generate a mixture-of-experts
counter-strategies to various opponents. During execution, the UCB1 algorithm [4] is used to adapt
and select the appropriate counter-strategy out of the mixture against each specific and previously
unknown opponent. Bowling et al. [7] propose a method for online evaluation of an agent’s strategy
using importance sampling for reducing the variance of the estimation. Bard et al. [5] combined
several ideas from the aforementioned works to build a complete Poker agent system. Their method
creates mixture-of-experts strategies, and during execution they deploy Exp4 [3] for online adaptation
(selection of the best strategy from the mixture) to each opponent. The aforementioned works do not
require any access to the opponent’s observations during execution. The main difference between our
method and these works is that the latter require a number of online adaptation episodes (to select the
best strategy) against each opponent. In contrast, in our work we use a single episode for adaptation.

Representation Learning in Reinforcement Learning: Another related topic which has received
significant attention is representation learning in RL. Using unsupervised learning techniques to
learn low-dimensional representations of the environment state has led to significant improvements
in RL. Ha and Schmidhuber [18] proposed a VAE-based model and a forward model to learn state
representations of the environment. Hausman et al. [19] learned task embeddings and interpolated
them to solve more difficult tasks. Igl et al. [22] used a VAE model for learning state representations
in partially-observable environments. Gupta et al. [17] proposed a model which learns Gaussian
embeddings to represent different tasks during meta-training and manages to quickly adapt to new task
during meta-testing. Gregor et al. [14] developed a VAE-based model for long-term state predictions.
The work of Zintgraf et al. [44] is closely related, where the authors proposed a recurrent VAE model
which receives as input the observation, action, reward of the controlled agent and learns a variational
distribution of tasks. Rakelly et al. [35] used representations from an encoder for off-policy meta-RL.
Note that all of these methods were designed for learning representations of tasks or properties of the
environment. In contrast, our approach focuses on learning representations of opponents.
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Multi-agent Reinforcement Learning (MARL): This term is used to describe the learning proce-
dure of multiple agents in a shared multi-agent environment. At the beginning of the training, the
agents are usually untrained and initialised with a random policy. Using an opponent’s trajectory
during training but not during execution, is a common MARL paradigm, called Centralised Training
Decentralised Execution (CTDE). The opponent’s information can be utilised during training for
various reasons, such as computing a joint value function [28, 9, 41, 36], or generating intrinsic
rewards [23]. However, during execution only the local information of each agent is used for selecting
actions in an environment. While our work draws connection with CTDE, we consider a different
problem than the one that MARL addresses. In this work, we have a set of fixed opponent policies,
and we train a single agent to model and interact with the policies in this set, without accessing the
opponent’s trajectory during execution.

3 TECHNICAL PRELIMINARIES

3.1 REINFORCEMENT LEARNING

We model the decision problem as a Markov Decision Processes (MDP). An MDP consists of a set of
states S, a set of actions A, a transition function, P (s′|s, a), specifying the probability of the next
state, s′, after taking action a in state s, and a reward function, r(s′, a, s), which returns a scalar
value conditioned on two consecutive states and the intermediate action. A policy function is used to
choose an action in given a state, which we assume can be stochastic, a ∼ π(a|s). Given a policy
π, the state-value function is defined as V π(st) = Eπ[

∑H
i=t γ

i−trt|s = st] and the action-value
(Q-value) function Qπ(st, at) = Eπ[

∑H
i=t γ

i−trt|s = st, a = at], where 0 ≤ γ ≤ 1 is the discount
factor and H is the finite horizon of the episode. RL methods aim to compute an optimal policy
that maximises the state value functions. In this work, we will use an algorithm called Synchronous
Advantage Actor-Critic (A2C) [30, 8]. A2C is an on-policy actor-critic algorithm which uses parallel
environment copies to break the correlation between consecutive experience samples. Assuming a
policy πθ and value network Vφ with parameters θ and φ, respectively, the actor-critic parameters
are optimised via

min
θ,φ

EB [−Â log πθ(a|s) +
1

2
(r + γVφ(s′)− Vφ(s))2] (1)

whereB is the batch of transitions,B = {(st, at, rt, st+1)}t=|B|t=0 , and Ât = rt+γVφ(st+1)−Vφ(st)
is the basic advantage term (in experiments we use Generalised Advantage Estimation (GAE) [38];
see Appendix D).

3.2 VARIATIONAL AUTOENCODER

Consider samples from a dataset x ∈ X which are generated from some hidden (latent) random
variable z based on a generative distribution pu(x|z) with unknown parameter u, and a prior distri-
bution on the latent variables which we assume to be Gaussian with zero mean and unit variance,
p(z) = N (z; 0, I). We seek to approximate the true posterior p(z|x) with a variational parametric
distribution qw(z|x) = N (z;µ,Σ,w). Kingma and Welling [26] proposed the Variational Autoen-
coder (VAE) to learn this distribution. Starting with the Kullback-Leibler (KL) divergence from the
approximate to the true posterior, DKL(qw(z|x)‖p(z|x)), the lower bound on the evidence log p(x)
(ELBO) is derived as:

log p(x) ≥ Ez∼qw(z|x)[log pu(x|z)]−DKL(qw(z|x)‖p(z)) (2)

Maximising the ELBO leads to minimisation of the KL divergence from the approximate to the true
posterior. The architecture consists of two neural networks: the encoder which receives a sample
x and generates the Gaussian variational distribution q(z|x;w); and the decoder which receives a
sample from the Gaussian variational distribution and reconstructs the generative distribution pu(x|z).
The architecture is trained using the reparameterisation trick [26]. Zhao et al. [43] noticed that the
KL divergence can lead to an uninformative posterior and proposed the use of the Maximum Mean
Discrepancy (MMD) [6, 15] for forcing the posterior to be close to the prior.

DMMD(q(z)‖p(z)) = Ez,z′∼q[k(z, z′)] + Ez,z′∼p[k(z, z′)]− 2Ez∼q,z′∼p[k(z, z′)] (3)

where k(z, z′) is a Gaussian kernel.
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4 APPROACH

4.1 PROBLEM FORMULATION

We control a single agent which must learn to interact with other agents (opponents) that use one
of a fixed number of policies. We model this as a Markov game [27] which consists of N agents
I = {1, 2, ..., N}, a state space S, the joint action space A = A1 × ...×AN , a transition function
P : S ×A×S → [0, 1] specifying the transition probabilities between states given a joint action, and
for each agent i ∈ I a reward function ri : S×A×S → R. We consider partially-observable settings,
where each agent i has access only to its local observation oi ⊂ s ∈ S and reward ri. We denote the
agent under our control by 1, and the opponent agents by −1 where for notational convenience we
will treat the opponent agents as a single “combined” agent with joint observations o−1 and actions
a−1. We assume a set of opponent policies, Π−1 = {πk−1|k = 1, ...,K}, which may be defined
manually (heuristic) or pretrained using RL. Each opponent policy determines the opponent agent’s
actions as a mapping πk−1(o−1) from the opponent’s local observation o−1 to a distribution over
actions a−1. Our goal is to find a policy πθ parameterised by θ for agent 1 which maximises the
average return against opponents from the training set Π−1, assuming that each opponent policy is
initially equally probable and fixed during an episode:

arg max
θ

Eπθ,π−1∼U(Π−1)

[
H∑
t=1

γtr1,t

]
(4)

where r1,t is the reward received by agent 1 at time t,H is the episode length (horizon), and γ ∈ (0, 1)
is a discount factor.

4.2 LOCAL INFORMATION VARIATIONAL AUTOENCODERS

We denote by τ−1 = {o−1,t, a−1,t}t=Ht=0 an opponent trajectory where o−1,t and a−1,t are the
opponent’s observation and action at time step t in the trajectory, up to horizon H . These trajectories
are generated from the opponent policies in Π−1, which are represented in a latent (or embedding)
space Z . Additionally, we assume that there exists an unknown generative model pu(τ−1|z), z ∈ Z .
The latent variable z contains information about the trajectory of the opponent. Our approach is to
solve the problem defined in Section 4.1 by performing reinforcement learning in the joint space of
the observation space of our agent and the latent space of the opponent. We aim to approximate the
unknown posterior, p(z|τ−1), using a variational Gaussian distribution N (µw,Σw) with parameters
w. As a result, during execution, we can sample the latent variable from the approximate posterior
z ∼ N (z;µw,Σw).

In Sections 1 and 2, it was noted that most agent modelling methods assume access to the
opponent’s observations and actions both during training and execution. To remove this as-
sumption during execution, we propose a VAE that uses a parametric variational distribution
which is conditioned on the observation-action-reward triplet of the agent under our control;
qw(z|τ1,:t = (o1,1:t, a1,1:t−1, r1,1:t−1)). Specifically, we approximate the true posterior that is
conditioned on opponent’s information, with a variational distribution that only depends on local
information. We start by writing the KL divergence from the approximate to the true posterior:

DKL(qw(z|τ1)‖p(z|τ−1)) (5)

By following the works of Kingma and Welling [26] and Zhao et al. [43], the loss can be written as:

L(τ1, τ−1;w,u) =− Ez∼qw(z|τ1)

[
log pu(τ−1|z)

]
+ λDMMD(qw(z|τ1)‖p(z)) (6)

From Equation 6, we observe that the variational distribution depends only on locally available infor-
mation. Since during execution only the encoder is required to generate the opponent’s model, this
approach removes the assumption that access to the opponent’s observations and actions is available
during execution. At each time step t, the recurrent encoder network generates a latent sample zt,
which is conditioned on the information of the agent under control (o1,1:t, a1,1:t−1, r1,1:t−1), until
time step t.

The first term of the VAE loss consists of the reconstruction loss of the opponent’s trajectory which
involves the observations and actions of the opponent. The opponent’s observation depends on the
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Figure 1: Diagram of LIOM architecture.

dynamics of the environment. The opponent’s action at each time step depends on its observation and
the opponent’s identity, which is represented by the latent variable z. Therefore, the decoder consists
of two fully-connected feed-forward networks.

log pu(τ−1|z) =

H∑
t=1

log pu(o−1,t, a−1,t|zt) =

H∑
t=1

[log pu(o−1,t|zt)+log pu(a−1,t|o−1,t, zt)] (7)

From Equation 7, we observe that conditioned on the latent variable, the decoder reconstructs the
opponent’s observation and the opponent’s action given the opponent’s observation. Intuitively, zt
encodes the type of policy used by the opponent at the current episode and its observation at time
step t. Figure 1 illustrates the proposed VAE as well as the information that requires during training
and execution. We refer to this method as LIOM (Local Information Opponent Modelling). LIOM
uses the information of both the controlled agent and opponent during training, but during execution
only the information of the controlled agent is used.

4.3 REINFORCEMENT LEARNING TRAINING

We use the latent variable z augmented with our agent’s observation to condition the policy of our
agent, which is optimised using RL. Consider the augmented observation space O′ = O ×Z , where
O is the original observation space of our agent in the Markov game, and Z is the representation
space of the opponent models. The advantage of learning the policy on O′ compared to O is that the
policy can adapt to different z ∈ Z . We optimise the policy of the controlled agent, using the A2C
algorithm (cf. Sec. 3.1). Note that other RL algorithms could be used in place of A2C. The input to
the actor and critic are the local observation and the mean of the variational distribution. We do not
back-propagate the gradient from the actor-critic loss (Equation 1) to the parameters of the encoder.
We use different learning rates for optimising the parameters of the networks of A2C and LIOM.
LIOM is a VAE model, and we empirically observed that it exhibits high stability during learning,
allowing us to use larger learning rate compared to RL. Additionally, we subtract the policy entropy
from the policy gradient loss to encourage exploration [30]. Given a batch B of collected trajectories
in the environment, the update equation for our proposed method is the following:

min
φ,θ

EB
[1
2

(
r1 + γVφ(o

′
1, µ(z

′))− Vφ(o1, µ(z))
)2 − Â log πθ(a1|o1, µ(z))− βH(πθ(a1|o1, µ(z)))

]
(8)

min
w,u

EB
[
− log pu(o−1|z)− log pu(a−1|o−1, z) + λDMMD(qw(z|τ1)‖p(z))

]
(9)

The pseudocode of LIOM is given in Appendix A. Intuitively, at the beginning of each episode,
LIOM starts with an uninformative posterior which is equal to the prior (isotropic Gaussian) over the
possible opponents. At each time step, the agent interacts with the environment and the opponent and
updates the posterior over opponents based on the local information that it perceives.

5 EXPERIMENTS

We evaluate LIOM in several multi-agent tasks and compare the average returns during RL training
against two baselines. We evaluate the embeddings learned by LIOM’s encoder and the reconstruction
accuracy of the decoder. Finally, we test the stability of LIOM with respect to different inputs in the
encoder and the effect of the number of opponent policies in the returns of LIOM.
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5.1 MULTI-AGENT ENVIRONMENTS

Speaker-listener: the environment consists of two agents, called speaker and listener, as well as
three designated landmarks. At the start of each episode, the listener and landmarks are generated
in a random position, and are randomly assigned one of three possible colours - red, green, or
blue. The task of the listener is to navigate to the landmark that has the same colour as the listener.
However, the colour of the listener can only be observed by the speaker, thus the speaker has to
learn to communicate the correct colour to the listener. The speaker observes the colour of the goal
landmark as a one-hot encoded vector and outputs a 5-bit binary communication message as an action.
The listener observes the relative positions of all landmarks and the communicated message of the
previous time step and can choose to navigate using the actions forward, backward, right, left, no-op.
The speaker observes only the colour of the listener. The reward at each time step is the negative
Euclidean distance between the listener and the correct landmark.

Double speaker-listener: the environment consists of two agents and three designated landmarks,
similarly to the speaker-listener environment. The only difference is that both agents are simulta-
neously speakers and listeners. Therefore, at the beginning of the episode, each agent has a colour
that can only be observed by the other agent. Each agent must learn both to communicate a message
to the other agent as well as navigate to the correct landmark. The agent’s observation includes
the relative positions of all landmarks and the other agent as well as the communication message
from the previous timestep and the colour of the other agent. Each agent performs both actions from
the previous environment; it communicates the opponent’s goal landmark and navigates to its own.
The reward at each time step is the negative average Euclidean distance between each agent and the
corresponding correct landmark.

Level-based foraging (LBF): the environment is a 20 × 20 grid-world, consisting of two agents
and four food locations. The agents and the foods are assigned random levels and positions at the
beginning of an episode. The goal is for the agents to collect all foods. Agents can either move in
one of the four directions or attempt to pick up a food. A group of one or more agents successfully
pick a food if the agents are positioned in the adjacent cells to the food and if the sum of the agents’
levels is at least as high as the food’s level. The controlled agent has to learn to cooperate to load
foods with a high level and at the same time act greedily for foods that have lower levels. The
environment has sparse rewards, representing the contribution of the agent in the gathering all foods
in the environment. For example, if the agent receives a food with level 2, and there are another three
foods with levels 1, 2 and 3 respectively, the reward of the agent is 2/(1 + 2 + 2 + 3) = 0.25. Thus,
the maximum cumulative reward that both agents can achieve is normalised to 1. The environment is
partially-observable, where the agent observes up to four grid cells in every direction, and as a results,
it can only perceive foods and the opponent that are within this distance. The agent’s observation
includes its position and level as well as the relative position and level of each other agent and food
in the visible grid cells.

Images of the multi-agent environments are provided in Appendix B. For each environment, we create
ten different opponent policies which are used for training (set Π−1). In speaker-listener we control
the listener, and we create ten policies for the speaker using different communication messages for
different colours. In double speaker-listener, we create a diverse set of opponent policies that use
different communication messages similar to speaker-listener, while they learn to navigate using the
MADDPG algorithm [28]. The generated policies are different because they learn to both interpret
and communicate different messages to the other agent. For LBF, we created four heuristic policies
such as moving to the closest food or closest level-compatible food, and additionally six policies
using a stochastic-based RL method with different initial seeds leading to different trained policies.
More details about the process of generating opponent policies are presented in Appendix C.

5.2 EPISODIC RETURNS DURING TRAINING

Baselines: We compare LIOM against two baselines, which are indicative of the upper and the
lower performance of LIOM when it is evaluated against the opponent policies from Π−1. For the
upper baseline, we propose a VAE-based opponent model which is trained on the trajectories of the
opponents. The encoder of the VAE receives as input the observation and the action of the opponent
and infers the opponent model z. We call this baseline FIOM (Full Information Opponent Model).
FIOM approximates the latent opponent identity distribution using a variational distribution that is
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Figure 2: Episodic return and 95% confidence interval against opponent policies from Π−1.

conditioned on the trajectory of the opponent. We optimise the opponent representation along with
the reinforcement learning objective similarly to LIOM. Note that FIOM has access to opponent’s
information both during training and execution. The lower baseline that we use is called No Opponent
Model (NOM). NOM uses the A2C algorithm without any model of the opponent.

Figure 2 shows the episodic returns for the three methods in all three environments. The lines
shown in our results plots show the average return over five runs with different initial seeds, and the
shadowed part represents the 95% confidence interval. We evaluate the methods every 1000 training
episodes for 100 episodes. During the evaluation, we compute the mean of the variational distribution
at each time step, and the agent follows the stochastic policy. We found that sampling the action from
the policy distribution leads to significantly higher returns compared to following the greedy policy.
We observe that LIOM’s episodic returns are closer to FIOM than NOM in all environments. This
shows that LIOM can successfully learn opponent models using only locally available information.
At the beginning of the training the returns achieved by LIOM and NOM are identical, because
the encoder generates uninformative and noisy embeddings. After some time step, the encoder has
learned to generate informative embeddings and the difference in returns increases significantly.

5.3 ENCODER EVALUATION

We analyse the embeddings learned by LIOM’s encoder. Figure 3 presents the first two principal
components of the mean of the variational distribution at the 20th time step of the episode for all
opponents in Π−1. In speaker-listener and double speaker-listener, we observe that three different
clusters are created, representing the three different colours that the opponent observes. We observe
that the controlled agent learns to perfectly identify the underlying colour, even though this informa-
tion exists only in the hidden opponent’s observation. Note that the embeddings are not clustered
based on the opponent identities but based on the selected actions and private observations, which
means that different opponent policies may be embedded in the same region.
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Figure 3: First and second principal components of the learned opponent representations. Points
represent individual episodes, colours represent the different opponent policies in Π−1.
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Figure 4: Euclidean distance of embeddings
to the embedding at 25th time step (with 95%
confidence interval).

Another interesting question that we aim to answer
is how quickly the embeddings converge during an
episode. At the beginning of the episode, the model
does not know anything about the opponent, and it
outputs an uninformative posterior. As the agent in-
teracts with the opponent, the posterior is updated
to accommodate the information that has been gath-
ered. To measure the speed of convergence, Figure 4
presents the Euclidean distance between the mean of
the variational Gaussian at the each time step, and the
mean of the variational Gaussian at the 25th timestep.
From Figure 4, we observe that the distance to the po-
sition of the last embedding decreases through time
in all tasks.

5.4 DECODER EVALUATION

The decoder receives as input an embedding from the latent space, and predicts the opponent’s
observation and action. We first evaluate the decoder based on action prediction accuracy. At the 20th
time step of the episode, we sample an embedding and use the decoder to reconstruct the opponent’s
action. Figure 5 presents the average action prediction accuracy (the percentage of the reconstructed
actions that match those that were performed from the opponents) and the 95% confidence interval.
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Figure 5: Action prediction accuracy.

Environment Decoder Opponent
Speaker-listener −6.6± 0.6 −6.3± 0.2
Double speaker-listener −14.6± 1.4 −14.4± 1
Level-based foraging 0.27± 0.04 0.34± 0.02

Table 1: Average episodic return and 95% confidence inter-
val of the opponent using the decoder vs. opponent’s policy
to select the opponent’s actions.

The difference in prediction accuracy between LBF and the other tasks is explained by the fact that
the RL-based opponent policies in LBF are stochastic, and as a result harder to predict. Next, since
the decoder is trained to imitate the opponent’s policies, we can replace the opponent policies with
the decoder and compare the returns achieved by the opponent, shown in Table 1. The performance
of the opponent using the decoder is not significantly altered, demonstrating that the decoder learns
to imitate the opponent policy. The results of Figure 5 and Table 1 are averaged over 5000 episodes
for five different seeds.

5.5 ABLATION STUDY ON LIOM INPUTS

Our full method utilises the observation, action, and reward sequence of the controlled agent to
generate the opponent model. To evaluate the impact of different types of input data, we use different
combinations of inputs in the encoder and compare the episodic returns. Figure 6 presents the
average episode return for four different cases: LIOM (full), LIOM using only observations and
actions, LIOM using only observations and rewards, LIOM using only actions and rewards. Figure 6
shows that in speaker-listener the most important components are the reward and the observation.
In double speaker-listener the performance is affected by the absence of either the agent’s actions
or observations in the computation of the embeddings. The reward is the average over the distance
of both agents to the correct landmarks, which is complex and cannot be effectively utilised by the
encoder. In LBF, the average episodic returns are only affected by the absence of the observation
in LIOM’s input. In LBF, the rewards are sparse and the actions that our agent performs can be
inferred from consecutive observations, and absence of any of those terms does not affect the returns.
Generally, our experiments indicate that LIOM is robust with respect to different inputs the encoder.
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Figure 6: Episodic return and 95% confidence interval against opponent policies from Π−1 for
different combinations of input data for the encoder. (In speaker-listener, LIOM (Obs, Act) overlaps
with LIOM (Act, Rew).)

5.6 NUMBER OF OPPONENT POLICIES
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Figure 7: Average episodic return
against different numbers of opponent
policies.

Finally, we evaluate the effect of number of the opponent
policies in the average achieved returns of FIOM, LIOM,
and NOM in the double speaker-listener environment. We
train FIOM, LIOM, and NOM against a subset Π′−1 of the
original Π−1 set, where the size of Π′−1 varies between
one and ten. Figure 7 presents the average episodic return
achieved at the end of training against different numbers of
opponent policies. We observe that when there is a single
opponent policy the performance of FIOM, LIOM, and
NOM is equal. This is expected as there is not need for
opponent modelling. As we increase the size of Π′−1, we
observe a steep decrease in the returns of NOM, while the
returns of FIOM, and LIOM decrease at a much slower
rate. This is a natural consequence of our problem formu-
lation, since at the beginning of the episode LIOM does
not have information about the opponent and because both
the controlled agent and the opponent are relatively far
from the correct landmarks, they are heavily penalised. After some interaction time steps LIOM is
able to identify the opponent, and outputs efficient embeddings that can be utilised by the policy
network. On the other hand, NOM learns an "average" policy against the opponent policies, resulting
in much lower returns.

6 CONCLUSION

We proposed a new opponent modelling approach, LIOM, which jointly trains a VAE-based opponent
model with a decision policy for the agent under control, such that the resulting opponent model is
conditioned only on the local observations of the controlled agent. LIOM is agnostic to the type of
interactions in the environment (cooperative, competitive, mixed) and can model an arbitrary number
of opponent policies simultaneously in the set Π−1. Our results show that LIOM can significantly
improve the episodic return that the controlled agent achieves over a method that does not use
opponent modelling. Compared to an ideal baseline method that has access to opponent trajectories
during execution, we observed a relatively small decrease in performance of LIOM in our specific
test environments. Further research on how such models could be used for non-stationary opponents
would be of interest. In particular, we plan on investigating two scenarios; the first is multi-agent deep
RL, where different agents are learning concurrently leading to non-stationarity in the environment,
which prevents the agents from learning optimal policies [21, 32]. Secondly, we would like to
explore notions of “safety” to handle opponents which aim to deceive and exploit the opponent model
[39, 11, 12].
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A PSEUDOCODE OF LIOM

Algorithm 1 shows the pseudocode of LIOM.

Algorithm 1 Pseudocode of the LIOM algorithm
for m = 1, ...,M episodes do

Reset the hidden state of the encoder LSTM
Sample E opponent policies from Π−1

Create E parallel environments and
gather initial observations
a1,0, r1,0,← zero vectors
for t = 1, ...,H do

for every environment e in E do
Get observations o1,t and o−1,t

Compute the mean µ(zt) = q(z|o1,t, a1,t−1, r1,t−1)
Sample action a1,t ∼ π(o1,t, µ(zt))
Sample opponent action a−1,t ∼ π−1(o−1,t)
Perform the actions and get o1,t+1, r1,t, d1,t

end for
if t mod update_frequency = 0 then

Gather the sequences of all E environments in a single batch B
Perform a gradient step to minimise (8)
Perform a gradient step to minimise (9)

end if
end for

end for

B EVALUATION ENVIRONMENTS

Figure 8 presents instances of the three multi-agent environment that were used for the experiments.

(a) Speaker-listener (b) Double speaker-listener (c) Level-based foraging

Figure 8: Multi-agent environments used in our evaluation.

C OPPONENT POLICIES

Speaker-Listener: Each policy of the speaker consists of a five-dimensional one-hot communication
message that remains constant through the episode. We manually select different opponent policies
that communicate different colours with different communication messages.

Double Speaker-Listener: Each of the opponent’s policy consists of two sub-policies; one for the
communication message and one for the navigation action. To generate diverse opponent, we fixed
the communication action of all the ten agents to be the fixed policy that was used in speaker-listener.
We then created five pairs of agents and we trained each pair to learn to navigate using the MADDPG
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algorithm [28]. Each agent on the pair learns to navigate based on the communication message of the
other agent in the pair.

Level-Based Foraging: The opponent policies in Level-based Foraging consist of 4 heuristic policies
and 6 policies trained with MADDPG. The heuristic agents were selected to be as diverse as possible,
while still being valid strategies. We used the strategies from Albrecht and Stone [1], which are: (i)
going to the closest food, (ii) going to the food which is closest to the centre of visible players, (iii)
going to the closest compatible food, and (iv) going to the food that is closest to all visible players
such that the sum of their and the agent’s level is sufficient to load it. We also trained 6 policies with
MADDPG by training multiple pairs of agents and extracting the trained parameters of those agents.
In order to circumvent the instability caused by deterministic policies in Level-based Foraging, we
have found that enabling dropout in the policy layers [10] both during exploration and evaluation
(thereby creating stochastic policies) the agents perform significantly better.

D IMPLEMENTATION DETAILS

All feed-forward neural networks have 2 hidden layers with ReLU [29] activation function. The
encoder consists of one LSTM [37] and a linear layer with ReLU activation function. All hidden
layers consist of 128 nodes. The latent dimension in speaker-listener and LBF is 15, while in double
speaker-listener it is 20. The output of the decoder is passed through a softmax activation function to
approximate the categorical opponent policy. For a continuous action space, a Gaussian distribution
can be used. For the advantage computation, we use the Generalised Advantage Estimator [38] with
λGAE = 0.95. We create 10 parallel environments to break the correlation between consecutive
samples. The actor and the critic share all hidden layers. We use the Adam optimiser [25] with
learning rates 3× 10−4 and 7× 10−4 for the A2C and the VAE loss respectively, and and we clip
the gradient norm to 0.5. The multiplication factor of the MMD is λ = 1 for all the environments.
We subtract the policy entropy from the actor loss [30] to ensure sufficient exploration. The entropy
weight β is 10−3. We train for 10 million steps in all environments. During the hyperparameter
selection, we searched: (1) learning rates in the range [10−4, 7× 10−4] and [5× 10−4, 10−3] for the
parameters of A2C and LIOM respectively, (2) hidden size between 64 and 128, and (3) entropy
regularisation in the range of [10−3, 10−2].
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