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Abstract
The burgeoning field of algorithms with predic-
tions studies the problem of using possibly im-
perfect machine learning predictions to improve
online algorithm performance. While nearly
all existing algorithms in this framework make
no assumptions on prediction quality, a number
of methods providing uncertainty quantification
(UQ) on machine learning models have been de-
veloped in recent years, which could enable addi-
tional information about prediction quality at de-
cision time. In this work, we investigate the prob-
lem of optimally utilizing uncertainty-quantified
predictions in the design of online algorithms. In
particular, we study two classic online problems,
ski rental and online search, where the decision-
maker is provided predictions augmented with
UQ describing the likelihood of the ground truth
falling within a particular range of values. We
demonstrate that non-trivial modifications to algo-
rithm design are needed to fully leverage the UQ
predictions. Moreover, we consider how to utilize
more general forms of UQ, proposing an online
learning framework that learns to exploit UQ to
make decisions in multi-instance settings.

1. Introduction
Classic online algorithms are designed to ensure worst-case
performance guarantees. However, such algorithms are of-
ten overly pessimistic and perform poorly in real-world
applications since worst-case instances rarely occur. To
address the pessimism of these algorithms, a recent surge
of work has investigated the design of algorithms utilizing
machine-learned predictions (Mitzenmacher & Vassilvitskii,
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2020; Lykouris & Vassilvitskii, 2021; Purohit et al., 2018).
In this line of research, an algorithm is given additional in-
formation on the problem instance in the form of predictions
or “advice”, possibly from a machine learning model. No-
tably, it is typically the case that no assumptions are made
on predictions’ quality. Thus, algorithms must treat them as
“untrusted”, seeking to exploit them when they are accurate
while ensuring worst-case guarantees when they are not.

Driven by safety-critical applications, uncertainty quantifica-
tion (UQ) has recently become a prominent field of research
in machine learning. UQ aims to provide quantitative mea-
surements on machine learning models’ uncertainty about
their predictions. One of the state-of-the-art methods for UQ
is conformal inference (Vovk et al., 1999; 2005; Papadopou-
los et al., 2002), which can transform the predictions of any
black-box algorithm into a prediction interval (or predic-
tion set) that contains the true value with high probability.
Although UQ has been widely used for general decision-
making under uncertainty, as in (Vovk & Bendtsen, 2018;
Marusich et al., 2023; Sun et al., 2023), there has been lim-
ited study on its use for online problems. Thus, the key
question we aim to answer in this paper is:

How can we incorporate uncertainty-quantified predictions
into the design of competitive online algorithms?

To address the above question, we require a new design
objective that interpolates between worst-case analysis and
average-case analysis for online algorithms. Algorithms
augmented with UQ predictions have access to both predic-
tions of future inputs and the associated prediction quality,
which can be leveraged to improve upon worst-case perfor-
mance; however, UQ predictions often cannot exactly recon-
struct distributional information to enable typical average-
case guarantees. As such, we design algorithms to minimize
a new performance metric, which we term distributionally-
robust competitive ratio (DRCR): we seek algorithms that
perform well on the worst-case distribution drawn from the
ambiguity set determined by a given UQ.

In particular, this paper makes contributions in threefold for
designing online algorithms that leverage UQ predictions.

Optimal online algorithms under distributionally-robust
analysis We frame the online algorithms with UQ predic-
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tions as a distributionally-robust online algorithm design
problem. Then we design online algorithms using prob-
abilistic interval predictions for the ski rental and online
search problems, in both cases showing that they attain the
optimal DRCR (see Theorems 2 and 3). These two prob-
lems have played a key role in the development of learning-
augmented algorithms and thus are natural problems with
which to begin the study of UQ for online algorithms.

Optimization-based algorithmic approach Technically,
we propose an optimization-based approach for incorporat-
ing UQ predictions into online algorithms. The approach
consists of building an ancillary optimization problem based
on predictions with the objective of minimizing DRCR for
hard instances of the problem. The solution of the opti-
mization problem then yields the optimal algorithm design,
considering the provided UQ. This approach is general in
the sense that the optimization can be tuned based on the
specific forms of the predictions and design goals, and, thus,
this approach can potentially be applied to incorporate other
forms of UQ predictions and to devise algorithms for other
online problems beyond ski rental and online search.

Online learning for exploiting UQs across multiple in-
stances Finally, we propose an online learning approach
that learns to exploit general forms of UQ across multiple
problem instances. Here, the probabilistic interval predic-
tions may be imperfect (e.g., due to non-exchangeability of
the data) or alternative notions of UQ are employed. We
show that, under mild Lipschitzness conditions, one can
obtain sublinear regret guarantees with respect to solving
the full optimization formulation of the DRCR problem. We
demonstrate the regret guarantees obtained by this frame-
work in the ski rental and online search problems. Moreover,
when problem instances are not fully adversarial (i.e., the
distribution generating problem instances is not the worst
case for the given UQ), our online learning approach outper-
forms the optimization-based approach, as we demonstrate
in experiments in Section 5.

1.1. Related Literature

Algorithms with untrusted predictions A significant
body of work has emerged considering the design of al-
gorithms that incorporate untrusted predictions of either
problem parameters or optimal decisions (Lykouris & Vas-
silvitskii, 2021; Purohit et al., 2018; Mahdian et al., 2012;
Mitzenmacher & Vassilvitskii, 2022; Wei & Zhang, 2020;
Antoniadis et al., 2020; Christianson et al., 2023; Sun et al.,
2021). However, in nearly all of these works, predictions
are assumed to be point predictions of problem parame-
ters or decisions, i.e., individual untrusted decisions with
no further assumptions on quality, uncertainty, probabil-
ity of correctness, etc. Several recent studies have consid-

ered alternative prediction paradigms, including the setting
of learning predictions from samples or distributional ad-
vice (Anand et al., 2020; Diakonikolas et al., 2021; Besbes
et al., 2022; Khodak et al., 2022), and predictions which are
assumed to be correct with a certain, known or unknown
probability (Gupta et al., 2022). Our work is distinguished
from these prior results in that we consider a more general
class of uncertainty-quantified predictions. In particular,
our model of probabilistic interval predictions allows for
predictions that fall into a certain interval with a given prob-
ability, thus generalizing the prediction paradigm of (Gupta
et al., 2022) to one more closely matched to uncertainty
quantification methods in the machine learning literature.

Online learning Our online learning-based approach to
utilizing UQ builds on techniques from the online learning
literature and, specifically, online learning with side infor-
mation and data-driven algorithm design. The problem of
exploiting additional side information to improve perfor-
mance in online learning has been widely studied in both
bandit (Agrawal & Goyal, 2013; Slivkins, 2011; Bastani &
Bayati, 2020) and partial/full-feedback (Hazan & Megiddo,
2007; Dekel et al., 2017; Kuzborskij & Cesa-Bianchi, 2020)
settings. Our work is most closely related to the results in
(Hazan & Megiddo, 2007); however, our results go beyond
the Lipschitz assumptions on the policy class employed in
(Hazan & Megiddo, 2007), and we show that we can exploit
Lipschitzness of any problem instance cost upper bound to
enable competing against general policies when exploiting
UQ in online problems. Our online learning formulation is
also aligned with the data-driven algorithm design frame-
work (Balcan, 2020; Balcan et al., 2018) that adaptively se-
lects the parameterized algorithms across multiple instances
without using side information. Our work extends the prob-
lem setting by exploring how to utilize the additional UQ
predictions in the algorithm selection, and showing regret
guarantees under mild Lipschitzness assumptions.

2. Online Algorithms with UQ Predictions
For an online cost minimization problem, let I denote the set
of all instances. For each instance I ∈ I , let ALG(A, I) and
OPT(I) denote, respectively, the (expected) cost attained by
an online algorithm A and the cost of the offline solution.
Under the classic competitive analysis framework (Borodin
& El-Yaniv, 2005), online algorithms have no prior knowl-
edge of the instance I . Algorithmic design is framed as
a single-instance min-max problem, with the objective of
finding an online algorithm A to minimize the worst-case
competitive ratio , i.e., maxI∈I

ALG(A,I)
OPT(I) .

To improve the performance of online algorithms and go
beyond worst-case analysis, there has recently been re-
search emerging on algorithms with (untrusted) predic-
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tions (Mitzenmacher & Vassilvitskii, 2022; Lykouris & Vas-
silvitskii, 2021; Purohit et al., 2018). In an abstract setup,
we consider the input instance of an online problem that
can be characterized by a critical value V (e.g., the number
of skiing days for the ski-rental problem). Machine learn-
ing tools can be leveraged to make a prediction P about
the critical value V . In most scenarios, the quality of the
prediction is unknown to the online decision-maker; hence,
the goal of algorithm design with predictions is to guaran-
tee good performance when the prediction is accurate (i.e.,
consistency) while still maintaining worst-case guarantees
regardless of the prediction accuracy (i.e., robustness). Let
IP ⊆ I denote a consistent set that contains all instances
confirming with the prediction P . Then the consistency η
and robustness γ of an online algorithm A are defined as

η = max
I∈IP

ALG(A, I)

OPT(I)
and γ = max

I∈I

ALG(A, I)

OPT(I)
, (1)

which are the worst-case ratios over IP and I, respectively.
Prior work has shown that there exist strong trade-offs be-
tween consistency and robustness bounds (Purohit et al.,
2018; Wei & Zhang, 2020; Balseiro et al., 2023; Sun et al.,
2021; Étienne Bamas et al., 2020). Therefore, algorithms
with predictions usually provide a parameterized class of
online algorithms (using a hyper-parameter λ) to achieve
different trade-offs. Due to the lack of prediction quality,
the selection of the hyper-parameter is left to end users.

In practice, we often have access to some forms of uncer-
tainty quantification about the prediction of the input in-
stance. We model an uncertainty-quantified (UQ) prediction
by a vector θ := {P ;Q}, where P is the prediction and Q
specifies the quality of the prediction. For a given θ, we
assume that instance I belongs to a fixed unknown distribu-
tion ξθ. If ξθ can be completely specified by θ, the average-
case analysis aims to design the online algorithm that can
minimize the expected competitive ratio, i.e., Eξθ [

ALG(A,I)
OPT(I) ].

However, in most cases, UQ can only partially specify the
instance distribution, and thus an interpolation between the
worst-case analysis and average-case analysis is desired.

2.1. Distributionally-Robust Competitive Analysis

When UQ can coarsely characterize the instance distribution,
for a given θ, we can construct an ambiguity set Dθ that
includes all instance distributions that conform with UQ. An
important example of such UQ is probabilistic quantification
of prediction correctness, and the ambiguity set contains
all distributions that conform with such predictions. In this
case, an online algorithm A can be designed to minimize
the distributionally-robust competitive ratio (DRCR)

DRCRθ(A) = max
ξθ∈Dθ

Eξθ

[
ALG(A, I)

OPT(I)

]
, (2)

which is the worst expected competitive ratio over instance
distributions from Dθ. Such an algorithmic design can be
considered as an interpolation between worst-case analysis
and average-case analysis.

For average-case analysis of competitive algorithms, the
performance can be evaluated by expectation of ratios or
ratio of expectations. We choose to define the DRCR as
the expectation of ratios for two reasons. First, this metric
is more commonly considered as the average-case perfor-
mance measure for the ski rental problem and online search
problems (e.g., (Fujiwara & Iwama, 2005) and (Fujiwara
et al., 2011)), which are the focus of this paper. Second,
the DRCR defined based on the expectation of ratios can
be shown to be a convex combination of the consistency
and robustness of the online algorithms with untrusted algo-
rithms. This connection makes the DRCR more appealing
as an extension of the consistency-robustness metric given
additional information on the quality of prediction.

Probabilistic interval predictions One important class
of UQs that can be leveraged for distributionally-robust
analysis is probabilistic interval predictions (PIP).
Definition 1. For ℓ ≤ u and δ ∈ [0, 1], PIP(θ) with θ =
{ℓ, u; δ} is called a probabilistic interval prediction for a
critical value V of an input instance, and it predicts that
with at least probability 1 − δ, the true value V is within
[ℓ, u], i.e., P(V ∈ [ℓ, u]) ≥ 1− δ.

In the literature of algorithms with untrusted predictions,
the untrusted prediction P is a special case of PIP(ℓ, u; δ)
when the prediction is a point prediction ℓ = u = P and
there is no guarantee on this prediction δ = 1.

PIP can be obtained through conformal predictions (Vovk
et al., 1999; 2005; Papadopoulos et al., 2002). Given ex-
changeable data, conformal prediction can transform the out-
puts of any black-box predictors into a prediction set/interval
that can cover the true value with high probabilities. In par-
ticular, conformal inference certifies that the prediction P
over the critical value V is accurate within an error ε with
at least probability 1 − δ, i.e., P(|V − P | ≤ ε) ≥ 1 − δ.
In this case, the prediction quality is characterized by the
prediction error ε and prediction confidence δ. Equivalently,
we can frame this UQ as a PIP(θ) over the instance, i.e.,
P(V ∈ [ℓ, u]) ≥ 1− δ, where ℓ := P − ε and u := P + ε.

For a given PIP, let Iℓ,u ⊆ I denote a consistent set that
contains all instances that confirm with the interval predic-
tion. Then the ambiguity set Dθ can include all instance
distributions such that Pξθ (I ∈ Iℓ,u) ≥ 1 − δ, ∀ξθ ∈ Dθ,
i.e., under distribution ξθ, the probability that an instance
I belongs to a set Iℓ,u is at least 1 − δ. Further, we
can observe that the worst instance distribution that maxi-
mizes the DRCR in Equation (2) is a two-point distribution,
with probability 1 − δ for instance Iη and probability δ
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for instance Iγ , where Iη = argmaxI∈Iℓ,u

ALG(A,I)
OPT(I) and

Iγ = argmaxI∈I
ALG(A,I)
OPT(I) . Thus, the DRCR of online algo-

rithm with PIP θ can be transformed into

(1− δ) · max
I∈Iℓ,u

ALG(A, I)

OPT(I)
+ δ ·max

I∈I

ALG(A, I)

OPT(I)

:= (1− δ) · η + δ · γ, (3)

where η and γ are the consistency and robustness of algo-
rithms with untrusted interval predictions.

2.2. An Optimization-Based Algorithmic Approach

We introduce an optimization-based algorithmic approach
for the single-instance distributionally-robust analysis that
can be leveraged to systematically design online algorithms
with UQ predictions. We focus on a class of parameterized
online algorithms. Let A(w) denote the online algorithm
with parameter w ∈ Ω, where Ω is the parameter set. The
design of an online algorithm augmented by a UQ prediction
PIP(θ) is to find a policy π ∈ Π : Θ → Ω that maps
from θ to an online algorithm A(w). We propose a general
optimization-based approach to design the policy by solving
an ancillary optimization problem.

We start by constructing a family of representative hard in-
stancesH ⊆ I and parameterized algorithms {A(w)}w∈Ω

for the online problem based on the problem-specific knowl-
edge. Let ALG(w, I) and OPT(I) denote the costs of online
algorithm A(w) and offline algorithm under the instance
I ∈ H. Given the prediction θ, we can further determine a
subset Hℓ,u of H, containing instances that conform with
the interval prediction, i.e., Hℓ,u = Iℓ,u ∩ H. Then, we
formulate an optimization problem to minimize DRCR over
all parameterized algorithms under such hard instances.

min
η,γ≥1;w∈Ω

(1− δ)η + δγ (4a)

s.t. ALG(w, I) ≤ η · OPT(I),∀I ∈ Hℓ,u, (4b)
ALG(w, I) ≤ γ · OPT(I),∀I ∈ H. (4c)

Each constraint from either constraint (4b) or constraint (4c)
ensures that the ratio between the expected cost of the on-
line algorithm and the cost of the offline optimum is upper
bounded by η or γ, respectively. If restricted only to hard
instancesH, the variables η and γ represent the consistency
and robustness of the algorithm A(w), and the objective
directly optimizes DRCR over all parameterized algorithms.
Let {η∗, γ∗,w∗} denote the optimal solution of the above
problem. Then we propose to choose A(w∗) as the online
algorithm with UQ prediction θ.

Since the optimization problem (4) is based on hard in-
stances, its optimal objective provides a lower bound for
DRCR over the parameterized algorithms.
Proposition 1. No parameterized algorithms A(w),w ∈ Ω
can achieve a DRCR smaller than (1− δ)η∗ + δγ∗.

This lower bound can be extended for all online algorithms
if the parameterized algorithms can characterize all online
algorithms under the hard instances (e.g., see examples in
Sections 3 and 4). Note that the ancillary problem often in-
volves an infinite number of variables and constraints, which
correspond to the high dimension of parameter w and the
cardinality of hard instance setH. This necessitates efficient
methods for obtaining (approximately) optimal solutions to
the problem (4). Furthermore, although the optimization can
give a lower bound for the target performance, it is essential
to additionally establish an upper bound on DRCR of the
algorithm A(w∗) that is devised based on the solution of the
optimization. Developing an online algorithm with match-
ing upper and lower bounds requires carefully constructing
the hard instances, crafting the parameterized algorithms,
and (approximately) solving the ancillary optimization prob-
lem simultaneously. In Sections 3 and 4, we showcase how
to use this approach to design online algorithms that can
make the best use of a given UQ prediction to minimize
DRCR in two classic online algorithms problems, the ski
rental problem and the online search problem.

3. Ski Rental Problem with UQ Prediction
Problem statement A player aims to ski for an unknown
time horizon N ∈ Z+. Each day she needs to decide
whether to rent skis, which cost $1 for this day or buy the
skis at the cost of $B ∈ Z+ and ski for free from then on.
The goal is to minimize the cost of buying and renting skis.

The difficulty of the problem lies in the uncertain time hori-
zon N . If N is known in advance, then the optimal decision
is to buy in the beginning if N ≥ B and keep renting oth-
erwise. When N is completely unknown, a deterministic
online algorithm can achieve a competitive ratio of 2 (Kar-
lin et al., 1988), and this result can be improved to e/e−1

by randomization (Karlin et al., 1990). Both results have
been proven to be optimal in the worst case. In previous
work on the learning-augmented setting of ski rental, the
algorithm is assumed to additionally have access to a de-
terministic point prediction P over the time horizon N but
has no information on the quality of this prediction. There
exist both deterministic and randomized algorithms that
can attain the Pareto-optimal trade-off between consistency
and robustness (Purohit et al., 2018; Wei & Zhang, 2020;
Étienne Bamas et al., 2020).

We study online algorithms for ski rental with UQ predic-
tions. In particular, UQ about N is given in the form of a
probabilistic interval prediction θ = {ℓ, u; δ}, i.e., the time
horizon N is predicted to be within Z+

ℓ,u := {ℓ, ℓ+1, . . . , u}
with at least probability 1− δ. Instead of making a rent-or-
buy decision each day, online decision-making for ski rental
can be described as an online (randomized) algorithm with a
(random) variable Y ∈ Z+ that keeps renting skis until day
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Y − 1 (if the time horizon has not ended) and buys on day
Y . We aim to leverage UQ prediction to design the determi-
nation of Y so that DRCR can be minimized. In Section 3.1,
we first introduce a deterministic algorithm as a warm-up
problem to provide insights on algorithms with probabilistic
predictions , and then in Section 3.2, we further propose an
optimal randomized algorithm augmented with probabilistic
interval predictions using the optimization-based approach.

3.1. Warm-up: A Deterministic Algorithm

We first focus on a deterministic algorithm for ski rental with
a probabilistic point prediction PPP(P ; δ), which forecasts
the skiing horizon is P with probability at least 1− δ. To
simplify the presentation, we show the results based on a
continuous version of the ski rental, where the number of
skiing days increases continuously, and N,B, Y ∈ R+.

A simple meta-algorithm Based on the definition in
Equation (3), the DRCR of online algorithms is a linear
combination of consistency and robustness from an algo-
rithm with untrusted predictions. Therefore, we can devise a
simple meta-algorithm by leveraging existing consistent and
robust algorithms. Let LAP (λ) denote the algorithms with
untrusted prediction P designed in (Purohit et al., 2018)
for a hyper-parameter λ ∈ (0, 1]. In particular, LAP (λ) de-
termines the day of purchase Y = B/λ if P < B and
Y = Bλ otherwise. LAP (λ) has been proved (1 + λ)-
consistent and (1 + 1/λ)-robust. A simple meta-algorithm
then can take LAP (λ) as input and select the online algo-
rithm with parameter λ to optimize DRCR. Specifically, it de-
termines λδ = argminλ∈(0,1](1−δ)(1+λ)+δ(1+1/λ) =

min{
√

δ/(1− δ), 1}, and the meta-algorithm is given as
LAP (λδ). Further, the DRCR of LAP (λδ) is derived as

χ(δ) =

{
1 + 2

√
δ(1− δ) δ ∈ [0, 1

2 ]

2 δ ∈ ( 12 , 1]
. (5)

The meta-algorithm can improve DRCR beyond the worst-
case competitive ratio of 2 when the prediction quality is
high (δ ∈ [0, 1/2]), with χ(δ) rapidly converging to 1 as δ
approaches 0. Nonetheless, the prediction becomes ineffec-
tive as its quality deteriorates beyond δ > 1/2, reducing the
meta-algorithm to the worst-case performance. However, a
fundamental question remains: Can we extract the benefit
from low-quality predictions? Furthermore, the DRCR of
the meta-algorithm is independent of the prediction P as
the algorithm LAP (λ) treats the prediction P as untrusted
and does not leverage its quality δ in its design. Instead,
the prediction quality is only used for the hyper-parameter
selection. These limitations of the meta-algorithm moti-
vate us to design a new algorithm capable of harnessing the
probabilistic predictions more effectively.

Algorithm 1 DSR: Deterministic algorithm for ski rental
1: input: prediction PPP(P ; δ), buying cost B;
2: if P < B then determine Y = B;
3: else if P ∈ (

√
5+1
2 B,+∞) then determine Y = B ·

min{
√
δ/(1− δ), 1};

4: else if P ∈ [B,
√
5+1
2 B] then

5: if χ(δ) ≤ δ + P
B then determine Y = B ·

min{
√
δ/(1− δ), 1};

6: else determine Y = P ;
7: buy skis on day Y .

An optimal deterministic algorithm In Algorithm 1, we
introduce a new deterministic algorithm, referred to as DSR.
This algorithm operates within distinct prediction regions:
(i) in the pro-rent region, defined as P ∈ (0, B), the al-
gorithm purchases on day B regardless of the specific pre-
diction and prediction quality; (ii) in the pro-buy region,
defined as P ∈ (

√
5+1
2 B,+∞), the algorithm makes an

early purchase within the initial B days, with the specific
day determined by the design of DSR; (iii) in the rent-or-buy
region, denoted by P ∈ [B,

√
5+1
2 B], this algorithm can opt

to buy on the predicted day P or make a purchase within the
first B days. The decision, in this case, is influenced by both
the prediction and its quality, creating a nuanced trade-off
between buy and rent. We show that DSR can achieve the
optimal DRCR among all deterministic algorithms.

Theorem 1. Given a PPP(P ; δ), DSR is the optimal deter-
ministic algorithm for ski rental and achieves the DRCR

1 + δ P ∈ (0, B)

min
{
χ(δ), δ + P

B

}
P ∈ [B,

√
5+1
2 B]

χ(δ) P ∈ (
√
5+1
2 B,+∞)

.

The crux of DSR’s design lies in identifying the dominant
decision when the prediction falls within distinct prediction
regions. Compared to the meta-algorithm, DSR achieves an
improved DRCR over the meta-algorithm for any given pre-
diction. The performance gain can be attributed to explicit
utilization of both the prediction and its associated quality in
the decision-making process. In particular, even in scenarios
where the prediction quality is low δ > 1/2, DSR still man-
ages to enhance the DRCR, especially when the prediction
P <

√
5+1
2 B. In such cases, any probabilistic information

from the prediction can mitigate the worst-case scenarios.
Although we can extend the ideas of DSR to incorporate
a probabilistic interval prediction (see Appendix B.2 for
more details), it becomes increasingly complicated to iden-
tify the dominant decisions. In the following section, we
show that we can design algorithms using a more systematic
optimization-based approach proposed in Section 2.2.
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Algorithm 2 RSR(y): Randomized algorithm for ski rental
1: input: purchase distribution y ∈ Y;
2: draw a buying day Y from the distribution y;
3: rent skis up to day Y − 1 and buy on day Y .

3.2. An Optimal Randomized Algorithm

We now introduce a more general randomized algorithm
with probabilistic interval prediction PIP(ℓ, u; δ). We
can consider a parameterized algorithm RSR(y) (described
in Algorithm 2) with the purchasing probability y :=
{y(t)}t∈Z+ as the parameter. Specifically, y(t) denotes
the probability of purchasing on day t. Then any online ran-
domized algorithm for ski rental problems can be captured
by y := {y(t)}t∈Z+ , where y is a distribution of the buying
day with support Z+ and the feasible set of y is given by
Y := {y :

∑
t∈Z+ y(t) = 1, y(t) ≥ 0,∀t ∈ Z+}.

Let IN denote an instance of the ski rental problem with time
horizon N . We consider the hard instance set H := I =
{IN}N∈Z+ , which in fact contains all instances of the ski
rental problem. The instances conforming with the interval
prediction can then be denoted by Hℓ,u = {IN}N∈Z+

ℓ,u
.

Given each instance IN , the expected cost of a randomized
algorithm RSR(y) is ALG(y, IN ) =

∑N
t=1(B+t−1)y(t)+

N
∑+∞

t=N+1 y(t), and the cost of the offline algorithm is
OPT(IN ) = min{N,B}. Given a PIP(ℓ, u; δ), we can
formulate an optimization problem (4) to minimize DRCR.
Let {η∗, γ∗,y∗} and CR∗

sr denote the optimal solution and
the optimal objective value of the problem, respectively. The
optimal randomized algorithm is then given by RSR(y∗).

Theorem 2. Given a PIP(ℓ, u; δ), the DRCR of RSR(y∗) is
CR∗

sr. Further, CR∗
sr is the optimal DRCR for ski rental.

The optimization-based approach for designing RSR(y∗) is
general in the sense that it can be tuned to design others al-
gorithms for related problems. For example, one can derive
a deterministic algorithm with PIP(ℓ, u; δ) by replacing
the feasible set with Ŷ := {y :

∑
t∈Z+ y(t) = 1, y(t) ∈

{0, 1},∀t ∈ Z+} that restricts the decisions to be determin-
istic. This systemic design stands in contrast to the ad-hoc
development of the deterministic algorithm discussed in the
previous section. Given that Ŷ ⊆ Y , the ancillary problem
for the randomized algorithm is a relaxation of that of the
deterministic algorithm. Thus, RSR(y∗) outperforms the
optimal deterministic algorithms.

Noting that the optimization problem for ski rental is a linear
program with an infinite number of variables and constraints,
to solve y∗, we show that the problem can be reduced to
an equivalent problem with a finite number of variables
and constraints. Therefore, y∗ can be solved optimally and
efficiently by standard linear programs.

Lemma 1. The problem (4) for ski rental can be reduced to

an optimization with O(B) variables and O(B) constraints.

4. Online Search Problem with UQ Prediction
Problem statement A player seeks to sell one unit of a
resource over a sequence of prices {vn}n∈[N ] that arrive
online. In response to each price vn, the player must im-
mediately decide an amount xn of its remaining resource
to sell (resulting in the player earning vnxn), without the
knowledge of future prices or the sequence length N . If
any resource remains unsold at the last step N , it is com-
pulsorily sold at the final price vN . The player’s goal is to
maximize its total profit

∑
n∈[N ] vnxn. Following the stan-

dard assumption (El-Yaniv et al., 2001; Lorenz et al., 2009),
prices are chosen (possibly adversarially) from a bounded
interval, i.e., vn ∈ [m,M ] for all n ∈ [N ], where m > 0 .

In prior work, there exist several optimal deterministic
algorithms (e.g., threat-based algorithm (El-Yaniv et al.,
2001), threshold-based algorithm (Sun et al., 2020)) that
can achieve the optimal worst-case competitive ratio α∗ =
O(ln(M/m)). Since it is known that randomization does
not improve the performance of algorithms for one-way
trading problems (El-Yaniv et al., 2001; Im et al., 2021). We
focus on deterministic algorithms in this section.

In online search, if the actual maximum price is known in
advance, the offline optimal algorithm simply waits until
the maximum price to sell the whole resource. Previous
work on online search with machine-learned advice has con-
sidered point predictions of the maximum price (Sun et al.,
2021). Following this prediction paradigm, in our setting,
we consider a probabilistic interval prediction PIP(ℓ, u; δ)
of the maximal price, which represents a prediction that
the maximum price V lies within the interval [ℓ, u] with
probability at least 1 − δ. In the following, we design al-
gorithms to minimize DRCR given predictions of the form
PIP(ℓ, u; δ).

4.1. An Optimal-Protection-Function Based Algorithm

We first introduce a class of “protection function”-based
algorithms (PFA) in Algorithm 3. The PFA is parameterized
by a protection function G(v) : [m,M ]→ [0, 1] that defines
the maximum selling amount upon receiving a price v ∈
[m,M ]. Then a PFA only sells the resource if the current
price vn is the maximum one among all previous prices, and
the selling amount is G(vn)−G(v̂), where v̂ is the previous
maximum price. PFA can optimally solve the one-way
trading problem when the protection function is given by
G(v) = 0, v ∈ [m,α∗m) and G(v) = 1

α∗ ln v−m
α∗m−m , v ∈

[α∗m,M ], where α∗ = O(ln(M/m)) is the optimal worst-
case competitive ratio. Let PFA(G) denote the algorithm
with protection function G. In the following, we aim to
redesign the protection function G∗ for PFA based on the

6
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Algorithm 3 PFA(G): Protection-function-based algorithm
1: input: protection function G;
2: initiate running maximum price v̂ = m;
3: for n = 1, . . . , N − 1 do
4: sell xn = [G∗(vn)−G∗(v̂)]

+;
5: update v̂ = max{vn, v̂};
6: end for
7: xN = 1−G∗(v̂).

solution of an optimization problem for a given PIP, and
show PFA(G∗) can attain the optimal DRCR.

Optimization problem based on hard instances. We
consider a family of hard instances H := {IV }V ∈[m,M ],
where IV includes a sequence of prices that continuously
increase from m to V and then drop to the lowest price m
in the end. Under any instance from {IV }V ∈(v,M ], PFA(G)
sells G(v+ dv)−G(v) amount of resource at price v when
the running maximum price increases from v to v + dv
for some small dv. For notational convenience, we define
a new parameter q(v) := [G(v + dv) − G(v)]/dv,∀v ∈
[m,M ]. The protection function G can be uniquely deter-
mined by q := {q(v)}v∈[m,M ] and the feasible set of q

is Q = {q : q(v) ≥ 0,∀v ∈ [m,M ],
∫M

m
q(v)dv ≤ 1}.

Since the online decision is irrevocable and all instances
in {IV }V ∈(v,M ] have the same prefix (i.e., the price se-
quence continuously increasing from m to v), q(v) is the
same for all {IV }V ∈(v,M ]. Moreover, note that any online
algorithm corresponds to a solution q := {q(v)}v∈[m,M ]

under the hard instances, and thus we can use q to model
all online algorithms. Under an instance IV , the profit
of an online algorithm modeled by q is ALG(q, IV ) =∫ V

m
v · q(v)dv + (1 −

∫ V

m
q(v)dv)m, where the first term

is the profit of selling the item over prices from m to V
and the second term is the profit from compulsory sell-
ing at the last price. The offline algorithm sells the en-
tire item at the maximum price and thus OPT(IV ) = V .
Given a PIP(ℓ, u; δ), we can formulate an optimization
problem (4) to minimize the DRCR under hard instances.
Let {η∗, γ∗, q∗} and CR∗

os denote the optimal solution and
the optimal objective value. Based on q∗, we can build a
protection function G∗(v) =

∫ v

m
q∗(s)ds,∀v ∈ [m,M ] and

propose PFA(G∗) as the algorithm for online search.

Theorem 3. Given a PIP(ℓ, u; δ), the DRCR of PFA(G∗)
is CR∗

os, and CR∗
os is optimal for online search.

Proof of Theorem 3. Note that PFA(G∗) only sells the re-
source when the current price is the running maximum
one or when it is the last price. Thus, for any instance
I = {vn}n∈[N ], we can instead focus on a new instance
I ′ = {v′n}n∈[N ′+1], where {v′n}n∈[N ′] is the N ′ strictly
increasing prices of I and v′N ′+1 = vN . Thus, we can lower

bound the profit of PFA(G∗) by

ALG(q∗, I) = ALG(q∗, I ′) (6a)

=
∑

n∈[N ′]

v′n

∫ v′
n

v′
n−1

q∗(v)dv + [1−G∗(v′N ′)]v′N ′+1 (6b)

≥
∑

n∈[N ′]

∫ v′
n

v′
n−1

vq∗(v)dv + [1−G∗(v′N ′)]m (6c)

≥
∫ v′

N′

0

vq∗(v)dv + [1−G∗(v′N ′)]m. (6d)

In addition, we have OPT(I) = OPT(I ′) = v′N ′ . Since
q∗ is the optimal solution of the optimization prob-
lem (4), we have ALG(q∗, I) ≥ OPT(I)

η∗ ,∀v′N ′ ∈ [ℓ, u] and

ALG(q∗, I) ≥ OPT(I)
γ∗ ,∀v′N ′ ∈ [m, ℓ) ∪ (u,M ]. And thus

the DRCR of PFA(G∗) is (1− δ)η∗ + δγ∗ = CR∗
os.

Since the parameterized PFA(G) can capture the perfor-
mance of all online algorithms under hard instances H,
based on Proposition 1, it is straightforward to show no on-
line algorithms can achieve a DRCR smaller than CR∗

os.

The optimization (4) is a problem with infinite number of
variables and constraints. To obtain the solution, we propose
a discrete approximation to solve it. Further, if we let Ĝ∗

denote the protection function built based on the solution
of the approximation problem, the following lemma shows
that PFA(Ĝ∗) can achieve a DRCR close to PFA(G∗).

Lemma 2. For a given parameter ϵ > 0, there exists a
discrete approximation problem with O( ln(M/m)

ln(1+ϵ) ) variables
and constraints for the problem (4) of online search. Further,
PFA(Ĝ∗) can achieve DRCR ≤ CR∗

os + ϵM/m.

5. Learning Algorithms with UQ Prediction
In previous sections, we focused on a single instance of an
online problem with UQ prediction θ, and designed algo-
rithms to optimize the DRCR, i.e., the expected cost ratio
under the worst-case distribution in the ambiguity set built
by the UQ prediction. However, in practice, the conditional
distribution ξθ is often not the worst-case one. Furthermore,
the PIP may be imprecise due to non-exchangeability of
the data or distribution shift, and alternative notions of UQ
may be employed, e.g., see (Abdar et al., 2021). For in-
stance, one may approximate the predictive distributions,
e.g., through Monte-Carlo methods, but these may be im-
precise. In these cases, it may not be tractable to formulate
proper ambiguity sets. This motivates us to consider the
multi-instance setting, using online learning to learn the
intrinsic correlation between UQ predictions and instance
costs as well as to go beyond the DRCR guarantees.
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Online learning formulation The idea is to learn the map-
ping, or policy, from any given UQ prediction to an online
algorithm over T rounds. At the beginning of round t ∈ [T ],
we receive a UQ prediction θt ∈ Θ about the input instance
It. Then we select an algorithm parameter wt = πt(θt) ∈
Ω using a chosen policy πt ∈ Π : Θ 7→ Ω, and run the
online algorithm A(wt) to execute the instance It on the fly.
In the end, we observe the entire instance It drawn from the
unknown conditional distribution ξθt , and the cost function
ft := ft(wt; θt) =

ALG(A(wt),It)
OPT(It)

: Ω → R+, which is the
cost ratio of the online algorithm A(wt) and the offline op-
timal solution under the instance It. In our formulation, the
goal is to compete against a function Ut := Ut(wt; θt) that
upper bounds the expected cost function Eξθt

[ft(wt; θt)],
i.e., Ut(wt; θt) ≥ Eξθt

[ft(wt; θt)],∀wt ∈ Ω. This upper
bound exhibits certain properties (e.g. Lipschitzness) that
will allow one to conduct online learning on it. We aim to
select policies {πt}t∈[T ], which determine the parameter se-
lection of {wt}t∈[T ] based on the UQ predictions {θt}t∈[T ],
to minimize the policy regret over T instances PREGT , i.e.,∑

t∈[T ]
[Eξθt

ft(πt(θt); θt)− Ut(π
∗(θt); θt)], (7)

where π∗ = argminπ
∑

t∈[T ] Ut(π(θt); θt). In general, it
is impossible to obtain sublinear policy regret if we do not
impose any restrictions on the cost functions with respect to
the UQ. This is because the instance of each round can only
depend on the newly received UQ but may be unrelated
to the past observations. Thus, we consider that there is
some local regularity that encodes the notion that similar
UQ predictions should yield similar instance costs. In this
paper, we consider cost functions that are L-Lipschitz in θ,
i.e., for any θi, θj ∈ Θ, supw∈Ω |Ui(w; θi)− Uj(w; θj)| ≤
L · ∥θi − θj∥. The goal of the online learning algorithm
is to achieve a sublinear regret with respect to any cost
upper bound function Ut that satisfies the local regularity
condition. This allows our approach to be adaptive to the
inherent difficulty of the problem instance: the closer the
expected cost Eξθt

ft is to being L-Lipschitz, the tighter the
cost upper bound Ut will be to the true expected cost, and
the more optimally the algorithm will perform. Furthermore,
the DRCR studied in the previous sections is by definition
an upper bound of the expected cost. For certain forms of
UQ including PIP predictions, the DRCR is Lipschitz with
respect to the UQ. This means that our approach can at least
compete against the optimal DRCR, and outperform them
when distributions are not adversarially given.

Algorithms and results Using the algorithmic framework
in (Hazan & Megiddo, 2007), one can obtain sublinear pol-
icy regret as we defined. The main idea for the algorithm is
to cover the space of UQ prediction Θ with an ϵ-net, where
an instance of a sublinear regret algorithm (e.g., randomized
exponentiated gradients algorithm) is assigned to each point

Figure 1. Comparisons of cumulative empirical ratios (minus 1)
of the following algorithms: WOA: worst-case optimal randomized
algorithm that is e/e−1-competitive. FTP: follow-the-prediction
algorithm that fully trusts the prediction; OL-Dynamic: online
learning with respect to policy regret by leveraging UQ predictions.
OL-Static: online learning with respect to static regret without
considering UQ predictions. RSR-PIP: randomized algorithm
with PIP (Algorithm 3) that achieves the optimal DRCR.

in the net. Whenever a UQ prediction falls into one of the
ϵ-balls, only the algorithm instance assigned to that ball will
be run and updated. Thus, every algorithm instance is only
run on similar problem instances. In this way, the algorithm
exploits local regularities in the UQ space to achieve im-
proved guarantees. Specifically, given that the cost upper
bound is L-Lipschitz, we show that an ϵ-net based algo-
rithm can guarantee a sublinear policy regret Õ(T 1− 1

d+2 )
for general UQ, where d is the covering dimension of the
provided UQs. To attain this result, we extend the algorithm
and regret analysis from (Hazan & Megiddo, 2007) by (i)
indicating how the algorithm can exploit local regularities
other than just Lipschitz policies for convex functions and
(ii) refining the regret analysis for competing against cost
upper bounds exhibiting Lipschitzness. As concrete exam-
ples, we apply the ϵ-net algorithm to derive policy regret
guarantees on DRCR for the ski rental and online search
problems with PIP θ = {ℓ, u; δ}. Indeed, under mild con-
ditions the DRCR exhibits Lipschitzness with respect to θ,
which we prove using the optimization problems from previ-
ous sections. In particular, for ski-rental we can exploit that
{ℓ, u} are discrete parameters to achieve an improved regret
Õ(T 2/3) compared to the general guarantees Õ(T 4/5). For
online search, we introduce a discretization on the UQ space
to obtain Lipschitzness and achieve regret Õ(T 4/5). The
detailed algorithms and results are in Appendix D.

Empirical results Figure 1 compares the empirical com-
petitive ratios (CRs) of our proposed online algorithms in the
setting of a multiple-instance ski rental problem. The setup
details can be found in Appendix D.6. All our proposed
algorithms use UQ to improve the performance compared
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to those that are worst-case optimized (i.e., WOA) or just
use the predictions blindly (i.e., FTP). Initially, RSR outper-
forms all other algorithms since RSR is designed to achieve
the optimal DRCR, allowing it to perform well before the
online learning approaches have had time to learn. As the
number of instances increases, the cumulative CR of our pro-
posed online learning algorithm OL-Dynamic increases
sublinearly, gradually approaching and then outperforming
RSR. This is because the distribution used to generate the
problem instances is not the worst-case one for the given
UQ. Thus, OL-Dynamic can better learn to use UQ for
non-worst-case distributions, while RSR, designed toward
this worst case, performs more conservatively over the long
run. This emphasizes the importance of the online learning
approaches in multiple-instance settings in real-world appli-
cations, where adversarial distributions rarely occur. In ad-
dition, the online learning algorithm OL-Static, which is
designed for static regret, can also gradually learn to achieve
a performance comparable to the optimal DRCR solution but
fails to improve much beyond it. This further validates the
importance of our policy regret guarantees compared to the
classic static regret, which can be obtained without UQ.

6. Concluding Remarks
This paper has developed two paradigms for incorporating
uncertainty-quantified predictions into the design and analy-
sis of online algorithms. For UQ predictions that are descrip-
tive and enable a tractable ambiguity set about the future
input to be constructed, we have proposed an optimization-
based approach that utilizes the predictions and minimizes
a form of distributionally-robust competitive ratio on a per-
instance basis. We applied this approach to design optimal
online algorithms for two classic online problems with UQ
predictions: ski rental and online search problems. Addition-
ally, we devised an online learning approach that can learn
to utilize the predictions across multiple instances and attain
sublinear regret under mild Lipschitz conditions. We posit
that both these paradigms for incorporating uncertainty-
quantified advice in online decision-making hold promise
for designing algorithms using UQ for other online prob-
lems, and can enable better and more reliable use of machine
learning in general online decision-making.
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A. Proof of Proposition 1
Given a probabilistic interval prediction PIP(ℓ, u; δ), for any parameterized algorithm A(w̄), (w̄ ∈ Ω), let η̄ and γ̄ denote
its consistency and robustness. By definition (1), we have

η̄ = max
I∈Iℓ,u

ALG(w̄, I)

OPT(I)
and γ̄ = max

I∈I

ALG(w̄, I)

OPT(I)
,

where I and Iℓ,u are the entire instance set and the instance subset that contains all instances confirming with the interval
prediction, respectively. Then we have H ⊆ I and Hℓ,u ⊆ Iℓ,u since H and Hℓ,u only contain hard instances. Thus,
{η̄, γ̄, w̄} is a feasible solution of the optimization problem (4). Consequently, the DRCR of A(w̄) is (1 − δ)η̄ + δγ̄ ≥
(1 − δ)η∗ + δγ∗, where η∗ and γ∗ are the optimal solution of the problem (4). Therefore, the DRCR of parameterized
algorithms is lower bounded by (1− δ)η∗ + δγ∗.

B. Technical Proofs and Supplementary Results for Ski Rental with UQ Predictions
B.1. Proof of Theorem 1

To design deterministic algorithms for the ski rental problem, we can first derive the distributionally-robust competitive ratio
(DRCR) when the buying strategy Y operates in different prediction regions, and then choose the strategy that can minimize
the DRCR. For notational convenience, we let ALG and OPT denote the cost of the online algorithm and the cost of offline
algorithm, and let CR be the cost ratio of ALG and OPT.

Case I: P < B. We derive the cost ratios when Y falls in different regions.

Case I(a): when 0 < Y ≤ P ,

• if 0 < N < Y , we have ALG = OPT = N ; and CR = 1;

• if Y ≤ N < P , we have ALG = Y +B and OPT = N ; and thus CR = Y+B
N ≤ Y+B

Y ;

• if N = P , we have ALG = Y +B and OPT = P ; and thus CR = Y+B
P ;

• if N > P , we have ALG = Y +B and OPT = min{N,B}; and thus CR = Y+B
min{N,B} ≤

Y+B
P .

Thus, we have DRCR = (1 − δ)Y+B
P + δ Y+B

Y , which is minimized by Y =

{√
δ

1−δBP δ ∈ [0, P
P+B ]

P δ ∈ ( P
P+B , 1]

, and the

corresponding DRCR is

{
2
√
δ(1− δ)BP + (1− δ)BP + δ, δ ∈ [0, P

P+B ]

1 + B
P δ ∈ ( P

P+B , 1]
.

Case I(b): when P < Y ≤ B,

• if 0 < N < Y , we have ALG = OPT = N ; and CR = 1;

• if Y ≤ N , we have ALG = Y +B and OPT = min{N,B}; and thus CR = Y+B
min{N,B} ≤

Y+B
Y .

Thus, we have DRCR = 1− δ + δ Y+B
Y , which is minimized when Y = B and DRCR = 1 + δ.

Case I(c): when Y > B,

• if 0 < N ≤ B, we have ALG = OPT = N ; and CR = 1;

• if B < N < Y , we have ALG = N and OPT = B; and thus CR = N
B ≤

Y
B ;

• if N ≥ Y , we have ALG = Y +B and OPT = B; and thus CR = Y+B
B .

12
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Thus, we have DRCR = 1− δ + δ Y+B
Y , which is minimized when Y = B and DRCR = 1 + δ.

By comparing the DRCR of three sub-cases, Y = B minimizes the DRCR when P < B, and the minimum DRCR is 1 + δ.

Case II: P > B. Consider the following sub-cases.

Case II(a): when 0 < Y ≤ B,

• if 0 < N < Y , we have ALG = OPT = N ; and CR = 1;

• if Y ≤ N ≤ B, we have ALG = Y +B and OPT = N ; and thus CR = Y+B
N ≤ Y+B

Y ;

• if B < N , we have ALG = Y +B and OPT = B; and thus CR = Y+B
B .

Thus, we have DRCR = (1 − δ)Y+B
B + δ Y+B

Y , which is minimized when Y = B ·min{
√
δ/(1− δ), 1}, and DRCR :=

χ(δ) =

{
2
√
δ(1− δ) + 1 δ ∈ [0, 1

2 ]

2 δ ∈ ( 12 , 1]
.

Case II(b): when B < Y ≤ P ,

• if 0 ≤ N ≤ B, we have ALG = OPT = N ; and CR = 1;

• if B < N < Y , we have ALG = N and OPT = B; and thus CR = N
B < Y

B ;

• if Y ≤ N ≤ P , we have ALG = Y +B and OPT = B; and thus CR = Y+B
B ;

• if P < N , we have ALG = Y +B and OPT = B; and thus CR = Y+B
B .

Thus, we have DRCR = Y+B
B , which is minimized when Y → B and DRCR→ 2.

Case II(c): when Y > P ,

• if 0 < N ≤ B, we have ALG = OPT = N ; and CR = 1;

• if B < N ≤ P , we have ALG = N and OPT = B; and thus CR = N
B ≤

P
B ;

• if P < N < Y , we have ALG = N and OPT = B; and thus CR = N
B < Y

B ;

• if N ≥ Y , we have ALG = Y +B and OPT = B; and thus CR = Y+B
B .

Thus, we have DRCR = (1− δ)PB + δ Y+B
B , which is minimized when Y → P , and DRCR→ δ + P

B .

By comparing the DRCR of the above three sub-cases, we have when P >
√
5+1
2 B, χ(δ) ≤ δ + P

B ,∀δ ∈ [0, 1] and
thus, the optimal buying day is Y = Bmin{

√
δ/(1− δ), 1}. When B ≤ P ≤

√
5+1
2 B, the optimal buy strategy is

Y = Bmin{
√
δ/(1− δ), 1} if χ(δ) ≤ δ + P

B and Y = P otherwise.

B.2. Deterministic Algorithms with Probabilistic Interval Predictions

We can extend the ideas of DSR to incorporate a probabilistic interval prediction PIP(ℓ, u; δ). The extension adheres to
a decision structure similar to that of DSR when dealing with predicted intervals that clearly favor buying decisions (i.e.,
B < ℓ ≤ u) or renting decisions (i.e., ℓ < u ≤ B). The additional complexity arises when ℓ ≤ B ≤ u. In such cases, the
optimal decision greatly depends on the prediction interval and its quality, and this leads to three possible scenarios: (i)
making a pro-rent decision by purchasing at the predicted interval upper bound u, (ii) opting for a pro-buy decision by
purchasing within the first ℓ days , or (iii) buying on day B when the prediction is proved to be unhelpful. The full algorithm
is presented in Algorithm 4 and its DRCR result is presented in Lemma 4. The proof of Lemma 4 follows the same proof
idea as Theorem 1.
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Algorithm 4 Online deterministic algorithm with PIP for ski rental
1: input: prediction PIP(ℓ, u; δ), buying cost B;
2: if ℓ ≤ u < B then
3: set Y = B;
4: else if B < ℓ ≤ u then
5: if χ(δ) ≤ δ + u

B then
6: set Y = B ·min{

√
δ/(1− δ), 1};

7: else
8: set Y = u;
9: end if

10: else if ℓ ≤ B ≤ u then
11: if ζ(δ, ℓ) ≥ 2 and δ + u

B ≥ 2 then
12: set Y = B;
13: else if ζ(δ, ℓ) ≤ δ + u

B then
14: set Y = ℓ ·min{

√
Bδ/(ℓ(1− δ)), 1};

15: else
16: set Y = u;
17: end if
18: end if
19: buy skis on day Y .

Theorem 4. Given a PIP(ℓ, u; δ), Algorithm 4 for ski rental achieves the DRCR
1 + δ ℓ ≤ u < B

min
{
χ(δ), δ + u

B

}
B < ℓ ≤ u

min
{
ζ(δ, ℓ), δ + u

B , 2
}

ℓ ≤ B ≤ u

, (8)

where

ζ(δ, ℓ) :=

{
δ + (1− δ)B/ℓ+ 2

√
δ(1− δ)B/ℓ δ ∈ [0, ℓ

ℓ+B )

1 +B/ℓ δ ∈ [ ℓ
ℓ+B , 1]

.

Further, the attained DRCR is optimal for all deterministic algorithms for ski rental with probabilistic interval predictions.

B.3. Proof of Theorem 2

First, the optimization formulation for the ski rental problem with a probabilistic interval prediction PIP(ℓ, u; δ) can be
formally stated as follows:

min
η,γ,y

(1− δ)η + δγ (9a)

s.t.
∑N

t=1
(B + t− 1)y(t) +N

∑∞

t=N+1
y(t) ≤ ηmin{N,B},∀N ∈ Z+

ℓ,u, (9b)∑N

t=1
(B + t− 1)y(t) +N

∑∞

t=N+1
y(t) ≤ γmin{N,B},∀N ∈ Z+ \ Z+

ℓ,u, (9c)

1 ≤ η ≤ γ, (9d)
y ∈ Y. (9e)

Each constraint N from either constraint (9b) or constraint (9c) ensures that the ratio between the expected cost of the online
algorithm and the cost of the offline optimum is upper bounded by η or γ, respectively. The constraint 1 ≤ η ≤ γ guarantees
that

∑N
t=1(B + t− 1)y(t) +N

∑∞
t=N+1 y(t) ≤ γmin{N,B},∀N ∈ Z+

ℓ,u, that corresponds to the constraint (4c) in the
optimization problem (4).

Given any instance IN , the expected cost of RSR(y∗) is ALG(y∗, IN ) =
∑N

t=1(B + t − 1)y∗(t) + N
∑∞

t=N+1 y
∗(t),

and the offline optimal cost is OPT(IN ) = min{N,B}. Thus, based on the definition in Equation (3), η∗ and γ∗ are the
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consistency and robustness of the algorithm with untrusted interval prediction [ℓ, u], respectively. And the DRCR of RSR(y∗)
is (1− δ)η∗ + δγ∗ = CR∗

sr.

To show the optimality of the result, we note that the hard instance set H used for formulating the problem is in fact the
entire instance set I = {IN}N∈Z+ for the ski rental problem, and the parameterized algorithms RSR(y) can capture all
online algorithms underH. Thus, based on Proposition 1, no online algorithms can achieve a DRCR smaller than CR∗

sr.

B.4. Proof of Lemma 1

The proof is based on the optimization formulation (9). Let CN denote the constraint indexed by N from the constraints (9b)
and (9c). Then the problem (9) can be reduced to an optimization with a finite number of constraints and variables.
Particularly, variables {y(t)}t∈Z+ and constraints {CN}N∈Z+ (i.e., constraints (9b) and (9c)) can be reduced as follows:

• when ℓ ≤ u < B, only B variables {y(t)}t∈Z+
1,B

and B constraints {CN}N∈Z+
1,B

are non-redundant;

• when B < ℓ ≤ u or ℓ ≤ B ≤ u, only B + 1 variables {y(t)}t∈Z+
1,B∪{u+1} and B + 1 constraints

{CN}N∈Z+
1,B−1∪{u,u+1} are non-redundant.

We start by showing the structural property of constraints (9b) and (9c). Let RHS(N) and LHS(y, N) denote the right-hand-
side and the left-hand-side of the constraint CN , respectively. Given a feasible solution {η, γ,y}, if there exists a k ∈ Z+

such that RHS(k) ≥ RHS(k+ 1), we can move the probability mass from y(k+ 1) to y(k) and obtain a new solution ŷ, i.e.,

ŷ(t) =


y(t) + y(t+ 1) t = k

0 t = k + 1

y(t) otherwise
,

and the solution {η, γ, ŷ} is also feasible to the problem (9). To show this, we make the following claims.

Claim 1. {η, γ, ŷ} satisfies the constraints {CN}N∈Z+
1,k−1

.

Note that LHS(y, N) =
∑N

t=1(B+ t−1)y(t)+N [1−
∑N

t=1 y(t)]. Then we have LHS(ŷ, N) = LHS(y, N),∀N ≤ k−1,
and thus the first k − 1 constraints are feasible for ŷ.

Claim 2. {η, γ, ŷ} satisfies the constraints {CN}N∈Z+
k+1,∞

.

When N ≥ k + 1, we have

LHS(ŷ, N)− LHS(y, N) = (B + k − 1)[ŷ(k)− y(k)]− (B + k)y(k + 1) = −y(k + 1) ≤ 0,

and thus all constraints after k + 1 are feasible for ŷ.

Claim 3. {η, γ, ŷ} satisfies the constraint Ck.

Note that LHS(ŷ, k) is dominated by LHS(ŷ, k + 1) since

LHS(ŷ, k + 1)− LHS(ŷ, k) = 1−
∑k

t=1
ŷ(t) + (B − 1)ŷ(k + 1) > 0.

Therefore, if RHS(k) ≥ RHS(k + 1) and Ck+1 is satisfied, Ck is also feasible for ŷ.

Combining above three claims gives the structural property. Next, we show the reduction of variables {y(t)}t∈Z+ and
constraints {CN}N∈Z+ in the problem (9) as follows.

Case I: ℓ ≤ u < B. In this case, RHS(N) remains the same when N ≥ B. Therefore, we can iteratively move all the
probability mass from {y(t)}t∈Z+

B+1,∞
to y(B) and obtain the new feasible solution

ŷ(t) =


y(t) t ∈ Z+

1,B−1∑∞
t=B+1 y(t) t = B

0 t ∈ Z+
B+1,∞

.
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Since ŷ(t) = 0,∀t ∈ Z+
B+1,∞, all variables {y(t)}t∈Z+

B+1,∞
and constraints {CN}N∈Z+

B+1,∞
are redundant. Thus, we only

need to focus on B variables {y(t)}t∈Z+
1,B

and B constraints {CN}N∈Z+
1,B

.

Case II: B < ℓ ≤ u. Note that (i) RHS(N) = γB remains the same when N ∈ Z+
u+1,∞; and (ii) RHS(N) is non-

increasing in N when N ∈ Z+
B,u since we have RHS(N) = γB,N ∈ Z+

B,ℓ−1 and RHS(N) = ηB,N ∈ Z+
ℓ,u. Based on the

structural property, we can iteratively move the probability mass from {y(t)}t∈Z+
u+2,∞

to y(u+1), and from {y(t)}t∈Z+
B+1,u

to y(B). This gives a new feasible solution

ŷ(t) =



y(t) t ∈ Z+
1,B−1∑u

t=B y(t) t = B

0 t = B + 1, . . . , u∑∞
t=u+1 y(t) t = u+ 1

0 t ∈ Z+
u+2,∞

. (10)

Thus, we can just focus on the B + 1 variables {y(t)}t∈Z+
1,B∪{u+1}.

For N ∈ Z+
B,u, note that LHS(ŷ, N) is non-decreasing and RHS(N) is non-increasing in N . Thus, the last constraint Cu

is the most difficulty one and we can just focus on Cu. For N ∈ Z+
u+1,∞, we can just focus on the constraint Cu+1 since

ŷ(t) = 0,∀t ∈ Z+
u+2,∞. Thus, we only need to consider the constraints {CN}N∈Z+

1,B−1∪{u,u+1}.

Case III: ℓ ≤ B ≤ u. In this case, we have that (i) RHS(N) = γB remains the same when N ∈ Z+
u+1,∞; and (ii)

RHS(N) = ηB remains the same when N ∈ Z+
B,u. Then, the probability mass {y(t)}t∈Z+

u+2,∞
can be moved to y(u+ 1),

and the probability mass {y(t)}t∈Z+
B+1,u

can be moved to y(B). Thus, a new feasible solution ŷ is also given in the same
form as Equation (10) and we can focus on the B + 1 variables {y(t)}t∈Z+

1,B∪{u+1}.

For N ∈ Z+
B,u, LHS(ŷ, N) is non-decreasing and RHS(N) is constant in N . We can just focus on the last constraint Cu.

For N ∈ Z+
u+1,∞, we can just focus on the constraint Cu+1 since ŷ(t) = 0,∀t ∈ Z+

u+2,∞. Thus, we only need to consider
the constraints {CN}N∈Z+

1,B−1∪{u,u+1}.

Combining Case I - Case III, there are no more than B + 1 non-redundant variables in {y(t)}t∈Z+ , and B + 1 constraints
in {CN}N∈Z+ . This completes the proof.

C. Technical Proofs and Supplementary Results for Online Search with UQ Predictions
C.1. Discrete Approximation for the Optimization Problem

We start by providing a formal formulation for the online search with a probabilistic interval prediction PIP(ℓ, u; δ) under
the hard instancesH := {IV }V ∈[m,M ].

min
η,γ,q

(1− δ)η + δγ (11a)

s.t. V ≤ η

[∫ V

m

v · q(v)dv + (1−
∫ V

m

q(v)dv)m

]
, V ∈ [ℓ, u], (11b)

V ≤ γ

[∫ V

m

v · q(v)dv + (1−
∫ V

m

q(v)dv)m

]
, V ∈ [m, ℓ) ∪ (u,M ], (11c)

1 ≤ η ≤ γ, (11d)
q ∈ Q. (11e)

Each constraint indexed by V in Equation (11b) (or in Equation (11c)) ensures the ratio between the profit of the offline
optimum and the profit of the online algorithm is upper bounded by η (or γ) under the instance IV . Thus, η and γ represent
the consistency and robustness (under the hard instances), and the optimization objective is to minimize the DRCR under the
hard instances. Let {q∗, η∗, γ∗} and CR∗

os denote the optimal solution and the optimal objective value of the above problem.
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We propose a discrete approximation for the problem (11) as follows. Fix a parameter ϵ > 0. Let K ′ be the largest integer
such that m(1 + ϵ)K

′ ≤M , i.e., K ′ = ⌊ ln(M/m)
ln(1+ϵ) ⌋. Consider the following K = K ′ + 4 discrete values that include K ′ + 1

values {m(1+ ϵ)k}k=0,...,K′ , and three additional values ℓ, u, M . We arrange these K values in a non-decreasing order and
let Vk denote the k-th value. Particularly, we have V1 = m,VK = M , and we define index kℓ and ku such that Vkℓ

= ℓ and
Vku = u. The key property of the defined discrete values is that Vk/Vk−1 ≤ 1 + ϵ,∀k = 2, . . . ,K. We define K variables
q̂ := {q̂k}k∈[K] and its feasible set Q̂ := {q̂ : q̂k ≥ 0,∀k ∈ [K],

∑
k∈[K] q̂k ≤ 1}. Then we consider the following discrete

version of the problem (11).

min
η̂,γ̂,q̂

(1− δ)η̂ + δγ̂ (12a)

s.t. Vk ≤ η̂

[∑k

i=1
Viq̂i + (1−

∑k

i=1
q̂i)m

]
, k = kℓ, . . . , ku, (12b)

Vk ≤ γ̂

[∑k

i=1
Viq̂i + (1−

∑k

i=1
q̂i)m

]
, k = 1, . . . , kℓ − 1, ku + 1, . . . ,K, (12c)

1 ≤ η̂ ≤ γ̂, (12d)

q̂ ∈ Q̂, (12e)

which only contains K variables in q̂ and K constraints in Equations (12b) and (12c).

C.2. Proof of Lemma 2

Based on the discrete approximation (12) proposed in Appendix C.1, we can have an approximate problem with O( ln(M/m)
ln(1+ϵ) )

variables and constraints. Below we prove the approximation error of PFA(Ĝ∗).

First, we show the discrete problem (12) is a relaxation of the original problem (11). The relaxation is by (i) removing all
constraints except when V takes the K discrete values {Vk}k∈[K]; and (ii) further relaxing the remaining K constraints as
follows. The K remaining constraints of the original problem can be shown as

Vk ≤ η̂

[∫ Vk

m

v · q̂(v)dv + (1−
∫ Vk

m

q̂(v)dv)m

]
, k = kℓ, . . . , ku, (13a)

Vk ≤ γ̂

[∫ Vk

m

v · q̂(v)dv + (1−
∫ Vk

m

q̂(v)dv)m

]
, k = 1, . . . , kℓ − 1, ku + 1, . . . ,K. (13b)

Constraints (12b) and constraints (12c) are further relaxed constraints of the constraints (13a) and constraints (13b),
respectively. In particular, we relax

∫ Vk

m
v · q̂(v)dv to

∑k
i=1 Viq̂i,∀k ∈ [K].

Let {η̂∗, γ̂∗, q̂∗} denote the optimal solution of the discrete problem (12). Since the discrete problem is a relaxation of the
original problem, we have (1− δ)η̂∗ + δγ̂∗ ≤ (1− δ)η∗ + δγ∗.

Based on q̂∗, we can build a piece-wise constant protection function Ĝ∗(v) =
∑k

i=1 q̂i if v ∈ [Vk, Vk+1], k ∈ [K − 1]. We
then aim to analyze the DRCR of PFA(Ĝ∗). Following similar approach to the proof of Theorem 3, PFA(Ĝ∗) can guarantee

ALG(q̂∗, Iv′
N′
) ≥

OPT(Iv′
N′
)

Vk

Vk−1
η̂∗

≥
OPT(Iv′

N′
)

(1 + ϵ)η̂∗
,∀v′N ′ ∈ [ℓ, u]

ALG(q̂∗, Iv′
N′
) ≥

OPT(Iv′
N′
)

Vk

Vk−1
γ̂∗

≥
OPT(Iv′

N′
)

(1 + ϵ)γ̂∗ ,∀v′N ′ ∈ [m, ℓ) ∪ (u,M ].

Thus, the DRCR of PFA(Ĝ∗) is (1 + ϵ)[(1− δ)η̂∗ + δγ̂∗] ≤ (1 + ϵ)[(1− δ)η∗ + δγ∗] ≤ (1− δ)η∗ + δγ∗ + ϵM/m. This
completes the proof.
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Algorithm 5 Online learning algorithm with uncertainty-quantified predictions
1: input: master algorithmA (e.g., exponentiated gradients algorithm); UQ space Θ; parameterized algorithms A(w),w ∈

Ω; parameter ϵ;
2: initialize ϵ-net N = ∅;
3: for each round t = 1, ..., T do
4: receive UQ θt ∈ Θ and let θ̃t = argminθ∈N ∥θt − θ∥ be the closest vector in N ;
5: if ∥θt − θ̃t∥ > ϵ then
6: add θt to N ;
7: start a new instance of algorithm Aθt corresponding to θt;
8: update θ̃t ← θt;
9: end if

10: choose wt as the output of Aθ̃t
;

11: run algorithm A(wt) to execute the instance It, and observe the cost function ft(wt; θt);
12: update Aθ̃t

based on ft(wt; θt).
13: end for

D. Technical Proofs and Supplementary Results for Learning Algorithms with UQ Predictions
D.1. Algorithm and Main Results

The key algorithmic framework we use is based on (Hazan & Megiddo, 2007), as illustrated in Algorithm 5. Given that there
exists a master algorithm that can achieve Õ(

√
T ) static regret on the cost sequence {ft}t∈[T ] and the cost upper bounds

{Ut}t∈[T ] are Lipschitz in UQ predictions, we show that one can use Algorithm 5 to to achieve a sublinear policy regret
PREGT . We prove this fact in the following theorem.

Theorem 5. For each UQ prediction θt ∈ Θ ⊆ [0, 1]D, suppose cost function ft ∼ ξθt , and that there exists an algorithm
A that achieves Õ(

√
T ) static regret in expectation for f1, ..., fT . Moreover, assume that the covering dimension of the

{θt}t∈T is d ≤ D, i.e., the UQ vectors originate from a d-dimensional subspace of [0, 1]D. For any cost upper bound Ut of
Eξθt

ft, i.e. Ut(wt; θt) ≥ Eξθt
ft(wt; θt) for all wt ∈ Ω, such that Ut is L-Lipschitz in θt ∈ Θ, Algorithm 5 with A as its

master algorithm achieves the expected policy regret with respect to the optimal policy π∗ for U1, ..., UT∑
t∈[T ]

[Eft(πt(θt); θt)− Ut(π
∗(θt); θt)] = Õ(L1− 2

d+2T 1− 1
d+2 ),

where π∗ = argminπ
∑

t∈[T ] Ut(π(θt); θt). Here, the expectation is taken over ft ∼ ξθt and the randomness of the master
algorithm.

By definition, DRCR is a natural cost upper bound for cost functions. However, we remark that in many instances there will
likely be a tighter upper bound than the DRCR that is also Lipschitz in θ, and we showed that Algorithm 5 can automatically
compete against any such upper bound. Thus, we expect that in practice, Algorithm 5 can potentially do better than the
bounds stated in this section, and in particular it likely can exploit PIPs more optimally than optimization-based algorithms.
We confirm this in our numerical experiments.

D.2. Applications to Ski Rental and Online Search Problems

We consider how one can use a variant of Algorithm 5 with master algorithm being the randomized exponentiated
(sub)gradient (EG) algorithm (Shalev-Shwartz, 2012; McMahan, 2015) to derive policy regret guarantees on the DRCR
for the ski rental and online search problems when UQs are probabilistic interval predictions PIP(θ) = PIP(ℓ, u; δ).
This is done by observing that the DRCR upper bounds the expected competitive ratio, and, under mild conditions, DRCR
exhibits Lipschitzness with respect to θ. Then, using the ideas in Theorem 5, we show that it is sufficient to learn the
low-regret policy with respect to DRCR by just using the realized cost ratio function ft for each instance t. Also note that
the learning algorithm is unaware of θ’s status as UQ, instead treating the vectors θt as generic side information. However,
by leveraging the structure of the information space for PIP, we can improve the regret guarantees for ski-rental (see
Corollary 1) compared to the general guarantees in Theorem 5, and obtain provable Lipschitzness guarantees and, hence,
regret guarantees for online search (see Corollary 2).
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Algorithm 6 Online learning algorithm for multiple-instance ski rental
1: input: master algorithmA; space of probabilistic interval prediction Θ := [N̄ ]× [N̄ ]× [0, 1]; parameterized algorithms

RSR(y),y ∈ Y; parameter ϵ;
2: Initialize N = {N(i,j) = ∅}(i,j)∈[N̄ ]×[N̄ ];
3: for each t = 1, ..., T do
4: receive θt = (ℓt, ut; δt) ∈ [N̄ ]× [N̄ ]× [0, 1] and let θ̃t = argminθ∈N(ℓt,ut)

∥θt−θ∥ be the closest vector inN(ℓt,ut);
5: if ∥θt − θ̃t∥ > ϵ then
6: add θt to N(ℓt,ut);
7: start a new instance of algorithm Aθt corresponding to θt;
8: update θ̃t ← θt;
9: end if

10: choose yt as the output of Aθ̃t
;

11: run algorithm RSR(yt) to execute the instance It;
12: update Aθ̃t

.
13: end for

D.2.1. SKI RENTAL PROBLEM

Consider an online sequence of T instances of the ski rental problem, where we assume that N̄ ≥ 2 bounds the number of
skiing days and B > 0 is the buying cost. We will also assume that at the start of instance t, we receive a PIP(ℓt, ut; δt) ∈
[N̄ ]× [N̄ ]× [0, 1]. The Algorithm 6 we use is a slight modification of Algorithm 5, where we consider the fact that ℓt, ut

are discrete. Specifically, we separately consider the spaces (ℓ, u, ·) = [0, 1] indexed by all N̄2 combinations of (ℓ, u) (the
number of combinations can be further reduced in practice by noting u ≥ ℓ), and we separately cover each space with an
ϵ-net N(ℓ,u). Whenever we receive a UQ vector θt = (ℓt, ut; δt), we will run the online learning algorithm corresponding to
the closest point in N(ℓt,ut).

Let Ft := Ft(Yt; θt) =
ALG(Yt,It)
OPT(It)

: [N̄ ] → R+ denote the cost ratio function for ski rental that can be constructed after
observing the instance It, where Ft(Yt; θt) is the cost ratio of buying on day Yt ∈ [N̄ ]. Let ft := ft(yt; θt) denote
the expected cost ratio function over the randomized decision Yt, i.e., ft(yt; θt) = EYt∼yt

Ft(Yt; θt). We will also
denote the DRCR function we derived in Section 3 as Ut := Ut(yt; θt), which upper bounds Eξθft, i.e., Ut(yt; θt) ≥
Eξθft(yt; θt),∀yt ∈ Y , where Y is the simplex over support [N̄ ]. By using similar proof ideas to Theorem 5, we can show
that learning using the cost ratio ft, which we can construct in hindsight after each instance It, allows us to compete against
the DRCR Ut.

Corollary 1. For the multi-instance ski rental problem, there is a policy {πt}t∈[T ] that can compete against the optimal
policy π∗ that maps Θ to the simplex Y over [N̄ ] with respect to DRCR {Ut}t∈[T ], obtaining expected policy regret

∑
t∈[T ]

[Eft(πt(θt); θt)− Ut(π
∗(θt); θt)] = Õ(N̄(max{(N̄ +B)/B,B})T 2/3),

where π∗ = argminπ
∑

t∈[T ] Ut(π(θt); θt). The expectation is taken over the randomness of the instance distribution and

the algorithm. The Õ(·) hides factors of log N̄ .

D.2.2. ONLINE SEARCH PROBLEM

Consider an online sequence of T instances of the online search problem with prices bounded within [m,M ]. At the start of
instance It, we receive a PIP(ℓt, ut; δt) ∈ [m,M ]× [m,M ]× [0, 1]. We use a slight modification of Algorithm 6 to solve
this problem, but we further discretize the space of possible (ℓt, ut) ∈ [m,M ]2 before applying the algorithm.

Denote ft := ft(qt; θt) =
OPT(It)

ALG(qt,It)
: Q → R+ as the profit ratio function, where ft(q; θt) is the profit ratio for choosing

q ∈ Q = {q : q(v) ≥ 0, v ∈ [m,M ],
∫M

m
q(v)dv = 1}. The DRCR is again denoted as Ut := Ut(qt; θt), which upper

bounds Eξθt
ft(q; θt). We can design an online learning algorithm that can compete against the optimal DRCR.

Corollary 2. For the multi-instance online search problem, there is a policy {πt}t∈[T ] that can compete against the optimal
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policy π∗ mapping Θ to Q with respect to DRCR {Ut}t∈[T ], obtaining expected policy regret∑
t∈[T ]

[Eft(πt(θt); θt)− Ut(π
∗(θt); θt)] = Õ((M −m+ 1)((M/m)8/5 + 1)T 4/5),

where π∗ = argminπ
∑

t∈[T ] Ut(π(θt); θt). The expectation is taken over the instance distribution. The Õ(·) hides factors
of log(M/m), log(M −m), and log T .

D.3. Proof of Theorem 5

For each round t, let wt = πt(θt) be the decision of Algorithm 5 and ut = π∗(θt) be the offline optimal decision for Ut.
The policy πt(θt) = πt(θt|θ1, f1, ..., θt−1, ft−1) determined by Algorithm 5 depends on all past observed cost functions
f1, . . . , ft−1 and UQ predictions θ1, . . . , θt−1. We can reformulate the policy regret defined in (7) as follows:∑

t∈[T ]
[Eft(πt(θt); θt)− Ut(π

∗(θt); θt)] = E
∑

θ∈N

∑
t∈Tθ

[ft(wt; θt)− Ut(ut; θt)], (14)

where Tθ = {t ∈ [T ] : θ̃t = θ} denotes set of rounds with UQ corresponding to θ ∈ N . Let Tθ = |Tθ| be the number of
such rounds. We can further bound this quantity as follows:

E
∑
t∈Tθ

[ft(wt; θt)− Ut(ut; θt)] = E
∑
t∈Tθ

[ft(wt; θt)− ft(u1; θt)] +
∑
t∈Tθ

[Eft(u1; θt)− Ut(ut; θt)] (15a)

≤ Õ(
√

Tθ) +
∑
t∈Tθ

[Ut(u1; θt)− Ut(ut; θt)] (15b)

≤ Õ(
√
Tθ) +

∑
t∈Tθ

[Ut(u1; θt)− U1(u1; θ1) + U1(ut; θ1)− Ut(ut; θt)] (15c)

≤ Õ(
√

Tθ) + 2Tθ · ϵL, (15d)

where the first inequality follows since the master algorithm A guarantees the static regret and Ut(u1; θt) upper bounds the
expected cost Eft(u1; θt), the second inequality follows since u1 is the minimizer of U1(u; θ1), and the last one follows
from our Lipschitz assumption of the cost upper bounds.

Then, using the Cauchy-Schwarz inequality,∑
θ∈N

∑
t∈Tθ

[Eft(wt; θt)− Ut(ut; θt)] ≤
∑
θ∈N

Õ(
√

Tθ) + 2TθϵL ≤ Õ(
√
|N |T ) + 2TϵL. (16)

Since the covering dimension is d and the distance between any two UQ points in the net N constructed by Algorithm 5
is ϵ, one can deduce by volume arguments that the ϵ-net has size |N | = O(1/ϵd). Finally, choosing ϵ = (L2T )−1/(d+2)

minimizes this expression, giving the final result.

D.4. Proof of Corollary 1

We use Algorithm 6 with the master algorithm being the randomized exponentiated (sub)gradient (EG) algorithm (Shalev-
Shwartz, 2012; McMahan, 2015), which is an algorithm for learning from experts. EG runs on the simplex Y over [N̄ ] and
the function ft, in order to learn a randomized decision y ∈ Y , from which the decision Y is sampled from. Note that ft is

bounded above by max{(N̄ +B)/B,B}. Thus, by setting the step size to be
√

log N̄

max{(N̄+B)/B,B}
√
2T

and using Corollary
2.14 in (Shalev-Shwartz, 2012), EG achieves expected static regret guarantee∑

t∈[T ]
Eft(yt; θt)− Eft(y∗; θt) = O

(
max{(N̄ +B)/B,B}

√
T log N̄

)
, (17)

where y∗ = argminy∈Y
∑

t∈[T ] Eft(y; θt) is the optimal decision.

Next, we show that we can compete against the offline optimal sequence of decisions with respect to the DRCR Ut(yt; θt),
which upper bounds Eft(yt; θt). Consider the formulation of the DRCR in the problem (9): Ut(yt; θt) = (1− δ)ηt + δγt,
where ηt and γt are chosen to be as small as possible while satisfying the constraints given yt. Here, we consider
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Lipschitzness of Ut with respect to only δ, which is sufficient due to the specific manner in which the ϵ-net is constructed in
Algorithm 6 (i.e., the (ℓ, u) coordinates of the points in the net are selected from a discrete set). Since ηt and γt are bounded
by max{(N̄ +B)/B,B}, Ut is max{(N̄ +B)/B,B}-Lipschitz in δ. For brevity, we let L := max{(N̄ +B)/B,B}. We
also note that in Algorithm 6, any θt belonging to the same point of any N(i,j) is within ϵ distance of each other. Thus, we
can use the same steps of the proof of Theorem 5, which gives us∑

t∈Tθ

[Eft(yt; θt)− Ut(y
∗
t ; θt)] ≤ Õ(L

√
Tθ) + 2Tθ · ϵL,

where yt = πt(θt) is the online decision by Algorithm 6 and y∗
t = π∗(θt) is the optimal decision for Ut. Then, using

Cauchy-Schwarz inequality,∑
θ∈N

Õ(L
√
Tθ) + 2TθϵL ≤ Õ(L

√
|N |T ) + 2TϵL

= Õ(L

√∑
(ℓ,u)
|N(ℓ,u)|T ) + 2TϵL

≤ Õ(N̄L
√
T/ϵ) + 2TϵL,

where the last inequality follows because |N(ℓ,u)| = O(1/ϵ). Setting ϵ = T−1/3 < 1 yields the final result.

D.5. Proof of Corollary 2

Define two sets of discretized points Λ1 = {m(1 + λ1)
k}k=0,...,K , where K = ⌊ ln(M/m)

ln(1+λ1)
⌋, and Λ2 = {m,m+ λ2,m+

2λ2, . . . ,M}. Then we consider the discretization Λ = Λ1 ∪ Λ2. Note that Λ takes points from the discrete approximation
of problem (11) and the evenly spaced points in [m,M ]. In the algorithm, for each t ∈ [T ], we round (ℓt, ut) into points
(ℓ̃t, ũt) in Λ2 × Λ2, where ℓt is rounded down and ut is rounded up. Then, Algorithm 6 with EG as the master algorithm is
run on Λ and (ℓ̃t, ũt, δt). Here, EG runs over the simplex Q̂ supported on Λ and optimizes the profit ratio function ft(q̂; θt).

Since ft is bounded above by M/m, EG with step size

√
log(M−m

λ2
+K+1)

(M/m)
√
2T

yields the following static regret guarantee with

respect to any q̂∗ ∈ Q̂:

∑
t∈[T ]

[ft(q̂t; θt)− ft(q̂
∗; θt)] = O

(
(M/m)

√
T log(

M −m

λ2
+K + 1)

)

≤ O

(
(M/m)

√
T log(

M −m

λ2
+ ln(M/m)(1 +

1

λ1
) + 1)

)
,

where the last inequality follows because ln(1 + λ1) ≥ λ1/(1 + λ1) for λ1 > 0. Ultimately, we will optimize the DRCR
over points in Q̂ and a rounded (ℓ̃, ũ, δ). We claim that this still allows us to compete against the optimal point in Q. To
show this, we will need to (i) verify that the optimal DRCR with respect to Q̂ is not far from the optimal DRCR with respect
to original feasible set Q, and (ii) verify that the optimal DRCR with (ℓ̃, ũ) is not far from the DRCR with (ℓ, u), both being
with respect to Q.

For the first part, set Ut(q; θt) = (1− δt)ηt + δtγt as in the DRCR formulation in problem (11). Since ηt, γt are bounded by
M/m, Ut is M/m-Lipschitz in δ. We will also consider another DRCR upper bound U ′

t optimizing over Q̂ corresponding
to problem (12), which is a relaxation of problem (11). For q∗ = argminq∈Q Ut(q; θt) and q̂∗ = argminq̂∈Q̂ U ′

t(q̂; θt),
Lemma 2 yields U ′

t(q̂
∗; θt) ≤ Ut(q

∗; θt) +
M
m λ1. This holds even though we added {m + λ2,m + 2λ2, ...,M} to the

original discretization in problem (12) because adding more points to the discretization will only decrease the approximation
error of the discrete DRCR. Thus, competing against U ′

t allows us to compete against Ut.

For the second part, note that the error incurred by rounding (ℓ, u) to (ℓ̃, ũ) only affects η: in problem (11), constraints
corresponding to V ∈ [ℓ̃, ℓ) ∪ (u, ũ] will be added to constraint set (11b) and removed from constraint set (11c). Thus, η
will only increase, while γ is bounded below by η and can only increase by the amount that η increases since (11c) has no
added constraints. Focusing on constraints (11b), we consider how much η can increase by adding constraints corresponding
to V = ℓ̃ and V = ũ. For any fixed q, denote

G(c) =

∫ c

m

v · q(v)dv + (1−
∫ c

m

q(v)dv)m.
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For the former, by adding the constraint
ℓ̃ ≤ ηG(ℓ̃),

η will change by at most

|ℓ/G(ℓ)− ℓ̃/G(ℓ̃)| ≤ |ℓ/G(ℓ)− ℓ/G(ℓ̃)|+ λ2/G(ℓ̃)

≤ ℓ
G(ℓ)−G(ℓ̃)

G(ℓ)G(ℓ̃)
+ λ2/G(ℓ̃)

≤ ℓ
G(ℓ)−G(ℓ) +

∫ ℓ

ℓ̃
v · q(v)dv −m

∫ ℓ

ℓ̃
q(v)dv

m2
+ λ2/m

≤ ℓ(ℓ2 − ℓ̃2)/2m2 + λ2/m ≤ λ2(M
2/m2 + 1/m),

where the first inequality follows by triangle inequality and the third inequality follows by taking G(c) ≥ m and x(v) ≤ 1.
Similar steps for the latter yields the same bound:

|u/G(u)− ũ/G(ũ)| ≤ |u/G(u)− u/G(ũ)|+ λ2/G(ũ)

≤ u
G(ũ)−G(u)

G(u)G(ũ)
+ λ2/G(ũ)

≤ u
G(ũ)−G(ũ) +

∫ ũ

u
v · q(v)dv −m

∫ ũ

u
q(v)dv

m2
+ λ2/m

≤ u(ũ2 − u2)/2m2 + λ2/m ≤ λ2(M
2/m2 + 1/m),

Denote θ̃t = (ℓ̃t, ũt, δt), and let q̃∗, q∗ be the optimal decisions for Ut(·; θ̃t), Ut(·; θt), respectively. Thus, Ut(q̃
∗; θ̃t) ≤

Ut(q
∗; θt) + (M

2

m2 + 1
m )λ2. Finally, note that the number of points in the ϵ-net constructed by Algorithm 6 is |N | =∑

(ℓ,u) |N(ℓ,u)| = O((M−m
λ2

+ 1)2/ϵ), and that U ′
t is M/m-Lipschitz in δ. Putting everything together and again following

the steps of the proof for Theorem 5,

E
∑
t∈[T ]

ft(q̂t; θt) ≤ Õ((
M −m

λ2
+ 1)(M/m)

√
T/ϵ) + 2Tϵ(M/m) +

∑
t∈[T ]

U ′
t(q̂

∗
t ; θ̃t)

≤ Õ((
M −m

λ2
+ 1)(M/m)

√
T/ϵ) + 2Tϵ(M/m) + Tλ1(M/m) +

∑
t∈[T ]

Ut(q̃
∗
t ; θ̃t)

≤ Õ((
M −m

λ2
+ 1)(M/m)

√
T/ϵ+ (M2/m2 +M/m)(ϵ+ λ1 + λ2)T ) +

∑
t∈[T ]

Ut(q
∗
t ; θt).

Here Õ hides factors of ln(M/m). Setting ϵ = min{(M/m)−2/5, 1}T−1/5 < 1, λ1 = min{(M/m)−2/5, 1}·min{M/m−
1, 1}T−1/5 < M/m− 1, and λ2 = min{(M/m)−2/5, 1}(M −m)T−1/5 < M −m yields the result.

D.6. Experiments

Setup. We set buying cost to B = 2. We generate T = 3000 instances, each with true skiing days nt sampled uniformly
at random from {1, . . . , 8}. Synthetic PIP predictions are generated by sampling a point pt from a normal distribution
N (nt, σ

2
t ) and then taking the 90% confidence interval (ℓt, ut) = (pt − z0.95σt, pt + z0.95σt). Here, σt is set to simulate

oscillating good and bad predictors: the first 10 instances have σt = 0, followed by the next 10 with σt = 6, and repeating.

Comparison algorithms. We run the following online algorithms over the same sequence of UQs and instances 10 times
and evaluate the average excess CR (i.e., the empirical ratio minus 1) of these algorithms over these runs. WOA: worst-case
optimal randomized algorithm (Karlin et al., 1990) that is e/e−1-competitive. FTP: follow-the-prediction algorithm that
fully trusts the prediction; it buys immediately on day 1 if the prediction is less than B, and otherwise rents forever.
OL-Dynamic: online learning with respect to policy regret (Algorithm 5 adapted to ski rental, i.e., Algorithm 6), i.e.,
competing against π∗ = argminπ

∑
t∈[T ] Ut(π(θt); θt). OL-Static: online learning with respect to static regret, i.e.,

competing against the optimal fixed decision without considering UQ predictions. RSR-PIP: randomized algorithm with
PIP (Algorithm 3) that achieves the optimal DRCR.
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