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Abstract

Recently, incorporating structure information
(e.g. dependency syntactic tree) can enhance
the performance of aspect-based sentiment
analysis (ABSA). However, this structure infor-
mation is obtained from off-the-shelf parsers,
which is often sub-optimal and cumbersome.
Thus, automatically learning adaptive struc-
tures is conducive to solving this problem. In
this work, we concentrate on structure induc-
tion from pre-trained language models (PLMs)
and throw the structure induction into a spec-
trum perspective to explore the impact of scale
information in language representation on struc-
ture induction ability. Concretely, the main
architecture of our model is composed of com-
monly used PLMs (e.g., RoBERTa, etc.), and
a simple yet effective graph structure learning
(GSL) module (graph learner + GNNs). Subse-
quently, we plug in Frequency Filters with dif-
ferent bands after the PLMs to produce filtered
language representations and feed them into
the GSL module to induce latent structures. We
conduct extensive experiments on three public
benchmarks for ABSA. The results and further
analyses demonstrate that introducing this spec-
tral approach can shorten Aspects-sentiment
Distance (AsD) and be beneficial to structure
induction. Even based on such a simple frame-
work, the effects on three datasets can reach
SOTA (state-of-the-art) or near SOTA perfor-
mance. Additionally, our exploration also has
the potential to be generalized to other tasks or
to bring inspiration to other similar domains. 1

1 Introduction

Aspect-based sentiment analysis (ABSA) is de-
signed to do fine-grained sentiment analysis for
different aspects of a given sentence (Vo and Zhang,
2015; Dong et al., 2014). Specifically, one or more
aspects are present in a sentence, and aspects may
express different sentiment polarities. The purpose
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of the task is to detect the sentiment polarities (i.e.,
POSITIVE, NEGATIVE, NEUTRAL) of all given as-
pects. Given the sentence "The decor is not a spe-
cial at all but their amazing food makes up for it"
and corresponding aspects "decor" and "food", the
sentiment polarity towards "decor" is NEGATIVE,
whereas the sentiment for "food" is POSITIVE.

Early works (Vo and Zhang, 2015; Kiritchenko
et al., 2014; Schouten and Frasincar, 2016) to deal
with ABSA mainly relied on manually designing
syntactic features, which is cumbersome and in-
effective as well. Subsequently, various neural
network-based models (Kiritchenko et al., 2014;
Vo and Zhang, 2015; Chen et al., 2017; Zhang et al.,
2019b; Wang et al., 2020; Trusca et al., 2020) have
been proposed to deal with ABSA tasks, to get
rid of hand-crafted feature design. In these stud-
ies, syntactic structures proved effective, helping
to connect aspects to the corresponding opinion
words, thereby enhancing the effectiveness of the
ABSA task (Zhang et al., 2019b; Tian et al., 2021;
Veyseh et al., 2020; Huang and Carley, 2019; Sun
et al., 2019; Wang et al., 2020). Additionally, some
research (Chen et al., 2020a; Dai et al., 2021; Zhou
et al., 2021; Chen et al., 2022; Brauwers and Frasin-
car, 2023) suggests there should exist task-specific
induced latent structures because dependency syn-
tactic structures (following that, we refer to them
as external structures for convenience) generated
by off-the-shelf dependency parsers are static and
sub-optimal in ABSA. The syntactic structure is
not specially designed to capture the interactions
between aspects and opinion words.

Consequently, we classify these structure-based
ABSA models into three categories by summariz-
ing prior research: (1.) external structure, (2.)
semi-induced structure, and (3.) full-induced struc-
ture. Works based on external structures use depen-
dency syntactic structures generated by dependency
parsers or modified dependency syntactic structures
to provide structural support for ABSA (Zhang
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et al., 2019b; Sun et al., 2019; Wang et al., 2020).
Studies based on semi-induced structures leverage
both external and induced structures, merging them
to offer structural support for ABSA (Chen et al.,
2020a). The first two categories require the in-
troduction of external structures, which increases
the complexity of preprocessing, while the third
category directly eliminates this burdensomeness.

Our research is based on full-induced structures.
Works in this field intend to totally eliminate the
reliance on external structures to aid ABSA by em-
ploying pre-trained language models (PLMs) to
induce task-specific latent structures (Dai et al.,
2021; Zhou et al., 2021; Chen et al., 2022). These
efforts, however, aim to create a tree-based struc-
ture, then convert it into a graph structure and feed
it to Graph Neural Networks (GNNs) to capture
structural information. Our research follows this
line of thought, but directly from the perspective
of the graph, utilizing PLMs to induce a graph
structure for GNNs. In addition, studies (Tamkin
et al., 2020) have shown that contextual represen-
tation contains information about context tokens
as well as a wide range of linguistic phenomena,
including constituent labels, relationships between
entities, dependencies, coreference, etc. That is,
there are various scales of information (spanning
from the (sub)word itself to its containing phrase,
clause, sentence, paragraph, etc.) in the contextual
representation. This contextual representational
characteristic has rarely been explored in previous
studies. Therefore, our research investigates the
influence of manipulations at informational scales
of contextual representation on structure induction
with spectral perspective.

Specifically, we employ graph structure learn-
ing (GSL) based on metric learning (Zhu et al.,
2021) to induce latent structures from PLMs. We
investigate three commonly used metric functions
(Attention-based (Attn.), Kernel-based (Knl.), and
Cosine-based (Cosine)) and contrast their effects
on the structure of induced graphs. Furthermore,
we heuristically explore four types of Frequency
Filters with corresponding band allocations (HIGH,
MID-HIGH, MID-LOW, LOW) acting on contex-
tual representations, and in this way, we can seg-
regate the representations of different scales at the
level of individual neurons. Additionally, we in-
troduce an automatic frequency selector (AFS) to
circumvent the cumbersome heuristic approaches.
This allows us to investigate the impact of manipu-

lations at scale information for structure induction
in contextual representations.

We employ three commonly PLMs: BERTbase,
RoBERTabase, RoBERTalarge. Our research is
based on extensive experiments and yields some in-
triguing findings, which we summarize as follows:

Structure Induction. By comparing three GSL
methods (Attention-based (Attn.), Kernel-based
(Knl.), and Cosine-based (Cosine)), we find that
the Attention-based method is the best for structure
induction on ABSA.

Frequency Filter (FLT). Heuristic operations of
information scales in the contextual representation
by Frequency Filters are able to influence struc-
ture induction. Based on Attention-based GSL,
the structure induction of FLT can obtain lower
Aspects-sentiment Distance (AsD) and better per-
formance.

Automatic Frequency Selector (AFS). Get rid
of the tediousness of the heuristic method, AFS
can consistently achieve better results than the
Attention-based GSL method. This further demon-
strates the effectiveness of manipulating scale in-
formation.

2 Related Work

2.1 Tree Induction for ABSA

In ABSA, there are a lot of works that aim to inte-
grate dependency syntactic information into neural
networks (Zhang et al., 2019b; Sun et al., 2019;
Wang et al., 2020) to enhance the performance of
ABSA. Despite the improvement of dependency
tree integration, this is still not ideal since off-the-
shelf dependency parsers are static, have parsing
errors, and are suboptimal for a particular task.
Hence, some effort is being directed toward dy-
namically learning task-specific tree structures for
ABSA. For example, (Chen et al., 2020a) combines
syntactic dependency trees and automatically in-
duced latent graph structure by a gate mechanism.
(Chen et al., 2022) propose to induce an aspect-
specific latent tree structure by utilizing policy-
based reinforcement learning. (Zhou et al., 2021)
learn an aspect-specific tree structure from the per-
spective of closing the distance between aspect and
opinion. (Dai et al., 2021) propose to induce tree
structure from fine-tuned PLMs for ABSA. How-
ever, most of them fall to take the context represen-
tational characteristic into account.



2.2 Spectral Approach in NLP

In NLP, one line of spectral methods is used in the
study of improving efficiency (Han et al., 2022;
Zhang et al., 2018). For example, (Han et al.,
2022) propose a new type of recurrent neural net-
work with the help of the discrete Fourier trans-
former and gain faster training. In addition, a few
works investigate contextual representation learn-
ing from the standpoint of spectral methods. (Kayal
and Tsatsaronis, 2019) propose a method to con-
struct sentence embeddings by exploiting a spectral
decomposition method rooted in fluid dynamics.
(Müller-Eberstein et al., 2022; Tamkin et al., 2020)
propose using Frequency Filters to constrain differ-
ent neurons to model structures at different scales.
These bring new inspiration to the research of lan-
guage representation.

2.3 Metric Learning based GSL

The metric learning approach is one of represen-
tative graph structure learning (GSL), where edge
weights are derived from learning a metric func-
tion between pairwise representations (Zhu et al.,
2021). According to metric functions, the metric
learning approach can be categorized into two sub-
groups: Kernel-based and Attention-based. Kernel-
based approaches utilize traditional kernel func-
tions as the metric function to model edge weights
(Li et al., 2018; Yu et al., 2020; Zhao et al., 2021b).
Attention-based approaches usually utilize atten-
tion networks or more complicated neural networks
to capture the interaction between pairwise rep-
resentations (Velickovic et al., 2018; Jiang et al.,
2019; Chen et al., 2020b; Zhao et al., 2021a). The
Cosine-based method (Chen et al., 2020b) is gener-
ally a kind of Attention-based method. In our exper-
iments, we take it out as a representative method.

3 Method

To obtain induced graph structure, we propose a
spectral filter (FLT) approach to select scale infor-
mation when adaptively learning graph structure.
In this section, we introduce a simple but effective
approach (FLT) to induce graph structures from
PLMs to enhance the performance of ABSA. The
overall architecture is displayed in Figure 1.

3.1 Overview

As shown in Figure 1, the overall architecture is
composed of PLMs, Graph Learner, GNNs archi-
tecture, and Prediction Head under normal cir-

PLM

FLT(or AFS)

Sentence:

Contextual Representations (H)

Graph Learner

Adjacency 
Matrix (A)

GNNs

Prediction Head

Great     food    but    the    service    is    dreadful    !

Pooler Output (hcls)

Positive Neutral Negative
Aspect 

(ha)

C
oncatenate

Figure 1: The overall architecture of our method.

cumstances. For a given input sentence S =
{w1, w2, · · · , wn}, we employ a type of PLMs to
serve as the contextual encoder to obtain the hid-
den contextual representation H ∈ Rn×d of the
input sentence S, where d is the dimension of word
representations, and n is the length of the given sen-
tence. The contextual representation H is waited
for inputting into GNNs architecture as node repre-
sentations. Simultaneously, it is going to feed into
Graph Learner to induce latent graph structures,
which serve as adjacency matrices A for GNNs ar-
chitecture. Then the GNNs architecture can extract
aspect-specific features ha utilizing both structural
information from A and pre-trained knowledge in-
formation from H. Finally, we concatenate the rep-
resentation of [CLS] token hcls from PLMs as well
as ha, and send them into a Multi-layer Perception
(MLP) (served as the Prediction Head) to detect
the sentiment polarities (i.e., POSITIVE, NEGATIVE,
NEUTRAL) for the given aspects.

Here, we investigate the effectiveness of three
common graph structure learning (GSL) methods
based on metric learning: Attention-based (Attn.),
Kernel-based (Knl.), and Cosine-based (Cosine)
(refer to (Zhu et al., 2021) for specific descriptions
of Kernel-based and Cosine-based methods). We
introduce the Attention-based GSL method to adap-
tively induce graph structures. Firstly, we calculate
the unnormalized pair-wise edge score eij for the
i-th and j-th words utilizing the given represen-
tations hi ∈ Rd and hj ∈ Rd. Specifically, the
pair-wise edge score eij is calculated as follows:

eij = (Wihi)(Wjhj)
⊤, (1)



where Wi,Wj ∈ Rd×dh are learnable weights for
i-th and j-th word representations, where dh is the
hidden dimension.

Then, relying on these pair-wise scores eij for
all word pairs, we construct the adjacency matrices
A for induced graph structures. Concretely,

Aij =

{
1 if i = j

exp(eij)∑n
k=1 exp(eik)

otherwise
, (2)

where the adaptive adjacency matrix is A ∈ Rn×n,
and Aij is the weight score of the edge between the
i-th and j-th words.

For simplicity, we employ Vallina Graph Neural
Networks (GCNs) (Kipf and Welling, 2017) served
as GNNs architecture (other variants of graph neu-
ral networks can also be employed here). Given the
word representations H and the adaptive adjacency
matrix A, we can construct an induced graph struc-
ture consisting of words (each word acts as a node
in the graph) and feed it into GCNs. Specifically,

hl
i = σ(

n∑
j=1

AijWlhl−1
j + bl), (3)

where σ is an activation function (e.g. ReLU), Wl

and bl are the learnable weight and bias term of
the l-th GCN layer. By stacking several layers of
Graph Learner and GNNs architectures, we can
obtain structure information enhanced word repre-
sentations Hg for the downstream task. It should
be noted that the induced graph structure is dynam-
ically updated while training.

After we get aspect representations ha from Hg,
we feed them along with the pooler output hcls of
PLMs (the output representation of [CLS] token)
into a task-specific Prediction Head to acquire re-
sults for the downstream task.

3.2 Frequency Filter (FLT)

Furthermore, inspired by (Tamkin et al., 2020), we
introduce a spectral analysis approach to enhance
the structure induction ability of the Graph Learner.
Intuitively, we tend to import a Frequency Filter
on contextual word representations to manipulate
on scale information, and then feed them into the
Graph Learner module to improve the structure in-
duction capability. Contextual representations have
been investigated to not only convey the meaning
of words in context (Peters et al., 2018), but also
carry a large range of linguistic information such

Table 1: Statistics of datasets.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test
Rest14 2164 728 807 196 637 196

Laptop14 994 341 870 128 464 169
Twitter 1561 173 3127 346 1560 173

as semantic roles, coreference, and constituent la-
bels, etc. (Tenney et al., 2019). Prism (Tamkin
et al., 2020) demonstrates these word representa-
tions contain multi-scale information ranging from
(sub)word to phrase, clause, sentence, and so forth.
Hence in this work, we explore the impact of struc-
ture induction ability by operating on scale-specific
information of contextual representations.

To achieve this goal, we introduce a Frequency
Filter (FLT) based on Discrete Fourier Transform
(DFT) to conduct disentangling operations in the
frequency domain. To be specific, given word rep-
resentations H ∈ Rn×d, we feed them into the FLT
before the Graph Learner. For the specific i-th and
j-th word representations hi ∈ Rd and hj ∈ Rd,
the pair-wise edge score eij is calculated as fol-
lows:

Φflt(x) = F−1
(
Ψ
(
F(x)

))
, (4)

eij = Φflt(Wihi)Φ
flt(Wjhj)

⊤, (5)

where F(·) and F−1(·) denote the Fast Fourier
Transform (FFT) and its inverse, Ψ indicates the
filtering operation, and Φflt denotes the Frequency
Filter (FLT). We carry out filtering at the sentence
level. Subsequent operations are consistent with
Section 3.1. We conduct experiments and analyses
on four band allocations (HIGH, MID-HIGH, MID-
LOW, LOW)). The specific band allocations are
displayed in Table 5, and the analysis experiments
refer to Section 4.7 and 4.10.

4 Experiment

To prove the effectiveness of our approach, we
demonstrate experimental results conducted on
three datasets for ABSA and compare them with
previous works. We show the details as follows.

4.1 Dataset

We conduct experiments on SemEval 2014 task
(Rest14 and Laptop14) (Pontiki et al., 2014) and
Twitter (Dong et al., 2014) datasets, which are
widely used. Each of the three datasets contains



Table 2: Overall performance of ABSA on the three datasets. According to the categorization of structure (Dep.:
external structures (dependency syntactic tree), Semi.: semi-induced structures, Full: full-induced structures, and
None: no structure information used), we classify the baselines accordingly, which are in the ’Structure’ column.

Embedding Model Structure Rest14 Laptop14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Static Embedding

depGCN Dep. 80.77♯ 72.02♯ 75.55♯ 71.05♯

CDT Dep. 82.30♯ 74.02♯ 77.19♯ 72.99♯

kumaGCN Semi. 81.43 73.64 76.12 72.42 72.45 70.77
RGAT Dep. 83.30 76.08 77.42 73.76 75.57 73.82

FT-RoBERTa(ASGCN) Full 82.31 73.53 76.33 72.76 73.84 72.66
FT-RoBERTa(PWCN) Full 82.40 73.95 76.95 73.21 73.84 71.43
FT-RoBERTa(RGAT) Full 82.76 75.25 77.43 74.21 75.43 74.04

BERTbase

BERT None 85.62♯ 78.28♯ 77.58♯ 72.38♯ 75.28 74.11
SAGAT Dep. 85.08 77.94 80.37 76.94 75.40 74.17
DGEDT Dep. 86.30 80.00 79.80 75.60 77.90 75.40

depGCN-BERT Dep. 85.00 78.79 81.19 77.67 75.58 74.58
RGAT-BERT Dep. 86.60 81.35 78.21 74.07 76.15 74.88

KumaGCN-BERT Semi. 86.43 80.30 81.98 78.81 77.89 77.03
dotGCN-BERT Full 86.16 80.49 81.03 78.10 78.11 77.00

RoBERTabase

Roberta + MLP None 87.32 81.01 82.60 79.33 77.17 76.20
RoBERTa-ASC(Dep) Dep. 82.82 75.12 74.12 70.52 - -

LCFS-ASC-CDW(Dep) Dep. 86.71 80.31 80.52 77.13 - -
Dep(ASGCN) Dep. 86.90 80.75 81.66 78.31 75.28 74.38
Dep(PWCN) Dep. 87.41 81.07 84.16 81.18 76.63 75.60
Dep(RGAT) Dep. 87.43 80.61 83.43 80.28 74.42 72.93

FT-RoBERTa(ASGCN) Full 86.87 80.59 83.33 80.32 76.10 75.07
FT-RoBERTa(PWCN) Full 87.35 80.85 84.01 81.08 77.02 75.52
FT-RoBERTa(RGAT) Full 87.52 81.29 83.33 79.95 75.81 74.91

FLT Full 88.57 83.27 85.42 83.01 77.02 75.83
RoBERTalarge FLT Full 90.27 85.20 86.05 84.68 77.89 77.20

three sentiment label categories: POSITIVE, NEU-
TRAL, and NEGATIVE. Statistics of these datasets
are displayed in Table 1, where (Train|Test) denotes
the number of instances on the training, and testing
set for each dataset.

4.2 Experiment Settings

We utilize the popular Pre-trained Language Mod-
els (PLMs) based on Transformer Encoder architec-
ture (BERTbase (Devlin et al., 2019), RoBERTabase
and RoBERTalarge (Liu et al., 2019)) for word rep-
resentations. Moreover, the hidden dimensions of
all Graph Learners are 60. The dropout rate is 0.2,
the batch size is 32. The number of the epoch is
60 for RoBERTabase and RoBERTalarge, and 30
for BERTbase. We use Adam optimizer (Kingma
and Ba, 2015) while training with the learning rate
initialized by 1e-5. Following previous works, we
use Accuracy and Macro-F1 scores for metrics. All
experiments are conducted on NVIDIA Tesla P100.

4.3 Baselines

We categorize the existing structure-based ASBA
models into three genres: external structure, semi-
induced structure, and full-induced structure. Be-
low, we introduce each of them in detail.

External Structure. This line of works utilizes
dependency syntactic structure generated by exter-
nal dependency parsers (e.g. Spacy and Standford
CoreNLP 2, etc.) to offer structural information
supplements for ABSA. Its delegate works as fol-
lows:

depGCN (Zhang et al., 2019a) combines BiL-
STM to capture contextual information regarding
word orders with multi-layered GCNs.

CDT (Sun et al., 2019) encodes both dependency
and contextual information by utilizing GCNs and
BiLSTM.

RGAT (Wang et al., 2020) feeds reshaped syn-
tactic dependency graph into RGAT to capture
aspect-centric information.

SAGAT (Huang et al., 2020) uses graph atten-
tion network and BERT to explore both syntax and
semantic information for ABSA.

DGEDT (Tang et al., 2020) jointly consider
BERT outputs and dependency syntactic represen-
tations by utilizing GCNs.

LCFS-ASC-CDW (Phan and Ogunbona, 2020)
combine dependency syntactic embeddings, part-
of-speech embeddings, and contextualized embed-
dings to enhance the performance of ABSA.

2https://stanfordnlp.github.io/CoreNLP/



Table 3: Results of ablation studies.

Embedding Model Structure Rest14 Laptop14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

BERTbase
Attn. Full 85.43 78.04 80.54 77.06 76.22 75.04
FLT Full 87.04 81.46 81.17 77.97 77.55 76.66

RoBERTabase
Attn. Full 87.59 81.72 83.86 80.53 75.72 73.92
FLT Full 88.57 83.27 85.42 83.01 77.02 75.83

RoBERTalarge
Attn. Full 89.46 84.12 84.80 82.19 77.02 75.75
FLT Full 90.27 85.20 86.05 84.68 77.89 77.20

Semi-induced Structure. Works in this line tend
to exploit both dependency syntactic structure from
off-the-shelf parsers and induced structure from
PLMs, the representative works are as follows:

KumaGCN (Chen et al., 2020a) combine latent
graphs induced by self-attention neural networks
and dependency syntactic structure for ABSA.

Full-induced Structure. Works in this line in-
tend to get totally rid of external parsers and induce
task-specific latent structures from PLMs for down-
stream tasks. Its delegate works as follows:

FT-RoBERTa (Dai et al., 2021) induce tree
structures from the fine-tuned RoBERTa (fine-tune
RoBERTa on the ABSA datasets in advance) by
utilizing a dependency probing approach.

dotGCN (Chen et al., 2022) induce aspect-
specific opinion tree structures by using Reinforce-
ment learning and attention-based regularization.

4.4 Overall Performance

The overall results of competitive approaches and
FLT on the three benchmarks are shown in Table
2. We categorize baselines according to the embed-
ding type (static embedding (GloVe), BERTbase,
RoBERTabase, and RoBERTalarge) and the struc-
ture they used (None, Dep., Semi., and Full). The
parameters of PLMs are trained together with the
GSL module for FLT. Compared with baselines,
FLT obtains the best results except on Twitter,
which obtains comparable results. We speculate
that the reason is that the expression of Twitter is
more casual, which leads to a limited improvement
of the structure on Twitter, which is consistent with
the result in (Dai et al., 2021). Compared with
FT-RoBERTa-series works, the most relevant work
of ours, FLT outperforms them a lot on the three
datasets. And it is worth noting that FT-RoBERTa-
series works need fine-tuning PLMs on the ABSA
datasets in advance (Dai et al., 2021), but FLT does
not need it. Therefore, FLT is simpler and more
effective than FT-RoBERTa-series works.

Table 4: The impact of different metric functions based
on RoBERTabase.

Metric Rest14 Laptop14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Attn. 87.59 81.72 83.86 80.53 75.72 73.92
Knl. 87.14 80.45 83.54 80.44 76.01 73.98

Cosine 87.14 79.94 83.39 79.93 74.28 72.80

4.5 Ablation Study

We conduct ablation studies to highlight the effec-
tiveness of FLT, which is based on Attention-based
(Attn.) GSL module and utilizing Frequency Filter.
Thus, we compare Attn. and FLT on three PLMs
(BERTbase, RoBERTabase, and RoBERTalarge) to
show the impact of introducing Frequency Filter.
Results are shown in Table 3. Compared to Attn.,
FLT has achieved significant improvements in con-
sistency across three datasets utilizing different
PLMs. Therefore, it can be seen that the manipula-
tion of scale information is beneficial for enhancing
performance.

4.6 Different Metric Function

In this section, we contrast the impact of three
representative metric functions: Attention-based
(Attn.), Kernel-based (Knl.), and Cosine-based (Co-
sine) on structure induction. From the insight of
graph structure learning (Chen et al., 2020b; Zhu
et al., 2021), the common options for metric learn-
ing include attention mechanism (Vaswani et al.,
2017; Jiang et al., 2019), radial basis function ker-
nel (Li et al., 2018; Yeung and Chang, 2007), and
cosine similarity (Wojke and Bewley, 2018). We
follow these previous works to implement the coun-
terpart metric functions (Knl. and Cosine) for com-
parison, the results are shown in Table 4. The
performance of attention-based (Attn.) on the three
benchmarks gains the best results except on Twitter.
But the margin between Attn. and Knl. is not big
(0.29% for Accuracy and 0.06% for Macro-F1) on
Twitter, thus we select the metric function Attn. for
later analysis.



Table 5: The spectral bands we consider in this work.
Since the task considered in this work is at the sentence
level, we only take the scale from word to sentence into
account. Here, L denotes the sentence’s length.

Band Scale Period(Toks) DFT index
HIGH Word 1 → 2 L/2 → L

MID-HIGH Phrase 2 → 6 L/6 → L/2
MID-LOW Clause 6 → 14 L/14 → L/6

LOW Sentence 14 → L 1 → L/14

4.7 Different Frequency Filters

Table 6: Band impact based on RoBERTabase. There are
statistical results for heuristic frequency selection, and the
results follow the form mean(standard deviation).

Filter Rest14 Laptop14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

HIGH 87.54(0.55) 81.33(0.97) 84.21(0.43) 81.50(0.57) 75.83(0.34) 74.76(0.42)
MID-HIGH 87.55(0.53) 81.31(1.06) 84.39(0.78) 81.69(0.95) 75.71(0.78) 74.68(0.72)
MID-LOW 87.23(0.27) 81.15(0.71) 83.74(0.52) 81.00(0.85) 76.73(0.23) 75.64(0.12)

LOW 87.37(0.32) 80.75(0.45) 83.49(0.15) 80.60(0.15) 76.16(0.20) 74.94(0.19)
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Figure 2: The distribution of sentence length on datasets
(we combine training and testing sets for this statistic).

This section analyzes the impact of four differ-
ent spectral bands (HIGH, MID-HIGH, MID-LOW,
LOW) on structure induction. Each band reflects a
diverse range of linguistic scales from word level
to sentence level, the detailed setting is shown in
Table 5. The different spectral bands are revealed
by their period: the number of tokens it takes to
complete a cycle. For example, the word scale sug-
gests the period of 1 → 2 tokens, thus the spectral
band should be L/2 → L if the sentence’s length
denotes L.

Then, we conduct analysis experiments on the
three datasets to explore the impact of different
spectral bands. The length L in our experiments is
100, which fits the length distribution of all samples
in these datasets. We perform multiple frequency
selections in different frequency bands heuristi-
cally, and the performance of our model in different
frequency bands on the three datasets is summa-
rized in Table 6. Please refer to Appendix A for

the detailed frequency selection and results. Our
model performs better in HIGH and MID-HIGH
bands on Rest14 and Laptop14 but performs better
in LOW and MID-LOW bands on Twitter. Com-
bined with Figure 2, we find that the distribution of
sentence length in Twitter is very distinct from that
of Rest14 and Laptop14, the sentences in Twitter
are generally longer, which leads to the fact that
the clause- and sentence-scale information is more
beneficial to the effect improvement.

4.8 Aspects-sentiment Distance

To illustrate the effectiveness of induced struc-
ture, following (Dai et al., 2021), we introduce
the Aspects-sentiment Distance (AsD) to quantify
the average distance between aspects and sentiment
words in the induced structure. The AsD is calcu-
lated as follows:

C⋆ = Si ∩ C, (6)

AsD(Si) =

ap∑
A

cq∑
C⋆

dist(ap, cq)

|A||C⋆|
, (7)

AsD(D) =

∑
D

AsD(Si)

|D|
, (8)

where C = ⟨c1, · · · cq⟩ is a sentiment words set
(following the setting from (Dai et al., 2021)), Si

denotes each sentence in dataset D, and A =
⟨a1, · · · , ap⟩ denotes the set of aspects for each
sentence. We utilize dist(n1, n2) to calculate the
relative distance between two nodes (n1 and n2) on
the graph structure, and | · | represent the number
of elements in the given set. For a detailed setting,
please refer to Appendix B.

The results are displayed in Table 7, and the
less magnitude indicates the shorter distance be-
tween aspects and sentiment words. Compared to
dependency structure (Dep.), attention-based GSL
(Attn), and our method (FLT) shorten the Aspects-
sentiment Distance greatly, which shows that GSL
method encourages the aspects to find sentiment
words. Furthermore, in comparison with Attn.,
FLT has a lower AsD score, which proves a reason-
able adjustment on the scale level can obtain better
structures.

4.9 Structure Visualization and Case Study

Structure Visualization. As shown in Figure 3,
we visualize the difference of distinct structures: (a)
is from the Spacy parser, (b) is from Attn., and (c)



Structure Rest14 Laptop14 Twitter
Dep. 8.19 8.02 8.33
Attn. 2.26 2.55 2.64
FLT 1.97 2.15 2.16

Table 7: The Aspects-sentiment Distance (AsD) of dif-
ferent trees in all datasets. The dependency tree struc-
ture (Dep.) comes from the Spacy parser 3.

(a) The parser-provided tree.

The was rather over cooked and dried but the chicken was Fine .

(b) The attention-based GSL induced tree from RoBERTa(base).

(c) The attention-based GSL induced tree from RoBERTa(base) with bond filter (MID-HIGH).

falafal

The was rather over cooked and dried but the chicken was Fine .falafal

The was rather over cooked and dried but the chicken was Fine .falafal

Figure 3: A case is from the Rest14 dataset. The col-
ored words are aspects. The golden label for falafal is
NEGATIVE, and for chicken is POSITIVE.

is the result from FLT. This case is from the Rest14
dataset. In comparison with (a), aspects are more
directly connected to important sentiment words
(e.g. cooked, dried, and fine) in (b) and (c), which
is consistent with the results of AsD in Section
4.8. In this case, both (b) and (c) obtained correct
judgment results, hence from the perspective of
structure, they are relatively similar.

Case Study. In Figure 4, we provide a case to
compare Attn. in (a) and FLT in (b). In this case,
the structures induced by the two are quite differ-
ent, and for the aspect (Chinese food), Attn. gives
a wrong judgment. From the comparison of struc-
tures, it can be found that although the aspect word
Chinese in (a) pays attention to the key information
I can make better at home, they may not under-
stand the semantics expressed by this clause. From
the perspective of structure, FLT in (b) is obviously
better able to understand the meaning of this clause.

4.10 Automatic Frequency Selector (AFS).
Furthermore, in order to illustrate the impact of the
operation of the scale information on the GSL, we
introduce an Automatic Frequency Selector (AFS)
to select helpful frequency components along with

Frankly , the chinese food here is something I can make better at home .

Frankly , the chinese food here is something I can make better at home .

(a) The attention-based GSL induced tree from RoBERTa(base).

(b) The attention-based GSL induced tree from RoBERTa(base) with bond filter (MID-HIGH).

Ground Truth: Negative  ||  Prediction: Negative 

Ground Truth: Negative  ||  Prediction: Positive 

Figure 4: A case of Rest14 dataset. The colored words
denote aspects. The golden label for Chinese food is
NEGATIVE.

Table 8: The results of AFS based on RoBERTabase.

Model Rest14 Laptop14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Attn. 87.59 81.72 83.86 80.53 75.72 73.92
AFS 88.30 82.89 84.48 81.63 76.16 75.20

the optimization of the overall model. In this way,
for different datasets, the information of the corre-
sponding scale (HIGH, MID-HIGH, etc.) can be
adaptively selected to improve the effect of struc-
ture induction. Here we briefly describe the AFS,
and for a detailed description, please refer to Ap-
pendix C.

Model Description. Following the operation of
FLT, for an input sentence representation H ∈
Rn×d, we conduct Discrete Fourier Transform
(DFT) F to transform H into the frequency domain.
Then, we utilize AFS Φauto to adaptively select fre-
quency components, where AFS Φauto is realized
by using a Multi-layer Perceptron (MLP) architec-
ture, please refer to the Appendix C for details.
After AFS and inverse Discrete Fourier Transform
F−1, we can obtain the sentence representation
Hafs ∈ Rn×d. The subsequent operations are con-
sistent with the attention-based GSL.

Results. We utilize AFS instead of FLT to con-
duct experiments on the three datasets, the results
are shown in Table 8. Compared to Attn., AFS is
consistently improved. This further illustrates the
operation of scale information is conducive to im-
proving the effectiveness of GSL on ABSA. Com-
pared with the heuristic FLT method, AFS avoids
the burden brought by manual frequency selection,
making the method more flexible.

Frequency Component Analysis. Furthermore,
we conducted an in-depth analysis of the intermedi-



Table 9: Frequency Component Analysis. The spectral
bands we consider in this work. Since the task consid-
ered in this work is at the sentence level, we only take
the scale from word to sentence into account. Here, L
denotes the sentence’s length.

Band Rest14(%) Laptop14(%) Twitter(%) Scale DFT index
HIGH 84.77 25.64 87.22 Word L/2 → L

MID-HIGH 89.82 28.68 92.61 Phrase L/6 → L/2
MID-LOW 91.82 41.02 96.87 Clause L/14 → L/6

LOW 99.61 88.08 99.19 Sentence 1 → L/14
Overall 88.88 35.21 91.41 - -

ate results obtained from the Automatic Frequency
Selector (AFS). From Table 8, we observe that
incorporating AFS consistently enhances model
performance without manual adjustments to Fre-
quency Components. This suggests that the auto-
mated Frequency Components selection process is
effective. Based on AFS’s Frequency Component
selection outcomes, we performed statistical anal-
yses across three datasets in accordance with the
spectral band distribution outlined in Table 5. Ta-
ble 9 illustrates the percentage of Frequency Com-
ponents selected by AFS within different spectral
bands, while "Overall" represents the percentage
of selected Frequency Components across all four
bands.

It is evident that the results are not uniformly
100%, indicating that AFS indeed performs selec-
tion on Frequency Components, thereby adjusting
information at various scales to achieve consistent
improvements. Moreover, the percentage of se-
lected Frequency Components varies across differ-
ent datasets, implying adaptive adjustments by AFS
to cater to the diverse demands of distinct samples.
Notably, the LOW band exhibits the highest per-
centage of selected Frequency Components, under-
scoring the significance of sentence-level informa-
tion for token-level tasks (such as Structure Induc-
tion for ABSA, which can be considered a token-
level task). This observation also aligns with the
conclusion drawn in reference (Müller-Eberstein
et al., 2022).

5 Conclusion

In this work, we propose utilizing GSL to induce la-
tent structures from PLMs for ABSA and introduce
spectral methods (FLT and AFS) into this prob-
lem. We also explore the impact of manipulation
on scale information of the contextual representa-
tion for structure induction. Extensive experiments
and analyses have demonstrated that the operation
of scale information of contextual representation

can enhance the effect of GSL on ABSA. Addition-
ally, our exploration is also beneficial to provide
inspiration for other similar domains.

Limitations

Though we verify the operation on various infor-
mation scales can be beneficial to structure induc-
tion on ABSA, there are still some limitations. Al-
though the heuristic FLT has achieved excellent
results, it requires some manual intervention. The
AFS method reduces manual participation, but its
effect is worse than the optimal FLT method. How-
ever, it is still meaningful to explore the impact of
scale information on the contextual representation
of downstream tasks.
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A Different Frequency Selection

We heuristically select spectral bands (HIGH, MID-
HIGH, MID-LOW, LOW) to observe the impact of
different spectral bands on structure induction for
ABSA. The specific selection of spectral bands at
different frequencies and their results are shown in
Table 10. The range of spectral bands corresponds
to the description in Table 5. Here, based on the
distribution of sentence lengths in the dataset (refer
to Figure 2), we set the maximum length (L) to

100 for each dataset and place sentences of sim-
ilar length in one batch, with a batch size of 32.
Each batch is batched according to the maximum
sentence length in that batch. For simplicity, we
did not design specific spectral bands for differ-
ent sentence lengths. Instead, we set the spectral
bands based on the maximum sentence length (L)
in each dataset. We only change the hyperparame-
ter ’Bands’ settings, while all other settings remain
the same. For specific experimental settings, refer
to Section 4.2. It can be observed that different
spectral band selections indeed lead to different
results, and an appropriate heuristic spectral band
selection can significantly improve the results.

B The Settings of AsD analysis

Here, we provide a detailed introduction to the
relative distance calculation dist(n1, n2) for AsD.
For a given sentence Si, with its aspect words A =
⟨a1, · · · , ap⟩, sentiment word set C = ⟨c1, · · · cq⟩,
and the adjacency matrix AG of the induced graph
structure, we calculate the shortest hops from ap to
cq. If the value of the corresponding position of ap
and cq on the adjacency matrix AG is greater than
the threshold γ, then we call the distance between
ap and cq to be 1. Otherwise, finding the shortest
hops between ap and cq on the AG as its shortest
path. We also use γ to judge whether there is an
edge between two nodes. Here, γ is set to the
average value of all values of AG. If ap and cq are
not directly connected, we set the distance between
ap and cq to the maximum number of hops, where
the maximum number of hops is set to 10.

C Automatic Frequency Selector (AFS)

Furthermore, it is not affirmed that information in
just one band (e.g. HIGH, MID-HIGH, etc.) is
helpful, and information in other bands may also
provide a gaining effect. Therefore with this in
mind, we introduce an Automatic Frequency Selec-
tor (AFS) to select helpful frequency components
along with the optimization of the overall model.

To achieve this goal, we design the Frequency Se-
lection operation under a probabilistic scenario Υ.
To be specific, we map each frequency component
f into a Bernoulli parameter space by employing
a Multi-layer Perceptron (MLP) architecture to pa-
rameterize this mapping process. Firstly, we bring
in a set of learnable parameters ξ ∈ Rk×dk to pa-
rameterize frequency components, where k denotes
the number of frequency components, and dk de-
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notes the dimension of component representations.
Then, we utilize the MLP architecture (composed
of two linear projection layers Proj1 and Proj2,
and an activation function σ (i.e. ReLU)) to map
frequency components ξ into the Bernoulli param-
eter space.

zB = MLP (ξ) = Proj2

(
σ
(
Proj1(ξ)

))
, (9)

ξB = φ

((
zB − log

(
− log(ϵ)

))
/τ

)
(10)

where ξB denotes the success probabilities of
Bernoulli distributions, and φ denotes the Softmax
function. We utilize the Gumbel reparameteriza-
tion proposed by (Jang et al., 2017; Maddison et al.,
2017) to address the differentiable difficulty during
training, where ϵ ∼ U(0, 1) is random variables of
a uniform distribution on the interval (0, 1). The hy-
perparameter τ → 0 is the annealing temperature,
which is adjusted to zero progressively in practice.
Next, we can obtain the values of Bernoulli random
variables mB ∼ Bern(ξB), where mB ∈ {0, 1}k,
and Bern denotes Bernoulli distributions. During
the non-training phase, we set a hyperparameter
threshold γ to control the sparsity of mB . (For the
Rest14 dataset, we set the threshold γ to 0.65. For
the other two datasets, the threshold is set at 0.75.)

Subsequently, for the i-th and j-th word repre-
sentations hi ∈ Rd and hj ∈ Rd, we can calculate
the pair-wise edge score eij as follows:

Φafs(x) = F−1
(
Υ
(
F(x)

))
, (11)

eij = Φafs(Wihi)Φ
afs(Wjhj)

⊤, (12)

where Υ indicates the Frequency Selection opera-
tion, and Φafs denotes the Automatic Frequency
Selector (AFS). Subsequent operations are consis-
tent with Section 3.1.



Table 10: Detailed results of the band impact based on RoBERTabase for heuristic frequency selection. For real
sequence, the spectrum obtained by the Discrete Fourier Transform is symmetrical, so we only take half of the
spectral bands for analysis. Negative values indicate that the frequency is selected from the high-frequency band,
and positive values mean that the frequency is selected from the low-frequency band. Additionally, x → y means
that the frequency selection is between the two values (x and y). The values in bold indicate superior performance
compared to the Attn. method.

Filter Bands Rest14 Laptop14 Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

HIGH

-1 87.32 80.76 84.48 81.54 75.43 74.88
-2 87.32 80.79 84.17 81.13 75.72 74.45
-3 87.23 81.56 83.86 81.20 76.01 74.34
-4 86.88 80.44 84.01 81.34 75.43 74.78
-5 87.77 81.62 83.54 80.53 76.30 75.00
-6 87.77 81.71 82.76 79.93 75.58 74.34
-8 87.77 80.74 84.80 82.27 76.16 75.52
-10 87.05 80.79 83.86 81.37 75.58 74.41
-12 87.77 80.74 84.48 81.38 75.87 74.45
-14 87.75 81.86 84.80 82.21 75.43 74.69
-16 88.57 82.95 84.32 81.87 76.45 75.46
-18 86.43 79.26 83.54 80.54 75.43 74.08
-20 88.13 82.33 84.01 81.06 76.01 75.23
-22 88.57 83.27 84.48 81.82 75.58 74.91
-24 87.14 80.63 84.17 81.65 76.30 75.18
-26 87.50 80.85 84.64 82.04 76.01 74.46

MID-HIGH

8 → 10 88.21 82.41 84.48 81.90 74.57 74.19
8 → 11 87.86 81.69 85.42 83.01 75.29 74.59
8 → 12 87.50 80.66 83.39 80.49 75.29 74.68
8 → 13 87.23 80.13 83.86 81.06 76.88 75.70
8 → 14 86.88 80.75 84.48 81.70 75.72 74.90
8 → 16 87.95 81.69 83.70 80.92 77.02 75.84
8 → 18 87.50 82.16 85.27 82.67 75.72 74.48
8 → 20 88.48 83.32 83.70 80.81 75.14 73.63
8 → 22 87.05 79.81 83.54 80.50 76.45 75.16
8 → 24 86.88 80.53 84.33 81.65 75.00 73.62

MID-LOW

4 → 5 86.96 80.50 84.01 81.14 76.45 75.50
4 → 6 87.14 80.40 83.70 81.05 76.59 75.61
4 → 7 87.14 81.71 84.33 82.10 77.02 75.64
4 → 8 87.68 81.99 82.92 79.72 76.87 75.82

LOW

1 87.41 81.27 83.39 80.44 76.16 75.03
2 87.86 81.06 83.39 80.55 76.15 75.16
3 87.23 80.51 83.70 80.80 76.45 74.90
4 86.96 80.14 84.01 81.64 75.87 74.65

Attn. - 87.59 81.72 83.86 80.53 75.72 73.92


