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Abstract

We study K-armed bandit problems where the reward distributions of the arms are
all supported on the [0, 1] interval. Maillard sampling [30], an attractive alternative
to Thompson sampling, has recently been shown to achieve competitive regret
guarantees in the sub-Gaussian reward setting [11] while maintaining closed-form
action probabilities, which is useful for offline policy evaluation. In this work,
we analyze the Kullback-Leibler Maillard Sampling (KL-MS) algorithm, a nat-
ural extension of Maillard sampling and a special case of Minimum Empirical
Divergence (MED) [19] for achieving a KL-style finite-time gap-dependent re-
gret bound. We show that KL-MS enjoys the asymptotic optimality when the
rewards are Bernoulli and has an adaptive worst-case regret bound of the form
O(
√
µ∗(1− µ∗)KT lnK +K lnT ), where µ∗ is the expected reward of the opti-

mal arm, and T is the time horizon length; this is the first time such adaptivity is
reported in the literature for an algorithm with asymptotic optimality guarantees.

1 Introduction

The multi-armed bandit (abbrev. MAB) problem [41, 27, 29], a stateless version of the reinforcement
learning problem, has received much attention by the research community, due to its relevance in
may applications such as online advertising, recommendation, and clinical trials. In a multi-armed
bandit problem, a learning agent has access to a set of K arms (also known as actions), where for
each i ∈ [K] := {1, . . . ,K}, arm i is associated with a distribution νi with mean µi; at each time
step t, the agent adaptively chooses an arm It ∈ [K] by sampling from a probability distribution
pt ∈ ∆K−1 and receives reward yt ∼ νIt , based on the information the agent has so far. The goal of
the agent is to minimize its pseudo-regret over T time steps: Reg(T ) = Tµ∗ − E

∑T
t=1 yt, where

µ∗ = maxi µi is the optimal expected reward.

In this paper, we study the multi-armed bandit setting where reward distributions of all arms are
supported on [0, 1]. 1 An important special case is Bernoulli bandits, where for each arm i, νi =
Bernoulli(µi) for some µi ∈ [0, 1]. It has practical relevance in settings such as computational
advertising, where the reward feedback is oftentimes binary (click vs. not-click, buy vs. not-buy).

Broadly speaking, there are two popular families of provably regret-efficient algorithms for bounded-
reward bandit problems: deterministic exploration algorithms (such as KL-UCB [17, 13, 31]) and
randomized exploration algorithms (such as Thompson sampling (TS) [41]). Randomized exploration
algorithms such as TS have been very popular, perhaps due to its excellent empirical performance
and the ability to cope with delayed rewards better than deterministic counterparts [15]. In addition,
the logged data collected from randomized exploration, of the form (It, pt,It , yt)

T
t=1, where pt,It

is the probability with which arm It was chosen, are useful for offline evaluation purposes by

1All of our results can be extended to distributions supported in [L,U ] for any known L ≤ U by shifting and
scaling the rewards to lie in [0, 1].
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Figure 1: Histogram of the average rewards computed
from the offline evaluation where the logged data is col-
lected from Bernoulli TS and KL-MS (Algorithm 1) in a
Bernoulli bandit environment with the mean reward (0.8,
0.9) with time horizon T = 10, 000. For Bernoulli TS’s
log, we approximate the action probability by Monte Carlo
Sampling with 1000 samples for each step. Here we es-
timate the expected reward of the uniform policy which
has expected average reward of 0.85 (black dashed line).
Across 2000 trials, the logged data of KL-MS induces an
MSE of 0.00796; however, for half of the trials, the IPW
estimator induced by Bernoulli TS’s log returns invalid
values due to the action probability estimates being zero.
Even excluding those invalid values, the Bernoulli TS’s
logged data induces an MSE of 0.02015. See Appendix H
for additional experiments.

employing the inverse propensity weighting (IPW) estimator [22] or the doubly robust estimator [38].
However, calculating the arm sampling probability distribution pt for Thompson sampling is nontrivial.
Specifically, there is no known closed-form 2, and generic numerical integration methods and
Monte-Carlo approximations suffer from instability issues: the time complexity for obtaining a
numerical precision of ϵ is Ω(poly(1/ϵ)) [36]. This is too slow to be useful especially for web-scale
deployments; e.g., Google AdWords receives ∼237M clicks per day. Furthermore, the computed
probability will be used after taking the inversion, which means that even moderate amount of errors
are intolerable. Indeed, Figure 1 shows that the offline evaluation with Thompson sampling as
the behavioral policy will be largely biased and inaccurate due to the errors from the Monte Carlo
approximation.

Recently, many studies have introduced alternative randomized algorithms that allow an efficient
computation of pt [19, 30, 14, 43]. Of these, Maillard sampling (MS) [30, 11], a Gaussian adaptation
of the Minimum Empirical Divergence (MED) algorithm [19] originally designed for finite-support
reward distributions, provides a simple algorithm for the sub-Gaussian bandit setting that computes
pt in a closed form:

pt,a ∝ exp

(
−Nt−1,a

∆̂2
t−1,a

2σ2

)
(1)

where at time step t, Nt,a is the number of pulling arm a. We define the estimator of µa as

µ̂t,a :=
∑t

s=1 1{It=a}yt

Nt,a
and the best performed mean value as µ̂t,max := maxa∈[K] µt,a. ∆̂t−1,a =

maxa′ µ̂t−1,a′ − µ̂t−1,a is the empirical suboptimality gap of arm a, and σ is the subgaussian
parameter of the reward distribution of all arms. For sub-Gaussian reward distributions, MS enjoys the
asymptotic optimality under the special case of Gaussian rewards and a near-minimax optimality [11],
making it an attractive alternative to Thompson sampling. Also, MS satisfies the sub-UCB criterion
(see Section 2 for a precise definition) to help establish sharp finite-time instance-dependent regret
guarantees. Can we adapt MS to the bounded reward setting and achieve the asymptotic, minimax
optimality and sub-UCB criterion while computing the sampling probability in a closed-form? In this
paper, we make significant progress on this question.

Our contributions. We focus on a Bernoulli adaptation of MS that we call Kullback-Leibler Maillard
Sampling (abbrev. KL-MS) and perform a finite-time analysis of it in the bounded-reward bandit
problem. KL-MS uses a sampling probability similar to MS but tailored to the [0, 1]-bounded reward
setting:

pt,a ∝ exp
(
−Nt−1,akl

(
µ̂t−1,a, µ̂t−1,max

))
,

where kl(µ, µ′) := µ ln µ
µ′ + (1 − µ) ln 1−µ

1−µ′ is the binary Kullback-Leibler (KL) divergence. We
can also view KL-MS as an instantiation of MED [19] for Bernoulli rewards; See Section 3 for a

2Suppose the arms’ mean reward posterior distributions’ PMFs and PDFs are (p1, . . . , pK) and (F1, . . . , FK)
respectively; for example, they are Beta distributions with different parameters, i.e. pi(x) = xai−1(1 −
x)bi−1I(x ∈ [0, 1]) for some ai, bi. To the best of our knowledge, the action probabilities have the following
integral expression: P(It = a) =

∫
R pa(x)

∏
i ̸=a Fi(x) dx and cannot be further simplified.
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Algorithm& Finite-Time Regret Closed-form Reference
Analysis Minimax Ratio Sub-UCB Probability

TS
√
lnK yes no See the caption

ExpTS
√
lnK yes no Jin et al. [24]

ExpTS+ 1 −⋆⋆ no Jin et al. [24]
kl-UCB

√
lnT yes N/A Cappé et al. [13]

kl-UCB++ 1 −⋆⋆ N/A Ménard and Garivier [33]
kl-UCB-switch 1 −⋆⋆ N/A Garivier et al. [18]

MED − − no⋆ Honda and Takemura [19]
DMED − − N/A Honda and Takemura [20]
IMED − − N/A Honda and Takemura [21]
KL-MS

√
lnK yes yes this paper

Table 1: Comparison of regret bounds for bounded reward distributions; for space constraints we only
include those that achieves the asymptotic optimality for the special case of Bernoulli distributions
(this excludes, e.g., Maillard Sampling [30, 11], Tsallis-INF [43] and UCB-V [8]). ‘−’indicates that
the corresponding analysis is not reported. ‘N/A’indicates that the algorithm does have closed-form,
but it is deterministic. ‘⋆’indicates that its computational complexity for calculating the action
probability is ln(1/precision). ‘⋆⋆’indicates that we conjecture that the algorithm is not sub-UCB.
The results on TS are reported by Agrawal and Goyal [3, 4], Korda et al. [26].

detailed comparison. KL-MS performs an efficient exploration for bounded rewards since one can
use kl(a, b) ≥ 2(a − b)2 to verify that the probability being assigned to each empirical non-best
arm by KL-MS is never larger than that of MS with σ2 = 1/4, the best sub-Gaussian parameter for
the bounded rewards in [0, 1]. We show that KL-MS achieves a sharp finite-time regret guarantee
(Theorem 1) that can be simultaneously converted to:

• an asymptotic regret upper bound (Theorem 4), which is asymptotically optimal when
specialized to the Bernoulli bandit setting;

• a
√
T -style regret guarantee of O(

√
µ∗(1− µ∗)KT lnK +K ln(T )) (Theorem 3) where

µ∗ is the mean reward of the best arm. This bound has two salient features. First, in the
worst case, it is at most a

√
lnK factor suboptimal than the minimax optimal regret of

Θ(
√
KT ) [5, 10]. Second, its Õ(

√
µ∗(1− µ∗) coefficient adapts to the variance of the

optimal arm reward; this is the first time such adaptivity is reported in the literature for an
algorithm with asymptotical optimality guarantees. 3

• a sub-UCB regret guarantee, which many existing minimax optimal algorithms [33, 18]
have not been proven to satisfy.

We also conduct experiments that show that thanks to its closed-form action probabilities, KL-MS
generates much more reliable logged data than Bernoulli TS with Monte Carlo estimation of action
probabilities; this is reflected in their offline evaluation performance using the IPW estimator; see
Figure 1 and Appendix H for more details.

2 Preliminaries

Let Nt,a be the number of times arm a has been pulled until time step t (inclusively). Denote the
suboptimality gap of arm a by ∆a := µ∗ − µa, where µ∗ = maxi∈[K] µi is the optimal expected
reward. Denote the empirical suboptimality gap of arm a by ∆̂t,a := µ̂t,max − µ̂t,a; here, µ̂t,a

is the empirical estimation to µa up to time step t, i.e., µ̂t,a := 1
Nt,a

∑t
s=1 ys1 {Is = a}, and

µ̂t,max = maxa∈[K] µ̂t,a is the best empirical reward at time step t. For arm a, define τa(s) :=

min
{
t ≥ 1 : Nt,a = s

}
at the time step when arm a is pulled for the s-th time, which is a stopping

time; we also use µ̂(s),a := µ̂τa(s),a to denote empirical mean of the first s reward values received
from pulling arm a.

3As side results, we show in Appendix F that with some modifications of the analysis, existing algorithms [7,
13, 33] also achieve regret of the form Õ(

√
µ∗(1− µ∗)poly(K)T ) for [0, 1]-bounded reward MABs.
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We define the Kullback-Leibler divergence between two distributions ν and ρ as KL(ν, ρ) =

EX∼ν

[
ln dν

dρ (X)
]

if ν is absolutely continuous w.r.t. ρ, and = +∞ otherwise. Recall that we
define the binary Kullback-Leibler divergence between two numbers µ, µ′ in [0, 1] as kl(µ, µ′) :=
µ ln µ

µ′ + (1 − µ) ln 1−µ
1−µ′ , which is also the KL divergence between two Bernoulli distributions

with mean parameters µ and µ′ respectively. We define µ̇ = µ(1 − µ), which is the variance of
Bernoulli(µ) but otherwise an upper bound on any distribution supported on [0, 1] with mean µ; see
Lemma 16 for a formal justification.

In the regret analysis, we will oftentimes use the following notation for comparison up to constant
factors: define f ≲ g (resp. f ≳ g) to denote that f ≤ Cg (resp. f ≥ Cg) for some numerical
constant C > 0. We define a ∨ b and a ∧ b as max(a, b) and min(a, b), respectively. For an event E,
we use Ec to denote its complement.

Below, we define some useful criteria for measuring the performance of bandit algorithms, specialized
to the [0, 1] bounded reward setting.

Asymptotic optimality in the Bernoulli reward setting An algorithm is asymptotically optimal in
the Bernoulli reward setting [27, 12] if for any Bernoulli bandit instance (νa = Bernoulli(µa))a∈[K],
lim supT→∞

Reg(T )
lnT =

∑
a:∆a>0

∆a

kl(µa,µ∗) .

Minimax ratio The minimax optimal regret of the [0, 1] bounded reward bandit problem is
Θ
(√

KT
)

[5, 10]. Given a K-armed bandit problem with time horizon T , an algorithm has a

minimax ratio of f(T,K) if its has a worst-case regret bound of O(
√
KTf(T,K)).

Sub-UCB Sub-UCB is originally defined in the context of sub-Gaussian bandits [29]: given a bandit
problem with K arms whose reward distributions are all sub-Gaussian, an algorithm is said to be
sub-UCB if there exists some positive constants C1 and C2, such that for all σ2-sub-Gaussian bandit
instances, Reg(T ) ≤ C1

∑
a:∆a>0 ∆a + C2

∑
a:∆a>0

σ2

∆a
lnT . Specialized to our setting, as any

distribution supported on [0, 1] is also 1
4 -sub-Gaussian, and all suboptimal arm gaps ∆a ∈ (0, 1] are

such that ∆a < 1
∆a

, the above sub-UCB criterion simplifies to: there exists some positive constant
C, such that for all [0, 1]-bounded reward bandit instances, Reg(T ) ≤ C

∑
a:∆a>0

lnT
∆a

.

3 Related Work
Bandits with bounded rewards. Early works of Lai et al. [27], Burnetas and Katehakis [12] show
that in the bounded reward setting, for any consistent stochastic bandit algorithm, the regret is lower
bounded by (1 + o(1))

∑
a:∆a>0

∆a lnT
KLinf (νa,µ∗) and KLinf(νa, µ

∗) is defined as

KLinf(ν, µ
∗) := inf

{
KL(ν, ρ) : EX∼ρ [X] > µ∗, supp(ρ) ⊂ [0, 1]

}
, (2)

where the random variable follows a distribution ρ bounded in [0, 1]. Therefore, any algorithm whose
regret upper bound matches the lower bound is said to achieve asymptotic optimality. Cappé et al.
[13] propose the KL-UCB algorithm and provide a finite time regret analysis, which is further refined
by Lattimore and Szepesvári [29, Chapter 10]. Another line of work establishes asymptotic and
finite-time regret guarantees for Thompson sampling algorithms and its variants [2, 4, 25, 24], which,
when specialized to the Bernoulli bandit setting, can be combined with Beta priors for the Bernoulli
parameters to design efficient algorithms.

A number of studies even go beyond the Bernoulli-KL-type regret bound and adapt to the variance
of each arm in the bounded reward setting. UCB-V [7] achieves a regret bound that adapts to
the variance. Efficient-UCBV [35] achieves a variance-adaptive regret bound and also an optimal
minimax regret bound O(

√
KT ), but it is not sub-UCB. Honda and Takemura [19] propose the MED

algorithm that is asymptotically optimal for bounded rewards, but it only works for rewards that with
finite supports. Honda and Takemura [21] propose the Indexed MED (IMED) algorithm that can
handle a more challenging case where the reward distributions are supported in (−∞, 1].

As with worst-case regret bounds, first, it is well-known that for Bernoulli bandits as well as bandits
with [0, 1] bounded rewards, the minimax optimal regrets are of order Θ(

√
KT ) [10, 5]. Of the

algorithms that enjoy asymptotic optimality under the Bernoulli reward setting described above,
KL-UCB [13] has a worst-case regret bound of O(

√
KT lnT ), which is refined by the KL-UCB++
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algorithm [33] that has a worst-case regret bound of O(
√
KT ). We also show in Appendix F.1

and F.2 that with some modifications of existing analysis, KL-UCB and KL-UCB++ enjoy a regret
bound of O(

√
µ∗(1− µ∗)KT lnT ) and O(

√
µ∗(1− µ∗)K3T lnT ) respectively. Although the

regret is worse in the order of K, it adapts to µ∗ and will have a better regret when µ∗ is small (say,
µ∗ ≤ 1/K2). KL-UCB++[34] and KL-UCB-Switch[18] achieves O(

√
KT ) regret in the finite-time

regime and asymptotic optimality, while the sub-UCB criterion has not been satisfied. However,
Lattimore [28, §3] shows that MOSS [6] suffers a sub-optimal regret worse than UCB-like algorithms
because of not satisfying sub-UCB criteria, and we suspect that KL-UCB-switch experience the same
issue as MOSS. For Thompson Sampling style algorithms, Agrawal and Goyal [3] shows that the
original Thompson Sampling algorithm has a worst-case regret of O(

√
KT lnK), and the ExpTS+

algorithm [24] has a worst-case regret of O(
√
KT ).

Randomized exploration for bandits. Many randomized exploration methods have been proposed
for multi-armed bandits. Perhaps the most well-known is Thompson sampling [41], which is shown to
achieve Bayesian and frequentist-style regret bounds in a broad range of settings [39, 2, 25, 26, 23, 24].
A drawback of Thompson sampling, as mentioned above, is that the action probabilities cannot be
obtained easily and robustly. To cope with this, a line of works design randomized exploration
algorithms with action probabilities in closed forms. For sub-Gaussian bandits, Cesa-Bianchi
et al. [14] propose a variant of the Boltzmann exploration rule (that is, the action probabilities are
proportional to exponential to empirical rewards, scaled by some positive numbers), and show that
it has O

(
K ln2 T

∆

)
instance-dependent and O

(√
KT lnK

)
worst-case regret bounds respectively,

where ∆ = mina:∆a>0 ∆a is the minimum suboptimalty gap. Maillard sampling (MS; Eq. (1)) is
an algorithm proposed by the thesis of Maillard [30] where the author reports that MS achieves
the asymptotic optimality and has a finite-time regret of order

∑
a:∆a>0

(
lnT
∆a

+ 1
∆3

a

)
from which

a worst-case regret bound of O(
√
KT 3/4) can be derived. MED [19], albeit achieves asymptotic

optimality for a broad family of bandits with finitely supported reward distributions, also has a high

finite-time regret bound of at least
∑

a:∆a>0

(
lnT
∆a

+ 1

∆
2|supp(ν1)|−1
a

)
. 4 Recently, Bian and Jun [11]

report a refined analysis of Maillard [30]’s sampling rule, showing that it has a finite time regret
of order

∑
a:∆a>0

ln(T∆2
a)

∆a
+O

(∑
a:∆a>0

1
∆a

ln( 1
∆a

)
)

, and additionally enjoys a O
(√

KT lnT
)

worst-case regret, and by inflating the exploration slightly (called MS+), the bound can be improved
and enjoy the minimax regret of O

(√
KT lnK

)
, which matches the best-known regret bound

among those that satisfy sub-UCB criterion, except for AdaUCB. In fact, it is easy to adapt our proof
technique in this paper to show that MS, without any further modification, achieves a O

(√
KT lnK

)
worst-case regret.

Randomized exploration has also been studied from a nonstochastic bandit perspective [10, 5], where
randomization serves both as a tool for exploration and a way to hedge bets against the nonstationarity
of the arm rewards. Many recent efforts focus on designing randomized exploration bandit algorithms
that achieve “best of both worlds” adaptive guarantees, i.e., achieving logarithmic regret for stochastic
environments while achieving

√
T regret for adversarial environments [e.g. 43, 42].

Binarization trick. It is a folklore result that bandits with [0, 1] bounded reward distributions can
be reduced to Bernoulli bandits via a simple binarization trick: at each time step t, the learner sees
reward rt ∈ [0, 1], draws r̃t ∼ Bernoulli(rt) and feeds it to a Bernoulli bandit algorithm. However,
this reduction does not result in asymptotic optimality for the general bounded reward setting, where
the asymptotic optimal regret is of the form (1 + o(1))

∑
a:∆a>0

∆a lnT
KLinf (νa,µ∗) with KLinf(νa, µ

∗)

defined in the Eq (2). If we combine the binarization trick and the MED algorithm in the bounded
reward setting, the size of the support set is viewed as 2, the finite-time regret bound is at best as
O(K1/4T 3/4) (ignoring logarithmic factors), which is much higher than O(

√
KT ).

4A close examination of [19]’s Lemma 9 (specifically, equation (20)) shows that for each suboptimal arm
a, the authors bound E [NT,a] by a term at least

∑T
t=1 K (t+ 1)|supp(ν1)| · exp

(
−tC(µ1, µ1 − ε)

)
, where

C(µ, µ′) := (µ−µ′)2

2µ′(1+µ)
and ε ≤ ∆a; this is Ω

(
1

∆
2|supp(ν1)|
a

)
when µ1 is bounded away from 0 and 1.
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Algorithm 1 KL Maillard Sampling (KL-MS)
1: Input: K ≥ 2
2: for t = 1, 2, · · · , T do
3: if t ≤ K then
4: Pull the arm It = t and observe reward yt ∼ νi.
5: else
6: For every a ∈ [K], compute

pt,a =
1

Mt
exp

(
−Nt−1,a · kl(µ̂t−1,a, µ̂t−1,max)

)
(3)

where Mt =
∑K

a=1 exp(−Nt−1,akl(µ̂t−1,a, µ̂t−1,max)) is the normalizer.
7: Pull the arm It ∼ pt.
8: Observe reward yt ∼ νIt .
9: end if

10: end for

Bandit algorithms with worst-case regrets that depend on the optimal reward. Recent linear
logistic bandit works have shown worst-case regret bounds that depend on the variance of the
best arm [32, 1]. When the arms are standard basis vectors, logistic bandits are equivalent to
Bernoulli bandits, and the bounds of Abeille et al. [1] become Õ

(
K
√
µ̇∗T + K2

µ̇min
∧ (K2 +A)

)
where µ̇min = mini∈[K] µ̇i and A is an instance dependent quantity that can be as large as T . This
bound, compared to ours, has an extra factor of

√
K in the leading term and the lower order term

has an extra factor of K. Even worse, it has the term µ̇−1
min in the lower order term, which can be

arbitrarily large. The bound in Mason et al. [32] becomes Õ
(√

µ̇∗KT + µ̇−1
minK

2
)

, which matches

our bound in the leading term up to logarithmic factors yet still have extra factors of K and µ̇−1
min in

the lower order term.

4 Main Result

The KL Maillard Sampling Algorithm. We propose an algorithm called KL Maillard sampling
(KL-MS) for bounded reward distributions (Algorithm 1). For the first K times steps, the algorithm
pulls each arm once (steps 3 to 4); this ensures that starting from time step K + 1, the estimates
of the reward distribution of all arms are well-defined. From time step t = K + 1 on, the learner
computes the empirical mean µ̂t−1,a of all arms a. For each arm a, the learner computes the
binary KL divergence between µ̂t−1,a and µ̂t−1,max, kl(µ̂t−1,a, µ̂t−1,max), as a measure of empirical
suboptimality of that arm. The sampling probability of arm a, denoted by pt,a, is proportional to
the exponential of negative product between Nt−1,a and kl(µ̂t−1,a, µ̂t−1,max) (Eq. (3) of step 6).
This policy naturally trades off between exploration and exploitation: arm a is sampled with higher
probability, if either it has not been pulled many times (Nt−1,a is small) or it appears to be close to
optimal empirically (kl(µ̂t−1,a, µ̂t−1,max)) is small). The algorithm samples an arm It from pt, and
observe a reward yt of the arm chosen.

We remark that if the reward distributions νi’s are Bernoulli, KL-MS is equivalent to the MED
algorithm [19] since in this case, all reward distributions have a binary support of {0, 1}. However,
KL-MS is different from MED in general: MED computes the empirical distributions of arm
rewards F̂t−1,a, and chooses action according to probabilities pt,a ∝ exp(−Nt−1,aDt−1,a); here,
Dt−1,a := KL(F̂t−1,a, µ̂t−1,max) (recall its definition in Section 3) is the “minimum empirical
divergence” between arm a and the highest empirical mean reward, which is different from the binary
KL divergence of the mean rewards used in KL-MS.

4.1 Main Regret Theorem

Our main result of this paper is the following theorem on the regret guarantee of KL-MS (Algorithm 1).
Without loss of generality, throughout the rest of the paper, we assume µ1 ≥ µ2 ≥ · · · ≥ µK .
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Theorem 1. For any K-arm bandit problem with reward distribution supported on [0, 1], KL-MS
has regret bounded as follows. For any ∆ ≥ 0 and c ∈ (0, 1

4 ]:

Reg(T ) ≤ T∆+
∑

a:∆a>∆

∆a ln(Tkl(µa + c∆a, µ1 − c∆a) ∨ e2)

kl(µa + c∆a, µ1 − c∆a)

+ 560
∑

a:∆a>∆

(
µ̇1 +∆a

c2∆a

)
ln

( µ̇1 +∆a

c2∆2
a

∧ c2T∆2
a

µ̇1 +∆a

)
∨ e2

 (4)

The regret bound of Theorem 1 is composed of three terms. The first term is T∆, which controls
the contribution of regret from all ∆-near-optimal arms. The second term is asymptotically (1 +
o(1))

∑
a:∆a>0

∆a

kl(µa,µ1)
ln(T ) with an appropriate choice of c, which is a term that grows in T in

a logarithmic rate. The third term is simultaneously upper bounded by two expressions. One is∑
a:∆a>0

(
µ̇1+∆a

c2∆a

)
ln
(

c2T∆2
a

µ̇1+∆a
∨ e2

)
, which is of order lnT and helps establish a tight worst-case

regret bound (Theorem 3); the other is
∑

a:∆a>0

(
µ̇1+∆a

c2∆a

)
ln

((
µ̇1+∆a

c2∆2
a

)
∨ e2

)
, which does not

grow in T and helps establish a tight asymptotic upper bound on the regret (Theorem 4).

To the best of our knowledge, existing regret analysis on Bernoulli bandits or bandits with bounded
support have regret bounds of the form

Reg(T ) ≤ T∆+
∑

a:∆a>∆

∆a ln(T )

kl(µa + c∆a, µ1 − c∆a)
+O

( ∑
a:∆a>∆

1

c2∆a

)
,

for some c > 0, where the third term is much larger than its counterpart given by Theorem 1 when ∆a

and µ̇1 are small. As we will see shortly, as a consequence of its tighter bounds, our regret theorem
yields a superior worst-case regret guarantee over previous works.

Theorem 2 (Sub-UCB). KL-MS’s regret is bounded by Reg(T ) ≲
∑

a:∆a>0
lnT
∆a

. Therefore, KL-MS
is sub-UCB.

Sub-UCB criterion is important for measuring a bandit algorithm’s finite-time instance-dependent
performance. Indeed, Lattimore [28, §3] points out that MOSS [6] does not satisfy sub-UCB and
that it leads to a strictly suboptimal regret in a specific instance compared to the standard UCB
algorithm [9]. A close inspection of the finite-time regret bounds of existing asymptotically optimal
and minimax optimal algorithms for the [0, 1]-reward setting, such as KL-UCB++ [33] and KL-
UCB-switch [18], reveals that they are not sub-UCB. Thus, we speculate that they would also have a
suboptimal performance in the aforementioned instance.

In light of Theorem 1, our first corollary is that KL Maillard sampling achieves the following adaptive
worst-case regret guarantee.

Theorem 3 (Adaptive worst-case regret). For any K-arm bandit problem with reward distribution
supported on [0, 1], KL-MS has regret bounded as: Reg(T ) ≲

√
µ̇1KT lnK +K lnT .

An immediate corollary is that KL Maillard sampling has a regret of order O(
√
KT lnK), which

is a factor of O(
√
lnK) within the minimax optimal regret Θ(

√
KT ) [33, 5]. This also matches

the worst-case regret bound O(
√
V KT ln(K)) of Jin et al. [24] where V = 1

4 is the worst-case
variance for Bernoulli bandits using a Thompson sampling-style algorithm. Another main feature
of this regret bound is its adaptivity to µ̇1, the variance of the reward of the optimal arm for the
Bernoulli bandit setting, or its upper bound in the general bounded reward setting (see Lemma 16).
Specifically, if µ1 is close to 0 or 1, µ̇1 is very small, which results in the regret being much smaller
than O(

√
KT lnK).

Note that UCB-V [7] and KL-UCB/KL-UCB++, while not reported, enjoy a worst-case regret bound
of O(

√
µ̇1KT lnT ), which is worse than our bound in its logarithmic factor; see Appendix F.3

and F.1 for the proofs. Among these, UCB-V does not achieve the asymptotic optimality for the
Bernoulli case. While logistic linear bandits [1, 32] can be applied to Bernoulli K-armed bandits and
achieve similar worst-case regret bounds involving µ̇1, their lower order term can be much worse as
discussed in Section 3.
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Our second corollary is that KL Maillard sampling achieves a tight asymptotic regret guarantee for
the special case of Bernoulli rewards:

Theorem 4. (Asymptotic Optimality) For any K-arm bandit problem with reward distribution
supported on [0, 1], KL-MS satisfies the following asymptotic regret upper bound:

lim sup
T→∞

Reg(T )

ln(T )
=

∑
a∈[K]:∆a>0

∆a

kl(µa, µ1)
(5)

Specialized to the Bernoulli bandit setting, in light of the asymptotic lower bounds [27, 12], the above
asymptotic regret upper bound implies that KL-MS is asymptotically optimal.

While the regret guarantee of KL-MS is not asymptotically optimal for the general [0, 1] bounded
reward setting, it nevertheless is a better regret guarantee than naively viewing this problem as a
sub-Gaussian bandit problem and applying sub-Gaussian bandit algorithms on it. To see this, note that
any reward distribution supported on [0, 1] is 1

4 -sub-Gaussian; therefore, standard sub-Gaussian bandit
algorithms will yield an asymptotic regret (1 + o(1))

∑
a∈[K]:∆a>0

lnT
2∆a

. This is always no better
than the asymptotic regret provided by Eq. (5), in view of Pinsker’s inequality that kl(µa, µ1) ≥ 2∆2

a.

5 Proof Sketch of Theorem 1
We provide an outline of our proof of Theorem 1, with full proof details deferred to Appendix C.
Our approach is akin to the recent analysis of the sub-Gaussian Maillard Sampling algorithm in Bian
and Jun [11] with several refinements tailored to the bounded reward setting and achieving

√
lnK

minimax ratio. First, for any time horizon length T , Reg(T ) can be bounded by:

Reg(T ) =
∑

a∈[K]:∆a>0

∆aE
[
NT,a

]
≤ ∆T +

∑
a∈[K]:∆a>∆

∆aE
[
NT,a

]
, (6)

i.e., the total regret can be decomposed to a T∆ term and the sum of regret ∆aE
[
NT,a

]
from pulling

∆-suboptimal arms a. Therefore, in subsequent analysis, we focus on bounding E
[
NT,a

]
. To this

end, we show the following lemma.

Lemma 5. For any suboptimal arm a, let ε1, ε2 > 0 be such that ε1 + ε2 < ∆a. Then its expected
number of pulls is bounded as:

E
[
NT,a

]
≤1 +

ln
(
Tkl(µa + ε1, µ1 − ε2) ∨ e2

)
kl(µa + ε1, µ1 − ε2)

+
1

kl(µa + ε1, µ1 − ε2)
+

1

kl(µa + ε1, µa)

+ 6H ln

((
T

H
∧H

)
∨ e2

)
+

4

kl(µ1 − ε2, µ1)
, (7)

where H := 1
(1−µ1+ε2)(µ1−ε2)h2(µ1,ε2)

≲ 2µ̇1+ε2
ε22

and h(µ1, ε2) := ln
(

(1−µ1+ε2)µ1

(1−µ1)(µ1−ε2)

)
.

Theorem 1 follows immediately from Lemma 5. See section C for details; we show a sketch here.

Proof sketch of Theorem 1. Fix any c ∈ (0, 1
4 ]. Let ε1 = ε2 = c∆a; by the choice of c, ε1+ε2 < ∆a.

From Lemma 5, E
[
NT,a

]
is bounded by Eq. (7). Plugging in the values of ε1 = ε2, and using

Lemma 26 that lower bounds the binary KL divergence, along with Lemma 22 that gives H ≲ 2µ̇1+ε2
ε22

,
and algebra, all terms except the second term on the right hand side of Eq. (7) are bounded by(

34

c2
+

4

(1− 2c)2

)(
µ̇1 +∆a

c2∆2
a

)
ln

((
µ̇1 +∆a

c2∆2
a

∧ c2T∆2
a

µ̇1 +∆a

)
∨ e2

)
.

As a result, KL-MS satisfies that, for any arm a, for any c ∈ (0, 1
4 ]:

E
[
NT,a

]
≤ ln(Tkl(µa + c∆a, µ1 − c∆a) ∨ e2)

kl(µa + c∆a, µ1 − c∆a)

+

(
34

c2
+

4

(1− 2c)2

)(
µ̇1 +∆a

c2∆2
a

)
ln

( µ̇1 +∆a

c2∆2
a

∧ c2T∆2
a

µ̇1 +∆a

)
∨ e2

 .
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Theorem 1 follows by plugging the above bound to Eq. (6) for arms a s.t. ∆a > ∆ with c = 1
4 .

5.1 Proof sketch of Lemma 5
We sketch the proof of Lemma 5 in this subsection. For full details of the proof, please refer to
Appendix C.2. We first set up some useful notations that will be used throughout the proof. Let

u := ⌈ ln(Tkl(µa+ε1,µ1−ε2)∨e2)
kl(µa+ε1,µ1−ε2)

⌉. We define the following events

At := {It = a} , Bt :=
{
Nt,a < u

}
, Ct :=

{
µ̂t,max ≥ µ1 − ε2

}
, Dt :=

{
µ̂t,a ≤ µa + ε1

}
,

By algebra, one has the following elementary upper bound on E
[
NT,a

]
: E

[
NT,a

]
≤ u +

E
[∑T

t=K+1 1
{
At, B

c
t−1

}]
. Intuitively, the u term serves to control the length of a "burn-in"

phase when the number of pulls to arm a is at most u. It now remains to control the second term, the
number of pulls to arm a after it is large enough, i.e., Nt−1,a ≥ u. We decompose it to F1, F2, and
F3, resulting in the following inequality:

E
[
NT,a

]
≤u+ E

[
T∑

t=K+1

1
{
At, B

c
t−1, Ct−1, Dt−1

}]
︸ ︷︷ ︸

=:F1

+ E

[
T∑

t=K+1

1
{
At, B

c
t−1, Ct−1, D

c
t−1,

}]
︸ ︷︷ ︸

=:F2

+E

[
T∑

t=K+1

1
{
At, B

c
t−1, C

c
t−1

}]
︸ ︷︷ ︸

=:F3

Here:
• F1 corresponds to the “steady state” when the empirical means of arm a and the optimal

arm are both estimated accurately, i.e., µ̂t−1,max ≥ µ1 − ε2 and µ̂t−1,a ≤ µa + ε1. It can
be straightforwardly bounded by 1

kl(µa+ε1,µ1−ε2)
, as we show in Lemma 10 (section D.1).

• F2 corresponds to the case when the empirical mean of arm a is abnormally high, i.e.,
µ̂t−1,a > µa + ε1. It can be straightforwardly bounded by 1

kl(µa+ε1,µa)
, as we show in

Lemma 11 (section D.2).
• F3 corresponds to the case when the empirical mean of the optimal arm is abnormally low,

i.e., µ̂t−1,max ≤ µ1 − ε2; it is the most challenging term and we discuss our techniques in
bounding it in detail below (section D.3).

We provide an outline of our analysis of F3 in Appendix D.3.1 and sketch its main ideas and technical
challenges here.

We follow the derivation from Bian and Jun [11] by first using a probability transferring argument
(Lemma 23) to bound the expected counts of pulling suboptimal arm a by the expectation of indicators
of pulling the optimal arm with a multiplicative factor and then change the counting from global time
step t to local count of pulling the optimal arm. Then, F3 is bounded by,

∞∑
k=1

E
[
1
{
µ̂(k),1 ≤ µ1 − ε2

}
exp(k · kl(µ̂(k),1, µ1 − ε2)

]
︸ ︷︷ ︸

Mk

.

Intuitively, each Mk should be controlled: when exp(k · kl(µ̂(k),1, µ1 − ε2)) is large, µ̂(k),1 must
significantly negatively deviate from µ1 − ε2, which happens with low probability by Chernoff bound
(Lemma 25). Using a double integration argument, we can bound each Mk by

Mk ≤
(
2H

k
+ 1

)
exp(−kkl(µ1 − ε2, µ1)).

Summing over all k, we can bound F31 by O
(
H ln

(
H ∨ e2

)
+ 1

kl(µ1−ε2,µ1)

)
. Combining the

bounds on F1 and F2, we can show a bound on E
[
NT,a

]
similar to Eq. (7) without the “ T

H∧” term
in the logarithmic factor. This yields a regret bound of KL-MS, in the form of Eq. (4) without the
“∧ c2T∆2

a

µ̇1+∆a
” term in the logarithmic factor. Such a regret bound can be readily used to show KL-MS’s
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Bernoulli asympototic optimality and sub-UCB property. An adaptive worst-case regret bound of√
µ̇1KT ln (T ) also follows immediately.

To show that MS has a tighter adaptive worst-case regret bound of
√
µ̇1KT ln (K), we adopt

a technique in [33, 24]. First, we observe that the looseness of the above bound on F3 comes
from small k (denoted as F31 :=

∑
k≤H Mk), as the summation of Mk for large k (denoted as

F32 :=
∑

k>H Mk) is well-controlled. The key challenge in a better control of F31 comes from
the difficulty in bounding the tail probability of µ̂(k),1 for k < H beyond Chernoff bound. To cope
with this, we observe that a modified version of F31 that contains an extra favorable indicator of

kl(µ̂(k),1, µ1) ≤
2 ln(T/k)

k , denoted as:∑
k≤H

E

1{µ̂(k),1 ≤ µ1 − ε2, kl(µ̂(k),1, µ1) ≤
2 ln

(
T/k

)
k

}
exp(k · kl(µ̂(k),1, µ1 − ε2)


can be well-controlled. Utilizing this introduces another term in the regret analysis, T · P(EC),

where E =
{
∀k ∈ [1, H], kl(µ̂(k),1, µ1) ≤

2 ln(T/k)
k

}
, which we bound by O(H) via a time-

uniform version of Chernoff bound. Putting everything together, we prove a bound of F3 of
O
(
H ln

(
( T
H ∧H) ∨ e2

)
+ 1

kl(µ1−ε2,µ1)

)
, which yields our final regret bound of KL-MS in Theo-

rem 1 and the refined minimax ratio.

Remark 6. Although our technique is inspired by [24, 33], we carefully set the case splitting
threshold for Nt−1,1 (to obtain F31 and F32) to be H = O( µ̇1+ϵ2

ϵ22
), which is significantly different

from prior works (Õ( 1
ϵ22
)).

Remark 7. One can port our proof strategy back to sub-Gaussian MS and show that it achieves a
minimax ratio of

√
lnK as opposed to

√
lnT reported in Bian and Jun [11]; a sketch of the proof is

in Appendix G. Recall that Bian and Jun [11] proposed another algorithm MS+ that achieved the
minimax ratio of

√
lnK at the price of extra exploration. Our result makes MS+ obsolete; MS should

be preferred over MS+ at all times.

6 Conclusion

We have proposed KL-MS, a KL version of Maillard sampling for stochastic multi-armed bandits
in the [0, 1]-bounded reward setting, with a closed-form probability computation, which is highly
amenable to off-policy evaluation. Our algorithm requires constant time complexity with respect to
the target numerical precision in computing the action probabilities, and our regret analysis shows
that KL-MS achieves the best regret bound among those in the literature that allows computing the
action probabilities with O(polylog(1/precision)) time complexity, for example, Tsallis-INF [43],
EXP3++ [40], in the stochastic setting.

Our study opens up numerous open problems. One immediate open problem is to generalize KL-MS
to handle exponential family reward distributions. Another exciting direction is to design randomized
and off-policy-amenable algorithms that achieve the asymptotic optimality for bounded rewards (i.e.,
as good as IMED [21]).

One possible avenue is to extend MED [19] and remove the restriction that the reward distribution
must have bounded support. Furthermore, it would be interesting to extend MS to structured bandits
and find connections to the Decision-Estimation Coefficient [16], which have recently been reported
to characterize the optimal minimax regret rate for structured bandits. Finally, we believe MS is
practical by incorporating the booster hyperparameter introduced in Bian and Jun [11]. Extensive
empirical evaluations on real-world problems would be an interesting future research direction.
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