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Abstract

There is a growing body of work seeking to repli-
cate the success of machine learning (ML) on
domains like computer vision (CV) and natural
language processing (NLP) to applications involv-
ing biophysical data. One of the key ingredi-
ents of prior successes in CV and NLP was the
broad acceptance of difficult benchmarks that dis-
tilled key subproblems into approachable tasks
that any junior researcher could investigate, but
good benchmarks for biophysical domains are
rare. This scarcity is partially due to a narrow
focus on benchmarks which simulate biophysi-
cal data; we propose instead to carefully abstract
biophysical problems into simpler ones with key
geometric similarities. In particular we propose
a new class of closed-form test functions for bio-
physical sequence optimization, which we call
Ehrlich functions. We provide empirical results
demonstrating these functions are interesting ob-
jects of study and can be non-trivial to solve with
a standard genetic optimization baseline.

1. Introduction
Rigorous benchmarking is an essential element of good
practice in science and engineering. Good benchmarks al-
low developers to evaluate new ideas rapidly in a low-stakes
environment and thoroughly understand the strengths and
weaknesses of their methods before applying them in costly,
consequential settings. To see the benefit of a good bench-
mark, we need look no further than the Critical Assessment
of Structure Prediction (CASP) competition (Bourne, 2003),
which motivated AlphaFold (Jumper et al., 2021), or the
many benchmarks in CV and NLP that shaped the develop-
ment of modern deep learning (Russakovsky et al., 2015;
Bojar et al., 2016; Hendrycks et al., 2020). While there
has been a surge of investment into ML algorithms for ap-
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Fig. 1: The Ackley function is widely used to evaluate
black-box optimization algorithms such as Bayesian opti-
mization that have been successfully applied to many real-
world problems. The relevance of the Ackley function is
not its semantic correspondence with real-world objective
functions, but its geometric similarities, such as a multiplic-
ity of local minima and changing local curvature.

plications like drug discovery, good benchmarks for those
algorithms have proven elusive (Tripp et al., 2021; Stanton
et al., 2022). Experimental feedback cycles in the life and
physical sciences require expensive equipment, trained lab
technicians, and can take months or even years. ML re-
searchers require rapid feedback cycles, typically measured
in minutes, necessitating proxy measures of success.

This need is particularly acute when evaluating black-box
sequence optimization algorithms, which must produce a
finite-length 1D sequence of discrete states (e.g. the primary
amino-acid sequence of a protein or a segment of DNA)
that optimizes a signal that is only accessible through mea-
surements. Unlike typical ML benchmarks for supervised
and unsupervised models, optimization algorithms cannot
be evaluated with a static dataset unless the search space is
small enough to be exhaustively enumerated and annotated
with the test function. Many researchers turn to simulation
or empirical function approximation to provide test func-
tions for larger, more realistic search spaces, however there
is always a compromise between the highest possible fi-
delity (which may still be quite imperfect) and acceptable
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latency for rapid development.

Optimization algorithms are designed to solve any test func-
tion belonging to a certain class. For example, gradient
descent provably converges (under suitable assumptions) to
the global optimum of any differentiable convex function.
The key observation is a test function need not correlate at
all with downstream applications as long as there is shared
structure (i.e. geometry). In fact, synthetic (i.e. closed-form)
test functions (see Fig. 1) have been universally used to test
continuous optimization algorithms for decades (Molga &
Smutnicki, 2005).

In this work we ask, ”What is the essential geometry of
biophysical sequence optimization problems?” We draw in-
spiration from theoretical physics and biology, which rely
heavily on analysis of tractable model systems to reveal
interesting emergent behavior resembling empirical phe-
nomena. For example, the Ising model is very simple, yet it
predicts the existence of phase transitions and long-range
order in atomic systems (McCoy & Maillard, 2012). Similar
models have been used to predict protein folding pathways
(Ooka & Arai, 2023) and study local mutational fitness land-
scapes (Neidhart et al., 2014), but have not been widely
adopted by ML researchers. We propose Ehrlich functions1

as an idealized model of real sequence optimization tasks
like antibody affinity maturation, building on principles
from structural biology and biomolecular engineering ex-
perience. Ehrlich functions have adjustable difficulty and
are always provably solvable; easy instances can be solved
quickly by a genetic algorithm and used for debugging, but
the same algorithm fails to solve harder instances after con-
suming over 500M function evaluations. These results can
be reproduced in minutes on a single GPU.

2. Benchmarking Principles and Approaches
We first briefly discuss the requirements of a good research
benchmark, then general approaches to sequence optimiza-
tion benchmarking in light of those requirements.

2.1. What Makes A Good Benchmark?

Low costs/barriers to entry — a good benchmark should
be inexpensive and easy to use.

Well-characterized solutions — It should be easy to tell
if a benchmark is “solved”. Incremental progress towards
better solutions should be reflected in the benchmark score.

Non-trivial difficulty — a good benchmark should be chal-
lenging enough to motivate and validate algorithmic im-
provements. It should not be possible to solve with naı̈ve
baselines on a tiny resource budget.

1Named after Paul Ehrlich, an early pioneer of immunology.

Similarity to real applications — while benchmarks in-
evitably require some simplification, a good benchmark
should retain key characteristics of the desired application
in a stylized, abstracted sense, otherwise the benchmark will
not be relevant to the research community.

2.2. Existing Sequence Optimization Benchmarks

With these criteria in mind, we next categorize existing types
of biophysical sequence optimization benchmarks. See Ap-
pendix A for further discussion of related work. While a
robust benchmark should include a panel of test functions
of varying types, we argue that closed-form functions are
particularly useful to include and often overlooked.

Database lookups — database lookup test functions are
constructed at substantial cost by exhaustively enumerating
a search space and associating each element with a measure-
ment of some objective, sometimes requiring large interdis-
ciplinary teams of experimentalists and computationalists
(Barrera et al., 2016; Wu et al., 2016; Ogden et al., 2019;
Mason et al., 2021; Chinery et al., 2024). Unfortunately this
approach necessarily restricts the search space, and the cor-
rectness of the database itself cannot be completely verified
without repeating the entire experiment.

Empirical function approximation — empirical function
approximation benchmarks are related to database lookups
since they start from an (incomplete) database of inputs and
corresponding measurements. This type of test function
returns an estimate from a statistical model trained to ap-
proximate the function that produced the available data (e.g.
hidden Markov model sequence likelihoods, protein struc-
ture models, or “deep fitness landscapes”) (Sarkisyan et al.,
2016; Rao et al., 2019; Angermueller et al., 2020; Wang
et al., 2022; Verkuil et al., 2022; Xu et al., 2022; Notin et al.,
2023; Hie et al., 2024). Unfortunately empirical approxima-
tion is only reliable locally around points in the underlying
dataset, and it is difficult to characterize exactly over which
region of the search space the estimates can be trusted. As
a result, blindly optimizing empirical function approxima-
tors often reveals an abundance of spurious optima that are
easy to find but not reflective of the solutions we want for
the actual problem (Tripp et al., 2021; Stanton et al., 2022;
Gruver et al., 2024).

Physics-based simulations — simulations are a very popu-
lar style of benchmark, but current options all violate differ-
ent requirements of a good benchmark. Most simulations
are slow to evaluate, many are difficult to install, some re-
quire expert knowledge to run correctly, and yet still in the
end simulations can admit trivial solutions that score well
but are not actually desirable. For example, docking mod-
els have been proposed as test functions (Cieplinski et al.,
2023), but they do not have well-characterized solutions
and are easy to fit with deep networks (Graff et al., 2021).
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Fig. 2: (a) Arginine and glutamate are complementary amino acids because they have a strong salt bridge interaction. (b - c)
Antibodies that bind to a specific region of a target protein (the epitope) have many therapeutic and diagnostic uses. (d)
Antibodies with different sequences can bind to the same epitope on two homologous proteins because they are structurally
similar, which manifests as shared motifs in sequence space. Structures shown have RCSB codes 3gbn and 4fqi.

The primary appeal of simulations is a resemblance to real
applications, however the resemblance can be superficial.
∆∆G simulations (Schymkowitz et al., 2005; Chaudhury
et al., 2010) do not have a low barrier to entry, and yet the
correlation of ∆∆G with real objectives (e.g., experimental
binding affinity) is generally modest or unproven (Kellogg
et al., 2011; Barlow et al., 2018; Hummer et al., 2023).
Despite their difficulties, simulation benchmarks can be an
important source of validation for mature methods for which
we can justify the effort. However the limitations of sim-
ulations makes them especially unsuited for rapid method
development, leading us to explore other alternatives.

Closed-form test functions — closed-form functions have
many appealing characteristics, including low cost, arbitrar-
ily large search spaces, and amenability to analysis, how-
ever existing test functions for sequence optimization are
so easy to solve that they are mostly used to catch major
bugs. Simply put, designing a functioning protein is much,
much harder than maximizing the count of beta sheet motifs
(just one of many types of locally folded secondary struc-
ture elements in proteins) (Gligorijević et al., 2021; Gruver
et al., 2024). The beta sheet test function highlights the
main difficulty of defining closed-form benchmarks, namely
not oversimplifying the problem to the point the benchmark
becomes too detached from real problems.

3. Proposed Benchmark
Now we introduce Ehrlich functions, a closed-form family
of test functions for sequence optimization benchmarking.
In addition to defining the function class itself, we also
explain which specific aspects of real biophysical sequence
design problems are captured by this type of function, using
antibody affinity maturation as a running example.

3.1. Uniform random draws uninformative

One of the first challenges encountered in black-box bio-
physical sequence optimization is a constraint on which se-

quences can be successfully measured. For example, chemi-
cal assays first require the reagents to be synthesized, and
protein assays require the reagents be expressed by some
expression system such as mammalian ovary cells. Popu-
lar algorithms like Bayesian optimization often assume the
search space can be queried uniformly at random to learn the
general shape of the function. If protein sequences are gen-
erated by stringing together uniformly random amino acids
and sent to the lab, we learn nothing about the objective
function (e.g. binding affinity) because the “proteins” do
not fold into a well-defined structure and cannot be purified.

Unfortunately constraints like protein expression cannot
currently be characterized as a closed-form constraint on the
sequence, we only have examples of expressing proteins in
databases like UniRef (Suzek et al., 2007). We simplify and
abstract this feature of biophysical sequences with the notion
of a feasible set of sequences F with non-zero probability
under a discrete Markov process (DMP) with transition
matrix A ∈ Rv

+ × Rv
+,

F = {x ∈ X | A[xℓ−1, xℓ] > 0 ∀ℓ ≥ 2}, (1)

where X = VL is the set of all sequences of length L ≥ 2
that can be encoded with states V , with |V| = v. Note that if
sequences are drawn uniformly at random, then assuming at
least one entry of A is zero (i.e. at least one state transition
is infeasible), we have

P[x /∈ F ] ≥
L//2∑
ℓ=1

(
1− 1

v2

)ℓ
1

v2
,

= 1−
(
1− 1

v2

)L//2

,

where // denotes integer division. If we choose L large
enough we will see uniform random draws fall outside F
with high probability. See Appendix B.1 for further details
on our procedure to generate random ergodic transition
matrices with infeasible transitions.
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Fig. 3: Illustration of an epistatic second-order interaction.

3.2. Non-additive, position-dependent sensitivity to
perturbation

By construction, any sequence optimization problem can be
written as minimizing the minimum edit distance to some
set of optimal solutions X ∗. In the antibody engineering
context X ∗ is not a singleton but a set of solutions that all
satisfy a notion of complementarity with the target antigen
of interest (more specifically the target epitope). As a simple
example, if the epitope has an arginine residue, then placing
a glutamate residue on the antibody creates the possibility
of a salt bridge (see Fig. 2). Furthermore, the formation
of a salt bridge in this example requires that we place the
glutamate at specific positions on the antibody sequence
that are in contact with the epitope (i.e. on the paratope).
One of the reasons there are many possible solutions to the
antibody-antigen binding problem is the absolute position
of an amino acid in sequence space can vary as long as the
resulting structure is more or less the same (i.e. there are
two or more structural homologs). The functional effect of
changes to the antibody sequence are not only non-additive,
but can exhibit state-dependent higher-order interactions, a
phenomenon known as epistasis (Fig. 3).

We abstract these features of biophysical sequence optimiza-
tion by specifying the objective as the satisfaction of a col-
lection of c spaced motifs {(m(1), s(1)), . . . , (m(c), s(c))},
where m(i) ∈ Vk and s(i) ∈ Zk

+ for some k ≤ L//c. Given
a sequence x, we can represent the degree to which x satis-
fies a particular (m(i), s(i)) with q ∈ [1, k] bits of precision

as follows:

hq(x,m
(i), s(i)) = (2)

max
ℓ<L

 k∑
j=1

1{x
ℓ+s

(i)
j

= m
(i)
j }

 //

(
k

q

)
/q.

The quantization parameter q allows us to control the spar-
sity of the objective signal (note that q must evenly divide
k). Taking q = k corresponds to a dense signal which
increments whenever one additional element of the motif
is satisfied. Taking q = 1 corresponds to a sparse signal
that only increments when the whole motif is satisfied. For
example, if k = 2 and q = 2 then Eq. (2) can assume the
values 0, 0.5, or 1. If k = 2 and q = 1 then Eq. (2) can only
assume the values 0 or 1.

We are now ready to define an Ehrlich function f : VL →
(−∞, 1], which quantifies with precision q the degree to
which x simultaneously satifies all (m(i), s(i)) if x is feasi-
ble, and is negative infinity otherwise.

f(x) =

{∏c
i=1 hq(x,m

(i), s(i)) if x ∈ F
−∞ else

. (3)

Note that we must take some care to ensure that 1) the
spaced motifs are jointly satisfiable (i.e. are not mutually
exclusive) and 2) at least one feasible solution under the
DMP constraint in Eq. (1) attains the global optimal value
of 1. See Appendix B.2 for details.

4. Experiments
In the last section we argued that Ehrlich functions cap-
ture important aspects of real-world sequence optimization
problems, including antibody engineering. Now we show
empirically that Ehrlich functions are indeed non-trivial to
optimize, and demonstrate the type of experiments than we
can conduct when the test function is inexpensive to evalu-
ate. First we will introduce some key metrics we will use
to assess optimizer performance, then we will show how
different choices of Ehrlich function parameters can be ma-
nipulated to make test function more or less difficult for a
fixed optimization algorithm to solve. Finally we will fix
the Ehrlich function parameters and vary the optimizer hy-
perparameters to better understand the optimizer behavior.

4.1. Optimization Routine

We use a simple, robust genetic algorithm (GA) baseline
(Back, 1996) to solve the black-box optimization problem
maxx∈X f(x). See Appendix C.2 for pseudo-code and
implementation details. We find that the following hyper-
parameters are fairly robust across different test function
instances: n = 106, α = 10−4, pm = 1/L, and pr = 1/L.
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Fig. 4: Here we show how the difficulty of the test problem can be controlled by varying Ehrlich function parameters,
keeping the optimizer fixed to a robust GA baseline. Starting from a fixed set of reference parameters we vary each parameter
individually. For this optimizer, the problem difficulty depends most strongly on the quantization parameter q.

4.2. Optimizer Evaluation Metrics

In all plots we show the 10%, 50%, and 90% quantiles of
the reported performance metrics, estimated from 32 trials.

Regret — let x∗ be a global maximizer of f that attains
the optimal value f∗, and let x̂∗

t be an estimated maximizer
at time t ∈ [1, T ] obtained by running some optimization
algorithm for T iterations. The simple and cumulative regret
of the algorithm are respectively defined as follows:

rt = f∗ − f(x̂∗
t ), Rt =

t∑
j=1

rj .

Feasibility — genetic algorithms maintain a population of
solutions (i.e. particles) Xpop which are randomly recom-
bined, mutated, and evaluated with the test function. In
addition to regret, another important metric is the feasible
fraction of Xpop under the DMP constraint at iteration t,

1

|X (t)
pop|

∑
x∈X (t)

pop

1{x ∈ F}.

4.3. Controlling Optimization Problem Difficulty

In Fig. 4 we demonstrate the effect of varying the Ehrlich
test function parameters, keeping the optimizer hyperparam-
eters fixed. We start from a base configuration L = 256,
c = 4, k = 4, q = k and vary one parameter at a time.
Increasing c and k predictably increase the difficulty of the
problem, as more function evaluations are required to find
a global maximizer (i.e. a solution with 0 simple regret).
Varying the sequence length only makes the problem more
difficult up to a point, after which the problem becomes eas-
ier. We conjecture that medium length sequences are most
difficult because there are many positions the optimizer can
change, but the sequence is short enough that motif clashes
are still difficult to avoid.

In the rightmost panel we fix k = 8 and vary q, which
strongly affects the performance of the genetic optimizer.

Performance significantly degrades between q = 8 and
q = 4, and totally collapses when q = 2. We know if pm =
pr = 1/L then in expectation the optimizer only searches
1-2 edits away from current solutions, which means the
optimizer cannot search deep enough to find any solutions
that would cause the objective value to increase, since for
k = 8 and q = 2 we know those solutions could be up to 4
very specific edits away. In the next section we verify this
intuition by optimizing the algorithm hyperparameters for
this particular test instance and inspecting the results.

4.4. Understanding and Improving Optimization
Algorithms

We fix the parameters of the Ehrlich test function to L =
256, c = 4, k = 8, and q = 4 and use the default Weights &
Biases Bayesian optimization agent to search for better opti-
mizer hyperparameters, minimizing cumulative regret. We
evaluate 512 different hyperparameter configurations, con-
suming over 200B function evaluations in total. In Fig. 5 we
compare the best hyperparameters found by this search (A:
α = 2× 10−4, pm = 1.44× 10−2, and pr = 8.4× 10−3)
to our starting values (B: α = 10−4, pm = 0.0039, and
pr = 0.0039). Configuration A outperformed B on most
random seeds, but some seeds show essentially no improve-
ment. More aggressive mutations and recombination rates
increase the depth of the search at each iteration, however
they also drastically decrease the number of feasible solu-
tions considered, wasting most of the function evaluations.

5. Discussion
In this work we have introduced a new closed-form family
of test functions designed to capture key features of diffi-
cult biophysical sequence optimization problems. We have
shown that these test functions can be used to define easy
problems for debugging and hard problems that require mil-
lions of function evaluations to solve with a simple baseline.
There are additional characteristics of real problems that
could easily be incorporated, such as competing objectives,
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Fig. 5: Here we show the effect of tuning the GA algorithm hyperparameters to optimize a fixed Ehrlich function with k = 8
and q = 4. Configuration A is more aggressive than B, with higher values for pm and pr. The optimal hyperparameter
setting must trade off the depth of the search per iteration with the risk of violating the feasibility constraint.

observation noise, and environmental confounders, which
we have chosen to omit because they do not fundamentally
change the search problem.

In future work we intend to use this benchmark to thor-
oughly evaluate generative ML algorithms end to end for
sequence optimization. Intuitively we can expect that this
benchmark will help illuminate one of the key benefits of
generative search, namely the ability to search deeper into
sequence space in each iteration without sacrificing feasi-
bility, a key advantage over uniform random search. We
also hope our contribution will encourage other researchers
to consider how they might distill their application into
simple abstracted problems that can be easily studied by
the broader research community, building more common
ground of rigorous, easily reproducible empirical results.
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Gligorijević, V., Berenberg, D., Ra, S., Watkins, A., Kelow,
S., Cho, K., and Bonneau, R. Function-guided protein
design by deep manifold sampling. bioRxiv, pp. 2021–12,
2021.

Graff, D. E., Shakhnovich, E. I., and Coley, C. W. Accelerat-
ing high-throughput virtual screening through molecular
pool-based active learning. Chemical science, 12(22):
7866–7881, 2021.

Gruver, N., Stanton, S., Frey, N., Rudner, T. G., Hotzel, I.,
Lafrance-Vanasse, J., Rajpal, A., Cho, K., and Wilson,
A. G. Protein design with guided discrete diffusion. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hie, B. L., Shanker, V. R., Xu, D., Bruun, T. U., Weiden-
bacher, P. A., Tang, S., Wu, W., Pak, J. E., and Kim,
P. S. Efficient evolution of human antibodies from gen-
eral protein language models. Nature Biotechnology, 42
(2):275–283, 2024.

Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec,
J., Coley, C. W., Xiao, C., Sun, J., and Zitnik, M. Ther-
apeutics data commons: Machine learning datasets and
tasks for drug discovery and development. arXiv preprint
arXiv:2102.09548, 2021.

Hummer, A. M., Schneider, C., Chinery, L., and Deane,
C. M. Investigating the volume and diversity of data
needed for generalizable antibody-antigen δδg prediction.
bioRxiv, pp. 2023–05, 2023.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
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A. Extended Related Work
There are a few notable efforts to improve the state of se-
quence optimization benchmarks for biophysical domains.

Small molecules — in the small molecule domain, Gua-
caMol (Brown et al., 2019) and the Therapeutics Data Com-
mons (TDC) (Huang et al., 2021) include simulation-based
test functions for small molecule generation/optimization
benchmarking. As we discussed in the main text, simulation-
based test functions have significant barriers to entry ranging
from computational resource requirements to software engi-
neering concerns such as dependency management. If these
simulations were in fact well-characterized, high-fidelity
proxies for real molecule design objectives then these objec-
tions could be resolved, however at the time of writing it is
difficult to determine 1) when a simulated task is “solved”
and 2) what constraints are required to prevent ML meth-
ods from “hacking” the simulation and 3) to what degree
simulation scores correspond at all to actual experimental
feedback. Indeed, one could argue that if real molecule
design objectives were sufficiently well-understood to char-
acterize via simulation then the most effective approach to
ML-augmented molecule design would be to simply approx-
imate and accelerate those simulations rather than directly
model experimental feedback.

Large molecules — in the large molecule domain, Prote-
inGym (Notin et al., 2023) assembles a collection of protein
datasets and model baselines but is primarily targeted at
evaluating offline generalization with a fixed dataset. The
models from this benchmark could be used as “deep fitness
landscapes” (i.e. an empirical function approximation op-
timization benchmark), with the corresponding limitations
we discussed in the main text. Our work is most closely re-
lated to the FLEXS benchmarking suite (Sinai et al., 2020).2

To our knowledge, FLEXS is the most comprehensive at-
tempt to date to assemble a robust suite of benchmarks for
large molecule sequence optimization, with benchmarks for
DNA, RNA, and protein sequences from an array of com-
binatorially complete database lookups, empirical function
approximators, and physics simulators. Closed-form test
functions are notably absent, hence our contribution can
be seen as augmenting existing benchmark suites with test
functions that are geometrically similar to real sequence
optimization problems and also easy to install and cheap to
evaluate.

Models of Sequence Fitness in Theoretical Biology —

Geneticists have proposed theoretical models of biophysi-
cal sequence fitness and the geometry induced by random
mutation and selection pressure, notably the mutational land-
scape model from Gillespie (2004), with more recent vari-
ants including the Rough Mt. Fuji model from Neidhart

2https://github.com/samsinai/FLEXS

et al. (2014). These models are interesting objects of study,
however those models assume mutational effects are either
independent or additive, which disagrees with the correlated
non-additive structure we observe empirically. These mod-
els also do not account for “fitness cliffs” (i.e. expression
constraints that are highly sensitive to local perturbation and
determine whether function is possible to observe experi-
mentally). We implemented the Rough Mt. Fuji model as an
additional test function and verified that a genetic algorithm
can easily optimize it. Ehrlich functions can be seen as a
constrained, non-additive mutational fitness landscape, and
may be interesting objects for further theoretical analysis.

B. Constructing Ehrlich Functions
One major advantage of procedurally generating specific
instances of Ehrlich functions is we can generate as many
distinct instances of this test problem as we like. In fact it
creates the possibility of “train” functions for algorithm de-
velopment and hyperparameter tuning and “test” functions
for evaluation simply by varying the random seed. However,
defining a random instance that is nevertheless provably
solvable takes some care in the problem setup, which we
now explain.

B.1. Constructing the Transition Matrix

Here we describe an algorithm to procedurally generate
random ergodic transition matrices A with infeasible transi-
tions. A finite Markov chain is ergodic if it is aperiodic and
irreducible (since every irreducible finite Markov chain is
positive recurrent). Irreducibility means every state can be
reached with non-zero probability from every other state by
some sequence of transitions with non-zero probability. We
will ensure aperiodicity and irreducibility by requiring the
zero entries of A to have a banded structure. For intuition,
consider the transition matrix

0.4 0.3 0 0.3
0.3 0.4 0.3 0
0 0.3 0.4 0.3
0.3 0 0.3 0.4


Recalling that v is the number of states, we can see that
every state x communicates with every other state x′ by
the sequence x → (x + 1) mod v → · · · → (x′ − 1)
mod v → x′. We also see that the chain is aperiodic since
every state x has a non-zero chance of being repeated.

To make things a little more interesting we will shuffle
(i.e. permute) the rows of a banded structured matrix (with
bands that wrap around), but ensure that the diagonal entries
are still non-zero. Note that permuting the bands does not
break irreducibility because valid paths between states can
be found by applying the same permutation action on valid
paths from the unpermuted matrix. We will also choose the

https://github.com/samsinai/FLEXS
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non-zero values randomly, using the shuffled banded matrix
only as a binary mask B as follows:

(banded matrix)
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 −−−→shuffle


1 0 1 1
1 1 1 0
1 1 0 1
0 1 1 1

 ,

−−−−→
diag=1


1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1

 = B.

Now we draw the transition matrix starting with a random
matrix with IID random normal entries, softmaxing with
temperature τ > 0 to make the rows sum to 1, applying the
mask B, and renormalizing the rows by dividing by the sum
of the columns after masking.

Z =

(randn matrix)
+1.41 +1.67 −1.52 +0.63
−0.35 +0.45 +0.86 −0.49
+1.42 −1.31 −0.31 +1.43
−0.02 +1.55 −0.26 +1.13

 ,

−−−−→
softmax


0.36 0.46 0.02 0.16
0.13 0.30 0.45 0.12
0.44 0.03 0.08 0.45
0.10 0.49 0.08 0.33

 ,

−−→
⊙B


0.36 0 0.02 0.16
0.13 0.30 0.45 0
0.44 0.03 0.08 0.45
0 0.49 0.08 0.33

 ,

−−−→
norm


0.66 0 0.04 0.30
0.15 0.34 0.51 0
0.44 0.03 0.08 0.45
0 0.55 0.09 0.36

 = A.

We can also verify that A is ergodic numerically by checking
the Perron-Frobenius condition,

(Am)ij > 0, ∀i, j, (4)

where m = (v − 1)2 + 1, A1 = A, and Ab = Ab−1A for
all b > 1. In our example, if v = 4 then m = 10 and we
verify on a computer that

A10 =


0.33 0.23 0.17 0.27
0.33 0.23 0.17 0.27
0.33 0.23 0.17 0.27
0.33 0.23 0.17 0.27



B.2. Constructing Jointly Satisfiable Spaced Motifs

Here we describe how to procedurally generate c spaced
motifs of length k such that the existence of a optimal so-
lution x∗ with length L with non-zero probability under a
transition matrix A generated by the procedure in Appendix
B.1 can be verified by construction. If we simply sampled
motifs completely at random from Vk we cannot be sure that
a solution attaining a global optimal value of 1 is actually
feasible under the DMP constraint.

First we require that L ≥ c× k. Next to define the motifs,
we draw a single sequence of length c× k from the DMP
defined by A (the first element can be chosen arbitrarily).
Then we chunk the sequence into c segments of length k,
which defines the motif elements m(i). This ensures that any
motif elements immediately next to each other are feasible,
and ensures that one motif can transition to the next if they
are placed side by side.

Next we draw random offset vectors s(i). The intuition
here is we want to ensure that an optimal solution can be
constructed by placing the spaced motifs end-to-end. If we
fix c× k positions to satisfy the motifs, there are L− c× k
“slack” positions that we evenly distribute (in expectation)
between the spaces between the elements of each motif. We
set the first element of every spacing vector s(i)1 to 0, then
set the remaining elements to the partial sums of a random
draw from a discrete simplex as follows:

w(i) ∼ U
(
{w ∈ Rk−1 |

∑
wi = 1}

)
. (5)

s
(i)
j+1 = s

(i)
j + 1 + ⌊w(i)

j × (L− c× k)//c⌋. (6)

Finally, recall that in Appendix B.1 we ensured that self-
transitions x → x always have non-zero probability. This
fact allows us to construct a feasible solution that attains the
optimal value by filling in the spaces in the motifs with the
previous motif elements.

As a concrete example, suppose L = 8, c = 2, and k = 2
(hence smax = 3) and we draw the following set of spaced
motifs: [

0 3 1 2
]
→

[
0 3
1 2

]
=

[
m(1)

m(2)

]
, (7)[

s(1)

s(2)

]
=

[
0 3
0 3

]
. (8)

(9)

An optimal solution can then be constructed as follows:

x∗ =
[
0 0 0 3 1 1 1 2

]
Note that this solution is only used to verify that the problem
can be solved. In practice solutions found by optimizers
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like a genetic algorithm will look different. Additionally
if L≫ c× k then the spaced motifs can often be feasibly
interleaved without clashes.

B.3. Defining The Initial Solution

Optimizer performance is generally quite sensitive to the
choice of initial solution. In our experiments we fixed the
initial solution to a single sequence of length L drawn from
the DMP.
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C. Implementation Details
C.1. Ehrlich Test Function Parameters

In addition to the parameters discussed in the main text,
such as the sequence length L and motif length k, there
are a few additional parameters discussed in Appendix B
that must be chosen. These parameters were fixed to the
following values in all experiments

• Transition matrix bandwidth: (v × 2)//5

• Transition matrix softmax temperature τ : 0.5

C.2. Genetic Algorithm Details

Algorithm 1 Genetic algorithm pseudo-code

Input: initial solution x̂∗, f̂∗, mutation probability pm, re-
combination probability pr, survival quantile α, # particles
n
Xpop ← mutate({x̂∗}, pm, n)
for t = 1, . . . , T do

v← f(Xpop)

if max vi > f̂∗ then
x̂∗ ← argmax vi
f̂∗ ← max vi

end
τ ← quantile(v, 1− α)
Xtop ← {x ∈ Xpop | f(x) ≥ τ }
n′ ← n− |Xtop|
Xpop ← Xtop ∪ recombine(Xtop, pr, n

′)
Xpop ← mutate(Xpop, pm, 1)

end
Returns: Estimated maximizer x̂∗, f̂∗

In Algorithms 1, 2, and 3, we provide pseudo-code for our
genetic algorithm baseline, which we implement in pure
PyTorch (Paszke et al., 2019), using the torch.optim
API.

The GA baseline has only four hyperparameters, the total
number of particles n, the survival quantile α ∈ (2/n, 1),
the mutation probability pm, and the recombination prob-
ability pr. Generally speaking for best performance one
should use the largest n possible, and tune α (which deter-
mines the greediness of the optimizer), pm, and pr. However
in practice it is not at all realistic to tune optimizer hyperpa-
rameters on the test problem, since there is usually little or
no budget for tuning.

We find that for n = 106 (set by maxing out the mem-
ory of an NVIDIA A100 GPU in 32-bit precision), setting
α = 10−4, pm = 1/L, and pr = 1/L generally works
well unless the objective function is “sparse”, meaning that

Algorithm 2 mutate function
Input: initial set X , mutation probability pm, number of
mutants n.
X ′ = ∅
for x ∈ X do

for i = 1, . . . , n do
mask = rand like(x) < pm
sub = randint(0, v − 1,len(x))
x′ = where(mask,sub,x)
X ′ = X ′ ∪ {x′}

end
end
Returns: X ′

Algorithm 3 recombine function
Input: initial set X , recombine probability pr, number of
recombinations n.
X ′ = ∅
P(1) = draw w replacement(X , n)
P(2) = draw w replacement(X , n)
for i = 1, . . . , n do

x(1) = P(1)
i

x(2) = P(2)
i

mask = rand like(x(1)) < pr
x′ = where(mask,x(1),x(2))
X ′ = X ′ ∪ {x′}

end
Returns: X ′

local perturbations of 1-2 edits usually cannot improve the
objective value. More sparse objectives requires trading off
the depth of the search in sequence space with the risk of
violating the constraints, as we saw in our experiments in
Section 4.4.
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Listing 1 Minimal optimizer benchmark code example

import torch
from holo.test_functions import closed_form

from holo.optim import DiscreteEvolution

test_fn = closed_form.Ehrlich(negate=True)
params = [

torch.nn.Parameter(

test_fn.initial_solution().float(),

)

]

optimizer = DiscreteEvolution(

params,

vocab=list(range(test_fn.num_states)),

mutation_prob=1/test_fn.dim,

recombine_prob=1/test_fn.dim,

num_particles=1024,

survival_quantile=0.01

)

for _ in range(4):

loss = optimizer.step(

lambda x: test_fn(x[0])

)

C.3. Code

Our code is available here: https://github.com/
prescient-design/holo-bench. Listing 1 con-
tains a minimal usage example.

We adopt the BoTorch API (Balandat et al., 2020) for the
test functions, and the PyTorch optim API (Paszke et al.,
2019) for the genetic algorithm. In addition to providing
high levels of parallelization without the need for CPU multi-
processing, we anticipate that our use of familiar APIs will
make the baseline easier for the open-source community to
use and draw clearer connections between continuous and
discrete optimization algorithms.

https://github.com/prescient-design/holo-bench
https://github.com/prescient-design/holo-bench

