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Abstract

Electric vehicle (EV) travel planning is a complex task that
involves planning the routes and the charging sessions for
EVs while optimizing travel duration and cost. We show the
applicability of the multi-objective EV travel planning algo-
rithm with practically usable solution times on country-sized5

road graphs with a large number of charging stations and a
realistic EV model. The approach is based on multi-objective
A* search enhanced by Contraction hierarchies, optimal di-
mensionality reduction, and sub-optimal ϵ-relaxation tech-
niques. We performed an extensive empirical evaluation on10

182 000 problem instances showing the impact of various al-
gorithm settings on real-world map of Bavaria and Germany
with more than 12 000 charging stations. The results show
the proposed approach is the first one capable of performing
such a genuine multi-objective optimization on realistically15

large country-scale problem instances that can achieve prac-
tically usable planning times in order of seconds with only a
minor loss of solution quality. The achieved speed-up varies
from∼ 11× for optimal solution to more than 250× for sub-
optimal solution compared to vanilla multi-objective A*.20

Introduction
Multi-objective electric vehicle (EV) route planning ad-
dresses the rising problem of long-range trip planning
greatly exceeding the vehicle range. Many achievements
have been recently presented in this field; however, exist-25

ing algorithms do not fully address realistic concerns, such
as the trade-off between cost and time, large-scale road map,
or a large amount of diverse charging stations altogether.

State of the art approaches and algorithms mostly rely
on single-objective optimization (e.g., Baum et al. 2019a)30

and are therefore technically limited to always considering
only a single objective when finding optimal EV travel plan.
Well-established approaches to multi-objective optimiza-
tion, such as meta-heuristics, can find the Pareto-set only
on very small city-sized road networks. Consequently, these35

approaches are not suitable in practice (e.g., Ben Abbes,
Rejeb, and Baati 2022). Very recent work of (Schoenberg
and Dressler 2023) achieved good planning times while con-
sidering multiple simpler objectives (not including cost) on
country-scale road networks, but it prohibits planning with40

a realistic number of charging stations.
Multi-objective EV travel planning is a complex problem

(NP-hard but not even in NP) for two main reasons that re-

quire both domain-independent and domain-specific tech-
niques to overcome: 45

1. Multi-objective optimization: The problem involves mul-
tiple, inherently conflicting objectives (travel time and
cost), which inflates the dimensionality of the search
space and extends the solution concept from a single so-
lution (route with charging stops) into a Pareto-set of op- 50

timal solutions, each with different trade-off of duration
and cost).

2. Integration of charging planning with route planning:
The EV travel planning problem is actually composed
of two sub-problems - planning the route in the road net- 55

work and choosing where and how long to charge. These
two problems are closely interconnected, and therefore,
we need to solve them holistically to obtain the best so-
lutions.

The multi-objective EV route planning problem we ad- 60

dress in this paper is further complicated but, at the same
time, more applicable in practice by our use of realistic
battery charging (non-linear function), large road networks
(country-sized), and different prices and speeds of charging
at different charging stations. 65

In this paper, we show the applicability of multi-objective
EV travel planning algorithm based on A* search enhanced
by Contraction hierarchies, optimal dimensionality reduc-
tion, and sub-optimal ϵ-relaxation techniques with practi-
cally applicable solution times on country-sized road graphs 70

with large number of charging stations and realistic EV
model. To demonstrate the practical usefulness of our so-
lution, we have set up a prototype application1, see Figure 1
for an example solution provided by the application. We per-
formed an extensive empirical evaluation of the proposed 75

algorithms on real-world country-scale data with more than
12 000 charging stations involving 182 000 calculated prob-
lem instances requiring more than 250 000 CPU hours.

Importantly, our proposed approach is very versatile and
can be adapted to other optimization objectives and more 80

complex scenarios, such as time-dependent travel times and
charging prices, and therefore presents a generic approach to

1http://its.fel.cvut.cz/ev-travel-planner. Note that the applica-
tion does not use precise travel time data (they are expensive) and
is for the purpose of potential capabilities and usage demonstration
only.



Figure 1: Screenshot of the EV travel planning prototype
application. The planning request (left) results in a set of
Pareto-optimal plans (middle) and shown on the map (right).

solving a wide range of practical multi-objective EV travel
planning problems. We believe our contribution will provide
a solid basis for the future exploration of multi-objective ap-85

proaches to EV travel planning while keeping the practical
applicability on large-scale realistic scenarios.

Related Work
EV travel planning has been first studied with regards to the
most energy-efficient routes (Artmeier et al. 2010; Sachen-90

bacher et al. 2011). Schönfelder, Leucker, and Walther
(2014) extend the problem of finding the most energy-
efficient route by searching not only for a single solution
for a given initial state of charge (SoC) but rather for the
consumption profile function that computes the optimal con-95

sumption and route for any possible initial SoC. Storandt
and Funke (2012) added to consideration en-route charging,
although simplified to always charge to the full battery ca-
pacity. Baum et al. (2019b) overcome the need for this sim-
plification by exploiting consumption profiles to find the op-100

timal charging options from the virtually infinite number of
possibilities due to the continuous nature. All of the above
considered only the energy as the optimization objective.
Baum et al. (2019a) and Storandt (2012) considered the SoC
only as a constraint while optimizing travel time.105

Several existing works also extended the problem to mul-
tiple objectives. Common approaches for solving multi-
objective problems, such as genetic algorithms (Ben Abbes,
Rejeb, and Baati 2022) or particle swarm optimization (Sid-
diqi, Shiraishi, and Sait 2011), were applied to EV travel110

planning. Although the authors consider the cost of charg-
ing, the methods were evaluated only on very small road net-
works with only hundreds of nodes. Realistic road graphs re-
quired in EV route planning have millions of nodes. As such,
these techniques do not currently scale to realistic problem115

instances. Problems on realistically large road graphs are
solved by algorithm proposed by Schoenberg and Dressler
(2023). The algorithm based on multi-objective A* uses
multi-objective adoption of contraction hierarchies (CH)

(Geisberger et al. 2008), that were also used by Baum et al. 120

(2019a). However, they do not consider cost and one of
the pre-processing techniques they propose is not suitable
for a realistic number of charging stations (12000 in our
case). CH were also studied for a bi-objective case by Zhang
et al. (2023) but without battery constraints required by 125

EV travel planning. Another potentially applicable method
based on pre-processing is presented by Delling and Wagner
(2009). The work proposes a multi-objective adaptation of
SHARC algorithm (Bauer and Delling 2009) that combines
highway hierarchies (Sanders and Schultes 2006) and arc- 130

flags (Möhring et al. 2007) techniques. However, the arc-flag
technique is unsuitable for planning with charging stops.

Multi-Objective EV Travel Planning Problem
We model the EV travel planning problem as a multi-
objective constrained shortest path problem with SoC con- 135

straints and charging stops with two optimization objectives:
time and cost. Formally, we define the EV travel planning
problem as a tuple P = ⟨W,M,R⟩ where W is the global
static EV travel planning environment, M is the EV model,
and R is the EV travel planning request that is specific for 140

each EV user and their needs. The solution to an EV travel
planning problem is the Pareto-set of EV travel plans Π.

EV Travel Planning Environment (termed planning en-
vironment further on) represents the road network and charg-
ing stations, i.e., the travel planning components that are in- 145

dependent of the specific details of individual planning re-
quests.

The planning environment is a tuple W = ⟨G,Q⟩, where
G = ⟨V,E, τ, d⟩ is a weighted oriented graph representing
the underlying road network, with V being the set of nodes 150

representing intersections and E the set of edges represent-
ing road segments. Each edge e = (u, v) ∈ E; u, v ∈ V ,
has a defined traversal duration τ(e) ∈ R+ and a length
d(e) ∈ R+. 2

The set of charging stationsQ defines the locations where 155

EVs can be charged. Each charging station q ∈ Q is de-
fined as a tuple q = ⟨vq, Pq, γq⟩, where vq ∈ V is the node
where the charging station is located (VQ = {vq|q ∈ Q}),
Pq ∈ R+ is the maximum power the charging station pro-
vides (charging rate) and γq : R+×R+ → R+

0 is the charg- 160

ing cost function that defines how much any charging ses-
sion at the station q costs based on the duration t ∈ R+

of the session and the amount of energy j ∈ R+ charged
during the session. The charging cost function can formal-
ize various types of charging policies, including all of those 165

popular today, such as fixed price per charging session, price
per minute of charging, price per kWh of charged energy, or
their combination.

EV Model M = ⟨bmax, β, ϕ, ψ⟩ consists of the maximum
battery capacity bmax ∈ R+ of the EV, cost per km of driv- 170

ing ψ ∈ R+
0 , and two functions defining how the EV con-

sumes the energy stored in its battery and how the battery is
recharged.

2Non-essential properties are omitted in the problem definition
(e.g., elevation profile required only for the consumption function)



The energy consumption function β : E × [0, bmax] →
[0, bmax] ∪ {−∞} defines the SoC after traversing edge175

e ∈ E while depending on starting SoC. The energy con-
sumption function can take into account various properties
of the edge, such as the length or elevation profile. The con-
sumption can be negative due to recuperation. −∞ means
that the starting SoC is too low to traverse the edge.180

The charging function ϕ : [0, bmax] × (0, bmax] × R+ →
R+ defines the time needed to complete a charging session
specified by the starting SoC bstart ∈ [0, bmax], the final SoC
bend ∈ (0, bmax] and the maximum available power P ∈ R+.

The cost per km of driving ψ ∈ R+
0 defines EV wear-and-185

tear costs per driven distance.

EV Travel Planning Request defines the user’s specific
request for EV travel. The request is defined as a tuple R =
⟨vinit, vgoal, binit⟩, where vinit ∈ V is the origin, vgoal ∈ V is
the destination, and binit ∈ [0, bmax] is the initial SoC.190

EV Travel Plan is a sequence of interleaving states and
actions π = (s0, a0, s1, a1, . . . , ak−1, sk).

A state si fully describes the status of the EV and the
value of plan objectives at the i-th step of the plan and action
ai describes the transition between the states si and si+1.195

We define the state s as a tuple ⟨v, t, c, b⟩ where v ∈ V is an
EV location node, t ∈ R+

0 is the time the state is reached,
c ∈ R+

0 is the charging and driving cost spent to reach the
state, and b ∈ [0, bmax] is the SoC with which the state is
reached (higher value means more energy in the battery).200

An EV travel plan consists of two types of actions:
• move(e) that moves the vehicle across the edge e =
(v, u) ∈ E:

⟨v, t, c, b⟩ → ⟨u, t+ τ(e), c+ ψd(e), β(e, b)⟩

• charge(q, j) that charges the vehicle at the charging sta-
tion q ∈ Q with energy j ∈ R+:205

⟨vq, t, c, b⟩ → ⟨vq, t+ tq,j , c+ γq(tq,j , j), b+ j⟩
where tq,j = ϕ(b, b+ j, Pq)

In order for the EV travel plan π =
(s0, a0, s1, a1, . . . , ak−1, sk) to be valid, the state of
charge must not drop below zero or get above the maximum
battery capacity bmax: 0 ≤ bi ≤ bmax,∀i ∈ 0, . . . , k.210

We say that an EV travel plan π with k+1 states is feasible
for a planning request R = ⟨vinit, vgoal, binit⟩ if it is valid,
v0 = vinit, b0 = binit and vk = vgoal. We also define the plan
time as tπ = tk and the plan cost as cπ = ck.

An EV travel planning algorithm solving problem P =215

⟨W,M,R⟩ should produce EV travel plans feasible plans
for planning request R optimal with regard to two objectives
– time and cost. More specifically, the goal of the algorithm
is to minimize tπ and cπ .

Since there is more than one optimization objective, a to-220

tal ordering with regard to tπ and cπ does not usually exist.
However, a partial ordering exists according to weak domi-
nance:
Definition 1 Let π, π′ be two valid EV travel plans. We say
that π weakly dominates π′ (denoted as π ⪯ π′) iff tπ ≤ tπ′225

and cπ ≤ cπ′ .

Further, we refer to the weak dominance only as the dom-
inance for simplicity.

Solution to the multi-objective EV travel planning prob-
lem P is a set of feasible Pareto-optimal (non-dominated) 230

EV travel plans Π. The travel plans are optimal regarding
the travel time tπ and the cost cπ minimization objectives.

EV Travel Planning Algorithm with CH
To solve the above-outlined problem, we designed an algo-
rithm based on multi-objective A* (Mandow, De la Cruz 235

et al. 2005) enhanced by well-known pre-processing tech-
nique Contraction hierarchies (CH) (Geisberger et al. 2008)
that reduces the complexity of the route planning part of the
problem similarly to Baum et al. (2019a). To further improve
the query planning time, we also used optimal dimensional- 240

ity reduction technique (Pulido, Mandow, and Pérez-de-la
Cruz 2015) and sub-optimal ϵ-relaxation technique (Batista
et al. 2011).

Contraction hierarchies that speed up the route planning
part of the problem work in two phases. The pre-processing 245

phase assigns a level lvl(v) to each node v ∈ V and cal-
culates shortcuts ECH that speed up the query phase. The
query phase then performs a search on the graph enhanced
with the shortcuts GCH = ⟨V,E ∪ ECH⟩ limited only to up-
down paths. An up-down path is a path where the level of 250

the nodes is non-decreasing at the first part of the path and
decreasing at the rest of the path. If a Pareto-optimal path
exists between any pair of two nodes in the original graph
G, it is guaranteed that an up-down path with the exact same
costs also exists in the contracted graph GCH (Geisberger 255

et al. (2012) reformulated for multiple objectives).

Pre-Processing Phase
In the pre-processing phase, the nodes of graph G are con-
tracted one by one. When a node v ∈ V is contracted, for
each pair of incoming edge (u, v) ∈ E and outgoing edge 260

(v, w) ∈ E, a shortcut e′ = (u,w) is calculated by their con-
catenation. The contracted node and its adjacent edges are
then removed from the graph. Afterwards, for each shortcut,
a witness search is started. A witness search determines if
there exists a witness path that dominates the shortcut. If a 265

witness path exists, the shortcut is not needed and, therefore,
discarded since there exists a better/dominating path. To im-
prove the performance, we calculate the witness search at
once for all shortcuts starting at the same node u by a ver-
sion of multi-objective Dijkstra’s algorithm very similar to 270

the algorithm described in Algorithm 1 without heuristics.
We also use hop limit that bounds the search only to the
vicinity of the origin (in our case, to paths consisting of 20
edges at maximum). Although it leads to the addition of un-
necessary edges, it does not violate optimality. 275

The next vertex to contract is determined based on a pri-
ority composed of three node metrics proposed by Geis-
berger et al. (2012) - Edge Difference (ED), Cost of Queries
(CQ) and Deleted Neighbors (DN). The resulting priority is
64ED+ CQ+ DN as used by Baum et al. (2019a). The pri- 280

ority is calculated once for all nodes at the beginning of the
pre-processing and stored in a priority queue. Furthermore,



we implemented a lazy update of the priority. When a node
with minimal priority is polled from the queue, its priority
is recalculated, and if the priority is higher than the second285

smallest priority, the node is reinserted into the queue. The
process is repeated until the priority of a node remains the
smallest after its update. Additionally, we update the prior-
ity of all neighbors of a contracted node. This can easily be
done in parallel since they do not change anything until the290

queue is updated, which can be done in a serial manner after
all priorities are calculated. The resulting contraction order
defines the level of the contracted nodes.

It is not required for all nodes to be contracted. It is com-
monly used in more complex scenarios (e.g., Baum et al.295

2019a) to, for example, lower the number of created short-
cuts that, if there are too many of them, could negatively
impact the query performance. In our case, we also need it
to allow travelling between charging stations required by the
need for charging. The set of uncontracted nodes V ◦ ⊂ V is300

called the core and contains at least all nodes with charging
stations VQ ⊆ V ◦. All nodes in the core have assigned equal
level ∀v ∈ V ◦ : lvl(v) = |V | − |V ◦|+ 1.

An edge (u, v) is an upward edge iff lvl(u) ≤ lvl(v)
and downward edge iff lvl(u) > lvl(v). An upward graph305

G↑ = ⟨V,E↑⟩ is a graph where all edges E↑ ⊂ E∪ECH are
upward while downward graph G↓ contains only downward
edges E↓.

The edges e ∈ E in the original graphG of the problem P
have defined three properties - traversal duration τ(e), dis-310

tance d(e), and energy consumption function β(e, b) which
is part of EV model M. Duration and distance of a short-
cut created by a concatenation of two edges are trivial. The
concatenation of two consumption functions are done by us-
ing consumption/SoC profile first introduced by Schönfelder,315

Leucker, and Walther (2014) and used by (Baum et al.
2019a). The SoC profile is a special case of consumption
function and can be represented by only three values per
edge (more details in Baum et al. 2019a). It has also defined
dominance relation and therefore allows to easily check320

dominance of shortcuts and found paths by, e.g., witness
search.

Query Phase
CH queries are commonly solved by bidirectional search al-
gorithms. However, our problem is too complex for easy325

adoption of bidirectional search, mostly because of the time-
dependent nature of charging (dependence on starting SoC)
that makes backward search that includes charging very
complicated. Therefore, we split the query phase into two
sub-phases similarly to (Baum et al. 2019a).330

First, we run backward search starting at the destination
vgoal on the downward contracted graph G↓ that calculates
temporary shortcuts Edest from the uncontracted core (that
contains all charging stations) to the destination. This search
is based on multi-objective Dijkstra’s algorithm very simi-335

lar to the algorithm used by the witness search in the pre-
processing phase. Since the SoC is unknown at the time of
the calculation, the algorithm calculates the SoC profile in-
stead of just the consumption values.

The second sub-phase runs the multi-objective A*- 340

based (Mandow, De la Cruz et al. 2005) algorithm described
below (pseudocode in Algorithm 1) on the upward graphG↑

with the temporary shortcuts Edest from the first sub-phase.

States and Their Dominance To describe the query algo-
rithm, we use the same definition of states s = ⟨v, t, c, b⟩ as 345

presented in the problem definition3. As mentioned above,
a state can also be viewed as a simpler representation of a
(partial) EV travel plan since it fully describes all essential
attributes that are necessary for the planning algorithm to
decide about the subsequent actions. We say that a plan is 350

partial if its last location is not the destination.
In this section, we formally extend the concept of EV

travel plan dominance (Definition 1) to states while main-
taining full compatibility. The algorithm requires two ver-
sions of the dominance that are used in different algorithm 355

steps. π-dominance in Definition 2 is a straightforward ad-
justment of Definition 1 to the context of states leveraging
the information provided by the time and cost heuristics ht
and hc (described below). The algorithm uses π-dominance
when it checks the explored states against the already found 360

solution plans.

Definition 2 Let s = ⟨v, t, c, b⟩, s′ = ⟨v′, t′, c′, b′⟩ be two
states. We say that s π-dominates s′ (denoted as s ⪯π s

′) iff
the following conditions are satisfied:

t ≤ t′ + ht(s
′)

c ≤ c′ + hc(s
′)

However, π-dominance does not work if both states rep- 365

resent partial plans (not at the destination yet). For example,
a state representing a partial plan that is slower but has a
higher SoC could lead to a faster plan at the destination be-
cause it could have enough energy to reach the destination
without any additional stop at a charging station. Therefore, 370

the algorithm requires the following dominance extended
by the SoC attribute and without the heuristic estimates to
check the states representing partial plans (details how it is
used in the section below).

Definition 3 Let s = ⟨v, t, c, b⟩, s′ = ⟨v′, t′, c′, b′⟩ be two 375

states at the same node (v = v′). We say that s dominates
s′ (denoted as s ⪯ s′) iff all the following conditions are
satisfied:

t ≤ t′

c ≤ c′

b ≥ b′

At last, we introduce the dominance between a state and
a set of non-dominated states. 380

Definition 4 Let s be a state and S be a set of mutually non-
dominated states according to the dominance relation ⪯. We
say that S dominates s (denoted as S ⪯ s) iff

∃s′ ∈ S : s′ ⪯ s

3Although the reconstruction of the final plans requires addi-
tional state attributes (e.g., a reference to the preceding state and
charging details), we omitted them for a clearer presentation.



Algorithm 1: Pseudocode of the query phase of the
multi-objective EV travel planning algorithm.

Input: planning environmentW = ⟨⟨V,E↑ ∪ Edest⟩, Q⟩
EV modelM = ⟨bmax, β, ϕ, ψ⟩
planning requestR = ⟨vinit, vgoal, binit⟩

Output: set of Pareto-optimal travel plans Π
1 Sop

v : set of opened states for each node v ∈ V
2 Scl

v : set of visited/closed states for each node v ∈ V
3 Sop =

⋃
v∈V S

op
v : set of all opened states

4 Π: set of solution states
5 Sop

v ← ∅, ∀v ∈ V
6 Scl

v ← ∅, ∀v ∈ V
7 Π← ∅
8 Sop

vinit ← {⟨vinit, 0, 0, binit⟩}
9 while Sop ̸= ∅ do

10 smin ← extractMin(Sop)
11 if Π ⪯π smin then continue;
12 if inDestination(smin) then
13 Π← Π ∪ {smin}
14 else
15 Scl

vmin
← Scl

vmin
∪ {smin}

16 S ← expand(smin)
17 forall s = ⟨v, t, c, b⟩ ∈ S do
18 if b < 0 then continue ;
19 if (Sop

v ∪ Scl
v ) ⪯ s ∨Π ⪯π s then

20 continue
21 else
22 Sop

v ← Sop
v \ {s′ ∈ Sop

v |s′ ⪯ s}
23 Sop

v ← Sop
v ∪ {s}

24 return Π

Query Algorithm As mentioned above, the optimal algo-
rithm is based on a multi-objective version of A* algorithm385

guiding the search by two consistent heuristics. We designed
remaining travel time heuristic ht and minimum remaining
charging and driving cost heuristic hc.

To further reduce planning times without sacrificing opti-
mality, we employed a technique that significantly reduces390

the computational complexity of the dominance checks,
which are the greatest bottleneck of the proposed algorithm.
The dimensionality reduction technique described below al-
lows to significantly reduce the size of the Pareto-sets main-
tained during the search.395

The pseudocode of the optimal algorithm is given in Al-
gorithm 1. The algorithm uses four basic types of data struc-
tures:

• Pareto-set of visited/closed states Scl
v for each graph node

v ∈ V that contains all states that were already visited400

and expanded by the algorithm.4

• Pareto-set of opened states Sop
v for each graph node v ∈

V that holds the states that were generated but not yet
visited by the algorithm.4

• Solution set Π with the states representing plans that405

reached the destination.

4The algorithm maintains open and closed sets for all nodes to
contain only non-dominated states.

• Set of all opened states Sop =
⋃

v∈V S
op
v , that can also

be viewed as a priority queue for the states to be visited.
In each iteration, a lexicographically minimal state

smin is extracted from the set of all opened states Sop 410

(extractMin on line 10). The states s = ⟨v, t, c, b⟩ are
sorted first by their estimated time t + ht(s), then by cost
c+ hc(s) and then by SoC b.

Each extracted state is first checked for whether it is
not π-dominated by any of the already found solution 415

states (line 11) and whether it is not a solution itself
(inDestination on line 12). If neither is true, the state
is added to the corresponding visited/closed set Scl

v (line 15)
and expanded (expand on line 16).

Let smin = ⟨v, t, c, b⟩ be the extracted state. The state is 420

then expanded (function expand) using the following ac-
tions corresponding to the actions described in the EV travel
plan definition:

(i) move For each outgoing edge e = (v, u) ∈ E↑ ∪ Edest,
a new state 425

s = ⟨u, t+ τ(e), c+ ψd(e), β(e, b)⟩

is generated.
(ii) charge For each charging station q = ⟨vq, Pq, γq⟩ such

that vq = v and for each amount of energy j from a pre-
defined set of target charging levels (for example, charg-
ing to 80%, 90%, 100% of battery capacity) a new state 430

s = ⟨vq, t+ tq, c+ γq(tq, j), b+ j⟩

where tq = ϕ(b, b+ j, Pq) is generated. The predefined
set of target charging levels can be configured arbitrarily,
but it should take into account the shape of the charg-
ing function ϕ. For example, if the function is piecewise
linear, it should include the breakpoints. 435

We use the discretization of the target charging levels to
significantly reduce the number of newly generated states.5

All the newly generated states are first checked if they vi-
olate the SoC constraint. If they do, they are pruned immedi-
ately (line 18). Then, they are checked if they are not domi- 440

nated by any of the states in their corresponding Sop
v and Scl

v
Pareto-sets (line 19). Additionally, they are also checked if
they are not π-dominated by any of the already found solu-
tion states in Π. If they are not dominated, they are added to
the opened set Sop

v while removing all states in the opened 445

set dominated by the newly generated one (lines 22-23).

Remaining Travel Time Heuristic This heuristic relaxes
the battery constraints and estimates the minimum time
needed to reach the destination regardless of the battery con-
straints. It calculates a lower bound on the travel time to the 450

destination.
5In theory, the optimal solution of the EV travel planning prob-

lem would require the ability to consider any arbitrary target charg-
ing level. In practice, however, the user can only choose from a
discrete set of target charging levels when charging the vehicle and
the discretization of the target charging level can be considered as
part of the definition of the EV travel planning problem. For this
reason, and to simplify the exposition, we refer to EV travel plan-
ning as optimal as long as it is optimal with regards also to the set
of predefined charging levels.



Let s = ⟨v, t, c, b⟩ be a state, then the heuristic can be ex-
pressed as ht(s) = t(v, vgoal), where t(v, vgoal) is the mini-
mum travel time needed to drive from v to vgoal.

We pre-calculate the heuristic using a backward single-455

objective Dijkstra’s algorithm.

Minimum Remaining Charging and Driving Cost
Heuristic Since the cost objective comprises two compo-
nents - the charging cost and the driving cost - the heuristic
is based on the combination of the lower bounds of both in-460

dividual components. The calculation of the minimum cost
spent on charging is based on the most energy-efficient route
to the destination, while the minimum driving cost is based
on the length of the shortest route.

Let s = ⟨v, t, c, b⟩ be a state, then the heuristic can be465

expressed as hc(s) = bmincmin + ψd(v, vgoal), where bmin

is the minimum amount of energy that has to be charged to
reach the destination (details below), cmin is the minimum
possible price per amount of energy achievable with regards
to the cost functions of all charging stations and the charging470

function of the EV, and where d(v, vgoal) is the length of
the shortest path from v to vgoal. The minimum amount of
energy that has to be charged to reach the destination bmin =
β(v, vgoal)− b is the amount of energy required by the most
energy efficient route from v to vgoal deducted by the current475

SoC b.
We pre-calculate the heuristic by a backward label-

correcting version (due to the negative consumption) of
single-objective Dijkstra’s algorithm.

Dimensionality Reduction The greatest bottleneck of our480

proposed algorithm is the computational complexity of dom-
inance checks that is directly dependent on the size of the
Pareto-sets managed by the algorithm (Sop

v , S
cl
v , and Π). The

size of the Pareto-sets can grow exponentially with the size
of the problem (in particular, with the size of the road graph485

and the number of charging stations) and the number of com-
ponents on which the dominance is based, making the dom-
inance checks very expensive.

Fortunately, we can leverage a technique proposed
by Pulido, Mandow, and Pérez-de-la Cruz (2015) that re-490

duces the dimension of some of the Pareto-sets without loss
of optimality. If we use the lexicographical ordering for the
minimal label smin extraction (line 10 in Algorithm 1) and
if the heuristic estimates ht and hc are consistent, we can re-
move the first attribute (in our case the time) from the domi-495

nance checks against the solution set Π (line 11) and against
the closed set Scl

v (line 19). Unfortunately, it does not apply
to the opened set Sop

v .

ϵ-relaxation Since the optimal version of our EV travel
planning algorithm is too slow (see the experiments), we500

employed ϵ-dominance relaxation (Batista et al. 2011) of
dominance conditions to achieve practically usable planning
times. For example, ⪯ dominance from Definition 3 is ex-
tended to:

Definition 5 Let s = ⟨v, t, c, b⟩, s′ = ⟨v′, t′, c′, b′⟩ be two505

states and ϵt, ϵc, ϵb ∈ [0, 1] be relaxation ratios. We say that
s ϵ-dominates s′ (denoted as s ⪯ϵ s

′) iff the following con-

ditions are satisfied:

ϵt · t ≤ t′

ϵc · c ≤ c′

b ≥ ϵb · b′

All variants of dominance defined above can be adapted
in a similar fashion. This technique is compatible with both 510

heuristics and also with dimensionality reduction.
This relaxation speeds up the algorithm by pruning more

states during the search; however, it does not maintain opti-
mality. Therefore, the ratios need to be selected carefully to
achieve a good trade-off between the reduction of the plan- 515

ning time and the loss of solution quality.

Experiment Problem Instances
The EV planning environments used for the evaluation were
constructed from real-world data sets for Germany. Ger-
many has a large road network with many charging stations 520

and good accessibility of data. Besides the large-scale Ger-
many area, we also performed the evaluation on a smaller-
scale area of the German state of Bavaria.

In the road network graphs created for the experiments,
we also included so-called residential roads (unlike, for ex- 525

ample, Schoenberg and Dressler (2023)) that are important
only for the first and last miles. However, they significantly
increase the size of the graph and, therefore, increase the
complexity of the problem.

We extracted road graphs for both Germany and Bavaria 530

from OpenStreetMaps6 and then mapped real-world charg-
ing stations7 to them. The elevation data were gathered from
SRTM.8

In total, we experimented with four planning environ-
ments. Two Germany environments with 12633 charging 535

stations and 4M nodes or 1.5M nodes without residential
roads. The Bavaria environments comprises 2225 charging
stations and a road graph with 800k nodes (resp. 300k).

Each charging station in the dataset is described by its
location (GPS), the maximum power (kW), and the pricing 540

policy. The pricing policies are of three types: energy-based,
duration-based, and fixed. The pricing policy of a charging
station can also be a combination of multiple types of poli-
cies. They also vary a lot between charging stations, imple-
menting the so-called location-of-use pricing. 545

We model the energy consumption of the EV with a linear
model that takes into account the length and the elevation
profile of the roads similarly to Eisner, Funke, and Storandt
(2011). We set the model to approx. correspond to 250 km
range with 40 kWh battery capacity. We used a piecewise 550

linear charging function similar to Baum et al. (2019b) that
expresses well the decreasing charging speed when the state
of charge approaches the maximum battery capacity while
maintaining simplicity. The charging speed gradually de-
creases starting at 80% battery capacity with other break- 555

points at 85%, 90%, and 95%. The charging speed is 6.6×

6https://download.geofabrik.de/europe/germany.html
7https://chargemap.com
8https://www2.jpl.nasa.gov/srtm/



slower while above 95% than below 80%. The cost per km
is set to 3 cents per km.

We generated the planning requests as 1000 random
origin-destination pairs, uniformly sampled from road graph560

nodes, for both non-residential graphs and then mapped the
OD pairs to the full graphs to correspond to the same loca-
tions. The origin-destination pairs were generated so that the
direct distance was at least 250km (Germany avg. 409km,
max. 773km; Bavaria avg. 280km, max. 399km). The initial565

SoC was set to 100% of the battery capacity.
The algorithm is configured to generate new states

for charge action to the following target charging levels
based mostly on the used charging function breakpoints:
{10%, 20%, 30%, . . . , 80%, 85%, 90%, 95%, 100%}.570

Experiment Results
We implemented our EV travel planning algorithms in Java
17. We ran the experiments on the OpenJDK 64-Bit Server
VM Temurin-17.0.4 JVM on a computing cluster node with
64 cores/128 threads 3.1GHz (2 x AMD EPYC 7543). We575

ran multiple instances simultaneously while limiting the re-
sources to 8 threads and 31GB of RAM per query and to
24 threads and 450GB of RAM per CH pre-processing. Due
to the high complexity of the problem, we also introduced a
time limit for the query phase to 2 hours.580

Pre-Processing Evaluation
First, we evaluate the impact of the CH core size (# un-
contracted nodes). We evaluate the query performance on
the fastest optimal configuration of the algorithm, i.e. with
both heuristic and dimensionality reduction, but without585

ϵ−relaxation.
In Table 1, we can see that CH speeds-up queries signif-

icantly. On the smaller Bavaria area where it is capable to
solve nearly all instances, the speed-up is more than 6×. On
Germany, we need to look first at the number of solved in-590

stances. On the non-residential graph, the algorithm with-
out CH solves 82% of the instances (compared to 98% with
CH), and on the full graph it solves only 42% of instances.
Therefore, direct comparison avg. query time does not have
much value. If we compare only the instances that both al-595

gorithms can solve, the speed-up on these simpler instances
is ∼ 11× on full Germany (∼ 7× on non-residential Ger-
many). We can assume that more complex instances benefit
more from CH.

We can also see that too great or too small core size neg-600

atively impacts the performance. The best optimal query
performance can be seen around core size of 75k for full
Germany and 40k for non-residential Germany (7k and 5k
on Bavaria). Although the average query time on full Ger-
many with core size 75k is slightly slower than the rest, it605

is capable of solving more instances within the time limit.
The additional solved instances, which are the more com-
plex ones, probably cause the greater average query time.
Besides longer pre-processing time, it appears that too small
core also leads to a dramatically increased number of created610

shortcuts that slow down the query algorithm by exploring
too many unnecessary shortcuts.

|V ◦| tpr [min] |ECH| # solved tavg [s]

B
av

ar
ia N
on

-r
es

id
en

tia
l 3k 11.3 746k 1000 11.1

5k 2.3 651k 1000 9.6
7k 1.4 615k 1000 10.3
10k 1.0 583k 1000 11.1
15k 0.8 547k 1000 13.5
301k - 0 1000 73.9

Fu
ll

3k 383.6 2.2M 997 136.5
5k 33.5 1.9M 999 113.6
7k 13.0 1.8M 1000 118.8
10k 7.0 1.7M 999 115.9
15k 4.5 1.6M 999 126.9
811k - 0 964 700.9

G
er

m
an

y N
on

-r
es

id
en

tia
l 20k 52.8 3.6M 980 570.6

30k 20.5 3.3M 981 542.4
40k 10.9 3.1M 982 549.0
50k 9.6 3.0M 980 554.6
75k 7.8 2.8M 972 565.2
100k 7.0 2.7M 971 622.9
1.5M - 0 826 1105.1

Fu
ll

20k 1216.6 10.5M 745 1242.6
30k 224.0 9.4M 772 1258.9
40k 92.2 8.9M 776 1202.8
50k 68.3 8.6M 774 1164.4
75k 46.6 8.2M 782 1221.5
100k 42.6 7.9M 766 1261.8
4.1M - 0 422 1976.5

Table 1: Experiment results of the pre-processing phase.
|V ◦| - core size, tpr - pre-processing time, |ECH| - num-
ber of created shortcuts, # solved - number of successfully
solved queries, tavg - average query planning time

The main reason why the optimal queries are much slower
on the more dense full road graphs is the dramatically in-
creased number of Pareto-optimal solution plans. In the case 615

of Germany, the average Pareto-set size increases from 700
to 1400 (300 to 800 on Bavaria).

Query Evaluation
We also evaluate the impact of the query phase configura-
tions. We have tried various values of ϵ coefficients. For sim- 620

plicity, we present here only the configurations where all ϵ
coefficients are set to the same value (ϵt = ϵc = ϵb).

For each planning environment, we first tried the CH pre-
processing, which appears to have the best performance with
the optimal query algorithm. However, the CH best for opti- 625

mal planning are not always the best with ϵ-relaxation. For
example, on full Germany, the best optimal CH with core
size 75k has an average query time of 9.4s with ϵ = 0.9,
while CH with core size 50k avg. query time is 8.6 (the dif-
ference in max. times is greater - 25.1s vs. 20.7s). 630

Therefore, in Table 2, you can see the results on the CH
with the fastest avg. query times with ϵ-relaxation - 40k for
Non-residential Germany, 50k for full Germany, 5k for non-
residential Bavaria and 7k for full Bavaria.

We can see that, surprisingly, the fastest avg. query times 635

on full Germany are not achieved with the most aggressive
relaxation with ϵ = 0.9 but with ϵ = 0.93. The avg. query



ϵ tavg [s] tmax [s] Avg. |Π| Avg. err
B

av
ar

ia N
on

-r
es

id
en

tia
l - 9.6 406.7 294 0.00

0.995 0.7 3.4 32 0.02
0.990 0.5 2.2 26 0.02
0.980 0.5 1.5 21 0.04
0.960 0.6 1.1 17 0.06
0.930 0.4 0.7 12 0.08
0.900 0.4 0.6 10 0.10

Fu
ll

- 118.8 5810.1 796 0.00
0.995 2.0 9.0 45 0.02
0.990 1.8 6.0 33 0.03
0.980 1.7 3.8 25 0.05
0.960 1.5 2.4 19 0.08
0.930 1.3 2.5 12 0.11
0.900 1.3 1.8 10 0.13

G
er

m
an

y N
on

-r
es

id
en

tia
l - 549.0 6809.7 713 0.00

0.995 11.7 219.5 48 0.01
0.990 7.5 120.7 37 0.02
0.980 5.3 64.2 29 0.03
0.960 3.9 28.8 22 0.04
0.930 3.2 13.2 15 0.06
0.900 2.6 8.6 13 0.08

Fu
ll

- 1164.4 6710.4 1422 0.00
0.995 24.1 395.2 62 0.02
0.990 16.6 231.7 46 0.02
0.980 13.0 114.7 34 0.04
0.960 10.2 63.3 25 0.06
0.930 8.2 26.0 16 0.08
0.900 8.6 20.7 13 0.10

Table 2: Experiment results of the query phase. ϵ - coef-
ficient used for the ϵ-relaxation speed-up, tavg - average
query planning time, tmax - maximum query planning time,
Avg. |Π| - average solution Pareto-set size, Avg. err - aver-
age quality loss compared to optimal baseline on instances
where both algorithms find the solution

time difference is relatively small (8.2s vs. 8.6s), and the
standard deviation for ϵ = 0.93 is 2.5, which, compared to
other measured datasets where the deviation is below 2, in-640

dicates that this is probably caused by a noise in this dataset.
On full Germany, we can reach very good avg. planning
times (below 10s), and if we exclude the residential roads
(that could be dealt with by post-processing), we can get
even to avg. planning times of 2.6s while the maximum is645

below 10s which is very good for real-world applications.
Because the ϵ-relaxation technique does not preserve op-

timality, we need to measure also its impact on the solu-
tion quality loss. We measure the solution quality loss as the
closeness of the resulting set of EV travel plans to the opti-650

mal Pareto-set of plans as proposed by Hrnčı́ř et al. (2016):
d(Π∗,Π) = 1

|Π∗|
∑

π∗∈Π∗ minπ∈Π d(π
∗, π). The average

distance of the Pareto-set Π from the full Pareto-set Π∗ mea-
sures the average Euclidean distance in the objective space
(in our case time and money cost) normalized to [0, 1] range.655

For each objective, the minimum value from all plans Π∪Π∗

is mapped to 0, and correspondingly, the maximum value
is mapped to 1. For illustration, if the optimality loss was
7% equally distributed among the objectives, the distance

d(π∗, π) would be approx. 0.1. 660

More aggressive pruning leads to smaller solution Pareto-
sets (avg. 13 plans with ϵ = 0.9). While the sub-optimal
Pareto-sets are dramatically smaller the solution quality loss
is very reasonable (below 0.1), which means that the diver-
sity of the Pareto-optimal set of plans is covered well by the 665

subset obtained with ϵ-relaxation. We can also see that the
inclusion of the residential roads does not significantly in-
crease the diversity of the solution since the average sizes of
the relaxed solutions that maintain good diversity are very
similar with or without residential roads. 670

Figure 2 illustrates the trade-off between the achieved
speed-up and the solution quality loss (and also the sur-
prising behavior described above). We can see that on full
Germany a speed-up of ∼150× (on non-residential even
∼170×) can be achieved with only a minor solution qual- 675

ity loss of 0.08.
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Figure 2: The trade-off between average solution quality loss
and average speed-up achieved by ϵ-relaxation. The ϵ coef-
ficients are displayed directly in the plot.

Conclusions

In this paper, we show the applicability of multi-objective
EV travel planning algorithm based on A* search enhanced
by Contraction hierarchies, optimal dimensionality reduc- 680

tion, and sub-optimal ϵ-relaxation techniques on realistic
country-sized road graphs with a large number of charging
stations and realistic EV model.

Our extensive evaluation demonstrated the great impact
of CH speeding up the optimal algorithm on the most com- 685

plex scenarios more than ∼ 11×. Together with the sub-
optimal relaxation, with which the additional speed-up is
∼ 150×, the algorithm solves instances on Germany with
residential roads below 9 seconds on average while main-
taining a very good solution quality and providing 13 plans 690

on average. On the less dense Germany graph without res-
idential roads, even the maximum time is below 9 seconds.
The total combined speed-up is more than 250× (on the 422
instances the A* algorithm without CH can solve). These re-
sults prove that the proposed approach is the first one capa- 695

ble of performing such a genuine multi-objective optimiza-
tion on realistically large country-scale problem instances
that can achieve practically usable planning times in order
of seconds with only a minor loss of solution quality.
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