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Anomaly Detection for Unknown Substance and
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Abstract001

Autonomous systems and environmental monitor-002

ing require reliable detection of unknown hazardous003

materials to prevent traffic accidents and ecological004

damage resulting from chemical spills, fuel leaks, and005

agricultural runoff. Traditional detection methods,006

such as gas chromatography, pose contamination007

risks and cause delays, while laser-based techniques008

rely on prior localization of potential hotspots. This009

paper addresses the automatic detection of unknown010

materials (e.g., fertilizer, sand, soil) and surface011

anomalies (e.g., cracks, holes) without requiring la-012

beled anomaly examples during training. We employ013

unsupervised and self-supervised deep learning meth-014

ods to learn normal patterns and identify deviations.015

Specifically, we evaluate four models: convolutional016

and vision transformer-based (ViT) autoencoders,017

and two self-supervised methods, SimCLR and Bar-018

low Twins. Experiments conducted on multispectral019

road images from the German Aerospace Center020

and the MVTec hazelnut dataset demonstrate that021

the ViT-based autoencoder outperforms its convo-022

lutional counterpart, while Barlow Twins achieves023

superior anomaly localization compared to SimCLR.024

These results indicate that reconstruction-based025

ViTs and redundancy-reducing self-supervision are026

promising strategies for anomaly detection in road027

safety and environmental protection.028

1 Introduction029

The World Health Organization (WHO) reported030

in 2016 [1] that 13.7 million deaths (24% of global031

deaths) and 23% of the global disease burden were032

linked to modifiable environmental factors such as033

chemicals, waste, and pollution. Exposure to se-034

lected chemicals alone accounted for an estimated035

1.6 million deaths, although evidence on specific036

chemical risks is still emerging.037

In Europe, 342,000 contaminated sites were identi-038

fied in 2014 (5.7 per 10,000 inhabitants), with waste039

disposal (municipal and industrial) being the main040

source of soil and groundwater contamination [2].041

∗Corresponding Author.

In Africa, the WHO estimates that one-third of the 042

disease burden is attributable to environmental risk 043

factors, with hazardous waste ranking among the 044

top three concerns. Accordingly, the detection of 045

hazardous materials is not only a technical challenge 046

but also a critical public safety and environmental 047

health priority. 048

Traditional approaches include visual inspection, 049

chemical sensors, and basic computer vision tech- 050

niques, but are limited by high costs, subjectivity, 051

and restricted detection capabilities across differ- 052

ent spectral ranges. Recent deep learning-based 053

anomaly detection methods [3] hold promise for 054

reducing reliance on manual inspection. However, 055

detecting unknown materials and surface anomalies 056

without labeled anomalies remains challenging, since 057

existing approaches often rely on expensive inspec- 058

tion and assumptions with poor generalization. 059

Recently, Schütt et al. [4] proposed an unsuper- 060

vised approach leveraging a convolutional autoen- 061

coder, demonstrating promising results. We extend 062

this line of research by investigating both unsuper- 063

vised and self-supervised anomaly detection, testing 064

contrastive methods on RGB data to enable future 065

evaluation on multispectral data. 066

The proposed framework evaluated four distinct 067

deep learning approaches for anomaly detection, as 068

illustrated in Figure 1. Unsupervised methods uti- 069

lize autoencoder architectures with ResNet [5] and 070

Vision Transformer (ViT) [6] encoders, while two 071

self-supervised approaches implement SimCLR [7] 072

and Barlow Twins [8] techniques. The framework 073

is designed to handle diverse input modalities and 074

generate binary anomaly maps that localize and 075

segment anomalous regions. We first benchmark 076

the four approaches on the well-established MVTec 077

AD Hazelnut (RGB) dataset [9]. We select the 078

best-performing approach and evaluate it on the 079

DLR multispectral road dataset (8 VIS/NIR spec- 080

tral bands + 1 panchromatic) to detect unknown 081

surface materials (e.g., fertilizer, sand, soil).1 082

In summary, our contributions are threefold: (i) 083

To the best of our knowledge, we present the first 084

comparision of Vision Transformer-based and CNN- 085

based autoencoders with contrastive self-supervised 086

1VIS: visible spectrum; NIR: near-infrared spectrum.
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Figure 1. Overview of the proposed anomaly detection framework comparing four deep learning methods across
two evaluation datasets.

learning methods (SimCLR and Barlow Twins) for087

surface defect detection; (ii) we show that ViT-based088

autoencoder outperforms a ResNet-based autoen-089

coder and a convolutional autoencoder in this task;090

and (iii) we demonstrate that Barlow Twins sur-091

passes SimCLR for anomaly localization, showing092

particular promise in computationally constrained093

settings or when training data is limited. Our work094

is supported by experimental results on both mul-095

tispectral road images and the MVTec dataset. It096

underlines the potential of such detection methods097

to prevent accidents, reduce exposure to toxic sub-098

stances, and mitigate long-term contamination risks.099

The code will be released upon acceptance.100

2 Related Work101

Anomaly detection (AD) in Computer Vision.102

It is a subtask of the generalized Out-of-Distribution103

(OoD) detection problem [10], aiming to identify un-104

usual patterns that deviate from normal data at105

test time. Such deviations may result from covari-106

ate or semantic shifts.2 Unlike OoD detection, AD107

does not require distinguishing between different108

in-distribution (ID) classes, treating them as a sin-109

gle group. AD has broad applications, including110

adversarial defence and industrial inspection.111

Anomaly Detection Approaches. Multiple112

methods have been proposed for anomaly detec-113

tion [10], among which we focus on reconstruc-114

tion-based and distance-based approaches. In115

reconstruction-based methods, an encoder–decoder116

architecture is trained on in-distribution (ID) sam-117

ples to reconstruct them accurately; deviations in118

reconstruction error indicate potential anomalies.119

In distance-based methods, anomalous samples are120

expected to lie far from the centroids of ID clusters121

2In this paper, we focus on semantic shift, defined by
Ruff et al. [11] as images containing objects from non-normal
classes.

in the feature space. By thresholding a distance 122

metric, such as Mahalanobis or Euclidean distance, 123

anomalies can be identified. 124

Autoencoders (AEs) [3] are widely used in 125

reconstruction-based approaches, compressing in- 126

puts into a low-dimensional latent space and then 127

reconstructing them from this representation. For 128

distance-based methods, Hojjati et al. [12] pro- 129

vide a comprehensive overview of the role of self- 130

supervision in anomaly detection. One important 131

family is contrastive learning, where the model is 132

trained to bring similar samples closer and push dis- 133

similar ones apart, thus regularizing the embedding 134

space to prevent anomalous embeddings from col- 135

lapsing onto ID embeddings. This principle, referred 136

to by Postels et al. [13] as informative representa- 137

tion regularization, enhances separability between 138

ID and anomalous data. 139

Multispectral Imaging. It captures infor- 140

mation across spectral bands beyond the visible 141

range [14]. Different materials exhibit unique spec- 142

tral signatures that are often invisible in standard 143

RGB images, making multispectral imaging valu- 144

able for material identification and anomaly detec- 145

tion [15]. Chen et al. [16] demonstrated this poten- 146

tial by combining near-infrared hyperspectral imag- 147

ing with convolutional neural networks for standoff 148

material identification. In agriculture, Strothmann 149

et al. [17] used convolutional autoencoders to detect 150

anomalous grapevine berries from multispectral data. 151

More recently, Wang et al. [18] introduced attention 152

mechanisms for multispectral anomaly detection, en- 153

abling models to focus on the most discriminative 154

spectral bands for each task. Schütt et al. [4] demon- 155

strate that combining convolutional Autoencoders 156

with multispectral imaging enhances anomaly detec- 157

tion performance; specifically, they show that using 158

NIR as input outperforms models relying solely on 159

the RGB spectrum. This finding motivates our own 160

experiments in a similar direction. 161

Hazardous Material Detection. Existing 162
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methods for detecting hazardous materials often163

rely on RGB or multispectral data [19–22], framing164

the task as object detection—either targeting the165

materials themselves or their hazard symbols. A key166

limitation of these approaches is their dependence167

on labeled datasets and the closed-world assump-168

tion, where no distributional or semantic shifts are169

expected.170

To the best of our knowledge, this work is the first171

to explore ViT and ResNet-based Autoencoders for172

unknown substance detection, reframing the task173

in an open-world setting. This shift enables more174

robust and reliable deep learning approaches capable175

of handling unseen variations in real-world scenarios.176

3 Methodology177

In this section, we describe the multispectral data178

capture system in (Sec. 3.1),(Sec. 3.2) present179

our unsupervised and self-supervised learning ap-180

proaches and detail the anomaly detection and post-181

processing pipeline in (Sec. 3.3).182

3.1 Multispectral Data Capture183

Data collection employs a vehicle-mounted sensor ar-184

ray system that is equipped with two CMS series mul-185

tispectral cameras from SILIOS Technologies [23].186

The cameras capture spectral ranges: visible light187

(VIS, 430-700 nm) and near-infrared (NIR, 650-930188

nm). Each camera utilizes CMOS CS-mount tech-189

nology with 5.3 µm pixel pitch, operating at up to190

60 fps with 10-bit ADC precision.191

Figure 2. Vehicle-mounted sensor array system show-
ing the complete setup including LUCS, radar, GPS,
alignment laser, brightness sensor, and two multispec-
tral cameras (VIS and NIR) used for data collection.

The complete sensor configuration is illustrated192

in Figure 2, which shows the integrated vehicle-193

mounted system comprising the two multispectral194

cameras (VIS and NIR), laser-based UAV classifica-195

tion system (LUCS [24]), radar sensors, alignment196

laser, Global Positioning System (GPS) module,197

and brightness sensor. This comprehensive setup198

enables the capture of multispectral imagery along- 199

side environmental and positioning data for anomaly 200

detection applications. 201

The camera’s array-type optical interface orga- 202

nizes pixels into 3×3 macropixels, each containing 203

eight distinct spectral filters (VIS or NIR) plus one 204

panchromatic channel. We developed a controlled ex- 205

perimental protocol using visually and spectroscopi- 206

cally similar but environmentally safe placeholder 207

substances. These serve as proxies for hazardous 208

substances in our anomaly detection framework. 209

Figure 3. Examples of substances applied to the road
surface for anomaly detection.

Substances are strategically applied to road sur- 210

faces as shown in Figure 3. These test substances in- 211

clude washing powder, sand, soil, fertilizer mixtures, 212

and ethanol, each placed in controlled quantities 213

ranging from 25g to 100g. 214

3.2 Anomaly Detection Approaches 215

Unsupervised Learning with Autoencoders. 216

We compare two autoencoder variants for multi- 217

spectral anomaly and material detection: one with 218

a ResNet encoder [5] and the other with a Vision 219

Transformer (ViT) encoder [6], both using a shared 220

convolutional decoder. These models are trained 221

exclusively on normal samples to learn a compact 222

representation of normal appearance. During infer- 223

ence, anomalies are detected based on reconstruction 224

error—higher errors indicate unfamiliar or out-of- 225

distribution patterns. 226

The architectures in Figure 4, both encoder 227

variants use a shared symmetric convolutional de- 228

coder [25]. The decoder upsamples the latent rep- 229

resentation using transpose convolutions with 2 × 2 230

kernels and a stride of 2. Each upsampling stage 231

is followed by two 3 × 3 convolutions with batch 232

normalization and ReLU activation. The final layer 233

uses sigmoid activation to reconstruct the image and 234

squash the values between 0 and 1. 235
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(a) ResNet encoder-based autoencoder

(b) ViT encoder-based autoencoder

Figure 4. Autoencoder architectures for anomaly detec-
tion. Both encoders compress input multispectral road
images (9×128×128) into latent representations. (a)
ResNet uses convolutional layers with batch normaliza-
tion and ReLU activation, showing 3×3 filter operation
with a stride of 2. (b) ViT divides images into 16×16
patches processed by transformer blocks with multi-head
attention and MLP layers, including CLS token and po-
sitional embedding.

Self-Supervised Learning Methods. Sim-236

CLR [7] and Barlow Twins [8] are compared for237

distance-based anomaly detection in this paper. For238

the SimCLR method, the NT-Xent (Normalized239

Temperature-scaled Cross Entropy) loss [7] is used:240

LSim = − 1

N

N∑
i=1

log
exp(sim(zi, z

+
j )/τ)∑2N

k=1 1k ̸=i exp(sim(zi, zk)/τ)
,

(1)241

where zi is the anchor representation, z+
j is the242

positive pair (augmented view of the same image),243

sim(·, ·) is the cosine similarity function, τ is the244

temperature parameter, and N is the batch size.245

This loss pulls positive pairs closer together while246

pushing negative pairs apart in the feature space.247

For the Barlow Twins method, the loss func-248

tion combines invariance and redundancy reduction249

terms [8]:250

LBT =
∑
i

(1 − C ii)
2 + λ

∑
i

∑
j ̸=i

C 2
ij , (2)251

where C is the cross-correlation matrix between252

the normalized representations zA and zB of two253

augmented views:254

C ij =

∑
b z

A
b,iz

B
b,j√∑

b(z
A
b,i)

2
√∑

b(z
B
b,j)

2
. (3)255

The first term encourages the diagonal elements256

to be close to 1 (invariance), while the second term257

with parameter λ pushes the off-diagonal elements 258

toward 0 (redundancy reduction). Barlow Twins 259

eliminates the need for negative pairs by reducing re- 260

dundancy between embedding components through 261

cross-correlation matrix optimization. 262

Both methods share a common architectural foun- 263

dation while differing in their learning objectives and 264

projection strategies. The pipeline begins with nor- 265

mal images and applies data augmentation to create 266

two correlated views of the same input. These aug- 267

mented views are then processed through a shared 268

ResNet50 [5] encoder for feature extraction, followed 269

by transformation through projection heads. Fig- 270

ure 5 illustrates this common framework that under- 271

lies both approaches. 272

Figure 5. Both SimCLR and Barlow Twins architec-
tures for anomaly detection. A normal hazelnut image is
augmented in two different ways (Aug 1 and Aug 2) to
create two correlated views. Both augmented images are
processed through a shared ResNet encoder for feature
extraction. A projector component transforms these fea-
tures into representations z1 and z2 that are optimized
according to the respective self-supervised loss functions.

The learned representations from both methods 273

serve as the foundation for anomaly detection dur- 274

ing inference. According to Lee et al. [26], test 275

images are processed through the trained encoder 276

to extract features in a learned feature space that 277

is assumed to be Gaussian. These features are then 278

compared against this assumed normal distribution 279

using statistical distance measures such as Maha- 280

lanobis distance to compute anomaly scores 3. 281

3.3 Anomaly Scoring and Prediction 282

Anomaly Scoring. In the reconstruction-based 283

detection approach, the Mean Squared Error (MSE) 284

is computed per pixel between the input image and 285

the reconstructed output. 286

A multispectral image is also represented as a 287

single combined image (as seen in the Figure 7). 288

Reconstruction errors are calculated for each pixel 289

across all nine spectral channels. These errors are 290

3More details are available in Appendix B
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then summed and normalized by dividing by 9, cor-291

responding to the total number of channels—eight292

visible and near-infrared (VIS & NIR) bands and293

one panchromatic channel. This results in an av-294

eraged reconstruction error map, where each pixel295

value reflects the mean reconstruction error across296

all spectral channels.297

For distance-based detection, anomaly scoring is298

performed using the encoder features (before the299

projection head). For a given test sample, the en-300

coder produces a feature vector f ∈ R2048 from the301

ResNet-50 backbone. We assume that the features302

are distributed according to a multivariate Gaussian303

distribution, and we fit the model to the training set304

features. Given the set of normal training features305

F = {f1,f2, . . . ,fN}, the distribution parameters306

are estimated as:307

µ∗ =
1

N

N∑
i=1

f i , (4)308

S∗ =
1

N − 1

N∑
i=1

(f i − µ∗)(f i − µ∗)T , (5)309

where µ∗ represents the estimated mean vector310

and S∗ represents the estimated covariance matrix311

of the normal feature distribution.312

The anomaly score 4 for a test feature f test is313

computed using the Mahalanobis distance [27]:314

DM (f test) = (f test − µ∗)T (S∗)−1(f test − µ∗) . (6)315

Anomaly Prediction. Thresholds (T ) for each316

of the four deep learning methods are selected using317

statistical methods with validation dataset statistics:318

T = µval + k · σval , (7)319

where µval, σval ∈ R represent the mean and stan-320

dard deviation of the models’ pixel-wise error on the321

validation dataset, and k adjusts sensitivity.322

After the threshold is determined, it is used to323

classify pixels in the test images. For each pixel324

at position (x, y), the value V(x, y) is compared325

with the threshold T . V(x, y) represents either the326

reconstruction error R(x, y) for autoencoders or the327

anomaly score S(x, y) for self-supervised methods.328

If the value is higher than the threshold, the pixel329

is marked as anomalous. Otherwise, it is marked as330

normal. The rule is defined as follows:331

A(x, y) =

{
1 if V(x, y) > T (anomaly)

0 if V(x, y) ≤ T (normal).
(8)332

This process results in a binary anomaly map.333

In this map, white pixels (A(x, y) = 1) indicate334

4Pixel-wise scoring. We extract a 2048-dimensional feature
for every pixel from the ResNet-50 encoder and compute its
Mahalanobis distance to the training features.

anomalous areas, and black pixels (A(x, y) = 0) 335

indicate normal areas. 336

4 Experiments and Results 337

In this section, we present the specifications of our 338

datasets (Sec. 4.1) and data pre/post-processing 339

(Sec. 4.2), followed by the explanation of our evalu- 340

ation metrics (Sec. 4.3) and the evaluation of detec- 341

tion performance across reconstruction-based and 342

self-supervised approaches (Sec. 4.4 & Sec. 4.5). 343

4.1 Dataset 344

The full multispectral dataset consists of 9,552 train- 345

ing images (both VIS and NIR) captured on nor- 346

mal road surfaces. Due to hardware limitations, a 347

subset dataset, containing 3,242 training images, is 348

used. For the test set, we applied the placeholder 349

substances (compare Sec. 3.1) to road surfaces and 350

captured these road areas. These images were then 351

manually labeled using the LabelMe [28] tool. This 352

resulted in 18 labeled test images (9 VIS, 9 NIR) for 353

quantitative evaluation of reconstruction quality. 354

Additionally, this research utilizes the MVTec 355

Anomaly Detection dataset’s [9] hazelnut category 356

for comparison, containing 391 normal training im- 357

ages and 70 anomalous test images with complete 358

ground truth annotations, providing a computation- 359

ally efficient benchmark for anomaly detection per- 360

formance evaluation. The MVTec images are RGB 361

images in contrast to the multispectral character of 362

the road data. 363

4.2 Data Pre/Post-Processing 364

Preprocessing strategies differ between unsupervised 365

and self-supervised methods. For unsupervised 366

autoencoder-based models, MVTec images are re- 367

sized to 128×128 pixels. For the multispectral road 368

dataset, the original 1280×1024 raw images are con- 369

verted into 426×339 pixel images for the 9 channels. 370

A custom cropping function is then applied that 371

retains the lower 60% of image height and the cen- 372

tral 80% of width. This cropping function helps to 373

remove irrelevant background elements, like vege- 374

tation, sky, and cars, and puts focus on the road 375

surfaces in front of the vehicle. The multispectral 376

images are then further resized to 128×128 to reduce 377

training and computational time. Data augmenta- 378

tions are applied, including ±15° rotations, hori- 379

zontal flips, and color jittering with brightness and 380

contrast adjustments, normalized using mean=0.5, 381

std=0.5 per channel for both datasets. 382

Self-supervised methods are only trained on the 383

MVTec dataset. They use 224×224 pixel images as 384

input to match ResNet50 requirements [5], applying 385
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(a) ViT-based reconstruction quality for all 8 spectral channels of a VIS test image

(b) ViT-based reconstruction quality for all 8 spectral channels of a NIR test image

Figure 6. Comparison of ViT-based autoencoder reconstruction quality across spectral channels for both VIS and
NIR test images. (a) VIS spectral range showing clear substance visibility across channels with varying contrast.
(b) NIR spectral range demonstrating different spectral responses, with reduced contrast in higher-numbered
channels.

horizontal rotation, Gaussian blur, random crop-386

ping, and color jittering to create augmented views,387

normalized with mean=[0.5, 0.5, 0.5], std=[0.5, 0.5,388

0.5].389

All image resizing operations use bilinear interpo-390

lation to maintain image quality during scale trans-391

formations. Training sets are split 80/20 for train-392

ing/validation across all experiments.393

For post-processing, we employ a sequence of mor-394

phological operations (closing followed by opening)395

using a 5×5 square structuring element to improve396

binary anomaly map representation. According397

to Rutzinger et al. [29], closing connects separated398

detection pixels into meaningful regions, while open-399

ing removes noise and false positives, creating more400

realistic anomaly shapes that better match ground401

truths.402

4.3 Evaluation Metrics 403

All metrics derive from the confusion-matrix out- 404

comes (TP, FP, TN, FN) [30]. We report precision 405

(fraction of flagged pixels that are truly anomalous), 406

recall (fraction of all anomalies detected), and F1 407

(harmonic mean of precision and recall). For spatial 408

accuracy, IoU measures overlap between predicted 409

and ground-truth masks. To assess threshold be- 410

havior, we plot ROC curves (true-positive rate vs. 411

false-positive rate) and summarize with AUC-ROC 412

(0.5 = random, 1.0 = perfect). Because anomalies 413

are rare, PR curves and AUC-PR are more infor- 414

mative under class imbalance [31]. Together, these 415

metrics enable fair, comprehensive comparison of 416

anomaly-detection methods [32]. 417

4.4 Reconstructed Images 418

Figure 6 shows the channel-specific reconstruction 419

quality for multispectral test images with applied 420

6
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Figure 7. Qualitative comparison of autoencoders’ performance on multispectral road dataset (top) and MVTec
hazelnut dataset (bottom). The multispectral road images show various substances applied to road surfaces,
while the hazelnut images demonstrate hole defect detection. Higher reconstruction loss values (darker regions)
correspond to detected anomalies, which are then converted to binary masks for evaluation against ground truth.

substances across both VIS and NIR spectral ranges.421

Since VIS and NIR images are not captured simulta-422

neously, we trained separate ViT autoencoder mod-423

els for each spectral range. The figure presents424

reconstruction results from both the VIS-trained425

model applied to a VIS test image (Figure 6a) and426

the NIR-trained model applied to a NIR test image427

(Figure 6b). Across channels 0-7, different spectral428

bands capture varying information about the same429

substances, with VIS channels showing consistent430

contrast while NIR channels 5-7 exhibit reduced431

contrast for certain materials. Both spectral ranges432

demonstrate effective anomaly detection through433

reconstruction error analysis, with quantitative per-434

formance comparisons presented in Table 1.435

Looking at the reconstruction-based results shown436

in Figure 7, the autoencoder performance demon-437

strates successful capability across both datasets.438

Both ViT and ResNet autoencoders reconstruct nor-439

mal road surfaces while producing high reconstruc-440

tion errors (shown in darker regions) where sub-441

stances are applied. The predicted anomaly maps442

closely match the ground truth, indicating effective443

thresholding and morphological post-processing.444

For the MVTec Hazelnut dataset, the models445

demonstrate capability in detecting surface defects446

like cracks and holes, with reconstruction loss maps447

highlighting anomalous regions and binary predic-448

tions showing spatial correspondence to the ground449

truths. The self-supervised approaches shown in450

Figure 8. Barlow Twins produces more focused,451

localized high-anomaly regions around the defect, 452

while SimCLR generates broader anomaly distribu- 453

tions. However, the heatmaps of both approaches 454

are not centered around the defect of the hazelnut 455

and include areas that are not anomalies. 456

Figure 8. Comparison of self-supervised anomaly detec-
tion methods on MVTec hazelnut dataset. Both methods
tend to localize the hole defect through high anomaly
scores in the central region.

4.5 Detection Performance 457

The performance analysis reveals several key find- 458

ings. For the multispectral road dataset, the results 459

are shown in Table 1. The ViT Autoencoder outper- 460

forms ResNet across all metrics, with VIS images 461

(F1: 0.67) slightly outperforming NIR images (F1: 462

0.64). High recall values (0.86-0.87) indicate excel- 463

lent anomaly detection sensitivity. For our applica- 464

tion, high recall values are prioritized over precision, 465

as they reflect the proportion of correctly detected 466

anomalies — crucial since only identified anomalies 467

can be further analyzed. The lower precision values 468

7
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Table 1. Results on Multispectral Road Dataset (VIS vs NIR Images)

Method
Precision Recall F1 IoU AUC-ROC AUC-PR

VIS NIR VIS NIR VIS NIR VIS NIR VIS NIR VIS NIR
ResNet AE 0.48 0.45 0.80 0.78 0.60 0.57 0.43 0.40 0.58 0.55 0.35 0.32
ViT AE 0.55 0.51 0.87 0.86 0.67 0.64 0.50 0.47 0.67 0.63 0.45 0.42

Table 2. Results on MVTec RGB Hazelnut Dataset

Method Precision Recall F1 IoU AUC-ROC AUC-PR
ResNet AE 0.65 0.63 0.64 0.51 0.85 0.47
ViT AE 0.75 0.65 0.70 0.57 0.88 0.54
Barlow Twins 0.67 0.64 0.65 0.52 0.82 0.49
SimCLR 0.54 0.60 0.57 0.43 0.78 0.42

(0.51-0.55) in combination with the IoU scores (0.47-469

0.50) show that most anomalies are found, but only470

partly detected. AUC-ROC scores (0.63-0.67) show471

reasonable discrimination capability, as indicated472

by Davis and Goadrich [31]. AUC-PR scores (0.42-473

0.45) show moderate performance in the anomaly474

detection task, which is expected given the rarity of475

anomalous pixels in road surface images.476

The MVTec Hazelnut dataset results are presented477

in Table 2. Notably, the ViT autoencoder achieves478

the highest performance across most metrics, with a479

precision of 0.75, an F1 score of 0.70, and an AUC-480

PR of 0.54, indicating its effectiveness in detecting481

anomalies. The ResNet and Barlow Twins also show482

competitive performance, with the ResNet achieving483

the second-highest AUC-ROC score of 0.85, suggest-484

ing that traditional autoencoder architectures can485

still be effective in certain scenarios. In contrast,486

SimCLR performs relatively poorly, suggesting that487

the chosen contrastive learning approach may not488

be well-suited for this specific task.489

5 Conclusion and Future Work490

In this paper, we presented an approach for mate-491

rial and anomaly detection using deep learning for492

autonomous driving and environmental monitoring493

applications. Our approach operates through un-494

supervised and self-supervised learning techniques,495

eliminating the need for extensive labeled training496

data.497

We implemented and evaluated our approach on498

multispectral and RGB datasets and provided com-499

parisons between ResNet [5] and Vision Transformer500

(ViT) [6] encoders for autoencoder architectures, as501

well as SimCLR [7] versus Barlow Twins [8] for self-502

supervised learning. The experiments suggest that503

ViT demonstrates better anomaly detection per-504

formance compared to ResNet architectures across505

both datasets. Reconstruction-based approaches506

prove more effective than distance-based methods507

for RGB anomaly detection tasks, VIS spectrum im-508

ages provide slightly better detection performance 509

than NIR for road surface anomalies, and multi- 510

spectral information enables comprehensive anomaly 511

detection by leveraging spectral signatures invisi- 512

ble to single-band imaging. The findings suggest 513

that transformer architectures, particularly when 514

combined with reconstruction-based learning, show 515

advantages for multispectral anomaly detection ap- 516

plications. 517

Despite encouraging results, there is still room 518

for improvement. Future work will: (i) classify spe- 519

cific materials (e.g., fertilizer, soil, sand, ethanol) 520

and defect types (e.g., cracks, holes); (ii) enhance 521

reconstruction with combined losses, such as SSIM 522

[33] plus MSE; (iii) assess alternative distance met- 523

rics, including k-NN–based scoring [34]; (iv) adopt 524

augmentation-robust self-supervision—because Sim- 525

CLR and Barlow Twins depend heavily on aug- 526

mentations that are challenging for multispectral 527

data, we will explore DINO [35] and MAE [36]; and 528

(v) integrate additional spectral bands (e.g., SWIR) 529

with spatial–spectral attention to improve material 530

discrimination. 531
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A Unsupervised Learning De-767

tails768

ResNet Encoder. The ResNet-based autoen-769

coder follows a convolutional design inspired by [37],770

where the encoder transforms input images of size771

C×128×128 into a latent space of size 512×16×16.772

The encoder begins with a 7×7 convolution expand-773

ing channels from C to 64, and applies a sequence774

of convolutional blocks with batch normalization775

and ReLU activation to progressively reduce spatial776

resolution while extracting hierarchical features.777

Vision Transformer Encoder. The ViT-based778

autoencoder replaces the convolutional encoder with779

a transformer-based design. The ViT-B/16 model [6]780

divides the input into 64 non-overlapping 16 × 16781

patches, each linearly embedded and augmented782

with a class token and positional encoding. The783

encoder comprises 12 transformer blocks with multi-784

head self-attention (MHSA) and multilayer percep-785

trons (MLPs), enabling global context modeling [38]786

across the image.787

Finally, the decoder progressively reduces the fea-788

ture map’s channel size (256 → 128 → 64) while789

spatial resolution is doubled at each stage (16×16790

→ 32×32 → 64×64 → 128×128). The final layer-791

sigmoid- produces the final reconstruction map with792

dimensions C × 128 × 128.793

B Self Supervision Learning794

Details795

The shared encoder architecture follows the stan-796

dard ResNet50 design, beginning with initial convo-797

lutional processing through convolutions, batch nor-798

malization, ReLU activation, and max pooling oper-799

ations. This is followed by four sequential residual800

block layers that progressively extract hierarchical801

features at different abstraction levels. While both802

methods use the same encoder, they differ in their803

projection head designs. The SimCLR implemen-804

tation features a streamlined two-layer projection805

head, while Barlow Twins uses a three-layer projec-806

tion head that transforms representations into the807

projection space.808

Figure B.1. Self-supervised anomaly detection on
RGB Hazelnut. (1) Training: Augment normal images
and learn representations with a ResNet-50 encoder
and projection head; fit a Gaussian to the resulting
normal features (assumed Gaussian-distributed). (2)
Detection: Run test images through the trained encoder
and compute Mahalanobis distances to the Gaussian to
produce anomaly scores and heatmaps. (3) Evaluation:
Compare predicted anomaly maps with ground-truth
defect masks.

Figure B.2. Mahalanobis distance-based anomaly de-
tection in feature space. Normal samples (blue) cluster
around the distribution center µ∗, while anomalous sam-
ples (red) exhibit larger Mahalanobis distances. The
decision threshold T = µv+k ·σv separates normal from
anomalous regions, with contours representing equal Ma-
halanobis distance levels.

C Training Settings and Hard- 809

ware 810

All models select the best checkpoint based on vali- 811

dation loss. All experiments are conducted on the 812

CubeSat computational cluster at the University of 813

Bonn, equipped with four NVIDIA GeForce GTX 814

1080 Ti GPUs, each with 11GB VRAM, and 125GB 815

RAM. The models are implemented using Python 816

3.8.10, PyTorch 2.4.1, and CUDA 11.6 for GPU 817

acceleration. 818

Training configurations are optimized for each ar- 819

chitecture to ensure fair comparison across methods. 820

Autoencoder models are trained for 200 epochs with 821

a batch size of 8, using the Adam optimizer and 822

MSE loss. The ResNet autoencoder uses a learning 823

rate of 5×10−4 with weight decay of 1×10−5, while 824
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the ViT autoencoder requires a lower learning rate825

of 5 × 10−5 with higher weight decay of 1 × 10−4
826

due to its transformer architecture.827

For self-supervised methods, Barlow Twins trains828

for 150 epochs with batch size 8, learning rate 5 ×829

10−4, embedding dimension 2048, lambda parameter830

0.01, weight decay 1×10−6, and gradient clipping at831

norm 1.0. SimCLR requires more extensive training832

with 500 epochs and a larger batch size of 32, using833

a learning rate 5 × 10−4, a projection dimension of834

128, a temperature 0.07 for the NTXent loss, weight835

decay 1 × 10−4, and gradient clipping at norm 0.5.836

The longer training period and larger batch size837

for SimCLR are necessary due to the contrastive838

learning requirements. All models select the best839

checkpoint based on validation loss.840
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