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Abstract

Autonomous systems and environmental monitor-
ing require reliable detection of unknown hazardous
materials to prevent traffic accidents and ecological
damage resulting from chemical spills, fuel leaks, and
agricultural runoff. Traditional detection methods,
such as gas chromatography, pose contamination
risks and cause delays, while laser-based techniques
rely on prior localization of potential hotspots. This
paper addresses the automatic detection of unknown
materials (e.g., fertilizer, sand, soil) and surface
anomalies (e.g., cracks, holes) without requiring la-
beled anomaly examples during training. We employ
unsupervised and self-supervised deep learning meth-
ods to learn normal patterns and identify deviations.
Specifically, we evaluate four models: convolutional
and vision transformer-based (ViT) autoencoders,
and two self-supervised methods, SimCLR and Bar-
low Twins. Experiments conducted on multispectral
road images from the German Aerospace Center
and the MVTec hazelnut dataset demonstrate that
the ViT-based autoencoder outperforms its convo-
lutional counterpart, while Barlow T'wins achieves
superior anomaly localization compared to SimCLR.
These results indicate that reconstruction-based
ViTs and redundancy-reducing self-supervision are
promising strategies for anomaly detection in road
safety and environmental protection.

1 Introduction

The World Health Organization (WHO) reported
in 2016 [1] that 13.7 million deaths (24% of global
deaths) and 23% of the global disease burden were
linked to modifiable environmental factors such as
chemicals, waste, and pollution. Exposure to se-
lected chemicals alone accounted for an estimated
1.6 million deaths, although evidence on specific
chemical risks is still emerging.

In Europe, 342,000 contaminated sites were identi-
fied in 2014 (5.7 per 10,000 inhabitants), with waste
disposal (municipal and industrial) being the main
source of soil and groundwater contamination [2].

*Corresponding Author.
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Self-Supervised and Unsupervised Multispectral
Anomaly Detection for Unknown Substance and
Surface Defect Identification

In Africa, the WHO estimates that one-third of the
disease burden is attributable to environmental risk
factors, with hazardous waste ranking among the
top three concerns. Accordingly, the detection of
hazardous materials is not only a technical challenge
but also a critical public safety and environmental
health priority.

Traditional approaches include visual inspection,
chemical sensors, and basic computer vision tech-
niques, but are limited by high costs, subjectivity,
and restricted detection capabilities across differ-
ent spectral ranges. Recent deep learning-based
anomaly detection methods [3] hold promise for
reducing reliance on manual inspection. However,
detecting unknown materials and surface anomalies
without labeled anomalies remains challenging, since
existing approaches often rely on expensive inspec-
tion and assumptions with poor generalization.

Recently, Schiitt et al. [4] proposed an unsuper-
vised approach leveraging a convolutional autoen-
coder, demonstrating promising results. We extend
this line of research by investigating both unsuper-
vised and self-supervised anomaly detection, testing
contrastive methods on RGB data to enable future
evaluation on multispectral data.

The proposed framework evaluated four distinct
deep learning approaches for anomaly detection, as
illustrated in Figure 1. Unsupervised methods uti-
lize autoencoder architectures with ResNet [5] and
Vision Transformer (ViT) [6] encoders, while two
self-supervised approaches implement SimCLR [7]
and Barlow Twins [8] techniques. The framework
is designed to handle diverse input modalities and
generate binary anomaly maps that localize and
segment anomalous regions. We first benchmark
the four approaches on the well-established MVTec
AD Hazelnut (RGB) dataset [9]. We select the
best-performing approach and evaluate it on the
DLR multispectral road dataset (8 VIS/NIR spec-
tral bands + 1 panchromatic) to detect unknown
surface materials (e.g., fertilizer, sand, soil).

In summary, our contributions are threefold: (i)
To the best of our knowledge, we present the first
comparision of Vision Transformer-based and CNN-
based autoencoders with contrastive self-supervised

1VIS: visible spectrum; NIR: near-infrared spectrum.
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Figure 1. Overview of the proposed anomaly detection framework comparing four deep learning methods across

two evaluation datasets.

learning methods (SimCLR and Barlow Twins) for
surface defect detection; (ii) we show that ViT-based
autoencoder outperforms a ResNet-based autoen-
coder and a convolutional autoencoder in this task;
and (iii) we demonstrate that Barlow Twins sur-
passes SimCLR for anomaly localization, showing
particular promise in computationally constrained
settings or when training data is limited. Our work
is supported by experimental results on both mul-
tispectral road images and the MVTec dataset. It
underlines the potential of such detection methods
to prevent accidents, reduce exposure to toxic sub-
stances, and mitigate long-term contamination risks.
The code will be released upon acceptance.

2 Related Work

Anomaly detection (AD) in Computer Vision.
It is a subtask of the generalized Out-of-Distribution
(OoD) detection problem [10], aiming to identify un-
usual patterns that deviate from normal data at
test time. Such deviations may result from covari-
ate or semantic shifts.? Unlike OoD detection, AD
does not require distinguishing between different
in-distribution (ID) classes, treating them as a sin-
gle group. AD has broad applications, including
adversarial defence and industrial inspection.
Anomaly Detection Approaches. Multiple
methods have been proposed for anomaly detec-
tion [10], among which we focus on reconstruc-
tion-based and distance-based approaches. In
reconstruction-based methods, an encoder—decoder
architecture is trained on in-distribution (ID) sam-
ples to reconstruct them accurately; deviations in
reconstruction error indicate potential anomalies.
In distance-based methods, anomalous samples are
expected to lie far from the centroids of ID clusters

2In this paper, we focus on semantic shift, defined by
Ruff et al. [11] as images containing objects from non-normal
classes.

in the feature space. By thresholding a distance
metric, such as Mahalanobis or Euclidean distance,
anomalies can be identified.

Autoencoders (AEs) [3] are widely used in
reconstruction-based approaches, compressing in-
puts into a low-dimensional latent space and then
reconstructing them from this representation. For
distance-based methods, Hojjati et al. [12] pro-
vide a comprehensive overview of the role of self-
supervision in anomaly detection. One important
family is contrastive learning, where the model is
trained to bring similar samples closer and push dis-
similar ones apart, thus regularizing the embedding
space to prevent anomalous embeddings from col-
lapsing onto ID embeddings. This principle, referred
to by Postels et al. [13] as informative representa-
tion regularization, enhances separability between
ID and anomalous data.

Multispectral Imaging. It captures infor-
mation across spectral bands beyond the visible
range [14]. Different materials exhibit unique spec-
tral signatures that are often invisible in standard
RGB images, making multispectral imaging valu-
able for material identification and anomaly detec-
tion [15]. Chen et al. [16] demonstrated this poten-
tial by combining near-infrared hyperspectral imag-
ing with convolutional neural networks for standoff
material identification. In agriculture, Strothmann
et al. [17] used convolutional autoencoders to detect
anomalous grapevine berries from multispectral data.
More recently, Wang et al. [18] introduced attention
mechanisms for multispectral anomaly detection, en-
abling models to focus on the most discriminative
spectral bands for each task. Schiitt et al. [4] demon-
strate that combining convolutional Autoencoders
with multispectral imaging enhances anomaly detec-
tion performance; specifically, they show that using
NIR as input outperforms models relying solely on
the RGB spectrum. This finding motivates our own
experiments in a similar direction.

Hazardous Material Detection. Existing
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methods for detecting hazardous materials often
rely on RGB or multispectral data [19-22], framing
the task as object detection—either targeting the
materials themselves or their hazard symbols. A key
limitation of these approaches is their dependence
on labeled datasets and the closed-world assump-
tion, where no distributional or semantic shifts are
expected.

To the best of our knowledge, this work is the first
to explore ViT and ResNet-based Autoencoders for
unknown substance detection, reframing the task
in an open-world setting. This shift enables more
robust and reliable deep learning approaches capable
of handling unseen variations in real-world scenarios.

3 Methodology

In this section, we describe the multispectral data
capture system in (Sec. 3.1),(Sec. 3.2) present
our unsupervised and self-supervised learning ap-
proaches and detail the anomaly detection and post-
processing pipeline in (Sec. 3.3).

3.1 Multispectral Data Capture

Data collection employs a vehicle-mounted sensor ar-
ray system that is equipped with two CMS series mul-
tispectral cameras from SILIOS Technologies [23].
The cameras capture spectral ranges: visible light
(VIS, 430-700 nm) and near-infrared (NIR, 650-930
nm). Each camera utilizes CMOS CS-mount tech-
nology with 5.3 pum pixel pitch, operating at up to
60 fps with 10-bit ADC precision.

Multispectral
camera NIR

Multispectral
camera VIS

Alignment laser Brightness sensor

LUCsS

Figure 2. Vehicle-mounted sensor array system show-
ing the complete setup including LUCS, radar, GPS,
alignment laser, brightness sensor, and two multispec-
tral cameras (VIS and NIR) used for data collection.

The complete sensor configuration is illustrated
in Figure 2, which shows the integrated vehicle-
mounted system comprising the two multispectral
cameras (VIS and NIR), laser-based UAV classifica-
tion system (LUCS [24]), radar sensors, alignment
laser, Global Positioning System (GPS) module,
and brightness sensor. This comprehensive setup
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enables the capture of multispectral imagery along-
side environmental and positioning data for anomaly
detection applications.

The camera’s array-type optical interface orga-
nizes pixels into 3x3 macropixels, each containing
eight distinct spectral filters (VIS or NIR) plus one
panchromatic channel. We developed a controlled ex-
perimental protocol using visually and spectroscopi-
cally similar but environmentally safe placeholder
substances. These serve as proxies for hazardous
substances in our anomaly detection framework.

Soil+Fertiliser
20/80 50g

Washing Powder  Sand Soil
258 25g  100g

Soil+Fertiliser
50/50 100g

Spectralon

Washing Powder

Soil Soil+Fertiliser
50/50 50g

oil+Fertiliser
20/80 100g 50g

Figure 3. Examples of substances applied to the road
surface for anomaly detection.

Substances are strategically applied to road sur-
faces as shown in Figure 3. These test substances in-
clude washing powder, sand, soil, fertilizer mixtures,
and ethanol, each placed in controlled quantities
ranging from 25g to 100g.

3.2 Anomaly Detection Approaches

Unsupervised Learning with Autoencoders.
We compare two autoencoder variants for multi-
spectral anomaly and material detection: one with
a ResNet encoder [5] and the other with a Vision
Transformer (ViT) encoder [6], both using a shared
convolutional decoder. These models are trained
exclusively on normal samples to learn a compact
representation of normal appearance. During infer-
ence, anomalies are detected based on reconstruction
error—higher errors indicate unfamiliar or out-of-
distribution patterns.

The architectures in Figure 4, both encoder
variants use a shared symmetric convolutional de-
coder [25]. The decoder upsamples the latent rep-
resentation using transpose convolutions with 2 x 2
kernels and a stride of 2. Each upsampling stage
is followed by two 3 x 3 convolutions with batch
normalization and ReLU activation. The final layer
uses sigmoid activation to reconstruct the image and
squash the values between 0 and 1.
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Layers RelU

9x128x128
8 spectral (VIS & NIR)
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(a) ResNet encoder-based autoencoder

Encoder Decoder

Input Output

9x128x128
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1 panchromatic
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1 panchromatic

,,,,,

(b) ViT encoder-based autoencoder

Figure 4. Autoencoder architectures for anomaly detec-
tion. Both encoders compress input multispectral road
images (9x128x128) into latent representations. (a)
ResNet uses convolutional layers with batch normaliza-
tion and ReLU activation, showing 3x3 filter operation
with a stride of 2. (b) ViT divides images into 16x16
patches processed by transformer blocks with multi-head
attention and MLP layers, including CLS token and po-
sitional embedding.

Self-Supervised Learning Methods. Sim-
CLR [7] and Barlow Twins [8] are compared for
distance-based anomaly detection in this paper. For
the SimCLR method, the NT-Xent (Normalized
Temperature-scaled Cross Entropy) loss [7] is used:

exp(sim(z;, 2})/7)

1 N
Lsim = —— log
V2

o) i exp(sim(zi, 2) /7)
(1)
where z; is the anchor representation, zj' is the
positive pair (augmented view of the same image),
sim(-,-) is the cosine similarity function, 7 is the
temperature parameter, and N is the batch size.
This loss pulls positive pairs closer together while
pushing negative pairs apart in the feature space.
For the Barlow Twins method, the loss func-
tion combines invariance and redundancy reduction
terms [8]:

pr=>» (1-Cui)’+A)_ ) Ci,
i i g
where C is the cross-correlation matrix between
the normalized representations z4 and zp of two
augmented views:

2)

Coo — 20 0%,
1] T .
V)2 (=)

The first term encourages the diagonal elements
to be close to 1 (invariance), while the second term
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with parameter A pushes the off-diagonal elements
toward 0 (redundancy reduction). Barlow Twins
eliminates the need for negative pairs by reducing re-
dundancy between embedding components through
cross-correlation matrix optimization.

Both methods share a common architectural foun-
dation while differing in their learning objectives and
projection strategies. The pipeline begins with nor-
mal images and applies data augmentation to create
two correlated views of the same input. These aug-
mented views are then processed through a shared
ResNet50 [5] encoder for feature extraction, followed
by transformation through projection heads. Fig-
ure 5 illustrates this common framework that under-
lies both approaches.

Shared ResNet-50
Encoder
Aug2 Fessa

|
{
Relilik=le
1
i {
) |
L""_I./"
Feature
Extractor

Projactor | (53)

Loss

o
2
2
s
1]
8
5
3
=
]
a

Hazelnut Image

(Normal) Aug L

—» Projector

-@—

Figure 5. Both SimCLR and Barlow Twins architec-
tures for anomaly detection. A normal hazelnut image is
augmented in two different ways (Aug 1 and Aug 2) to
create two correlated views. Both augmented images are
processed through a shared ResNet encoder for feature
extraction. A projector component transforms these fea-
tures into representations z; and zs that are optimized
according to the respective self-supervised loss functions.

The learned representations from both methods
serve as the foundation for anomaly detection dur-
ing inference. According to Lee et al. [26], test
images are processed through the trained encoder
to extract features in a learned feature space that
is assumed to be Gaussian. These features are then
compared against this assumed normal distribution
using statistical distance measures such as Maha-
lanobis distance to compute anomaly scores °.

3.3 Anomaly Scoring and Prediction

Anomaly Scoring. In the reconstruction-based
detection approach, the Mean Squared Error (MSE)
is computed per pixel between the input image and
the reconstructed output.

A multispectral image is also represented as a
single combined image (as seen in the Figure 7).
Reconstruction errors are calculated for each pixel
across all nine spectral channels. These errors are

3More details are available in Appendix B
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then summed and normalized by dividing by 9, cor-
responding to the total number of channels—eight
visible and near-infrared (VIS & NIR) bands and
one panchromatic channel. This results in an av-
eraged reconstruction error map, where each pixel
value reflects the mean reconstruction error across
all spectral channels.

For distance-based detection, anomaly scoring is
performed using the encoder features (before the
projection head). For a given test sample, the en-
coder produces a feature vector f € R?%4® from the
ResNet-50 backbone. We assume that the features
are distributed according to a multivariate Gaussian
distribution, and we fit the model to the training set
features. Given the set of normal training features
F=A{fi,fa .-, fn}, the distribution parameters
are estimated as:

1 N
H*:NZfiu
i=1 .

Z(.fi K1) (fi - I’L*)Ta

i=1

(4)

1

S =N

()

where p* represents the estimated mean vector
and S* represents the estimated covariance matrix
of the normal feature distribution.

The anomaly score * for a test feature fi. is
computed using the Mahalanobis distance [27]:

@M(ftest) = (-ftest - “*)T(S*)il(ftest - /’l’*) . (6)

Anomaly Prediction. Thresholds (T') for each
of the four deep learning methods are selected using
statistical methods with validation dataset statistics:

(7)
where fiyqi, Oval € R represent the mean and stan-

dard deviation of the models’ pixel-wise error on the

validation dataset, and k adjusts sensitivity.

After the threshold is determined, it is used to
classify pixels in the test images. For each pixel
at position (z,y), the value U z,y) is compared
with the threshold T. ¢z, y) represents either the
reconstruction error R(x,y) for autoencoders or the
anomaly score S(z,y) for self-supervised methods.
If the value is higher than the threshold, the pixel
is marked as anomalous. Otherwise, it is marked as
normal. The rule is defined as follows:

Az, y) = {1 if Na,y) >T

T:Mval+k'0val7

(anomaly)
0 if Uz,y) <T ®

(normal).

This process results in a binary anomaly map.
In this map, white pixels (4(z,y) = 1) indicate

4 Pigel-wise scoring. We extract a 2048-dimensional feature
for every pixel from the ResNet-50 encoder and compute its
Mahalanobis distance to the training features.
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anomalous areas, and black pixels (4(z,y) = 0)
indicate normal areas.

4 Experiments and Results

In this section, we present the specifications of our
datasets (Sec. 4.1) and data pre/post-processing
(Sec. 4.2), followed by the explanation of our evalu-
ation metrics (Sec. 4.3) and the evaluation of detec-
tion performance across reconstruction-based and
self-supervised approaches (Sec. 4.4 & Sec. 4.5).

4.1 Dataset

The full multispectral dataset consists of 9,552 train-
ing images (both VIS and NIR) captured on nor-
mal road surfaces. Due to hardware limitations, a
subset dataset, containing 3,242 training images, is
used. For the test set, we applied the placeholder
substances (compare Sec. 3.1) to road surfaces and
captured these road areas. These images were then
manually labeled using the LabelMe [28] tool. This
resulted in 18 labeled test images (9 VIS, 9 NIR) for
quantitative evaluation of reconstruction quality.

Additionally, this research utilizes the MVTec
Anomaly Detection dataset’s [9] hazelnut category
for comparison, containing 391 normal training im-
ages and 70 anomalous test images with complete
ground truth annotations, providing a computation-
ally efficient benchmark for anomaly detection per-
formance evaluation. The MVTec images are RGB
images in contrast to the multispectral character of
the road data.

4.2 Data Pre/Post-Processing

Preprocessing strategies differ between unsupervised
and self-supervised methods. For unsupervised
autoencoder-based models, MVTec images are re-
sized to 128x128 pixels. For the multispectral road
dataset, the original 1280x 1024 raw images are con-
verted into 426x339 pixel images for the 9 channels.
A custom cropping function is then applied that
retains the lower 60% of image height and the cen-
tral 80% of width. This cropping function helps to
remove irrelevant background elements, like vege-
tation, sky, and cars, and puts focus on the road
surfaces in front of the vehicle. The multispectral
images are then further resized to 128 x128 to reduce
training and computational time. Data augmenta-
tions are applied, including +15° rotations, hori-
zontal flips, and color jittering with brightness and
contrast adjustments, normalized using mean=0.5,
std=0.5 per channel for both datasets.
Self-supervised methods are only trained on the
MVTec dataset. They use 224 x224 pixel images as
input to match ResNet50 requirements [5], applying
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(a) ViT-based reconstruction quality for all 8 spectral channels of a VIS test image
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(b) ViT-based reconstruction quality for all 8 spectral channels of a NIR test image

Figure 6. Comparison of ViT-based autoencoder reconstruction quality across spectral channels for both VIS and
NIR test images. (a) VIS spectral range showing clear substance visibility across channels with varying contrast.
(b) NIR spectral range demonstrating different spectral responses, with reduced contrast in higher-numbered

channels.

horizontal rotation, Gaussian blur, random crop-
ping, and color jittering to create augmented views,
normalized with mean=[0.5, 0.5, 0.5], std=[0.5, 0.5,
0.5].

All image resizing operations use bilinear interpo-
lation to maintain image quality during scale trans-
formations. Training sets are split 80/20 for train-
ing/validation across all experiments.

For post-processing, we employ a sequence of mor-
phological operations (closing followed by opening)
using a 5x5 square structuring element to improve
binary anomaly map representation. According
to Rutzinger et al. [29], closing connects separated
detection pixels into meaningful regions, while open-
ing removes noise and false positives, creating more
realistic anomaly shapes that better match ground
truths.

4.3 Evaluation Metrics

All metrics derive from the confusion-matrix out-
comes (TP, FP, TN, FN) [30]. We report precision
(fraction of flagged pixels that are truly anomalous),
recall (fraction of all anomalies detected), and F1
(harmonic mean of precision and recall). For spatial
accuracy, loU measures overlap between predicted
and ground-truth masks. To assess threshold be-
havior, we plot ROC curves (true-positive rate vs.
false-positive rate) and summarize with AUC-ROC
(0.5 = random, 1.0 = perfect). Because anomalies
are rare, PR curves and AUC-PR are more infor-
mative under class imbalance [31]. Together, these
metrics enable fair, comprehensive comparison of
anomaly-detection methods [32].

4.4 Reconstructed Images

Figure 6 shows the channel-specific reconstruction
quality for multispectral test images with applied
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Figure 7. Qualitative comparison of autoencoders’ performance on multispectral road dataset (top) and MVTec
hazelnut dataset (bottom). The multispectral road images show various substances applied to road surfaces,
while the hazelnut images demonstrate hole defect detection. Higher reconstruction loss values (darker regions)
correspond to detected anomalies, which are then converted to binary masks for evaluation against ground truth.

substances across both VIS and NIR spectral ranges.
Since VIS and NIR images are not captured simulta-
neously, we trained separate ViT autoencoder mod-
els for each spectral range. The figure presents
reconstruction results from both the VIS-trained
model applied to a VIS test image (Figure 6a) and
the NIR-trained model applied to a NIR test image
(Figure 6b). Across channels 0-7, different spectral
bands capture varying information about the same
substances, with VIS channels showing consistent
contrast while NIR channels 5-7 exhibit reduced
contrast for certain materials. Both spectral ranges
demonstrate effective anomaly detection through
reconstruction error analysis, with quantitative per-
formance comparisons presented in Table 1.

Looking at the reconstruction-based results shown
in Figure 7, the autoencoder performance demon-
strates successful capability across both datasets.
Both ViT and ResNet autoencoders reconstruct nor-
mal road surfaces while producing high reconstruc-
tion errors (shown in darker regions) where sub-
stances are applied. The predicted anomaly maps
closely match the ground truth, indicating effective
thresholding and morphological post-processing.

For the MVTec Hazelnut dataset, the models
demonstrate capability in detecting surface defects
like cracks and holes, with reconstruction loss maps
highlighting anomalous regions and binary predic-
tions showing spatial correspondence to the ground
truths. The self-supervised approaches shown in
Figure 8. Barlow Twins produces more focused,

localized high-anomaly regions around the defect,
while SImCLR generates broader anomaly distribu-
tions. However, the heatmaps of both approaches
are not centered around the defect of the hazelnut
and include areas that are not anomalies.

Input Barlow Twins

SimCLR

Figure 8. Comparison of self-supervised anomaly detec-
tion methods on MVTec hazelnut dataset. Both methods
tend to localize the hole defect through high anomaly
scores in the central region.

4.5 Detection Performance

The performance analysis reveals several key find-
ings. For the multispectral road dataset, the results
are shown in Table 1. The ViT Autoencoder outper-
forms ResNet across all metrics, with VIS images
(F1: 0.67) slightly outperforming NIR images (F1:
0.64). High recall values (0.86-0.87) indicate excel-
lent anomaly detection sensitivity. For our applica-
tion, high recall values are prioritized over precision,
as they reflect the proportion of correctly detected
anomalies — crucial since only identified anomalies
can be further analyzed. The lower precision values
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Table 1. Results on Multispectral Road Dataset (VIS vs NIR Images)

Method Precision Recall F1 ToU AUC-ROC AUC-PR
VIS NIR | VIS NIR | VIS NIR | VIS NIR | VIS NIR | VIS NIR
ResNet AE | 0.48 0.45 | 0.80 0.78 | 0.60 0.57 | 0.43 040 | 0.58 0.55 | 0.35 0.32
ViT AE 0.55 0.51 | 0.87 0.86 | 0.67 0.64 | 0.50 0.47 | 0.67 0.63 | 0.45 0.42
Table 2. Results on MVTec RGB Hazelnut Dataset

Method Precision Recall F1 IoU AUC-ROC AUC-PR

ResNet AE 0.65 0.63 0.64 0.51 0.85 0.47

ViT AE 0.75 0.65 0.70 0.57 0.88 0.54

Barlow Twins 0.67 0.6/ 0.65 0.52 0.82 0.49

SimCLR 0.54 0.60 0.57 0.43 0.78 0.42

(0.51-0.55) in combination with the IoU scores (0.47-
0.50) show that most anomalies are found, but only
partly detected. AUC-ROC scores (0.63-0.67) show
reasonable discrimination capability, as indicated
by Davis and Goadrich [31]. AUC-PR scores (0.42-
0.45) show moderate performance in the anomaly
detection task, which is expected given the rarity of
anomalous pixels in road surface images.

The MVTec Hazelnut dataset results are presented
in Table 2. Notably, the ViT autoencoder achieves
the highest performance across most metrics, with a
precision of 0.75, an F1 score of 0.70, and an AUC-
PR of 0.54, indicating its effectiveness in detecting
anomalies. The ResNet and Barlow Twins also show
competitive performance, with the ResNet achieving
the second-highest AUC-ROC score of 0.85, suggest-
ing that traditional autoencoder architectures can
still be effective in certain scenarios. In contrast,
SimCLR performs relatively poorly, suggesting that
the chosen contrastive learning approach may not
be well-suited for this specific task.

5 Conclusion and Future Work

In this paper, we presented an approach for mate-
rial and anomaly detection using deep learning for
autonomous driving and environmental monitoring
applications. Our approach operates through un-
supervised and self-supervised learning techniques,
eliminating the need for extensive labeled training
data.

We implemented and evaluated our approach on
multispectral and RGB datasets and provided com-
parisons between ResNet [5] and Vision Transformer
(ViT) [6] encoders for autoencoder architectures, as
well as SImMCLR [7] versus Barlow Twins [8] for self-
supervised learning. The experiments suggest that
ViT demonstrates better anomaly detection per-
formance compared to ResNet architectures across
both datasets. Reconstruction-based approaches
prove more effective than distance-based methods
for RGB anomaly detection tasks, VIS spectrum im-

ages provide slightly better detection performance
than NIR for road surface anomalies, and multi-
spectral information enables comprehensive anomaly
detection by leveraging spectral signatures invisi-
ble to single-band imaging. The findings suggest
that transformer architectures, particularly when
combined with reconstruction-based learning, show
advantages for multispectral anomaly detection ap-
plications.

Despite encouraging results, there is still room
for improvement. Future work will: (i) classify spe-
cific materials (e.g., fertilizer, soil, sand, ethanol)
and defect types (e.g., cracks, holes); (ii) enhance
reconstruction with combined losses, such as SSIM
[33] plus MSE; (iii) assess alternative distance met-
rics, including k-NN-based scoring [34]; (iv) adopt
augmentation-robust self-supervision—because Sim-
CLR and Barlow Twins depend heavily on aug-
mentations that are challenging for multispectral
data, we will explore DINO [35] and MAE [36]; and
(v) integrate additional spectral bands (e.g., SWIR)
with spatial-spectral attention to improve material
discrimination.
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A Unsupervised Learning De-
tails

ResNet Encoder. The ResNet-based autoen-
coder follows a convolutional design inspired by [37],
where the encoder transforms input images of size
C' x 128 x 128 into a latent space of size 512 x 16 x 16.
The encoder begins with a 7 x 7 convolution expand-
ing channels from C to 64, and applies a sequence
of convolutional blocks with batch normalization
and ReLU activation to progressively reduce spatial
resolution while extracting hierarchical features.

Vision Transformer Encoder. The ViT-based
autoencoder replaces the convolutional encoder with
a transformer-based design. The ViT-B/16 model [6]
divides the input into 64 non-overlapping 16 x 16
patches, each linearly embedded and augmented
with a class token and positional encoding. The
encoder comprises 12 transformer blocks with multi-
head self-attention (MHSA) and multilayer percep-
trons (MLPs), enabling global context modeling [38]
across the image.

Finally, the decoder progressively reduces the fea-
ture map’s channel size (256 — 128 — 64) while
spatial resolution is doubled at each stage (16x16
— 32x32 — 64x64 — 128x128). The final layer-
sigmoid- produces the final reconstruction map with
dimensions C' x 128 x 128.

B Self Supervision Learning
Details

The shared encoder architecture follows the stan-
dard ResNet50 design, beginning with initial convo-
lutional processing through convolutions, batch nor-
malization, ReLLU activation, and max pooling oper-
ations. This is followed by four sequential residual
block layers that progressively extract hierarchical
features at different abstraction levels. While both
methods use the same encoder, they differ in their
projection head designs. The SimCLR implemen-
tation features a streamlined two-layer projection
head, while Barlow Twins uses a three-layer projec-
tion head that transforms representations into the
projection space.
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2.Testing & Anomaly
Detection
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3. Evaluation N

Hazelnut Image (Normal)

Test Image (Anomaly) Predicted Anomaly
| Map

\
noaz |
p—— | \ |
. (ResNet) T
Pojct
B
ok

Ground Truth
Mask

G

Figure B.1. Self-supervised anomaly detection on
RGB Hazelnut. (1) Training: Augment normal images
and learn representations with a ResNet-50 encoder
and projection head; fit a Gaussian to the resulting
normal features (assumed Gaussian-distributed). (2)
Detection: Run test images through the trained encoder
and compute Mahalanobis distances to the Gaussian to
produce anomaly scores and heatmaps. (3) Evaluation:
Compare predicted anomaly maps with ground-truth
defect masks.
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Figure B.2. Mahalanobis distance-based anomaly de-
tection in feature space. Normal samples (blue) cluster
around the distribution center p*, while anomalous sam-
ples (red) exhibit larger Mahalanobis distances. The
decision threshold T' = p. + k - 0y separates normal from
anomalous regions, with contours representing equal Ma-
halanobis distance levels.

C Training Settings and Hard-
ware

All models select the best checkpoint based on vali-
dation loss. All experiments are conducted on the
CubeSat computational cluster at the University of
Bonn, equipped with four NVIDIA GeForce GTX
1080 Ti GPUs, each with 11GB VRAM, and 125GB
RAM. The models are implemented using Python
3.8.10, PyTorch 2.4.1, and CUDA 11.6 for GPU
acceleration.

Training configurations are optimized for each ar-
chitecture to ensure fair comparison across methods.
Autoencoder models are trained for 200 epochs with
a batch size of 8, using the Adam optimizer and
MSE loss. The ResNet autoencoder uses a learning
rate of 5 x 10~% with weight decay of 1 x 1075, while
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the ViT autoencoder requires a lower learning rate
of 5 x 10~® with higher weight decay of 1 x 10~4
due to its transformer architecture.

For self-supervised methods, Barlow Twins trains
for 150 epochs with batch size 8, learning rate 5 x
10~*, embedding dimension 2048, lambda parameter
0.01, weight decay 1 x 107, and gradient clipping at
norm 1.0. SimCLR requires more extensive training
with 500 epochs and a larger batch size of 32, using
a learning rate 5 x 10™%, a projection dimension of
128, a temperature 0.07 for the NTXent loss, weight

decay 1 x 1074, and gradient clipping at norm 0.5.

The longer training period and larger batch size
for SiImCLR are necessary due to the contrastive
learning requirements. All models select the best
checkpoint based on validation loss.
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