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ABSTRACT

Graph neural networks (GNNs) have recently emerged as powerful tools for solv-
ing complex optimization problems, often being employed to approximate solu-
tion mappings. Empirical evidence shows that even shallow GNNs (with fewer
than ten layers) can achieve strong performance in predicting optimal solutions to
linear programming (LP) problems. This finding is somewhat counter-intuitive, as
LPs are global optimization problems, while shallow GNNs predict based on lo-
cal information. Although previous theoretical results suggest that GNNs have the
expressive power to solve LPs, they require deep architectures whose depth grows
at least polynomially with the problem size, and thus leave the underlying prin-
ciple of this empirical phenomenon still unclear. In this paper, we examine this
phenomenon through the lens of distributed computing and average-case analysis.
We establish that the expressive power of GNNs for LPs is closely related to well-
studied distributed algorithms for LPs. Specifically, we show that any d-round
distributed LP algorithm can be simulated by a d-depth GNN, and vice versa.
In particular, by designing a new distributed LP algorithm and then unrolling it,
we prove that constant-depth, constant-width GNNs suffice to solve sparse binary
LPs effectively. Here, in contrast with previous analyses focusing on worst-case
scenarios, in which we show that GNN depth must increase with problem size by
leveraging an impossibility result about distributed LP algorithms, our analysis
shifts the focus to the average-case performance, and shows that constant GNN
depth then becomes sufficient no matter how large the problem size is. Our theory
is validated by numerical results.

1 INTRODUCTION

Learning to Optimize (L2O) has recently gained considerable attention as a promising framework
that leverages machine learning techniques to discover efficient optimization strategies. Compared
to traditional rule-based methods, L2O methods adaptively learn optimization strategies tailored to
specific problem classes, offering greater flexibility and efficiency. The L20 framework has shown
its potential in handling both continuous optimization (Monga et al., 2021) and combinatorial opti-
mization (Bengio et al., 2021; Mazyavkina et al., 2021), and opens up new possibilities for automat-
ing and improving the efficiency of various real-world applications.

Graph Neural Networks (GNNs) have emerged as a powerful tool within the L2O framework (Cap-
part et al., 2023; Peng et al., 2021). GNNs are dedicated to capturing dependencies and relational
structures among variables, thus well-suited for representing and solving optimization problems
with graph-structured data, e.g., max cut (Schuetz et al., 2022), traveling salesman problem (Hud-
son et al., 2021), and minimum vertex covering (Sato et al., 2019), where the relationships between
variables are key to finding efficient solutions.

In particular, there is a line of research (Li et al., 2022; Chen et al., 2023; Kuang et al., 2023; Fan
et al., 2023; Liu et al., 2024; Qian et al., 2024; Li et al., 2024a) exploring the power of GNNs to ac-
celerate the solving process of linear programming (LP). These studies are based on the observation
that a general LP instance max{cT ·x | A ·x ≤ b,x ≥ 0} can be naturally represented as a labeled
bipartite graph. Specifically, a variable xj corresponds to a left node uj labeled with cj , a constraint
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Ai,: ·x ≤ bi (or a dual variable yi) corresponds to a right node vi labeled with bi, and a left node uj

and a right node vi are connected by an edge labeled with Aij if Aij ̸= 0. Empirical results show
that even very shallow (with fewer than ten layers) GNNs often perform well in predicting optimal
solutions to LPs. Remarkably, Li et al. (2024a) demonstrated that by employing a 4-layer GNN as a
warm-start, the PDLP solver can achieve a 3× speedup on the PageRank problem with millions of
nodes compared to the vanilla version.

We note that this empirical phenomenon is somewhat counter-intuitive. In a shallow GNN, no matter
how wide it is, each node has to base its output on local information from its d-hop neighborhood (d
denotes the number of layers of GNN, a.k.a. the depth of GNN), making the GNN inherently limited
in capturing long-range dependencies. In contrast, LP is a global optimization problem, where the
optimal value of one variable usually depends on the global information and long-range dependen-
cies between variables often exist (see (Trevisan & Xhafa, 1998) for an example). Thus besides
the potential guidance to L2O practitioners, it also has its own theoretical interest to understand the
principles behind the empirical phenomenon.

Previous theoretical works (Chen et al., 2023; Qian et al., 2024; Li et al., 2024a) have proven that
anonymous GNNs possess enough expressive power to solve LPs. Here, we say a GNN anonymous
if the nodes are not equipped with (unique) identifiers. In particular, Li et al. (2024a) showed that
the popular Primal-Dual Hybrid Gradient (PDHG) algorithm can be naturally aligned with GNNs,
where the right node vi in the bipartite graph represents a dual variable instead of a constraint.
This alignment explains why GNNs are often used as the basic network architecture in L2O from
a primal-dual perspective. Unfortunately, all these theoretical results require deep GNNs whose
depth grows at least polynomially with the instance size. The reason behind the empirical success
of shallow GNNs for LPs remains poorly understood.

1.1 OUR CONTRIBUTIONS

In this paper, we examine this phenomenon through the lens of distributed computing and average-
case analysis; and prove that constant-depth, constant-width GNNs suffice to solve sparse binary
LPs (Theorem 3), where the depth and the width of GNN remain the same as the problem size
grows.

Sparse Binary LPs. An instance of binary LP has all the entries of the constraint matrix A as
binary, and b and c both as all-ones vectors. A binary LP instance, therefore, takes the following
form:

max
x

n∑
j=1

xj (Primal binary LP) min
y

m∑
i=1

yi (Dual binary LP)

s.t.
n∑

j=1

Aijxj ≤ 1,∀i ∈ [m] s.t.
m∑
i=1

Aijyi ≥ 1,∀j ∈ [n]

x ≥ 0 y ≥ 0

where each Aij ∈ {0, 1}. Here, A has dimensions m × n, and we use [n] to denote {1, 2, . . . , n}.
An LP instance is called sparse if A has at most O(m+n) non-zero entries. This paper particularly
focuses on LP instances where m = Θ(n). We note that such sparse binary LPs can model the
fractional versions of many basic combinatorial optimization problems, such as minimum vertex
cover, maximum matching, and minimum dominating set on sparse graphs.

Our Ideas. Our result builds on the following two observations.

• Observation 1: The use of GNNs for LPs is closely related to the well-studied distributed algo-
rithms for LPs. Specifically, we find that any d-round distributed LP algorithm can be simulated
by a d-depth GNN, and vice versa.

• Observation 2: In the aforementioned empirical phenomenon, the performance of GNNs is mea-
sured based on the average instance rather than the worst instance. In other words, GNNs are
required to work for “most” instances (i.e., they are allowed to fail in a few exceptional cases),
rather than for every possible instance.
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Remark 1. We note that Observation 2 is general in L2O scenarios, for the following reasons: (i)
most L2O methods target NP-hard problems, such as mixed integer linear programs or traveling
salesman problem, where it is unrealistic to expect the L2O method works for every possible in-
stance; (ii) the general objection of L2O methods is solve instances that arise “in practice”, where
the worst instance may never be encountered, and people are usually satisfied if L2O methods work
for “many” or “most” instances.

Remark 2. This paper will consider a chain of reduction in generality: from general LPs to pack-
ing/covering LPs (a.k.a. non-negative LP), then to sparse binary LPs, and finally to row-sparse
column-sparse binary LPs. While the focus is primarily on structured LPs, the two observations
mentioned above are applicable to general LPs as well.

A central topic in distributed computing is to determine what global goals can or cannot be achieved
based on local information. Based on Observation 1, we can leverage the known principles of
distributed LP algorithms to study the power of GNNs. First, by unrolling a distributed LP algorithm
proposed by Li et al. (2024b), we show that there exists a constant-depth, constant-width GNN that
can approximately solve row-sparse, column-sparse binary LPs (Theorem 2). A row-sparse, column-
sparse binary LP is a special kind of sparse binary LP where the number of non-zero entries in each
row and each column of A is upper bounded by a constant. Moreover, by leveraging an impossibility
result about distributed LP algorithms (Kuhn et al., 2016), we conclude that there exist no constant-
depth GNNs that can solve every possible instance of sparse binary LP (Lemma 1). However, if
we shift the focus to the average-case performance, by designing and unrolling a new distributed
algorithm, we prove that constant GNN depth then becomes sufficient for almost all instances of
sparse binary LP (Theorem 3), which is the main technical part of this paper. Finally, we conduct
experiments that directly validate the theoretical result.

2 DISTRIBUTED LP ALGORITHMS AND THEIR CONNECTIONS WITH GNNS

In this section, we first briefly review known results about distributed LP algorithms, where we
will provide the description of a distributed algorithm that will be used. Then we demonstrate the
connections with GNNs.

2.1 DISTRIBUTED ALGORITHMS FOR LPS

The Distributed Computational Model. In the distributed computational model, there is a net-
work G = (V,E), where (i) each node represents a processor and (ii) each edge (u, v) represents
a bidirectional communication channel connecting processors u and v. The computation proceeds
in rounds. In one round, each processor first executes local computations and then sends messages
to its neighbors. Each of the messages is allowed to be arbitrarily long (so we are talking about
the so-called LOCAL model). The algorithm complexity is measured in the number of rounds it
performs. Note that in a d-round distributed algorithm, each node has to base its output on local
information from its d-hop neighborhood. A central topic in distributed computing is to determine
what global goals can or cannot be achieved based on local information (Peleg, 2000).

For LP problems, most of the related works (see e.g. (Kuhn et al., 2006)) considered the following
distributed setting. Given an LP instance max{cT · x | A · x ≤ b,x ≥ 0},

• The network is bound to a bipartite graph G = (U, V,E): each primal variable xj is associated
with a left node uj ; each dual variable yi is associated with a right node vi; and an edge (uj , vi)
exists if and only if Aij > 0. Note that this bipartite graph is exactly the one used by GNNs to
encode LPs. Besides, we will use Ni to denote the set of neighbors of ui.

• At the beginning of an algorithm, each left node uj only knows cj and the j-th column A:,j =
(A1j , A2j , · · · )T , and each right node vi only knows bi and the i-th row Ai,: = (Ai1, Ai2, · · · ).

• At the end of an algorithm, each left node uj is required to output a x̂j and each right node vi
to output a ŷi, which together are supposed to form an approximate solution to the primal LP
max{cT ·x | A ·x ≤ b,x ≥ 0} and the dual LP min{bT ·y | AT ·y ≥ c,y ≥ 0} respectively.
Here, we say x is a (1 + ϵ)-approximate solution if (i) it is a feasible solution and (ii) the ratio
between its objective value and optimum lies in [1/(1 + ϵ), 1 + ϵ].
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Distributed Algorithms for LPs. An important class of distributed LP algorithms are based on
first-order methods (FOM) (Lu, 2024), which only utilize gradient information to update their it-
erates and thus avoid matrix factorization. The main FOM-based LP algorithms include PDHG
Chambolle & Pock (2016), PDLP (Applegate et al., 2021), ABIP (Lin et al., 2021; Deng et al.,
2022), ECLIPSE (Basu et al., 2020), and SCS (O’donoghue et al., 2016; O’Donoghue, 2021). Ap-
plegate et al. (2023) showed that the Restarted PDHG can find an solution that is ε-close to the
optimal solution with O(∥A∥2 · α−1 log(1/ε)) iterations, and matches with the complexity lower
bound of span-respecting FOMs. Here, α is the Hoffman’s constant of the KKT system.

There is another line of research (Papadimitriou & Yannakakis, 1993; Bartal et al., 1997; Kuhn &
Wattenhofer, 2005; Kuhn et al., 2006; Awerbuch & Khandekar, 2009; Floréen et al., 2008; 2011;
Kuhn et al., 2016; Ahmadi et al., 2018; Li et al., 2024b) studying distributed algorithms for solving
packing LPs and the dual covering LPs. A packing LP and its dual covering LP are non-negative
LPs of the canonical form: max{cT · x | A · x ≤ b,x ≥ 0} and min{bT · y | AT · y ≥ c,y ≥ 0}
where A, b and c have only non-negative entries. Packing/covering LPs can be normalized into the
following forms (Awerbuch & Khandekar, 2009; Li et al., 2024b):

max
x

1Tx (Normalized packing LP) min
y

1Ty (Normalized covering LP)

s.t. Ax ≤ 1 s.t. ATy ≥ 1

x ≥ 0 y ≥ 0

where Aij is either ≥ 1 or 0.

Let n and m denote the number of primal variables and dual variables respectively, i.e., A has
dimensions m× n, and let Amax denote maxi,j Aij . Define

Γp := max
j

m∑
i=1

Aij , and Γd := max
i

n∑
j=1

Aij .

Bartal et al. (1997) proposed the first constant-factor approximation algorithm running
in polylog(m + n) rounds for packing/covering LPs. This algorithm was further im-
proved by Kuhn et al. (2006): they developed an (1 + ϵ)-approximation algorithm run-
ning in O

(
log Γp · log Γd/ϵ

4
)

rounds. In particular, for row-sparse, column-sparse in-
stances, their algorithm runs in O

(
log2 Amax/ϵ

4
)

rounds. Later, Awerbuch & Khandekar
(2009) proposed another (1 + ϵ)-approximation algorithm for packing/covering LPs running in
Õ
(
log2(mAmax) log

2(nmAmax)/ϵ
5
)

rounds, which has slightly worse bound than Kuhn et al.
(2006) but enjoys the features of simplicity and statelessness. Recently, Li et al. (2024b) proposed
a distributed algorithm (Algorithm 1) that returns a (1 + ϵ)-approximate solution for row-sparse,
column-sparse instances in O

(
Amax · logAmax/ϵ

2
)

rounds. We remark that all the aforementioned
distributed algorithms are anonymous, where the nodes in the network are not equipped with identi-
fiers.

On the lower bound side, Kuhn et al. (2016) proved that: every constant-factor approximation dis-
tributed algorithm for the fractional maximum matching problem, a special kind of sparse binary
LP, requires at least Ω(

√
log(m+ n)/ log log(m+ n)) rounds.

Description of a Distributed Algorithm. The algorithm proposed by Li et al. (2024b), which will
be used later, is depicted in Algorithm 1. The three parameters α, f , and L are defined as

α := 1 +
ϵ

c · Γd
, and f :=

2

ϵ · lnα
· ln Γp, and L := ⌈logα Γp + f⌉. (1)

where c is a sufficiently large constant, say c = 1000. Each left node uj maintains two variables
xj and rj , and each right node vi maintains a variable yi. Every xj and yi is initially 0 and the
value can only increase throughout the algorithm; every rj is initially 1 and the value can only
decrease. Besides, each right node vi also maintains a variable ρi :=

∑
j Aijrj . Recall that the set

of neighbors of ui is denoted by Ni.
Theorem 1 (Li et al. (2024b)). Given any ϵ > 0, Algorithm 1 computes (1 + ϵ)-approximate
solutions to the normalized packing LP and the normalized covering LP at the same time, running
in ≤ 10 · Γd · log Γp/ϵ

2 rounds. Particularly, for row-sparse, column-sparse binary LP instances,
Algorithm 1 runs in constant rounds.

4
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Algorithm 1: An (1 + ϵ)-approximation distributed algorithm for packing/covering LPs (Li
et al., 2024b)

1 Input: A m× n matrix A where each Aij is either 0 or ≥ 1, and a real number ϵ > 0;
2 Parameters: α, f ∈ R≥0 and L ∈ N defined as in equation 1;
3 Initialize xj := 0 and rj := 1 for any j ∈ [n], and yi := 0 for any i ∈ [m];
4 for ℓ = 1 to L do
5 for each right node vi in parallel do
6 if ρi ≥ 1

α ·maxi′:Ni′∩Ni ̸=∅ ρi′ then ∆yi := 1;
7 else ∆yi := 0;
8 yi := yi +∆yi;
9 send ∆yi and ρi to all of its neighbors;

10 for each left node uj in parallel do
11 xj := xj + rj ·

∑
i Aij ·∆yi/ρi and rj := rj/α

∑
i Aij∆yi ;

12 if rj ≤ α−f then rj := 0;
13 send rj to all of its neighbors;

14 Return: x/(f · (1 + ϵ)) and y/f as a (1 + ϵ)-approximate solution to the normalized packing
LP and the normalized covering LP respectively.

For the intuition behind Algorithm 1 and the analysis, we refer interested readers to (Li et al., 2024b).

2.2 CONNECTION WITH GRAPH NEURON NETWORKS FOR LPS

The connection builds on the observation that distributed LP algorithms and GNNs employ the same
bipartite graph to represent an LP instance. On one hand, it is obvious that a d-depth GNN can be
computed by a d-round distributed algorithm; so by the lower bound obtained by Kuhn et al. (2016),
we have the following lemma:

Lemma 1. There exists no o(
√
log(m+ n)/ log log(m+ n))-depth GNN that can output a

constant-factor approximate solution for every sparse binary LP instance.

On the other hand, by utilizing the universal approximation property of MLPs, any d-round (anony-
mous) distributed LP algorithm can be simulated by a d-depth (anonymous) GNN. In particular, by
unrolling Algorithm 1, we have the following theorem. The proof can be found in the appendix.

Theorem 2. Given any ϵ > 0, there exists a constant-depth, constant-width GNN such that: for
any row-sparse, column-sparse binary LP instance, it outputs (1 + ϵ)-approximate solutions to the
primal LP and the dual LP at the same time.

3 MAIN RESULT

By Lemma 1, it is impossible that a constant-depth GNN can approximately solve sparse binary LPs
in the worst case. Despite this, if we care about the average-case performance, then such a GNN
exists:

Theorem 3. Given any ϵ > 0 and 0 < η < 1, there exists a constant-depth, constant-width GNN
such that: for (1 − η) fraction of all possible sparse binary LP instances, it outputs a (1 + ϵ)-
approximate solution to the primal LP and the dual LP at the same time.

Remark 3. To be more specific, in Theorem 3, the GNN depth is upper bounded by 10γβ ·
log(γαβ)/ϵ2, where α = m/n, β = nnz(A)/m, and γ is defined as in equation 2. For exam-
ple, if the GNN is required to output a 2-approximate solution for 99% fraction of LP instances
where m = n and nnz(A) = 20m, then the upper bound is 54079.

While the theoretical constants may be large, we will empirically demonstrate that a 5-layer GNN
designed by unrolling Algorithm 2 can solve sparse binary LPs. See Section 4 for details.
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In the rest of this section, we will prove Theorem 3. We will propose a constant-round distributed
algorithm that works for almost all sparse binary LPs, and can be naturally converted to a constant-
depth, constant-width GNN.

3.1 NOTATIONS AND PROPERTIES ABOUT AVERAGE INSTANCES

Recall that the constraint matrix A has dimensions m × n. Let α denote the ratio m/n. Since
we have assumed m = Θ(n), α is bounded away from 0 and also upper bounded by a constant.
Let Am,n,β denote the set consisting of all binary matrix A ∈ {0, 1}m×n having exactly β · m
non-zero entries. For A ∈ Am,n,β , each row contains β non-zero entries in average, and we say a
row γ-dense if it contains at least γβ non-zero entries; similarly, each column contains αβ non-zero
entries in average, and we say a column γ-dense if it contains at least γαβ non-zero entries. Let
Rγ ⊂ [m] (and Cγ ⊂ [n] respectively) denote the set of γ-dense rows (and columns respectively).
Let C int

γ := {j | ∃i ∈ Rγ s.t. Aij ̸= 0} ⊂ [n] denote the set consisting of all columns which
intersect with some γ-dense row. We define opt(A) to be the optimal objective value of the binary
LP instance with constraint matrix A, i.e.,

opt(A) := max

∑
j

xj | A · x ≤ 1,x ≥ 0

 = min

{∑
i

yi | AT · y ≥ 1,y ≥ 0

}
.

The following property about an “average” A will be used.

Lemma 2. Let γ ≥ 8. For at least 1 − η fraction of A in Am,n,β , we have |Rγ | ≤ 6m
η·2(γ−2)β ,

|Cγ | ≤ 6n
η·2(γ−2)αβ , and |C int

γ | ≤ 6α(γβ+1)n
η·2(γ−2)β . In particular, by setting γ a sufficiently large constant,

say

γ = 2 +
1

β
· log2

(
48αβ

ηϵ

)
+

1

αβ
· log2

(
48β

ηϵ

)
, (2)

we have |Rγ |, |Cγ | ≤ ϵn
8γβ and |C int

γ |+ |Cγ | ≤ n
2 for at least 1− η fraction of A in Am,n,β .

Proof. Let A denote a uniformly sampled matrix from Am,n,α at random. We use Zi
k to denote the

event that the i-th row of A contains exactly k 1-entries. For any i ∈ [m] and k ≥ 8β, we have

Pr
A
[Zk+1]/Pr

A
[Zk] =

(
n

k + 1

)(
(m− 1)n

βm− (k + 1)

)/(
n

k

)(
(m− 1)n

βm− k

)
=

n− k

k + 1
· βm− k

(m− 1)n− βm+ k + 1
≤ n− 4β

8β + 1
· β

m−1
m · n− β

≤ 1

8
· n− 4β

n/2− β
≤ 1

2
,

which implies that
Pr[Zi

k] ≤ 2−(k−2β) · Pr[Zi
2β ] ≤ 2−(k−2β). (3)

Furthermore, we have

Pr[the i-th row is γ-dense] =
n∑

k=γβ

Pr[Zi
k] ≤

∞∑
k=γβ

2−(k−2β) = 2−(γ−2)β+1.

Then, by linearity of expectation,

EA [|Rγ |] =
m∑
i=1

Pr
A
[the i-th row is γ-dense] ≤ 2−(γ−2)β+1 ·m.

By applying Markov’s inequality,

Pr
A

[
|Rγ | ≥

3

η
· 2−(γ−2)β+1 ·m

]
≤ η

3
. (4)

6
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Algorithm 2: A distributed algorithm that works for almost all instances of sparse binary LP
1 Input: A matrix A ∈ {0, 1}m×n with βm 1-entries, and two real numbers ϵ > 0, 0 < η < 1;
2 Parameters: γ defined as in equation 2;
3 for each right node vi in parallel do
4 if Ai,: is γ-dense then
5 y′i := 1;
6 send “sleep” to all of its neighbors;
7 set itself to the sleep mode;

8 for each left node uj in parallel do
9 if recieves “sleep”, or A:,j is γ-dense then

10 send (“sleep”,1/
∑

i Aij) to all of its neighbors;
11 set itself to the sleep mode;

12 Run Algorithm 1 with parameter ϵ/4 on the awake nodes, and obtain x̂′ and ŷ′;
13 for each left node uj in parallel do
14 if uj is in sleep mode then return x̂i = 0;
15 else return x̂i = x̂′i;
16 for each right node vi in parallel do
17 return ŷi = ŷ′i +

∑
sleep j∈Ni

1∑
i′ Ai′j

;

Similarly, we can also show that

Pr
A

[
|Cγ | ≥

3

η
· 2−(γ−2)αβ+1 · n

]
≤ η

3
. (5)

In the rest of the proof, we will show that

Pr
A

[
|C int

γ | ≥ 3

η
· (γβ + 1) · 2−(γ−2)β+1 ·m

]
≤ η

3
, (6)

which, together with equation 4 and equation 5, imply the conclusion by the union bound.

Note that |C int
γ | is upper bounded by the total number of 1-entries in γ-dense rows. So by linearity

of expectation, we have

E
[
|C int

γ |
]
≤E [#1-entries contained in the γ-dense rows]

=

m∑
i=1

E
[
(1i-th row is γ-dense) · (#1-entries contained in i-th row)

]
=

m∑
i=1

n∑
k=γβ

Pr[Zi
k] · k ≤

m∑
i=1

+∞∑
k=γβ

2−(k−2β) · k

=m(γβ + 1) · 2−(γ−2)β+1

By applying Markov’s inequality, we obtain equation 6.

3.2 CONSTRUCTION OF THE CONSTANT-DEPTH, CONSTANT-WIDTH GNN

In the following, we will set γ as in equation 2, which is a constant. To prove Theorem 3, we will
propose a constant-round distributed algorithm that works for almost all sparse binary LP instances.
Then, as we will see, it can be naturally converted to a constant-depth, constant-width GNN. The
distributed algorithm builds on Algorithm 1. The idea is depicted as follows: given A ∈ Am,n,β ,
we first obtain a reduced matrix A′ from A by deleting all rows in Rγ and all columns in Cγ ∪C int

γ .
Note that A′ is a row-sparse, column-sparse binary matrix. Then we run Algorithm 1 with ϵ/4 on

7
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the reduced LP instance with constraint matrix A′, where the reduced primal LP is

max

 ∑
j∈[n]\(Cγ∪Cint

γ )

xj | A′x ≤ 1,x ≥ 0


and the reduced dual LP is

min

 ∑
i∈[m]\Rγ

yi | A′Ty ≥ 1,x ≥ 0

 ,

to obtain (1 + ϵ/4)-approximate solutions x̂′ ∈ R[n]\(Cγ∪Cint
γ ) and ŷ′ ∈ R[m]\Rγ of the reduced

instance. Finally,

• Let x̂ ∈ Rn be obtained from x̂′ by setting each xj in Cγ ∪ C int
γ to 0. Return x̂ as an (1 + ϵ)-

approximate solution to the original primal LP.
• Let ŷ be obtained from ŷ′ by first setting each yi in Rγ to 1, and then adding the vector∑

j∈Cγ

1∑
i Aij

·A:,j . Return ŷ as an (1 + ϵ)-approximate solution to the original dual LP.

The formal description of the distributed algorithm is presented in Algorithm 2. It is easy to see that
this algorithm runs in constant rounds and can be naturally converted to a constant-depth, constant-
width GNN. What remains is to show the correctness.

3.3 CORRECTNESS

By Lemma 2, it suffices to show that for every A ∈ Am,n,β where |Rγ |, |Cγ | ≤ ϵn
8γβ , and |C int

γ | +
|Cγ | ≤ n/2, x̂ and ŷ returned by Algorithm 2 are (1 + ϵ)-approximate solutions to the original
primal LP max{

∑n
j=1 xj | Ax ≤ 1,x ≥ 0} and the dual LP min{

∑m
i= yi | ATy ≥ 1,y ≥ 0}

respectively. We first present some helpful observations.
Claim 1. opt(A)− ϵn

4γβ ≤ opt(A)− |Rγ | − |Cγ | ≤ opt(A′) ≤ opt(A).

Proof. We first show that opt(A′) ≤ opt(A). Suppose that x′∗ ∈ R[n]\(Cγ∪Cint
γ ) is an optimal

solution to the reduced primal LP. Let x ∈ R[n] be obtained from x′∗ by setting each xj in Cγ∪C int
γ

to 0. It is easy to check that x is a feasible solution to the original primal LP. So

opt(A′) =
∑
i

x′∗i =
∑
i

xi ≤ opt(A).

Now, we show that opt(A) ≤ opt(A′) + |Rγ | + |Cγ |. Suppose that y′∗ ∈ R[m]\Rγ is an optimal
solution to the reduced dual LP. Let y be obtained from y′∗ by (i) first setting each yi in Rγ to 1,
and (ii) then adding

∑
j∈Cγ

1∑
i Aij

·A:,j . We claim that y is a feasible solution to the original dual

LP, i.e., AT
j y =

∑m
i=1 Aijyi ≥ 1 for any j ∈ [n]. The feasibility can be checked case by case:

• If j ∈ [n] \
(
Cγ ∪ C int

γ

)
, then we have AT

j y ≥ A′Tj y′∗ ≥ 1.

• If j ∈ Cγ , then AT
j y ≥ AT

j · 1∑
i Aij

·A:,j = 1.

• If j ∈ C int
γ , then there is a i ∈ Rγ such that Aij = 1. Note that yi ≥ 1 for any i ∈ Rγ . We

have AT
j y ≥ Aij · yi ≥ 1.

Finally, since y is a feasible solution to the original dual LP, it has

opt(A) =
∑
j

yj ≤
∑
j

y′∗j + |Rγ |+
∑
i

∑
j∈Cγ

1∑
i Aij

·Ai,j = opt(A′) + |Rγ |+ |Cγ |.

Claim 2. opt(A′) ≥ n
2γβ .

8
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Proof. Note that A′ contains no γ-dense rows, i.e., each row of A′ contains no more than γβ 1-
entries. Thus

(
1
γβ ,

1
γβ , · · · ,

1
γβ

)
is a feasible solution to the reduced primal LP, and the objective

value 1
γβ ·

(
n− |C int

γ ∪ Cγ |
)
≥ n

2γβ provides a lower bound on opt(A′).

In the following, we show that x̂ is a (1 + ϵ)-approximate solution to the original primal LP. The
feasibility is obvious, and the optimality can be verified as follows:

(1 + ϵ)
∑
j∈[n]

x̂j =(1 + ϵ)
∑

j∈[n]\Rγ

x̂′j ≥
1 + ϵ

1 + ϵ/4
· opt(A′)

≥
(
1 +

ϵ

2

)
opt(A′) = opt(A′) +

ϵ

2
· opt(A′)

≥opt(A)− ϵn

4γβ
+

ϵ

2
· opt(A′) (Claim 1)

≥opt(A)− ϵn

4γβ
+

ϵ

2
· n

2γβ
(Claim 2)

≥opt(A).

What remains is to show that ŷ is a (1 + ϵ)-approximate solution to the original dual LP. The
feasibility can be checked similarly as in the proof of Claim 1. The optimality can be verified as
follows: ∑

j

ŷj ≤
∑
j

ŷ′j + |Rγ |+
∑
i

∑
j∈Cγ

1∑
i Aij

·Aij =
∑
j

ŷ′j + |Rγ |+ |Cγ |

≤
(
1 +

ϵ

4

)
· opt(A′) + ϵn

4γβ

≤
(
1 +

ϵ

4

)
· opt(A′) + ϵ

2
· opt(A′) (Claim 2)

≤
(
1 +

3ϵ

4

)
· opt(A) (Claim 1)

Now, we finish the proof of the correctness.

4 NUMERICAL EXPERIMENTS

We conduct numerical experiments to validate our main theoretical results, namely Theorem 3. By
unrolling Algorithm 2, we propose a GNN architecture, depicted in Appendix B.

Experimental Setup. To validate the performance of our method across different sizes of Normal-
ized packing LP problems and ensure consistency with theoretical results, we randomly generated
LP problems of varying sizes using Ortools. Specifically, the LP instances generated were of the
form M = N , with each instance containing 10∗(M+N) non-zero entries. Four different problem
sizes were considered: 100, 500, 1,000, and 1,500. After generation, we employed Ortools to solve
these problems, collecting both the primal and dual solutions for training and testing.

For each problem size, we used 100 independent, randomly generated training samples and 100
independent, randomly generated testing samples. Our model was implemented using the PyTorch
framework, and the training process was conducted on GPUs. The Adam optimizer was used with
a learning rate of 1e-3 and a batch size of 1. Fixed parameters included L = 5, and K = 16, along
with a learnable parameter f initialized to 1. In the comparison experiments, we use GCNs with the
same L-layer cut each with 64-dimensional feature dimensions.

Evaluation Metrics. To assess the representational power of our method, we report the training
loss after the model has converged. Additionally, we evaluate the relative gap. Using feasibility
restoration (see Appendix C), the final values xfinal and yfinal returned by our GNN are used to
compute x′ and y′. The relative gaps are then calculated as follows: the relative gap of the primal
is denoted as RP = obj(x′)−opt

opt and the relative gap of the dual is denoted as RD = obj(y′)−opt
opt .

9
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In order to explore the difference in the representational power of the two methods, we report the
converged training loss, which is the training loss in the table. The lower the RP and RD the better
the performance.

Experimental Results. The results of the numerical experiments directly illustrate the effective-
ness of our method. Table 1 demonstrates that our GNN achieves much better performance while
using significantly fewer parameters, where our model uses at most 2K parameters, which is almost
0.8% of the number of parameters in GCN (≈250K).

Table 1: Performance comparison of our method with GCN for training loss , Training RP, Training
RD, Test RP and Test RD.

LP size Training Loss Training RP Training RD Test RP Test RD
GCN Ours GCN Ours GCN Ours GCN Ours GCN Ours

100 0.0087 0.0086 1.0 0.20 18.64 0.43 1.0 0.20 18.62 0.45
500 0.0086 0.0084 0.96 0.20 18.37 0.48 0.94 0.20 18.35 0.47

1000 0.0079 0.0085 1.0 0.20 18.33 0.47 1.0 0.20 18.35 0.46
1500 0.0083 0.0085 1.0 0.20 18.33 0.45 1.0 0.20 18.38 0.46

We also conduct small-scale numerical experiments to illustrate that our method TRAINING LOSS
can converge to 0. In the experiments, the size of the LP problem is 1000 and the training samples
are 10. We report the relationship (see Fig. 1) of converged training loss with the number of layers
L. Even for very small L, the training loss for convergence can already be close to 0.

Figure 1: Convergence trends due to changes in the number of layers during training.

5 CONCLUSION

Towards understanding the empirical success achieved by shallow GNNs for solving LPs, we prove
that constant-depth, constant-width GNNs suffice to solve sparse binary LPs effectively, by leverag-
ing the principles of distributed LP algorithms. Besides, our analysis shifts the focus from worst-case
performance to average-case performance, as empirical studies usually measure GNNs based on av-
erage performance across instances. We believe our ideas can help in further explorations of the
power of GNNs in L2O. For future directions, it is interesting to investigate whether our result can
be extended to more general LP classes, such as non-negative LPs.
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A PROOF OF THEOREM 2

We will explicitly describe such a GNN. The idea is to simulate Algorithm 1 on binary LP instances.
Given a matrix M ∈ Rm×n and a vector p ∈ Rn, we define the “max-product” q = M ×max p to
be the m-dimensional column vector such that qi = maxnj=1 Mijpj

We design a GNN as follows: each left node in the bipartite graph maintains a 4-dimension
feature vector (xj , r̃j , bj , ρ̃j), and each right node also maintains a 4-dimension feature vector
(yi, y∆,i, ρi, ρmax,i). Here,

• r̄j represents logα rj + f . In other words, rj = αr̄j−f .

• bj is defined to be rj (or equivalently αr̄j−f ) if rj > α−f , and 0 otherwise.

• ρi represents Ai,: · b =
∑

j Aijbj .

• ρ̃j represents maxi:Ni∋j ρi, or equivalently AT
:,j ×max ρ.

• ρmax,i represents maxi′:Ni′∩Ni ̸=∅ ρi′ = maxj∈Ni
ρ̃j , or equivalently Ai,: ×max ρ̃.

• y∆,i represents the increment of yi.

The architecture of the GNN is depicted below.

- Initialize r̄0 := f · 1n×1, b0 = 1n×1; and ρ̃0,x0 both to be 0n×1.

- Initialize all of y0,y0
∆,ρ

0,ρ0
max to be 0m×1.

- For ℓ = 0, 1, 2 · · · , L− 1

• ρℓ+1 := A · bℓ;
• ρ̃ℓ+1 := AT ×max ρ

ℓ+1;

• ρℓ+1
max := A×max ρ̃

ℓ+1, yℓ+1
∆ := gθ(ρ

ℓ+1 − ρℓ+1
max/α), and yℓ+1 := yℓ + yℓ+1

∆ ;

• r̄ℓ+1 := r̄ℓ −AT · yℓ+1
∆ , xℓ+1 := xℓ + bℓ ◦

[
AT ·

(
yℓ+1
∆ ◦ 1

ρℓ+1

)]
, and bℓ+1 = bθ(r̄

ℓ+1).

Here, ◦ denotes entry-wise multiplication (a.k.a. Hadamard product), and the parameterized func-
tions gθ, bθ : R → R are applied entry-wise on to the vectors ρℓ+1−ρℓ+1

max/α and r̄ℓ+1 respectively.
If we set gθ(z) := 1z≥0 and bθ(z) := 1z≥0 ·αz−f , then it is straightforward to check that this GNN
exactly simulates Algorithm 1. By Theorem 1, we finish the proof.

B GRAPH NEURAL NETWORK DESIGN BY UNROLLING ALGORTIHM 2

Each left node in the bipartite graph maintains a 5-dimension feature vector
(xj , r̃j , bj , ρ̃j ,mask←j ) ∈ R5, and each right node also maintains a 5-dimension feature vec-
tor (yi, y∆,i, ρi, ρmax,i,mask→j ) ∈ R5. Here,

• The feature mask indicates whether the node is in the sleep mode. For example, mask←j is
supposed to be 1 if the left node uj is in sleep mode, and 0 if not.

– Recall that a right node vi is set to be sleep if it has ≥ γβ edges. In the neural network, we
will let mask→ := q→θ (A ·1n×1), where q←θ (z) = 1

4

∑4
k=1 σ(θk,8 ·z+θk,9) is a learnable

function and applied entry-wise. Here, σ(z) = 1/(1 + exp(−z)) is the sigmoid function.
– Recall that a left node uj is set to be sleep if it has ≥ γαβ edges or connects to a sleep

right node. In the neural network, we will let mask← = max{q←θ (AT · 1m×1),A
T ×max

mask→}, where q→θ = 1
4

∑4
k=1 σ(θk,10 · z + θk,11) is a learnable function and applied

entry-wise.

• The intuition behind the other features is the same as in Theorem 2.

The architecture of the GNN is depicted below.

- Initialize r̄0 := f · 1n×1, b0 = 1n×1; and ρ̃0 = x0 = mask← = 0n×1.
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- Initialize y0 = y0
∆ = ρ0 = ρ0

max = mask→ = 0m×1.

- mask→ = q→θ (A · 1n×1).

- mask← = max{q←θ (AT · 1m×1),A
T ×max mask→}.

- For ℓ = 0, 1, 2 · · · , L− 1

• ρℓ+1 :=
(
A · bℓ

)
◦ (1−mask→);

• ρ̃ℓ+1 :=
(
AT ×max ρ

ℓ+1
)
◦ (1−mask←);

• ρℓ+1
max :=

(
A×max ρ̃

ℓ+1
)
◦ (1−mask→), yℓ+1

∆ := gθ(ρ
ℓ+1 − ρℓ+1

max/α) ◦ (1−mask→), and
yℓ+1 :=

(
yℓ + yℓ+1

∆

)
◦ (1−mask→);

• r̄ℓ+1 :=
(
r̄ℓ −AT · yℓ+1

∆

)
◦ (1 − mask←), xℓ+1 :=

(
xℓ + bℓ ◦

[
AT ·

(
yℓ+1
∆ ◦ 1

ρℓ+1

)])
◦

(1−mask←), and bℓ+1 = bθ(r̄
ℓ+1) ◦ (1−mask←).

- return xfinal = xL and yfinal = yL +mask→ +A ·
(
hT ◦mask←

)
.

Here, ◦ denotes entry-wise multiplication (a.k.a. Hadamard product), the m×n-dimensional matrix
A is defined as Aij = Aij/

∑m
i=1 Aij , and the parameterized functions gℓθ, b

ℓ
θ : R → R are applied

entry-wise on to the vectors ρℓ+1 − ρℓ+1
max/α and r̄ℓ+1 respectively where

gℓθ(z) =

K∑
k=1

θℓk,1 ·σ(θℓk,2 · z+ θℓk,3), and bℓθ(z) :=

K∑
k=1

θℓk,4 ·σ(θℓk,5 · z+ θℓk,6) ·2−ReLU(θℓ
k,7(z−f))

The learnable parameter is Θ := {h ∈ Rn, f} ∪ {θℓk,q}ℓ∈[0,L−1],k∈[1,K],q∈[1,11]. The number of
parameter is 11LK + n+ 1.

One can check that the above GNN can exactly simulate Algorithm 2.

Network training. The training data set is a set I = {(A,x∗,y∗)} of binary LP instances.
More specifically, the input of an instance is identified by the constraint matrix A; the label x∗
and y∗ represents the corresponding optimal solutions to primal LP and dual LP respectively. Let
xfinal(Θ,A) and yfinal(Θ,A) denote the output of our GNN parameterized by Θ running on the
input A. The goal of the training process is to find a parameter Θ∗ minimizing MSE loss defined
as:

L(I;Θ) =
1

|I|
∑

(A,x∗)∈I

[
1

N

∑
j∈[N ]

|xfinal
j (Θ,A)− x∗j |2 +

1

M

∑
i∈[M ]

|yfinal
i (Θ,A)− y∗i |2].

C OTHER DETAILED INFORMATION ABOUT THE EXPERIMENTS

Evaluation Configurations. All experiments were performed in the same hardware environment.
The evaluation machine is equipped with two Intel(R) Xeon(R) Gold 5117 CPUs @ 2.00GHz,
256GB of RAM, and a single Nvidia V100 GPU. Ortools version 9.11 and PyTorch version 1.10.2
were utilized in our experiments. The maximum number of training epochs was set to 1,000.

Feasibility restoration for the primal LP. Note that the xfinal returned by our GNN may be
infeasible. To restore feasibility, we implement the following post-processing procedure:

– First, for each j ∈ [n], update xj := max(0,min(1, xj));

– Then, for i = 1 to m do

• If Aix ≥ 1, then update xj :=
xj

Aix
for each j with Aij ̸= 0.

Feasibility restoration for the dual LP. Since the yfinal returned by our GNN may be infeasible,
we implement the following post-processing procedure to restore feasibility:

– First, for each i ∈ [m], update yi := max(10−5,min(1, yi));
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– Then, for j = 1 to n do

• If AT
j y ≤ 1, then update yi :=

yi

AT
j y

for each i with Aij ̸= 0.
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