
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS EXPLAINING THE POWER OF CONSTANT
DEPTH GRAPH NEURAL NETWORKS FOR STRUC-
TURED LINEAR PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have recently emerged as powerful tools for solv-
ing complex optimization problems, often being employed to approximate solu-
tion mappings. Empirical evidence shows that even shallow GNNs (with fewer
than ten layers) can achieve strong performance in predicting optimal solutions to
linear programming (LP) problems. This finding is somewhat counter-intuitive, as
LPs are global optimization problems, while shallow GNNs predict based on lo-
cal information. Although previous theoretical results suggest that GNNs have the
expressive power to solve LPs, they require deep architectures whose depth grows
at least polynomially with the problem size, and thus leave the underlying prin-
ciple of this empirical phenomenon still unclear. In this paper, we examine this
phenomenon through the lens of distributed computing and average-case analysis.
We establish that the expressive power of GNNs for LPs is closely related to well-
studied distributed algorithms for LPs. Specifically, we show that any d-round
distributed LP algorithm can be simulated by a d-depth GNN, and vice versa.
In particular, by designing a new distributed LP algorithm and then unrolling it,
we prove that constant-depth, constant-width GNNs suffice to solve sparse binary
LPs effectively. Here, in contrast with previous analyses focusing on worst-case
scenarios, in which we show that GNN depth must increase with problem size by
leveraging an impossibility result about distributed LP algorithms, our analysis
shifts the focus to the average-case performance, and shows that constant GNN
depth then becomes sufficient no matter how large the problem size is. Our theory
is validated by numerical results.

1 INTRODUCTION

Learning to Optimize (L2O) has recently gained considerable attention as a promising framework
that leverages machine learning techniques to discover efficient optimization strategies. Compared
to traditional rule-based methods, L2O methods adaptively learn optimization strategies tailored to
specific problem classes, offering greater flexibility and efficiency. The L20 framework has shown
its potential in handling both continuous optimization (Monga et al., 2021) and combinatorial opti-
mization (Bengio et al., 2021; Mazyavkina et al., 2021), and opens up new possibilities for automat-
ing and improving the efficiency of various real-world applications.

Graph Neural Networks (GNNs) have emerged as a powerful tool within the L2O framework (Cap-
part et al., 2023; Peng et al., 2021). GNNs are dedicated to capturing dependencies and relational
structures among variables, thus well-suited for representing and solving optimization problems
with graph-structured data, e.g., max cut (Schuetz et al., 2022), traveling salesman problem (Hud-
son et al., 2021), and minimum vertex covering (Sato et al., 2019), where the relationships between
variables are key to finding efficient solutions.

In particular, there is a line of research (Li et al., 2022; Chen et al., 2023; Kuang et al., 2023; Fan
et al., 2023; Liu et al., 2024; Qian et al., 2024; Li et al., 2024a) exploring the power of GNNs to ac-
celerate the solving process of linear programming (LP). These studies are based on the observation
that a general LP instance max{cT ·x | A ·x ≤ b,x ≥ 0} can be naturally represented as a labeled
bipartite graph. Specifically, a variable xj corresponds to a left node uj labeled with cj , a constraint

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Ai,: ·x ≤ bi (or a dual variable yi) corresponds to a right node vi labeled with bi, and a left node uj

and a right node vi are connected by an edge labeled with Aij if Aij ̸= 0. Empirical results show
that even very shallow (with fewer than ten layers) GNNs often perform well in predicting optimal
solutions to LPs. Remarkably, Li et al. (2024a) demonstrated that by employing a 4-layer GNN as a
warm-start, the PDLP solver can achieve a 3× speedup on the PageRank problem with millions of
nodes compared to the vanilla version.

We note that this empirical phenomenon is somewhat counter-intuitive. In a shallow GNN, no matter
how wide it is, each node has to base its output on local information from its d-hop neighborhood (d
denotes the number of layers of GNN, a.k.a. the depth of GNN), making the GNN inherently limited
in capturing long-range dependencies. In contrast, LP is a global optimization problem, where the
optimal value of one variable usually depends on the global information and long-range dependen-
cies between variables often exist (see (Trevisan & Xhafa, 1998) for an example). Thus besides
the potential guidance to L2O practitioners, it also has its own theoretical interest to understand the
principles behind the empirical phenomenon.

Previous theoretical works (Chen et al., 2023; Qian et al., 2024; Li et al., 2024a) have proven that
anonymous GNNs possess enough expressive power to solve LPs. Here, we say a GNN anonymous
if the nodes are not equipped with (unique) identifiers. In particular, Li et al. (2024a) showed that
the popular Primal-Dual Hybrid Gradient (PDHG) algorithm can be naturally aligned with GNNs,
where the right node vi in the bipartite graph represents a dual variable instead of a constraint.
This alignment explains why GNNs are often used as the basic network architecture in L2O from
a primal-dual perspective. Unfortunately, all these theoretical results require deep GNNs whose
depth grows at least polynomially with the instance size. The reason behind the empirical success
of shallow GNNs for LPs remains poorly understood.

1.1 OUR CONTRIBUTIONS

In this paper, we examine this phenomenon through the lens of distributed computing and average-
case analysis; and prove that constant-depth, constant-width GNNs suffice to solve sparse binary
LPs (Theorem 3), where the depth and the width of GNN remain the same as the problem size
grows.

Sparse Binary LPs. An instance of binary LP has all the entries of the constraint matrix A as
binary, and b and c both as all-ones vectors. A binary LP instance, therefore, takes the following
form:

max
x

n∑
j=1

xj (Primal binary LP) min
y

m∑
i=1

yi (Dual binary LP)

s.t.
n∑

j=1

Aijxj ≤ 1,∀i ∈ [m] s.t.
m∑
i=1

Aijyi ≥ 1,∀j ∈ [n]

x ≥ 0 y ≥ 0

where each Aij ∈ {0, 1}. Here, A has dimensions m × n, and we use [n] to denote {1, 2, . . . , n}.
An LP instance is called sparse if A has at most O(m+n) non-zero entries. This paper particularly
focuses on LP instances where m = Θ(n). We note that such sparse binary LPs can model the
fractional versions of many basic combinatorial optimization problems, such as minimum vertex
cover, maximum matching, and minimum dominating set on sparse graphs.

Our Ideas. Our result builds on the following two observations.

• Observation 1: The use of GNNs for LPs is closely related to the well-studied distributed algo-
rithms for LPs. Specifically, we find that any d-round distributed LP algorithm can be simulated
by a d-depth GNN, and vice versa.

• Observation 2: In the aforementioned empirical phenomenon, the performance of GNNs is mea-
sured based on the average instance rather than the worst instance. In other words, GNNs are
required to work for “most” instances (i.e., they are allowed to fail in a few exceptional cases),
rather than for every possible instance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Remark 1. We note that Observation 2 is general in L2O scenarios, for the following reasons: (i)
most L2O methods target NP-hard problems, such as mixed integer linear programs or traveling
salesman problem, where it is unrealistic to expect the L2O method works for every possible in-
stance; (ii) the general objection of L2O methods is solve instances that arise “in practice”, where
the worst instance may never be encountered, and people are usually satisfied if L2O methods work
for “many” or “most” instances.

Remark 2. This paper will consider a chain of reduction in generality: from general LPs to pack-
ing/covering LPs (a.k.a. non-negative LP), then to sparse binary LPs, and finally to row-sparse
column-sparse binary LPs. While the focus is primarily on structured LPs, the two observations
mentioned above are applicable to general LPs as well.

A central topic in distributed computing is to determine what global goals can or cannot be achieved
based on local information. Based on Observation 1, we can leverage the known principles of
distributed LP algorithms to study the power of GNNs. First, by unrolling a distributed LP algorithm
proposed by Li et al. (2024b), we show that there exists a constant-depth, constant-width GNN that
can approximately solve row-sparse, column-sparse binary LPs (Theorem 2). A row-sparse, column-
sparse binary LP is a special kind of sparse binary LP where the number of non-zero entries in each
row and each column of A is upper bounded by a constant. Moreover, by leveraging an impossibility
result about distributed LP algorithms (Kuhn et al., 2016), we conclude that there exist no constant-
depth GNNs that can solve every possible instance of sparse binary LP (Lemma 1). However, if
we shift the focus to the average-case performance, by designing and unrolling a new distributed
algorithm, we prove that constant GNN depth then becomes sufficient for almost all instances of
sparse binary LP (Theorem 3), which is the main technical part of this paper. Finally, we conduct
experiments that directly validate the theoretical result.

2 DISTRIBUTED LP ALGORITHMS AND THEIR CONNECTIONS WITH GNNS

In this section, we first briefly review known results about distributed LP algorithms, where we
will provide the description of a distributed algorithm that will be used. Then we demonstrate the
connections with GNNs.

2.1 DISTRIBUTED ALGORITHMS FOR LPS

The Distributed Computational Model. In the distributed computational model, there is a net-
work G = (V,E), where (i) each node represents a processor and (ii) each edge (u, v) represents
a bidirectional communication channel connecting processors u and v. The computation proceeds
in rounds. In one round, each processor first executes local computations and then sends messages
to its neighbors. Each of the messages is allowed to be arbitrarily long (so we are talking about
the so-called LOCAL model). The algorithm complexity is measured in the number of rounds it
performs. Note that in a d-round distributed algorithm, each node has to base its output on local
information from its d-hop neighborhood. A central topic in distributed computing is to determine
what global goals can or cannot be achieved based on local information (Peleg, 2000).

For LP problems, most of the related works (see e.g. (Kuhn et al., 2006)) considered the following
distributed setting. Given an LP instance max{cT · x | A · x ≤ b,x ≥ 0},

• The network is bound to a bipartite graph G = (U, V,E): each primal variable xj is associated
with a left node uj ; each dual variable yi is associated with a right node vi; and an edge (uj , vi)
exists if and only if Aij > 0. Note that this bipartite graph is exactly the one used by GNNs to
encode LPs. Besides, we will use Ni to denote the set of neighbors of ui.

• At the beginning of an algorithm, each left node uj only knows cj and the j-th column A:,j =
(A1j , A2j , · · ·)T , and each right node vi only knows bi and the i-th row Ai,: = (Ai1, Ai2, · · ·).

• At the end of an algorithm, each left node uj is required to output a x̂j and each right node vi
to output a ŷi, which together are supposed to form an approximate solution to the primal LP
max{cT ·x | A ·x ≤ b,x ≥ 0} and the dual LP min{bT ·y | AT ·y ≥ c,y ≥ 0} respectively.
Here, we say x is a (1 + ϵ)-approximate solution if (i) it is a feasible solution and (ii) the ratio
between its objective value and optimum lies in [1/(1 + ϵ), 1 + ϵ].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Distributed Algorithms for LPs. An important class of distributed LP algorithms are based on
first-order methods (FOM) (Lu, 2024), which only utilize gradient information to update their it-
erates and thus avoid matrix factorization. The main FOM-based LP algorithms include PDHG
Chambolle & Pock (2016), PDLP (Applegate et al., 2021), ABIP (Lin et al., 2021; Deng et al.,
2022), ECLIPSE (Basu et al., 2020), and SCS (O’donoghue et al., 2016; O’Donoghue, 2021). Ap-
plegate et al. (2023) showed that the Restarted PDHG can find an solution that is ε-close to the
optimal solution with O(∥A∥2 · α−1 log(1/ε)) iterations, and matches with the complexity lower
bound of span-respecting FOMs. Here, α is the Hoffman’s constant of the KKT system.

There is another line of research (Papadimitriou & Yannakakis, 1993; Bartal et al., 1997; Kuhn &
Wattenhofer, 2005; Kuhn et al., 2006; Awerbuch & Khandekar, 2009; Floréen et al., 2008; 2011;
Kuhn et al., 2016; Ahmadi et al., 2018; Li et al., 2024b) studying distributed algorithms for solving
packing LPs and the dual covering LPs. A packing LP and its dual covering LP are non-negative
LPs of the canonical form: max{cT · x | A · x ≤ b,x ≥ 0} and min{bT · y | AT · y ≥ c,y ≥ 0}
where A, b and c have only non-negative entries. Packing/covering LPs can be normalized into the
following forms (Awerbuch & Khandekar, 2009; Li et al., 2024b):

max
x

1Tx (Normalized packing LP) min
y

1Ty (Normalized covering LP)

s.t. Ax ≤ 1 s.t. ATy ≥ 1

x ≥ 0 y ≥ 0

where Aij is either ≥ 1 or 0.

Let n and m denote the number of primal variables and dual variables respectively, i.e., A has
dimensions m× n, and let Amax denote maxi,j Aij . Define

Γp := max
j

m∑
i=1

Aij , and Γd := max
i

n∑
j=1

Aij .

Bartal et al. (1997) proposed the first constant-factor approximation algorithm running
in polylog(m + n) rounds for packing/covering LPs. This algorithm was further im-
proved by Kuhn et al. (2006): they developed an (1 + ϵ)-approximation algorithm run-
ning in O

(
log Γp · log Γd/ϵ

4
)

rounds. In particular, for row-sparse, column-sparse in-
stances, their algorithm runs in O

(
log2 Amax/ϵ

4
)

rounds. Later, Awerbuch & Khandekar
(2009) proposed another (1 + ϵ)-approximation algorithm for packing/covering LPs running in
Õ
(
log2(mAmax) log

2(nmAmax)/ϵ
5
)

rounds, which has slightly worse bound than Kuhn et al.
(2006) but enjoys the features of simplicity and statelessness. Recently, Li et al. (2024b) proposed
a distributed algorithm (Algorithm 1) that returns a (1 + ϵ)-approximate solution for row-sparse,
column-sparse instances in O

(
Amax · logAmax/ϵ

2
)

rounds. We remark that all the aforementioned
distributed algorithms are anonymous, where the nodes in the network are not equipped with identi-
fiers.

On the lower bound side, Kuhn et al. (2016) proved that: every constant-factor approximation dis-
tributed algorithm for the fractional maximum matching problem, a special kind of sparse binary
LP, requires at least Ω(

√
log(m+ n)/ log log(m+ n)) rounds.

Description of a Distributed Algorithm. The algorithm proposed by Li et al. (2024b), which will
be used later, is depicted in Algorithm 1. The three parameters α, f , and L are defined as

α := 1 +
ϵ

c · Γd
, and f :=

2

ϵ · lnα
· ln Γp, and L := ⌈logα Γp + f⌉. (1)

where c is a sufficiently large constant, say c = 1000. Each left node uj maintains two variables
xj and rj , and each right node vi maintains a variable yi. Every xj and yi is initially 0 and the
value can only increase throughout the algorithm; every rj is initially 1 and the value can only
decrease. Besides, each right node vi also maintains a variable ρi :=

∑
j Aijrj . Recall that the set

of neighbors of ui is denoted by Ni.
Theorem 1 (Li et al. (2024b)). Given any ϵ > 0, Algorithm 1 computes (1 + ϵ)-approximate
solutions to the normalized packing LP and the normalized covering LP at the same time, running
in ≤ 10 · Γd · log Γp/ϵ

2 rounds. Particularly, for row-sparse, column-sparse binary LP instances,
Algorithm 1 runs in constant rounds.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: An (1 + ϵ)-approximation distributed algorithm for packing/covering LPs (Li
et al., 2024b)

1 Input: A m× n matrix A where each Aij is either 0 or ≥ 1, and a real number ϵ > 0;
2 Parameters: α, f ∈ R≥0 and L ∈ N defined as in equation 1;
3 Initialize xj := 0 and rj := 1 for any j ∈ [n], and yi := 0 for any i ∈ [m];
4 for ℓ = 1 to L do
5 for each right node vi in parallel do
6 if ρi ≥ 1

α ·maxi′:Ni′∩Ni ̸=∅ ρi′ then ∆yi := 1;
7 else ∆yi := 0;
8 yi := yi +∆yi;
9 send ∆yi and ρi to all of its neighbors;

10 for each left node uj in parallel do
11 xj := xj + rj ·

∑
i Aij ·∆yi/ρi and rj := rj/α

∑
i Aij∆yi ;

12 if rj ≤ α−f then rj := 0;
13 send rj to all of its neighbors;

14 Return: x/(f · (1 + ϵ)) and y/f as a (1 + ϵ)-approximate solution to the normalized packing
LP and the normalized covering LP respectively.

For the intuition behind Algorithm 1 and the analysis, we refer interested readers to (Li et al., 2024b).

2.2 CONNECTION WITH GRAPH NEURON NETWORKS FOR LPS

The connection builds on the observation that distributed LP algorithms and GNNs employ the same
bipartite graph to represent an LP instance. On one hand, it is obvious that a d-depth GNN can be
computed by a d-round distributed algorithm; so by the lower bound obtained by Kuhn et al. (2016),
we have the following lemma:

Lemma 1. There exists no o(
√
log(m+ n)/ log log(m+ n))-depth GNN that can output a

constant-factor approximate solution for every sparse binary LP instance.

On the other hand, by utilizing the universal approximation property of MLPs, any d-round (anony-
mous) distributed LP algorithm can be simulated by a d-depth (anonymous) GNN. In particular, by
unrolling Algorithm 1, we have the following theorem. The proof can be found in the appendix.

Theorem 2. Given any ϵ > 0, there exists a constant-depth, constant-width GNN such that: for
any row-sparse, column-sparse binary LP instance, it outputs (1 + ϵ)-approximate solutions to the
primal LP and the dual LP at the same time.

3 MAIN RESULT

By Lemma 1, it is impossible that a constant-depth GNN can approximately solve sparse binary LPs
in the worst case. Despite this, if we care about the average-case performance, then such a GNN
exists:

Theorem 3. Given any ϵ > 0 and 0 < η < 1, there exists a constant-depth, constant-width GNN
such that: for (1 − η) fraction of all possible sparse binary LP instances, it outputs a (1 + ϵ)-
approximate solution to the primal LP and the dual LP at the same time.

Remark 3. To be more specific, in Theorem 3, the GNN depth is upper bounded by 10γβ ·
log(γαβ)/ϵ2, where α = m/n, β = nnz(A)/m, and γ is defined as in equation 2. For exam-
ple, if the GNN is required to output a 2-approximate solution for 99% fraction of LP instances
where m = n and nnz(A) = 20m, then the upper bound is 54079.

While the theoretical constants may be large, we will empirically demonstrate that a 5-layer GNN
designed by unrolling Algorithm 2 can solve sparse binary LPs. See Section 4 for details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In the rest of this section, we will prove Theorem 3. We will propose a constant-round distributed
algorithm that works for almost all sparse binary LPs, and can be naturally converted to a constant-
depth, constant-width GNN.

3.1 NOTATIONS AND PROPERTIES ABOUT AVERAGE INSTANCES

Recall that the constraint matrix A has dimensions m × n. Let α denote the ratio m/n. Since
we have assumed m = Θ(n), α is bounded away from 0 and also upper bounded by a constant.
Let Am,n,β denote the set consisting of all binary matrix A ∈ {0, 1}m×n having exactly β · m
non-zero entries. For A ∈ Am,n,β , each row contains β non-zero entries in average, and we say a
row γ-dense if it contains at least γβ non-zero entries; similarly, each column contains αβ non-zero
entries in average, and we say a column γ-dense if it contains at least γαβ non-zero entries. Let
Rγ ⊂ [m] (and Cγ ⊂ [n] respectively) denote the set of γ-dense rows (and columns respectively).
Let C int

γ := {j | ∃i ∈ Rγ s.t. Aij ̸= 0} ⊂ [n] denote the set consisting of all columns which
intersect with some γ-dense row. We define opt(A) to be the optimal objective value of the binary
LP instance with constraint matrix A, i.e.,

opt(A) := max

∑
j

xj | A · x ≤ 1,x ≥ 0

 = min

{∑
i

yi | AT · y ≥ 1,y ≥ 0

}
.

The following property about an “average” A will be used.

Lemma 2. Let γ ≥ 8. For at least 1 − η fraction of A in Am,n,β , we have |Rγ | ≤ 6m
η·2(γ−2)β ,

|Cγ | ≤ 6n
η·2(γ−2)αβ , and |C int

γ | ≤ 6α(γβ+1)n
η·2(γ−2)β . In particular, by setting γ a sufficiently large constant,

say

γ = 2 +
1

β
· log2

(
48αβ

ηϵ

)
+

1

αβ
· log2

(
48β

ηϵ

)
, (2)

we have |Rγ |, |Cγ | ≤ ϵn
8γβ and |C int

γ |+ |Cγ | ≤ n
2 for at least 1− η fraction of A in Am,n,β .

Proof. Let A denote a uniformly sampled matrix from Am,n,α at random. We use Zi
k to denote the

event that the i-th row of A contains exactly k 1-entries. For any i ∈ [m] and k ≥ 8β, we have

Pr
A
[Zk+1]/Pr

A
[Zk] =

(
n

k + 1

)(
(m− 1)n

βm− (k + 1)

)/(
n

k

)(
(m− 1)n

βm− k

)
=

n− k

k + 1
· βm− k

(m− 1)n− βm+ k + 1
≤ n− 4β

8β + 1
· β

m−1
m · n− β

≤ 1

8
· n− 4β

n/2− β
≤ 1

2
,

which implies that
Pr[Zi

k] ≤ 2−(k−2β) · Pr[Zi
2β] ≤ 2−(k−2β). (3)

Furthermore, we have

Pr[the i-th row is γ-dense] =
n∑

k=γβ

Pr[Zi
k] ≤

∞∑
k=γβ

2−(k−2β) = 2−(γ−2)β+1.

Then, by linearity of expectation,

EA [|Rγ |] =
m∑
i=1

Pr
A
[the i-th row is γ-dense] ≤ 2−(γ−2)β+1 ·m.

By applying Markov’s inequality,

Pr
A

[
|Rγ | ≥

3

η
· 2−(γ−2)β+1 ·m

]
≤ η

3
. (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2: A distributed algorithm that works for almost all instances of sparse binary LP
1 Input: A matrix A ∈ {0, 1}m×n with βm 1-entries, and two real numbers ϵ > 0, 0 < η < 1;
2 Parameters: γ defined as in equation 2;
3 for each right node vi in parallel do
4 if Ai,: is γ-dense then
5 y′i := 1;
6 send “sleep” to all of its neighbors;
7 set itself to the sleep mode;

8 for each left node uj in parallel do
9 if recieves “sleep”, or A:,j is γ-dense then

10 send (“sleep”,1/
∑

i Aij) to all of its neighbors;
11 set itself to the sleep mode;

12 Run Algorithm 1 with parameter ϵ/4 on the awake nodes, and obtain x̂′ and ŷ′;
13 for each left node uj in parallel do
14 if uj is in sleep mode then return x̂i = 0;
15 else return x̂i = x̂′i;
16 for each right node vi in parallel do
17 return ŷi = ŷ′i +

∑
sleep j∈Ni

1∑
i′ Ai′j

;

Similarly, we can also show that

Pr
A

[
|Cγ | ≥

3

η
· 2−(γ−2)αβ+1 · n

]
≤ η

3
. (5)

In the rest of the proof, we will show that

Pr
A

[
|C int

γ | ≥ 3

η
· (γβ + 1) · 2−(γ−2)β+1 ·m

]
≤ η

3
, (6)

which, together with equation 4 and equation 5, imply the conclusion by the union bound.

Note that |C int
γ | is upper bounded by the total number of 1-entries in γ-dense rows. So by linearity

of expectation, we have

E
[
|C int

γ |
]
≤E [#1-entries contained in the γ-dense rows]

=

m∑
i=1

E
[
(1i-th row is γ-dense) · (#1-entries contained in i-th row)

]
=

m∑
i=1

n∑
k=γβ

Pr[Zi
k] · k ≤

m∑
i=1

+∞∑
k=γβ

2−(k−2β) · k

=m(γβ + 1) · 2−(γ−2)β+1

By applying Markov’s inequality, we obtain equation 6.

3.2 CONSTRUCTION OF THE CONSTANT-DEPTH, CONSTANT-WIDTH GNN

In the following, we will set γ as in equation 2, which is a constant. To prove Theorem 3, we will
propose a constant-round distributed algorithm that works for almost all sparse binary LP instances.
Then, as we will see, it can be naturally converted to a constant-depth, constant-width GNN. The
distributed algorithm builds on Algorithm 1. The idea is depicted as follows: given A ∈ Am,n,β ,
we first obtain a reduced matrix A′ from A by deleting all rows in Rγ and all columns in Cγ ∪C int

γ .
Note that A′ is a row-sparse, column-sparse binary matrix. Then we run Algorithm 1 with ϵ/4 on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the reduced LP instance with constraint matrix A′, where the reduced primal LP is

max

 ∑
j∈[n]\(Cγ∪Cint

γ)

xj | A′x ≤ 1,x ≥ 0


and the reduced dual LP is

min

 ∑
i∈[m]\Rγ

yi | A′Ty ≥ 1,x ≥ 0

 ,

to obtain (1 + ϵ/4)-approximate solutions x̂′ ∈ R[n]\(Cγ∪Cint
γ) and ŷ′ ∈ R[m]\Rγ of the reduced

instance. Finally,

• Let x̂ ∈ Rn be obtained from x̂′ by setting each xj in Cγ ∪ C int
γ to 0. Return x̂ as an (1 + ϵ)-

approximate solution to the original primal LP.
• Let ŷ be obtained from ŷ′ by first setting each yi in Rγ to 1, and then adding the vector∑

j∈Cγ

1∑
i Aij

·A:,j . Return ŷ as an (1 + ϵ)-approximate solution to the original dual LP.

The formal description of the distributed algorithm is presented in Algorithm 2. It is easy to see that
this algorithm runs in constant rounds and can be naturally converted to a constant-depth, constant-
width GNN. What remains is to show the correctness.

3.3 CORRECTNESS

By Lemma 2, it suffices to show that for every A ∈ Am,n,β where |Rγ |, |Cγ | ≤ ϵn
8γβ , and |C int

γ | +
|Cγ | ≤ n/2, x̂ and ŷ returned by Algorithm 2 are (1 + ϵ)-approximate solutions to the original
primal LP max{

∑n
j=1 xj | Ax ≤ 1,x ≥ 0} and the dual LP min{

∑m
i= yi | ATy ≥ 1,y ≥ 0}

respectively. We first present some helpful observations.
Claim 1. opt(A)− ϵn

4γβ ≤ opt(A)− |Rγ | − |Cγ | ≤ opt(A′) ≤ opt(A).

Proof. We first show that opt(A′) ≤ opt(A). Suppose that x′∗ ∈ R[n]\(Cγ∪Cint
γ) is an optimal

solution to the reduced primal LP. Let x ∈ R[n] be obtained from x′∗ by setting each xj in Cγ∪C int
γ

to 0. It is easy to check that x is a feasible solution to the original primal LP. So

opt(A′) =
∑
i

x′∗i =
∑
i

xi ≤ opt(A).

Now, we show that opt(A) ≤ opt(A′) + |Rγ | + |Cγ |. Suppose that y′∗ ∈ R[m]\Rγ is an optimal
solution to the reduced dual LP. Let y be obtained from y′∗ by (i) first setting each yi in Rγ to 1,
and (ii) then adding

∑
j∈Cγ

1∑
i Aij

·A:,j . We claim that y is a feasible solution to the original dual

LP, i.e., AT
j y =

∑m
i=1 Aijyi ≥ 1 for any j ∈ [n]. The feasibility can be checked case by case:

• If j ∈ [n] \
(
Cγ ∪ C int

γ

)
, then we have AT

j y ≥ A′Tj y′∗ ≥ 1.

• If j ∈ Cγ , then AT
j y ≥ AT

j · 1∑
i Aij

·A:,j = 1.

• If j ∈ C int
γ , then there is a i ∈ Rγ such that Aij = 1. Note that yi ≥ 1 for any i ∈ Rγ . We

have AT
j y ≥ Aij · yi ≥ 1.

Finally, since y is a feasible solution to the original dual LP, it has

opt(A) =
∑
j

yj ≤
∑
j

y′∗j + |Rγ |+
∑
i

∑
j∈Cγ

1∑
i Aij

·Ai,j = opt(A′) + |Rγ |+ |Cγ |.

Claim 2. opt(A′) ≥ n
2γβ .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Proof. Note that A′ contains no γ-dense rows, i.e., each row of A′ contains no more than γβ 1-
entries. Thus

(
1
γβ ,

1
γβ , · · · ,

1
γβ

)
is a feasible solution to the reduced primal LP, and the objective

value 1
γβ ·

(
n− |C int

γ ∪ Cγ |
)
≥ n

2γβ provides a lower bound on opt(A′).

In the following, we show that x̂ is a (1 + ϵ)-approximate solution to the original primal LP. The
feasibility is obvious, and the optimality can be verified as follows:

(1 + ϵ)
∑
j∈[n]

x̂j =(1 + ϵ)
∑

j∈[n]\Rγ

x̂′j ≥
1 + ϵ

1 + ϵ/4
· opt(A′)

≥
(
1 +

ϵ

2

)
opt(A′) = opt(A′) +

ϵ

2
· opt(A′)

≥opt(A)− ϵn

4γβ
+

ϵ

2
· opt(A′) (Claim 1)

≥opt(A)− ϵn

4γβ
+

ϵ

2
· n

2γβ
(Claim 2)

≥opt(A).

What remains is to show that ŷ is a (1 + ϵ)-approximate solution to the original dual LP. The
feasibility can be checked similarly as in the proof of Claim 1. The optimality can be verified as
follows: ∑

j

ŷj ≤
∑
j

ŷ′j + |Rγ |+
∑
i

∑
j∈Cγ

1∑
i Aij

·Aij =
∑
j

ŷ′j + |Rγ |+ |Cγ |

≤
(
1 +

ϵ

4

)
· opt(A′) + ϵn

4γβ

≤
(
1 +

ϵ

4

)
· opt(A′) + ϵ

2
· opt(A′) (Claim 2)

≤
(
1 +

3ϵ

4

)
· opt(A) (Claim 1)

Now, we finish the proof of the correctness.

4 NUMERICAL EXPERIMENTS

We conduct numerical experiments to validate our main theoretical results, namely Theorem 3. By
unrolling Algorithm 2, we propose a GNN architecture, depicted in Appendix B.

Experimental Setup. To validate the performance of our method across different sizes of Normal-
ized packing LP problems and ensure consistency with theoretical results, we randomly generated
LP problems of varying sizes using Ortools. Specifically, the LP instances generated were of the
form M = N , with each instance containing 10∗(M+N) non-zero entries. Four different problem
sizes were considered: 100, 500, 1,000, and 1,500. After generation, we employed Ortools to solve
these problems, collecting both the primal and dual solutions for training and testing.

For each problem size, we used 100 independent, randomly generated training samples and 100
independent, randomly generated testing samples. Our model was implemented using the PyTorch
framework, and the training process was conducted on GPUs. The Adam optimizer was used with
a learning rate of 1e-3 and a batch size of 1. Fixed parameters included L = 5, and K = 16, along
with a learnable parameter f initialized to 1. In the comparison experiments, we use GCNs with the
same L-layer cut each with 64-dimensional feature dimensions.

Evaluation Metrics. To assess the representational power of our method, we report the training
loss after the model has converged. Additionally, we evaluate the relative gap. Using feasibility
restoration (see Appendix C), the final values xfinal and yfinal returned by our GNN are used to
compute x′ and y′. The relative gaps are then calculated as follows: the relative gap of the primal
is denoted as RP = obj(x′)−opt

opt and the relative gap of the dual is denoted as RD = obj(y′)−opt
opt .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

In order to explore the difference in the representational power of the two methods, we report the
converged training loss, which is the training loss in the table. The lower the RP and RD the better
the performance.

Experimental Results. The results of the numerical experiments directly illustrate the effective-
ness of our method. Table 1 demonstrates that our GNN achieves much better performance while
using significantly fewer parameters, where our model uses at most 2K parameters, which is almost
0.8% of the number of parameters in GCN (≈250K).

Table 1: Performance comparison of our method with GCN for training loss , Training RP, Training
RD, Test RP and Test RD.

LP size Training Loss Training RP Training RD Test RP Test RD
GCN Ours GCN Ours GCN Ours GCN Ours GCN Ours

100 0.0087 0.0086 1.0 0.20 18.64 0.43 1.0 0.20 18.62 0.45
500 0.0086 0.0084 0.96 0.20 18.37 0.48 0.94 0.20 18.35 0.47

1000 0.0079 0.0085 1.0 0.20 18.33 0.47 1.0 0.20 18.35 0.46
1500 0.0083 0.0085 1.0 0.20 18.33 0.45 1.0 0.20 18.38 0.46

We also conduct small-scale numerical experiments to illustrate that our method TRAINING LOSS
can converge to 0. In the experiments, the size of the LP problem is 1000 and the training samples
are 10. We report the relationship (see Fig. 1) of converged training loss with the number of layers
L. Even for very small L, the training loss for convergence can already be close to 0.

Figure 1: Convergence trends due to changes in the number of layers during training.

5 CONCLUSION

Towards understanding the empirical success achieved by shallow GNNs for solving LPs, we prove
that constant-depth, constant-width GNNs suffice to solve sparse binary LPs effectively, by leverag-
ing the principles of distributed LP algorithms. Besides, our analysis shifts the focus from worst-case
performance to average-case performance, as empirical studies usually measure GNNs based on av-
erage performance across instances. We believe our ideas can help in further explorations of the
power of GNNs in L2O. For future directions, it is interesting to investigate whether our result can
be extended to more general LP classes, such as non-negative LPs.

REFERENCES

Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman. Distributed approximate maximum match-
ing in the CONGEST model. In Ulrich Schmid and Josef Widder (eds.), 32nd International Sym-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

posium on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018,
volume 121 of LIPIcs, pp. 6:1–6:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

David Applegate, Mateo Dı́az, Oliver Hinder, Haihao Lu, Miles Lubin, Brendan O’Donoghue, and
Warren Schudy. Practical large-scale linear programming using primal-dual hybrid gradient. Ad-
vances in Neural Information Processing Systems, 34:20243–20257, 2021.

David Applegate, Oliver Hinder, Haihao Lu, and Miles Lubin. Faster first-order primal-dual methods
for linear programming using restarts and sharpness. Mathematical Programming, 201(1):133–
184, 2023.

Baruch Awerbuch and Rohit Khandekar. Stateless distributed gradient descent for positive linear
programs. SIAM J. Comput., 38(6):2468–2486, 2009.

Yair Bartal, John W. Byers, and Danny Raz. Global optimization using local information with
applications to flow control. In 38th Annual Symposium on Foundations of Computer Science,
FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pp. 303–312. IEEE Computer
Society, 1997.

Kinjal Basu, Amol Ghoting, Rahul Mazumder, and Yao Pan. Eclipse: An extreme-scale linear
program solver for web-applications. In International Conference on Machine Learning, pp.
704–714. PMLR, 2020.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovic. Combinatorial optimization and reasoning with graph neural networks. J. Mach.
Learn. Res., 24:130:1–130:61, 2023.

Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order primal–dual
algorithm. Mathematical Programming, 159(1):253–287, 2016.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing linear programs by graph
neural networks. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Qi Deng, Qing Feng, Wenzhi Gao, Dongdong Ge, Bo Jiang, Yuntian Jiang, Jingsong Liu, Tianhao
Liu, Chenyu Xue, Yinyu Ye, et al. New developments of admm-based interior point methods for
linear programming and conic programming. arXiv preprint arXiv:2209.01793, 2022.

Zhenan Fan, Xinglu Wang, Oleksandr Yakovenko, Abdullah Ali Sivas, Owen Ren, Yong Zhang, and
Zirui Zhou. Smart initial basis selection for linear programs. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 9650–9664. PMLR, 2023.

Patrik Floréen, Marja Hassinen, Petteri Kaski, and Jukka Suomela. Tight local approximation results
for max-min linear programs. In Sándor P. Fekete (ed.), Algorithmic Aspects of Wireless Sen-
sor Networks, Fourth International Workshop, ALGOSENSORS 2008, Reykjavik, Iceland, July
2008. Revised Selected Papers, volume 5389 of Lecture Notes in Computer Science, pp. 2–17.
Springer, 2008. doi: 10.1007/978-3-540-92862-1\ 2. URL https://doi.org/10.1007/
978-3-540-92862-1_2.

Patrik Floréen, Marja Hassinen, Joel Kaasinen, Petteri Kaski, Topi Musto, and Jukka Suomela.
Local approximability of max-min and min-max linear programs. Theory Comput. Syst., 49(4):
672–697, 2011. doi: 10.1007/S00224-010-9303-6. URL https://doi.org/10.1007/
s00224-010-9303-6.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. In International Conference on Learn-
ing Representations, 2021.

11

https://doi.org/10.1007/978-3-540-92862-1_2
https://doi.org/10.1007/978-3-540-92862-1_2
https://doi.org/10.1007/s00224-010-9303-6
https://doi.org/10.1007/s00224-010-9303-6

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yufei Kuang, Xijun Li, Jie Wang, Fangzhou Zhu, Meng Lu, Zhihai Wang, Jia Zeng, Houqiang
Li, Yongdong Zhang, and Feng Wu. Accelerate presolve in large-scale linear programming via
reinforcement learning. CoRR, abs/2310.11845, 2023.

Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set approximation.
Distributed Comput., 17(4):303–310, 2005. doi: 10.1007/S00446-004-0112-5. URL https:
//doi.org/10.1007/s00446-004-0112-5.

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2006, Miami, Florida, USA, January 22-26, 2006, pp. 980–989. ACM Press, 2006.

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and upper
bounds. J. ACM, 63(2):17:1–17:44, 2016.

Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Haitao Mao, Qian Chen, Yao Ma,
Akang Wang, Tian Ding, Jiliang Tang, and Ruoyu Sun. Pdhg-unrolled learning-to-optimize
method for large-scale linear programming. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a. URL
https://openreview.net/forum?id=2cXzNDe614.

Qian Li, Minghui Ouyang, and Yuyi Wang. A simple distributed algorithm for sparse fractional
covering and packing problems. arXiv preprint arXiv:2409.16168, 2024b.

Xijun Li, Qingyu Qu, Fangzhou Zhu, Jia Zeng, Mingxuan Yuan, Kun Mao, and Jie Wang. Learning
to reformulate for linear programming. arXiv preprint arXiv:2201.06216, 2022.

Tianyi Lin, Shiqian Ma, Yinyu Ye, and Shuzhong Zhang. An admm-based interior-point method for
large-scale linear programming. Optimization Methods and Software, 36(2-3):389–424, 2021.

Tianhao Liu, Shanwen Pu, Dongdong Ge, and Yinyu Ye. Learning to pivot as a smart expert. In
Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Con-
ference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pp. 8073–8081. AAAI
Press, 2024.

Haihao Lu. First-order methods for linear programming. arXiv preprint arXiv:2403.14535, 2024.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

Brendan O’Donoghue. Operator splitting for a homogeneous embedding of the linear complemen-
tarity problem. SIAM Journal on Optimization, 31(3):1999–2023, 2021.

Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applica-
tions, 169:1042–1068, 2016.

Christos H. Papadimitriou and Mihalis Yannakakis. Linear programming without the matrix. In
S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal (eds.), Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pp.
121–129. ACM, 1993.

David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

Yun Peng, Byron Choi, and Jianliang Xu. Graph learning for combinatorial optimization: a survey
of state-of-the-art. Data Science and Engineering, 6(2):119–141, 2021.

Chendi Qian, Didier Chételat, and Christopher Morris. Exploring the power of graph neural net-
works in solving linear optimization problems. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1432–1440. PMLR, 2024.

12

https://doi.org/10.1007/s00446-004-0112-5
https://doi.org/10.1007/s00446-004-0112-5
https://openreview.net/forum?id=2cXzNDe614

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. Advances in Neural Information Processing Systems, 32, 2019.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Luca Trevisan and Fatos Xhafa. The parallel complexity of positive linear programming. Parallel
Process. Lett., 8(4):527–533, 1998. doi: 10.1142/S0129626498000511. URL https://doi.
org/10.1142/S0129626498000511.

13

https://doi.org/10.1142/S0129626498000511
https://doi.org/10.1142/S0129626498000511

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 2

We will explicitly describe such a GNN. The idea is to simulate Algorithm 1 on binary LP instances.
Given a matrix M ∈ Rm×n and a vector p ∈ Rn, we define the “max-product” q = M ×max p to
be the m-dimensional column vector such that qi = maxnj=1 Mijpj

We design a GNN as follows: each left node in the bipartite graph maintains a 4-dimension
feature vector (xj , r̃j , bj , ρ̃j), and each right node also maintains a 4-dimension feature vector
(yi, y∆,i, ρi, ρmax,i). Here,

• r̄j represents logα rj + f . In other words, rj = αr̄j−f .

• bj is defined to be rj (or equivalently αr̄j−f) if rj > α−f , and 0 otherwise.

• ρi represents Ai,: · b =
∑

j Aijbj .

• ρ̃j represents maxi:Ni∋j ρi, or equivalently AT
:,j ×max ρ.

• ρmax,i represents maxi′:Ni′∩Ni ̸=∅ ρi′ = maxj∈Ni
ρ̃j , or equivalently Ai,: ×max ρ̃.

• y∆,i represents the increment of yi.

The architecture of the GNN is depicted below.

- Initialize r̄0 := f · 1n×1, b0 = 1n×1; and ρ̃0,x0 both to be 0n×1.

- Initialize all of y0,y0
∆,ρ

0,ρ0
max to be 0m×1.

- For ℓ = 0, 1, 2 · · · , L− 1

• ρℓ+1 := A · bℓ;
• ρ̃ℓ+1 := AT ×max ρ

ℓ+1;

• ρℓ+1
max := A×max ρ̃

ℓ+1, yℓ+1
∆ := gθ(ρ

ℓ+1 − ρℓ+1
max/α), and yℓ+1 := yℓ + yℓ+1

∆ ;

• r̄ℓ+1 := r̄ℓ −AT · yℓ+1
∆ , xℓ+1 := xℓ + bℓ ◦

[
AT ·

(
yℓ+1
∆ ◦ 1

ρℓ+1

)]
, and bℓ+1 = bθ(r̄

ℓ+1).

Here, ◦ denotes entry-wise multiplication (a.k.a. Hadamard product), and the parameterized func-
tions gθ, bθ : R → R are applied entry-wise on to the vectors ρℓ+1−ρℓ+1

max/α and r̄ℓ+1 respectively.
If we set gθ(z) := 1z≥0 and bθ(z) := 1z≥0 ·αz−f , then it is straightforward to check that this GNN
exactly simulates Algorithm 1. By Theorem 1, we finish the proof.

B GRAPH NEURAL NETWORK DESIGN BY UNROLLING ALGORTIHM 2

Each left node in the bipartite graph maintains a 5-dimension feature vector
(xj , r̃j , bj , ρ̃j ,mask←j) ∈ R5, and each right node also maintains a 5-dimension feature vec-
tor (yi, y∆,i, ρi, ρmax,i,mask→j) ∈ R5. Here,

• The feature mask indicates whether the node is in the sleep mode. For example, mask←j is
supposed to be 1 if the left node uj is in sleep mode, and 0 if not.

– Recall that a right node vi is set to be sleep if it has ≥ γβ edges. In the neural network, we
will let mask→ := q→θ (A ·1n×1), where q←θ (z) = 1

4

∑4
k=1 σ(θk,8 ·z+θk,9) is a learnable

function and applied entry-wise. Here, σ(z) = 1/(1 + exp(−z)) is the sigmoid function.
– Recall that a left node uj is set to be sleep if it has ≥ γαβ edges or connects to a sleep

right node. In the neural network, we will let mask← = max{q←θ (AT · 1m×1),A
T ×max

mask→}, where q→θ = 1
4

∑4
k=1 σ(θk,10 · z + θk,11) is a learnable function and applied

entry-wise.

• The intuition behind the other features is the same as in Theorem 2.

The architecture of the GNN is depicted below.

- Initialize r̄0 := f · 1n×1, b0 = 1n×1; and ρ̃0 = x0 = mask← = 0n×1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

- Initialize y0 = y0
∆ = ρ0 = ρ0

max = mask→ = 0m×1.

- mask→ = q→θ (A · 1n×1).

- mask← = max{q←θ (AT · 1m×1),A
T ×max mask→}.

- For ℓ = 0, 1, 2 · · · , L− 1

• ρℓ+1 :=
(
A · bℓ

)
◦ (1−mask→);

• ρ̃ℓ+1 :=
(
AT ×max ρ

ℓ+1
)
◦ (1−mask←);

• ρℓ+1
max :=

(
A×max ρ̃

ℓ+1
)
◦ (1−mask→), yℓ+1

∆ := gθ(ρ
ℓ+1 − ρℓ+1

max/α) ◦ (1−mask→), and
yℓ+1 :=

(
yℓ + yℓ+1

∆

)
◦ (1−mask→);

• r̄ℓ+1 :=
(
r̄ℓ −AT · yℓ+1

∆

)
◦ (1 − mask←), xℓ+1 :=

(
xℓ + bℓ ◦

[
AT ·

(
yℓ+1
∆ ◦ 1

ρℓ+1

)])
◦

(1−mask←), and bℓ+1 = bθ(r̄
ℓ+1) ◦ (1−mask←).

- return xfinal = xL and yfinal = yL +mask→ +A ·
(
hT ◦mask←

)
.

Here, ◦ denotes entry-wise multiplication (a.k.a. Hadamard product), the m×n-dimensional matrix
A is defined as Aij = Aij/

∑m
i=1 Aij , and the parameterized functions gℓθ, b

ℓ
θ : R → R are applied

entry-wise on to the vectors ρℓ+1 − ρℓ+1
max/α and r̄ℓ+1 respectively where

gℓθ(z) =

K∑
k=1

θℓk,1 ·σ(θℓk,2 · z+ θℓk,3), and bℓθ(z) :=

K∑
k=1

θℓk,4 ·σ(θℓk,5 · z+ θℓk,6) ·2−ReLU(θℓ
k,7(z−f))

The learnable parameter is Θ := {h ∈ Rn, f} ∪ {θℓk,q}ℓ∈[0,L−1],k∈[1,K],q∈[1,11]. The number of
parameter is 11LK + n+ 1.

One can check that the above GNN can exactly simulate Algorithm 2.

Network training. The training data set is a set I = {(A,x∗,y∗)} of binary LP instances.
More specifically, the input of an instance is identified by the constraint matrix A; the label x∗
and y∗ represents the corresponding optimal solutions to primal LP and dual LP respectively. Let
xfinal(Θ,A) and yfinal(Θ,A) denote the output of our GNN parameterized by Θ running on the
input A. The goal of the training process is to find a parameter Θ∗ minimizing MSE loss defined
as:

L(I;Θ) =
1

|I|
∑

(A,x∗)∈I

[
1

N

∑
j∈[N]

|xfinal
j (Θ,A)− x∗j |2 +

1

M

∑
i∈[M]

|yfinal
i (Θ,A)− y∗i |2].

C OTHER DETAILED INFORMATION ABOUT THE EXPERIMENTS

Evaluation Configurations. All experiments were performed in the same hardware environment.
The evaluation machine is equipped with two Intel(R) Xeon(R) Gold 5117 CPUs @ 2.00GHz,
256GB of RAM, and a single Nvidia V100 GPU. Ortools version 9.11 and PyTorch version 1.10.2
were utilized in our experiments. The maximum number of training epochs was set to 1,000.

Feasibility restoration for the primal LP. Note that the xfinal returned by our GNN may be
infeasible. To restore feasibility, we implement the following post-processing procedure:

– First, for each j ∈ [n], update xj := max(0,min(1, xj));

– Then, for i = 1 to m do

• If Aix ≥ 1, then update xj :=
xj

Aix
for each j with Aij ̸= 0.

Feasibility restoration for the dual LP. Since the yfinal returned by our GNN may be infeasible,
we implement the following post-processing procedure to restore feasibility:

– First, for each i ∈ [m], update yi := max(10−5,min(1, yi));

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

– Then, for j = 1 to n do

• If AT
j y ≤ 1, then update yi :=

yi

AT
j y

for each i with Aij ̸= 0.

16

	Introduction
	Our contributions

	Distributed LP algorithms and their connections with GNNs
	Distributed algorithms for LPs
	Connection with Graph Neuron Networks for LPs

	main result
	Notations and Properties about average instances
	Construction of the constant-depth, constant-width GNN
	Correctness

	Numerical Experiments
	Conclusion
	Proof of Theorem 2
	Graph neural network design by unrolling Algortihm 2
	Other detailed information about the experiments

