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Abstract

Survival prediction with whole slide images (WSIs) can provide guidance for a
better patient care and treatment selection but it is a challenging computer vision
task with its particularities. Despite the great results showed by the recent survival
analysis models with WSIs, the collection of the large annotated WSI datasets for
survival analysis could be hindered by disease rareness or clinical trials constraints
and be infeasible in the real-life medical practice. To overcome these limitations
we propose to assess the performance of the digital pathology foundation models
for prediction of survival outcomes on the small size ovarian cancer datasets.
Our experimental results demonstrate that these models show promising results,
their improved performance open the possibility to investigate the mechanisms of
response to a particular therapy and in general could accelerate the adoption of
machine learning models in medical practice.

1 Introduction

Whole Slide Imaging (WSI) technology has contributed to the growing availability of digital pathology
datasets, opening new complex computer vision research opportunities. Modern progress in deep
learning has shown impressive results in various clinical applications, especially with the recent
advent of attention-based models [1].

However, WSI needs special approaches for supervised learning tasks such as survival prediction.
In classical computer vision with natural images, the label is usually assigned to 256 x 256 pixels
images, whereas WSIs can be very heterogeneous and as large as 150,000 x 150,000 pixels. Acquiring
exhaustive localized annotations for WSIs is expensive and often infeasible, thus, the multiple instance
learning (MIL) has been widely adopted for WSI based tasks. In this weakly supervised approach,
each WSI is represented as a bag (set) containing tens of thousands of image patches (instances) and
a label (outcome) is provided for the entire bag [2]. Hence, the goal in this methodology is to learn a
model that predicts a bag label by aggregating the predictions of the instances.

Many MIL approaches adopt a two-stage schema for tractable representation learning of WSIs, in
which: 1) instance-level feature representations are extracted from the WSI image patches, and then 2)
global aggregation schemes are applied to the bag of instances to obtain a WSI-level representation for
subsequent supervised tasks [3]. Traditionally, ImageNet pretrained neural networks, such as ResNet
[4], are utilized to extract the representations of the WSI patches in bags. As for the aggregation
scheme, the attention-based MIL pooling, proposed in [5], has shown great results in different natural
image and digital pathology datasets. It was further extended to the cancer survival analysis task with
WSIs in [6, 3, 7] demonstrating its interpretability by locating important patterns and features which
contribute to accurate survival predictions.
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Recently, the authors of [8] reported sparsity in attention, i.e, models tend to localize most of their
attention to some prominent patterns in the image. While being beneficial in natural images, it is not
optimal for WSIs with their complex phenotypes associated with diverse biological concepts. The
unsupervised pretraining techniques, such as discriminative approaches based on contrastive learning
(CL) have recently shown great promise to extract salient features, such as SimCLR [9, 10], MoCo
[11, 12, 13], DINO [14, 15]. These approaches let the construction of the pretrained image encoders
for computational pathology [16, 17, 18, 19], which could be considered as foundation models, as
long as they are capable to deliver improved performance on various downstream tasks and require
minimal task-specific customization.

In this work, we aim at assessing the performance of the publicly available foundation models for
digital pathology. We propose to benchmark the features from these pretrained image encoders using
different self-supervised learning (SSL) algorithms SimCLR, MoCo and DINO against the model
trained with the task-specific manual annotation. We use the ImageNet pretrained ResNet model as
the baseline for comparison. We evaluate the performance of these models while fine-tuning with the
two small ovarian cancer datasets, for which the extensive retraining is infeasible. We contribute to
the assessment of the performance of these models in the under-explored survival prediction task.
Finally, we propose to analyze the overall survival (OS) along with the progression free survival
(PFS), the outcome that was not analyzed by the attention-based survival models with WSIs till now.

2 Related work and proposed benchmark

It has been shown that high densities of tumor-infiltrating lymphocytes (TILs) correlate with favorable
clinical outcome in multiple cancer types [20]. The recent study [21] demonstrated that patients with
a higher density of TILs had a significantly prolonged overall survival (OS) and progression-free
survival (PFS) in multiple ovarian cancer cohorts.

In order to characterize TILs as a biomarker to guide future clinical research in precision oncology and
immunotherapy, the study [22] proposed a deep learning pipeline for TIL detection and classification
based on the diagnostic slides from The Cancer Genome Atlas (TCGA). It was limited to 13 different
types of cancer, collected manually labeled individual patches and used the human-in-the-loop
approach, i.e. in an iterative train-review-retrain process. This work was extended in [20, 23], the
manual and computer-generated annotations were combined to produce the TIL maps across 23
different types of cancer. The authors trained VGG-16 [24], ResNet-34 [4] and Inception-V4 [25]
networks to classify the patches as TIL-positive or TIL-negative. This improved framework resulted
in better performance, which was attributed to the use of the state-of-the-art networks and larger and
more diverse training datasets (TIL-Maps-23). The Inception-V4 obtained the best performance in
the ovarian cancer dataset composed of 299 manually labeled test patches from TCGA ovarian cancer
project (TCGA-OV).

The exhaustive task-specific manual annotation is often infeasible in digital pathology. To overcome
this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled
data to generate informative representations and can generalize well to various downstream tasks
even with limited annotations.

The study [16] used 57 histopathology datasets, including 35 WSI datasets, to train a SimCLR
model [9]. Most of the datasets used are stained with hematoxylin and eosin (H&E), come with 40x
resolution and the majority are from TCGA and Clinical Proteomic Tumor Analysis Consortium
(CPTAC). Their best trained model is based on the ResNet-18 architecture, trained for 1000 epochs,
using 400 thousand images.

Another effort to learn universal feature representations more suitable for tasks in histopathology is
the work [17]. This study proposes the strategy of semantically-relevant contrastive learning (SRCL),
which compares relevance between instances to mine more positive pairs and introduces more visual
diversity resulting in more informative semantic representations. This strategy is an extension of
MoCo v3 methodology [13] but uses a convolutional neural network (CNN) and a multi-scale Swin
Transformer architecture [26] as backbone. This hybrid architecture model (CTransPath) is pretrained
on unlabeled histopathology images from TCGA and pathology AI platform (PAIP) [27], comprising
15 million unlabeled patches cropped from over 30 thousand WSIs.
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More recently, the work [19] introduced UNI, a general-purpose self-supervised model for pathology.
It was pretrained using over 100 thousand diagnostic H&E stained WSIs (more than 100 million
images) across 20 major tissue types collected from Massachusetts General Hospital (MGH) and
Brigham and Women’s Hospital(BWH), as well as the Genotype-Tissue expression consortium [28].
In the pretraining stage, the authors used a self-supervised learning approach called DINO v2 [15].

The prognostic models from histology images have also demonstrated great promise [5] by integrating
the MIL concepts, attention mechanisms and survival loss functions. The recent work of [3, 7]
proposed a co-attention multimodal framework PORPOISE to jointly examine pathology WSIs and
genomic features from 14 cancer types. Their work used the log likelihood function for a discrete
survival model [29]. The overall solution is flexible by offering the possibility of training unimodal
attention-bases MIL (AMIL) model that uses only WSIs.

The survival prediction with WSIs from TCGA-OV project has been approached by [30], the authors
trained the SimCLR encoder to first extract features from 600 randomly selected non-background
patches per WSI, second, they used the transformer encoder to integrate the extracted patch features
and the corresponding patch positions to obtain the patient-level features with spatial information,
third they trained the attention-based architecture for OS prediction using the negative Cox log partial
likelihood [30]. The three presented blocks form the SeTranSurv model. We hypothesize that this
work used not only the diagnostic TCGA-OV slides but also the tissue slides resulting in the dataset
of 298 patients and 1481 WSIs. The code of this model is not publicly available, additionally the
customized model architecture does not allow the fair comparison with other models, hence, we did
not use this work in our benchmark but compare the SeTranSurv reported performance with our
results.

Thus, we compared the pretrained TIL-Maps-23 [23], SimCLR by [16], CTransPath [17] and UNI
[19], which use different CL algorithm models, in order to assess their ability to derive the universal
histopathology features for the subsequent OS and PFS prediction using the PORPOISE model [7].
The proposed benchmark demonstrated as well the possibility to combine these recent deep learning
models as building blocks to construct more sophisticated architectures for the datasets with limited
annotation and size.

3 Experimental results

3.1 Datasets & evaluation metrics

To assess the performance of the digital pathology foundation models, we used two ovarian cancer
datasets with high-resolution WSIs (20x). They are TCGA ovarian cancer dataset (TCGA-OV)
and Ovarian Bevacizumab Response (OBR) [31, 32]. TCGA-OV is composed of the H&E stained
diagnostic slides from TCGA and is available at https://portal.gdc.cancer.gov. The matching
overall survival (OS) and progression free survival (PFS) and censorship statuses are published within
TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) [33].

OBR is a dataset of H&E stained WSIs for classification of bevacizumab treatment effective-
ness of ovarian cancer. The WSIs, as well as the matching clinical data (OS, PFS and cen-
sorship statuses) are available at https://www.cancerimagingarchive.net/collection/
ovarian-bevacizumab-response. The number of cases, WSIs and censored cases is presented in
the Table 1.

For each cancer dataset, we trained the PORPOISE model [7], AMIL network with WSI only input
in a 5-fold cross-validation. The 5-fold split was done using R package MTLR [34] with the OS and
PFS times and censorship stratification in order to have similar distributions of survival times and
censorship in training and test sets.

We report the cross-validated concordance index (C-index) to measure the predictive performance of
correctly ranking the predicted patient risk scores with respect to OS and PFS. C-index is a standard
evaluation metric in survival analysis, ranging from 0 to 1, with a bigger C-index corresponding to a
better model.

Relying solely on the C-index may not fully capture the model performance, thus, we include as
well the cross-validated Integrated Brier Score (IBS). It is an extension of Brier Score (BS) over an
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Table 1: The numbers of WSIs, patients and censoring % in each dataset.

Model/ Dataset TCGA-OV OBR

Number of cases 106 74
Number of WSIs 107 276
Number of censored OS 33 53
Number of censored PFS 35 28

interval of time, where BS is the mean squared error of the probability estimates. For this metric,
smaller values signify better performance.

Finally, in order to plot the Kaplan-Meier curves, we aggregated the risk predictions from the test folds
and plotted them against their survival times. We use the log rank test to measure if the difference
of two survival distributions is statistically significant. For TCGA-OV datasets, the high-risk and
low-risk groups are defined by the median of the risk predictions. As for OBR dataset, the predicted
risks were first aggregated to the mean per patient, then the median value of the mean risks served to
define the high-risk and low-risk groups.

3.2 Implementation details

For each WSI, automated segmentation of tissue was performed using the public tool for WSI analysis
CLAM [35]. Subsequently, image patches of size 256x256 and 299x299 were extracted at the 20x
level from all tissue regions identified. Following patch generation, the feature vectors were extracted
using the following models:

• ResNet-50 model pretrained on ImageNet was used as an encoder to convert each 256x256
patch into a 1024-dimensional feature vector.

• TIL-Maps-23 Inception-V4 model [23] was used as an encoder to convert each 299x299
patch into a 1536-dimensional feature vector.

• SimCLR model pretrained on the histopathology images [16] was used as an encoder to
convert 256x256 patches, first resized to 224x224, to 512-dimensional feature vector.

• CTransPath model [17] was used as an encoder to convert 256x256 patches, first resized to
224x224, to 768-dimensional feature vector.

• UNI model [19] was used as an encoder to convert 256x256 patches, first resized to 224x224,
to 1024-dimensional feature vector.

We used the PORPOISE [7] hyperparameters suggested by the authors, except for: the alpha_surv
(serves to weigh the uncensored patients) set at 0.5 and max_epochs (the maximum number of
epochs to train) set at 40 in our experiments.

The tissue segmentation and patch extraction as well as the survival model training can be run on
the GPU equipped desktop computer. We used GeForce RTX 2080 Super GPU with 8Gb of RAM,
the tissue segmentation and patch extraction durations were less than 48 hours for each dataset and
PORPOISE survival model training took less than 24 hours for each dataset/outcome.

3.3 Performance comparison

The obtained results are presented in Table 2 for C-index, Table 3 for IBS and Figures 1, 2 for
Kaplan-Meier curves. In the Tables 2 and 3 the models’ performance resulting in the significant
difference of the survival distributions of the high versus low risk stratification is annotated with "(*)"
and the best mean value is reported in bold.

In general, the features obtained by the self-supervised CL pretraining are more representative
for histopathology survival prediction than ImageNet features. We observed as well that all the
self-supervised pretrained models in this benchmark outperformed the model pretrained using CL
technique with only the TCGA-OV dataset [30], where the reported average C-index of OS prediction
was 0.692. We note that this comparison would be fairer if the same WSI dataset and survival loss
function were used in both settings.
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Table 2: Study results assessing C-index performance of different representation extraction techniques
across 2 ovarian cancer datasets and 2 different outcomes.

Model/ Dataset, outcome TCGA-OV, OS TCGA-OV, PFS OBR, OS OBR, PFS

ImageNet ResNet-50 0.559±0.137 0.573±0.113 0.616±0.039 0.581±0.101
TIL-Maps-23 [23] 0.436±0.089 0.454±0.106 0.643±0.119 (*) 0.710±0.083 (*)
SimCLR [16] 0.788±0.057 (*) 0.706±0.091 (*) 0.541±0.068 0.699±0.095
CTransPath [17] 0.756±0.073 (*) 0.758±0.063 (*) 0.562±0.063 0.705±0.170
UNI [19] 0.785±0.094 (*) 0.687±0.124 (*) 0.710±0.103 (*) 0.728±0.134

Table 3: Study results assessing IBS performance of different representation extraction techniques
across 2 ovarian cancer datasets and 2 different outcomes.

Model/ Dataset, outcome TCGA-OV, OS TCGA-OV, PFS OBR, OS OBR, PFS

ImageNet ResNet-50 0.213±0.010 0.219±0.029 0.333±0.118 0.227±0.062
TIL-Maps-23 [23] 0.222±0.012 0.238±0.039 0.248±0.081 (*) 0.209±0.061 (*)
SimCLR [16] 0.255±0.050 (*) 0.223±0.025 (*) 0.301±0.081 0.219±0.056
CTransPath [17] 0.217±0.011 (*) 0.208±0.034 (*) 0.354±0.102 0.214±0.042
UNI [19] 0.238±0.030 (*) 0.233±0.065 (*) 0.251±0.069 (*) 0.217±0.092

The studied foundation models in this work result in a better than the average OS C-index of 0.625
obtained by the PORPOISE WSI only AMIL model on TCGA-UCEC dataset. This Uterine Corpus
Endometrial Carcinoma dataset from TCGA with 538 cases is another gynecological malignancy
dataset but five time larger than the TCGA-OV dataset.

SimCLR model [16] and CTransPath model [17] obtained the best C-index on TCGA-OV dataset in
OS and PFS prediction task respectively. The results also show that CTransPath [17] outperformed
SimCLR model [16] in 3 out of 4 test settings in terms of C-index and IBS, we hypothesize that this
is most probably due to the bigger size of the pretraining dataset than the choice of the CL algorithm
or SSL augmentation techniques.

UNI model [19] achieves the best performance on the OBR dataset in PFS prediction task. Given that
SimCLR model [16] and CTransPath [17] were trained on TCGA slides, their performance may be
optimistically biased by the data leakage. Hence, we think that UNI model [19] is more robust and
performs uniformly across the previously unseen datasets or in so-called out of distribution setting.
As the UNI model used larger and more diverse datasets for pretraining, these results corroborate as
well the hypothesis that using more unlabeled images in pretraining improves the downstream task
performance.

Interestingly as well, the TIL-Maps-23 model trained with TCGA slides to detect the TIL-positive
and TIL-negative patches results in the 2nd best C-index and the best IBS on the OBR dataset in PFS
and OS prediction tasks. On the other hand, it did not perform well on the TCGA-OV dataset. Given
that UNI and CTransPath models showed good results in TIL classification task on TCGA-OV as
reported by [19], and that the study of [23] reported a relatively small mean TIL area in TCGA-OV
dataset, we hypothesize that SSL pretrained models use other patterns for OS and PFS prediction on
TCGA-OV dataset. Nevertheless, our results suggest that TILs could be a plausible hypothesis for
developing the biomarkers of bevacizumab response prediction in ovarian cancer.

4 Conclusion

In this work we presented the performance assessment of the digital pathology foundation models.
Our benchmark compared the generalization capabilities of the self-supervised pretrained image
encoders SimCLR [16], CTransPath [17] and UNI [19] against the model TIL-Maps-23 [23] trained
with manually annotated task-specific data. We compared the performance of the models on the
under-explored task of survival prediction (OS and PFS) while using the relatively small ovarian
cancer datasets.

Our results confirm the usefulness of the general purpose foundation models for digital pathology
with the out of distribution domain data of diverse tissue types for pretraining. We advocate as well

5



Figure 1: Kaplan-Meier curves of the high-risk and low-risk TCGA-OV patients. The groups
were defined by the median of the risk predictions of PORPOISE/AMIL model trained with the
benchmarked extracted features. Log rank test was used for statistical significance in survival
distributions between high-risk and low-risk groups (*p < 0.05).
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Figure 2: Kaplan-Meier curves of the high-risk and low-risk OBR patients. The risk predictions of
PORPOISE/AMIL model trained with the benchmarked extracted features were used to first calculate
the mean risk per patient, then the two groups were defined by the median of the mean risks. Log
rank test was used for statistical significance in survival distributions between high-risk and low-risk
groups (*p < 0.05).
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that the presented models can be considered building blocks for the construction of more sophisticated
architectures without the need of extensive training and large annotated datasets and could accelerate
the development lifecycle of machine learning models for medical imaging.

As a potential clinical application, these combined models with the improved performance can help
to guide patient stratification with the existing molecular subtyping. Another potential application of
the further development of such models is to gain more insights into the mechanisms underlying the
response or recurrence under particular treatment regimen. As a future work, we plan to thoroughly
analyze the studied foundation models predictions in OS and PFS setting by exploiting the attention
mechanism of the PORPOISE model to recognize the significant patterns that contribute to survival
prediction.

Besides the following limitations could be considered as well. Most MIL methods neglect the
spatial relationship among patches, the integration of the patch spatial information within the WSI
could be a promising direction of future research. We did not search to optimize the PORPOISE
model hyperparameters, our main goal was to compare the generalization capabilities of the studied
foundation models. Finally, the OBR dataset containing multiple WSIs per patient, we have not
used any strategy to aggregate the patient-level predictions. In addition, this dataset contains various
histologic subtypes of ovarian cancer, while the TCGA-OV dataset is relatively homogeneous and
is composed of high grade serous ovarian carcinoma subtype. This fact could explain the variance
observed in the results on the OBR dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We did our best to be as accurate and concise as possible.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in the Conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work includes only empirical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the implementation details to reproduce the obtained results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

12



Answer: [Yes]

Justification: The models and the datasets used in our work are all publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the data splits and our hyperparameters values, for the other
hyperparameters we refer to the cited references where they can be found.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the 5-fold mean value ± standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include the type of GPU used as well as the time of execution in the
implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We did our best to follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential possible application of our way to integrate the studied
models.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any particular data or model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all the used datasets and models and respected the license and terms
of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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