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Abstract

In many real-world decision-making tasks, e.g.
clinical trials, the agents must satisfy a diverse set
of unknown safety constraints at all times while
getting feedback only on the safety constraints
relevant to the chosen action, e.g. the ones close
to violation. In this work, we study stochastic lin-
ear bandits with such unknown safety constraints
and local safety feedback. The agent’s goal is to
maximize the cumulative reward while satisfying
multiple unknown affine or nonlinear safety
constraints. At each time step, the agent receives
noisy feedback on a particular safety constraint
only if the chosen action belongs to the associated
constraint set, i.e. local safety feedback. For this
setting, we design upper confidence bound and
Thompson Sampling-based algorithms. In the
design of these algorithms, we carefully prescribe
an additional exploration incentive that guaran-
tees the selection of high-reward actions that are
also safe and ensures sufficient exploration in the
relevant constraint sets to recover the optimal safe
action. We show that for M distinct constraints,
both of these algorithms attain O(v/MT) regret
after T' time steps without any safety violations.
We empirically study the performance of the pro-
posed algorithms under various safety constraints
and with a real-world credit dataset. We show
that both algorithms safely explore and quickly
recover the optimal safe actions.

1. Introduction

Stochastic linear bandits (SLB) is a sequential decision-
making framework where at each time step the agent aims
to choose an action that maximizes the reward which is
stochastic and its expected value is an unknown linear func-
tion of the action (Lattimore & Szepesvari, 2020). The goal
of this problem is to minimize regret in decision-making,
which denotes the difference between the cumulative reward
obtained by the agent and the optimal cumulative reward
if the reward function is known a priori. Since the under-
lying reward function is unknown, the main challenge is
to balance the exploration-exploitation trade-off. In par-

ticular, besides maximizing the instantaneous reward, the
agent needs to explore the action space to improve the ac-
curacy of its estimate of the reward function to achieve a
higher cumulative reward. Despite its simplicity, the SLB
framework is able to capture the crux of the challenge in
many decision-making under uncertainty applications such
as recommendation systems (Li et al., 2010; Balakrishnan
et al.), path planning (Dani et al., 2007; Gyorgy et al., 2007),
and wireless networks (Maghsudi & Hossain, 2016).

Safe Decision-Making: However, in many real-world
decision-making problems, the agents require to satisfy
some safety/operational constraints while aiming to
maximize the cumulative reward. Thus, the tools developed
for unconstrained SLB framework do not directly apply
to real-world safety-critical decision-making tasks such as
clinical trials (Villar et al., 2015). There have been several
new frameworks with different forms of safety constraints
proposed to model these tasks. Some of these frameworks in-
clude safety constraints through stage-wise reward (Moradi-
pari et al., 2020; Khezeli & Bitar, 2020), while some of them
focus on cumulative or policy-based constraints (Kazerouni
et al., 2017; Pacchiano et al., 2021; Liu et al., 2021).

Prior Work on Safety-Critical SLB:  Another line
of work considers a more challenging setting of hard
constraints on the actions, where the safety constraint needs
to be met at every time step (stage-wise) (Amani et al., 2019;
Moradipari et al., 2021). This setting is more suitable for
safety-critical tasks where executing even one unsafe action
may lead to catastrophic results. However, prior works in
this setting only consider very simple models where there is
a single unknown linear constraint depending on the reward
function that the agent observes feedback from at every time
step. Despite giving an initial understanding of safety in
the SLB, these works do not capture the complex constraint
and feedback structure of real-world decision-making tasks.
The following considers a safety-critical decision-making
scenario in which the prior works fail to model.

Modeling Case Study - Loan Approval: Consider an
organization that gives out loans. The goal is to approve
individuals who are likely to repay the loan and maximize
the profit, i.e., good credit risk, while avoiding extremely
risky deals to ensure the safety of the organization’s assets.
Each individual is usually described as a diverse set of
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feature representations, i.e., actions, that the agent needs to
interact with and select for approval of the loan, such that it
learns which individuals are likely to have good credit risk.
However, there can be various safety constraints that deter-
mine the extreme risk within the feature space. For example,
the organization may want to ensure that it does not select
“risky” individuals who have high credit or are retired and
are classified as bad credit risk individuals. An increase in
the rate of missed payments can provide feedback to adjust
modeled safety constraints to avoid safety violations. This
mechanism helps to ensure that the organization maximizes
its return while strictly avoiding extreme risks. Previous safe
SLB frameworks, which consider only a single stage-wise
linear constraint, fail to model such a scenario. To address
this challenge, multiple stage-wise safety constraints and
a local feedback mechanism based on features are needed.

Our contributions

1. We study a novel SLB framework with unknown safety
constraints where we model safety constraints as either mul-
tiple unknown affine or nonlinear functions, which gener-
alizes the constraints considered in prior works. Given a set
of actions, the goal of the decision-making agent is to max-
imize its reward by selecting safe actions defined by these
constraints at every time step. Since the safety functions are
unknown, the agent needs to learn them through feedback.

To design a realistic feedback mechanism, we model these
safety constraints locally in the action space and associate
feedback sets for each constraint. The agent receives a noisy
observation of the constraint function only when it picks
actions from the corresponding constraint feedback set. This
local feedback mechanism captures the feedback structure
in many applications where choosing actions outside of a
known safe set is subject to safety constraints.

2. We first consider the framework with multiple unknown
affine safety constraints. For this setting, we propose
two novel safe SLB algorithms. The first algorithm is
the safe version of the linear upper confidence bound
algorithm (Abbasi-Yadkori et al., 2011) (LinUCB): Safe-
LinUCB. In the design of Safe-LinUCB, we decouple the
exploration for learning the reward parameter and the safety
constraints. This is in contrast to prior works which rely
on the same exploration strategy for both reward and safety
which fails in the affine safety function setting. The main
technical challenge in the design of Safe-LinUCB is to care-
fully prescribe an additional exploration within the UCB
framework which guarantees the selection of optimistic safe
actions and ensures sufficient exploration of the relevant
constraint sets. For M distinct unknown affine constraints,
we prove that Safe-LinUCB attains O(v/MT) regret after
T time steps without violating any safety constraints.

3. We propose the safe version of the well-known Thomp-

son Sampling algorithm (Abeille & Lazaric, 2017) (LinTS):
Safe-LinTS. Safe-LinTS is a computationally efficient alter-
native to Safe-LinUCB which can possibly have computa-
tional challenges in finding optimistic actions similar to the
other UCB algorithms. In the design of Safe-LinTS, unlike
prior works, we also decouple the exploration for the reward
parameter and safety functions such that the agent chooses
the optimal action with respect to the sampled reward param-
eter from the estimated safe action sets at every time step.

The main technical challenge in the design of Safe-LinTS
is to lower bound the probability of being optimistic
for the sampled reward parameter while satisfying the
safety constraints. To this end, we carefully design the
sampling distributions for the reward parameter and safety
functions such that the sampled parameters satisfy certain
concentration and anti-concentration properties, and give a
novel lower bound for this probability tailored for our SLB
framework. For M distinct unknown affine constraints, we
also show that Safe-LinTS attains (7)(\/ MT) regret.

4. We study the setting of multiple unknown nonlinear con-
straints. We extend Safe-LinUCB and Safe-LinTS for this
setting via a novel initial exploration strategy. We propose
to learn Taylor approximations of the underlying safety
constraints and design a new initial exploration phase that
uses a priori known one safe action per constraint to achieve
uniform exploration, i.e., the persistence of excitation. We
show that this exploration strategy allows the error in the
estimates of the safety functions to be well-controlled and
guarantees the identification of a safety set that contains
the optimal safe action with high probability. We eventually
show that the proposed method also attains @(\/T) regret.

S. We empirically study these algorithms on both synthetic
and real-world datasets. On the synthetic dataset with
various safety constraints, we observe that both algorithms
achieve sublinear regret without any safety violations, con-
curring with our theoretical results. We then modify a credit
classification task on the German Credit dataset (Keogh
et al,, 1998) into the loan approval SLB setting with
two safety constraints by featurizing each individual as
discussed in the case study above. We demonstrate the
benefit of additional exploration in achieving improved
regret while maintaining zero safety violations.

Our results subsume and generalize the state-of-the-art algo-
rithms for SLB with stage-wise safe action constraints, see
Table 1 for comparison. To summarize our contributions:

* We study a new SLB framework with multiple unknown
affine or nonlinear safety constraints with a local safety feed-
back structure to capture real-world decision-making tasks.

* We propose two bandit algorithms for the proposed frame-
work with qfﬁne constraints: Safe-LinUCB & Safe-LinTS,
and prove O(+/T') regret upper bounds for both.
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Table 1. Comparison with prior works on safe SLB with @(\/T) Regret. These works achieve this result using different methods for
different safety aspects with different constraint types and for different numbers of constraints.

Work Safety Aspect Constraint Type # of Constraints  Method
(Kazerouni et al., 2017) Reward Cumulative 1 UCB
(Khezeli & Bitar, 2020) Reward Stage-wise - Linear 1 UCB
(Moradipari et al., 2020) Reward Stage-wise - Linear 1 UCB + TS
(Pacchiano et al., 2021) Policy Stage-wise - Linear Multiple UCB

(Amani et al., 2019) Action Stage-wise - Linear 1 UCB
(Moradipari et al., 2021) Action Stage-wise - Linear 1 TS
Our Work Action Stage-wise - Affine/Nonlinear Multiple UCB+ TS

* For nonlinear safety constraint setting, we extend the
proposed algorithms via a novel initial exploration strategy
to provide uniform exploration and show @(\/T ) regret.

* We empirically study the proposed algorithms on real-
world data and demonstrate that both algorithms explore ef-
ficiently without any safety violations and attain low regret.

2. Problem Formulation

Notation. For 2,y €R?, (z,y) =2 Ty and (z,y) 4 =2 Ay,
for a positive definite matrix A € R4 For x € R?, we
denote ||z||=vzTx and ||z||4 = V2T Az. The maximum
and the minimum eigenvalue of A is denoted by Ay (A)
and Apin(A) respectively. The maximum and minimum
of two numbers « and 3 is denoted by a V 8 and oA 3,
respectively. For a positive integer n, [n] denotes the set
{1,...n}. O(-) presents the order up to logarithmic terms.

Reward Model. We study the stochastic linear bandits
(SLB) setting. At each time step ¢, the agent plays an action
x; € Do, where Dy denotes the fixed decision set. Sub-
sequently, the agent observes the reward r; = ' zy + 17,
where 11 € R? is unknown and 7} is random noise.

Safety Constraints. The environment is subjected to M
distinct safety constraints, where M = [M] is the index
set of the constraints. We model these constraints as affine
functions unknown to the agent (they will be modeled as
nonlinear functions in Section 5). We consider localized
safety constraints, where we define associated constraint
feedback sets I'; C Dy,Vi € M. At each time step, the
agent needs to satisfy all the constraints corresponding to
the feedback sets that the chosen action x; belongs to. More
precisely, if z; € I';, the agent needs to have

v w4 < T, W (1

for some ~; and ¢; are unknown and 7 known to the agent
Vi € M. These constraints, therefore, form a region of safe
actions D& C Dy, where

Dgafe — UEM {x el ’}/Z—rmt +c¢ < T} . 2)
i

In this work, we study the setting where the agent is subject
to hard constraints, i.e., the agent needs to play actions that

belong to D§* with high probability at all time steps. This
safety constraint formulation captures many safety-critical
real-world decision-making applications. Since the safety
constraints are unknown to the agent, and the agent needs to
learn them via feedback and conservatively pick actions to
ensure that the constraints are satisfied. In particular, we con-
sider localized feedback such that the agent gets noisy obser-
vations of the constraint functions only when it picks actions
from their corresponding constraint feedback set, i.e.,

~1 T i .
g=7% xetc+n if z el 3)
Figure 1 illustrates an example safety constraint structure.

Regret. We study the (pseudo) regret of the agent

t=T
Rr = thl plat —play

for T' time steps, where 2 = arg max,, ¢ pre u'x, ie., the
optimal safe action. The goal of the agent is to minimize
the regret over time and achieve sublinear regret while satis-
fying the safety constraints at all time steps. Let I} denote
the o-algebra (history) up to time ¢, such that x; is F}_;
measurable and the noise terms, i.e., n; and ni*, are F; mea-
surable. Before describing our first algorithm for this setting,
we adopt some technical assumptions, which are standard
in the literature, (Abbasi-Yadkori et al., 2011; Abeille &
Lazaric, 2017; Amani et al., 2019; Khezeli & Bitar, 2020).

Assumption 2.1 (Subgaussian Noise). For all t € [T'] and
i € M, nl,n! are conditionally R-sub-Gaussian where
R > 0 is a fixed constant, i.e., VA € R, E[e*? |F;_;] <
exp(A\2R?/2), E[eM:|F;,_1] < exp(A\2R?/2).
Assumption 2.2 (Boundedness). s < |lull2, [[7villz <
Szl < L, ||lo — 2flls < L < L,ifx € T; and
u'xe[—1,1],Va € Dy for some s, S, L, L¢>0.
Assumption 2.3 (Known safe actions). For every constraint
1 € M, the agent knows a safe action z{ € I'; such that
x$ € D@ and ;" 25 +¢; = 77 < 7 where 7, 7 are known.

Note that Assumption 2.3 holds in many real-world decision-
making tasks such as robotics and clinical trials where there
are known safe actions. Note that the known safe actions
do not need to be unique. If 7;°s are unknown, the agent can
sample the known safe actions to estimate the values of 7;’s.
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Figure 1. Illustration of the safety constraints: Dy represents all
actions. I'; represents the constraint feedback regions where the

affine constraints (1) need to be satisfied. D™ is the safe set of

actions formed by the union of the safe regions from each I';.

3. Safe-LinUCB

In this section, we propose Safe-LinUCB, the safe version
of the well-known linear upper confidence bound algorithm
studied in the literature (Abbasi-Yadkori et al., 2011), (also
named OFUL) for the SLB framework presented in Sec-
tion 2. Similar to LinUCB, Safe-LinUCB deploys the opti-
mism in the face of uncertainty (OFU) principle to balance
the exploration vs. exploitation trade-off. This algorith-
mic approach proposes to construct confidence sets for the
underlying parameter x4 using the history of actions and re-
wards and to play the optimal action for the most optimistic
model within these sets. However, unlike the unconstrained
setting of LinUCB, the agent in our SLB framework needs
to satisfy the unknown safety constraints at every time step.

To address this, Safe-LinUCB conservatively explores start-
ing around the known safe actions to learn the safety con-
straints as well as the underlying reward parameter while
avoiding safety violations. During the course of interac-
tion, besides the confidence set for the underlying reward
parameter p, it forms confidence sets for the unknown safety
functions, i.e. affine parameters +;, and includes this infor-
mation to safely expand its estimate of the safety set D,
In deploying the OFU principle, it includes an additional
exploration to tolerate the uncertainty in the safety set esti-
mate which enforces the algorithm to pick conservatively to
avoid safety violations. Safe-LinUCB is given in Algorithm
1. Safe-LinUCB consists of 3 key elements: Parameter
estimation, Safety construction, and Acting optimistically.

Parameter Estimation. At each time step ¢, Safe-LinUCB
uses the history of action-reward pairs to obtain a fo-
regularized (for some A > 0) least squares (RLS) estimate
of the underlying reward parameter y via

t—1
=V, Y, e, @

where V; = A\ + 31—} z2] . Safe-LinUCB then builds a
confidence set around this RLS estimate

Co={veR: v—jully, <B}, (5)

Algorithm 1 Safe-LinUCB
1: Input: 77,27, 7,L,S, R
2: fort=1,...,T do
3:  Compute fi; via (4) & %, via (6)
Construct 3; in (5) & 3 Vi € M in (7)
Construct Dzafe according to (8)
Find z; = argmaxieM’zefi_tucb(x, i,t—1) via (9)
Play x; and observe reward r;

AN A S

where ;= Ry/dlog (1+(t—1)L2/X)/8)+V/AS, for § €
(0,1). The choice of §; follows from Theorem 2 of Abbasi-
Yadkori et al. (2011), such that i € C; with probability at
least 1—4, for all £ > 0. Thus, Safe-LinUCB guarantees that
the event £, = {u € C;} holds with high probability.

Similarly, Safe-LinUCB estimates the unknown safety func-
tions, i.e., parameters y; for all ¢ € M, via RLS as

N,,(t)

Jip = A;} yi(zk — ), (6)

k=1
for yi = §i — 7¢,Vt, where A;y = A+ S0 (zy, —
or y; = g; — 77,Vt, where A, , + >0 (@

x3)(z) — z) T and N;(t) denotes the number of times the
agent has gotten feedback from the constraint set I'; until
time ¢. It also builds confidence sets around these estimates

c;:{veRd;||v—&i,t|Az-§6§}, (N

with 8; = R\/dlog (|[M|(1+ N;(t)L2/\)/5) + A'/2S,,
such that the event £,, = {~; € C}} holds with probability
atleast 1 — ¢, forall ¢ > 0 and s € M.

Safety Construction. Next, conditioned in the joint event
E:=E,UU;ecn &:» Safe-LinUCB aims to satisfy the un-
known safety constraints when picking actions. To achieve
this, it conservatively constructs a safe set of actions fi,t =
{w € s3], (e — ) + Bille —azl|, 1 < 7— 77}, where

pie=J.,, i ®)

For this constructed safety set, we have the following result.
Lemma 3.1. Conditioned on €, D} C D, forall t > 0.

The proof is given in Appendix A.1, where we show that
conditioned on &, 4, (v — x5) + B}||z — 2§ || 41 is an upper
’ i,t A
bound on v,” (x — z£), Vi € M. This ensures that D{*® is
a conservative estimate of D, such that Safe-LinUCB
satisfies the safety constraints with high probability.

Acting Optimistically. At the final step, Safe-LinUCB
picks an action z; from the constructed safe set D;*® which
maximizes the Upper Confidence Bound (ucb) defined as

uch(z,i,t) = il z+ |||y, +kiﬁf\|x—xf\l,4;;, ©)
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Vi € M, where k; > 2LS/(t —7f). In the following,
we show that this construction of ucb ensures sufficient
exploration of the safety constraint set in order to balance
exploration vs. exploitation via optimistic action selection.

3.1. Theoretical guarantees for Safe-LinUCB

Before presenting the theoretical guarantees, we place the
following technical assumption on the safety feedback sets
that the optimal safe action belongs to, denoted as I';.

Assumption 3.2 (Star convex optimal constraint sets). I';«
is star convex around the safe known action x3. such that the
convex combination az* + (1 — a)xf € T';«, Vo € [0, 1].

Note that since the constraint sets are localized around a
particular safe action z7, this assumption is reasonable in
the safe SLB framework, and weaker than the prior work,
e.g. (Amani et al., 2021), where the entire space of actions
is considered to be star convex. In the regret analysis of
Safe-LinUCB, we follow the standard analysis of UCB and
decompose the regret Ry into two terms: (i) Eij (u'a*—
uch(;, ir, 1)) and (i) 32021 (ueb(xy, i, t) — p 2y).

In the unconstrained setting, the optimism principle is satis-
fied by construction, since the optimal action belongs to the
decision set Dy, yielding (i) to be non-positive. However,
in the safe SLB framework, the optimal safe action z* may
not belong to the constructed safe set D§3 where optimistic
action selection happens. Thus, we first show that the new
construction of ucb in (9) still provides optimistic actions.

Theorem 3.3 (Optimism). For all i € M, setting k; >
2LS/(T—77) guarantees optimism with high probability:

max, uch(x,i,t) > p'x* Vi

ieM,zel; ¢

The proof is given in Appendix A.2. To sketch the proof
idea, we consider two cases of whether z* € D{*® or not.
If yes, via standard UCB arguments, we guarantee that Safe-
LinUCB selects optimistic actions. If not, we show that
the additional exploration bonus k; 3; ||z — 5| Ai-1 ensures
optimistic action selection for the given choice of k;. This
shows that adjusting the additional exploration bonus around
the known safe actions ensures that the relevant constraint re-
gions are well-explored, i.e., z* eventually belongs to D§f,

The choice of k; highlights the key challenge in our pro-
posed SLB framework. In contrast to prior works, the agent
gets feedback from a constraint only if it plays an action
within the associated feedback set. Therefore, while aiming
to learn the underlying reward function, Safe-LinUCB needs
to cautiously choose actions from the constraint sets where
it wants to learn the constraints at the cost of not receiving
any feedback from the non-active constraints. The new uch
term in (9) captures this trade-off and selecting k; as in The-
orem 3.3 balances it effectively. In particular, we see that

this exploration bonus is inversely proportional to the gap
between the safety threshold and the value of the known
safe action. Intuitively, this means that if the known safe
action is close to violation, Safe-LinUCB needs to explore
more/act more optimistically to learn the optimal safe action.
We pay an extra price in regret due to this additional effort.
Theorem 3.4 (Regret Bound). Suppose Assumptions 2.1-
2.3 and 3.2 hold. Then for any 6 € (0,1) and
k; = 2LS/(t — 7f), with probability at least 1 — 20,
the regret of Safe-LinUCB is Rt < R, + R,, where
R, = 2B7\/2Tdlog((1+TL?/(d)))/6) and R, =
(ki Bpmes + 2)/2|M|Tdlog((1 + TL2/(dN))/5), for
5%""”” = maX;jeMm B% and k

imaz maxjeM kj.

The proof is given in Appendix A.3. In the proof, since (i)
is non-positive via Theorem 3.3, we study (ii) and decom-
pose it into 2 terms. R, results from learning the unknown
reward parameter and R is due to learning M different con-
straints. Notice that 1., scales with the hardest, i.e., the most
exploration needed, constraint through B4** and k;,,, .
Moreover, the regret rate of Safe-LinUCB matches the prior
unconstrained UCB results (Abbasi-Yadkori et al., 2011)
and single linear constrained UCB results (Amani et al.,
2019; Pacchiano et al., 2021), where the additional price
of learning under M distinct constraints with local safety
feedback, which generalizes the prior work, appears as v/ M.

Extensions: 1) Many Constraints. For a significantly large
number of constraints, R, dominates the overall regret.
Since the ultimate goal is to pick actions with highest reward,
Safe-LinUCB should focus further to learn the constraints
around the optimal action. In Appendix B, we propose a
modified version of Safe-LinUCB, where we add a pure ex-
ploration phase in which the agent learns about the general
direction of the unknown reward parameter. This informa-
tion helps the agent to recognize the important constraint
sets and improves the efficiency of Safe-LinUCB.

2) Featurized Constraints. In many real-world scenarios,
the safety constraints can be affine in (un)known feature
maps of actions. These feature maps can be complex and
obtained via a deep neural network. Safe-LinUCB can be
easily extended to these scenarios. In Section 6, we study an
SLB problem on a real-world credit dataset with such featur-
ization. Note that these feature maps are only needed to hold
locally, i.e., within feedback sets, which is more general than
considering the same featurization for the entire space.

4. Safe-LinTS

In many scenarios, solving the bilinear optimization prob-
lem of UCB-type algorithms, i.e., line 6 of Algorithm
1, can be computationally challenging. To this end,
Thompson Sampling (TS)-based methods are proposed, e.g.
LinTS (Agrawal & Goyal, 2013; Abeille & Lazaric, 2017).
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These approaches sample a model within the constructed
confidence set of plausible models and find the optimal ac-
tion with respect to this sampled model. Therefore, they
consider a linear optimization problem for decision-making,
which can be solved efficiently. Because of this computa-
tional efficiency, simplicity, and possibly better empirical
performance, they are adopted in many decision-making sce-
narios (Abeille & Lazaric, 2018; Kargin et al., 2022). In this
section, we propose Safe-LinTS, the safe version of LinTS.
The pseudocode of Safe-LinTS is given in Algorithm 2.

The construction of Safe-LinTS follows similarly to Safe-
LinUCB regarding the estimation of the reward parameter
and safety parameters and safety construction (Lines 3-5).
After this, it draws two random perturbations 7, € R¢ and
n¢ € RY from i.i.d. distributions 7" and P1* respectively
(will be characterized shortly). Among these perturbations,
while Safe-LinTS uses 7, in a standard way to sample a
reward parameter, it uses 7); in a novel way to expand the
estimated safe set to satisfy optimistic action selection.

The main novelty in the design of Safe-LinTS lies in this de-
coupling of the exploration for the reward parameter and the
safety functions. In particular, the prior work in safe linear
bandits (Moradipari et al., 2021) relies on using the same
Gram matrix to learn both the safety and reward parame-
ters simultaneously. However, learning in the affine setting
involves separate Gram matrices, thus, Safe-LinTS explic-
itly balances the exploration trade-off between learning the
unknown reward parameter and the safety parameters, en-
suring safety and optimism for the entire horizon.

To this end, PT¥ and PT are chosen to satisfy certain con-
centration and anti-concentration properties. In particular,
for some 6 € (0,1) and constants ¢, ¢/, Safe-LinTS se-
lects P7 such that P(||n[|2 < y/edlog(c’d/5)) > 13,
and P(u'n, > 1) = p; > 0, for any v € R? with
|lul| = 1. Similarly, P75 is chosen such that P(||n§||s <
3{5;: cdlog(c/d/5))) > 1 — % and P(unf > 255;') =
p2 > 0, where S7 > max;em ||v:|| and 78 = max;em 77
These requirements imply that these distributions with high
probability should concentrate, yet, still provide a certain
amount of exploration (anti-concentration), which is crucial
in achieving low regret. Natural candidates for 7 and
PTS are N'(0,I) and N (0, 257 1), respectively.

Y 8
T—Tg

Safe-LinTS uses 7; ~ PT* to sample fi; around ji; which
provides the balance between exploration and exploita-
tion while learning the unknown reward parameter, i.e.,
e = iy + ﬂtVt_l/Qm. It then uses n¢ ~ P to sample
@i = BiA;*ng, Vi € ML, which will be used to provide
the exploration needed to expand the estimated safe set to
include higher rewarding actions, i.e., optimistic actions.

At the final step, Safe-LinTS picks an action x; from D§f
by maximizing i, x —l—cD;': +(z—x?). Note that this is a linear

Algorithm 2 Safe-LinTS

1: Input: 7%, 23,7, L, S, R, P75 PT3

2: fort=1,2,...,T do

3:  Compute fi; via (4) & 9; ¢ via (6)

4 Construct 3; in (5) & B Vi € M in (7)
5. Construct D according to (8)

6:  Sample n; ~ PT% and n¢ ~ PIS
7
8
9
0

Compute fi; = fi + BV, 14

Compute @; ; = BfA;tl/znf,Vi eM

Find z; :argmaxieMyzefiltﬂ:Jz + @i T(x—xf)
Play z; and observe reward 7,

objective with transparent exploration goals. In particular,
the reward exploration is similar to LinTS in Abeille &
Lazaric (2017), whereas the second term adds exploration
along the safety constraints using the known safe actions.
Notice that this approach generalizes the algorithm
proposed in (Moradipari et al., 2021) whose setting is a
special case of the SLB framework considered in this work.

Theorem 4.1. Suppose Assumptions 2.1-2.3 and 3.2 hold.
Then for any 6 € (0, 1), with probability at least 1, the
regret of Safe-LinTS is Ry = O(d*/?\/|M|T).

The proof and the exact expressions are given in Appendix C.
In the proof, we first show that Safe-LinTS selects safe (via
Lemma 3.1) optimistic actions with at least p; po probability
by showing that 7, and n{ provide sufficient exploration
(Appendix C.1). Finally, we use the regret decomposition
in (Abeille & Lazaric, 2017) to give the regret upper bound.
Notably, this result matches the regret upper bound in
(Moradipari et al., 2021) for their setting. In the exact regret
expression, the leading term has 1/(p;1p2) i.e., the inverse
of optimistic action probability. This relation is similar to
that of k;, in Safe-LinUCB. In particular, similar to Safe-
LinUCB, for a smaller worst-case safety gap of known safe
actions, Safe-LinTS needs to explore more to learn the opti-
mal safe action which results in increased regret through p,.

5. Linear Bandits with Nonlinear Constraints

In this section, we consider the most general setting of
multiple nonlinear safety constraints, which captures the
most diverse class of decision-making scenarios.

Safety Constraints: The environment is subject to M
distinct nonlinear safety constraints, such that if x; € T';,
the agent needs to have f;(x;) < 7,Vt for some unknown
fi and known 7, Vi € M. The region of safe actions corre-
sponds to D := J, . {z € T : fi(z) < 7}. Similar to
the affine case, we consider localized feedback for the agent:
g¢ = fi(x) + ni if 2, € T;. Moreover, without loss of
generality, we consider I'; = {x € R : ||z — 2|5 < &4}
for some 0y > 0 for all ¢ € M. In parallel with Assumption
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2.3, we assume that the agent knows a safe action for each
constraint, 7 € fo‘f"’7 Vi € M, as well as their safety
values f;(z{) = 7¥ < 7. Finally, we adopt the following
simple regularity assumption on the nonlinear constraints.

Assumption 5.1 (Smooth & Lipschitz Safety Constraints).
fi(x) is ¢-smooth and S-Lipschitz, Va €T';, Vi € M.

The local smoothness assumption is a significantly weak
assumption (Bartlett et al., 2019), while the local Lipschitz-
ness is the nonlinear analog to Assumption 2.2 with affine
constraints. The setting characterized above subsumes
and generalizes the affine case in Section 2. Using the
first-order Taylor expansion about the known safe actions,
we obtain f;(z) = fi(x3) + Vfi(z$) T (x — 23) + ei(w),
where €;(z) represents the remainder terms. Notice that
for small enough d, this expansion behaves very similarly
to affine functions studied in previous sections, which
motivates the following our algorithm design. To avoid
any further structural assumptions and keep the setting as
general as possible, while keeping the problem tractable,
we assume some safety gap for the optimal safe action to
account for the function approximation errors.

Assumption 5.2 (Safety gap for optimal action). The opti-
mal safe action 2™ has at least A safety gap from constraint
boundary, i.e., fi«(z*) < 7 — A, such that A > (6)20.

This is a mild assumption since for a nonlinear function the
optimal action need not be at the boundary, unlike linear
constraints. Moreover, this assumption holds in many safe
decision-making tasks, where the optimal safe action might
be a significantly safe one, yet, to learn this action one might
need to consider a higher threshold in the learning process.

5.1. Safe-LinUCB/LinTS with Pure Exploration

We propose an extension of our prior algorithms to achieve
safe and effective decision-making for the SLB with mul-
tiple nonlinear safety constraints. Due to Assumption 5.1,
we know that there exists a safe ball of actions around each
x5, Vi € M ie., fi(z) <tifzy e {z el |jlz—zf|2 <
0} for 6, < (1 —77)/(S+¢dy). The existence of this ball
helps the agent to estimate the gradient of the nonlinear
function around the known safe actions x;. The main idea
in our algorithm design is to learn the first-order function
approximation in each I'; while taking into account the es-
timation error so that the agent can eventually get to the
optimal action x* without violating safety. The algorithm
consists of two phases: (i) Pure Exploration and (ii) Safe-
LinUCB/LinTS. The pseudocode is given in Algorithm 3.

Pure Exploration. In this phase, the agent samples 7"
actions from each constraint set I';. It uniformly excites all
the directions by playing z; = arg max,epw ||z —z5| 41

i it
for T steps, where DY is the d — 1 dimensional boundary
surface of the §,-ball around the known safe actions z;

Algorithm 3 Safe-LinUCB/LinTS with Pure Exploration
1: Input: 77,27, 7,(, S, A, 05
2: fori € M do
33 fort=1,2,...,7" do
4: Play z; = arg max,¢epv ||z — xf||A;t1
5
6

: Construct D$4¢,,
: Run Safe-LinUCB/LinTS for the remainder with D$¥%,,

definedas DY ={x € I'; : ||[x—2f||]2 = 0.}, and A; ;=
)\I+ZN () (wp—x5) (xp—25) 7. By construction of DY, the
agent achleves safe exploration. Moreover, this exploration
strategy ensures that the agent always picks the direction of
the smallest eigenvalue, resulting in persistent excitation in
all directions since actions in D;" have the same norm.

At the end of this phase, the algorithm estimates the gradient
of the constraint functions using RLS such that Vf;; =
A7, FSONAD i (g, — a3) for yi = g — 77, VE. Note that
N;(t) is equal to T” for all i at the end of this phase. Next,
the algorithm further decomposes V f;; =V f,ﬁ S4¢,;, where
VIE = A S (e =) (V@) T (2 — 23) + 1)
and €t = A, ZN i) (xr — zi)e;(x,). Notice that the
expression for V %% is the nonlinear analog of (6). Thus,
the algorithm builds confidence sets around the estimates
ViES Vie M: ¢l = {v e R : ||lv — VI a < B}
with 8] = Ry/dlog (|[M[(1+T"L?/X)/6)+A"/2S. Italso
defines the event Ev 5, = {V fi(z7) € C;} which holds with
probability at least 1 — 4, forall ¢ > O and s € M.

Safety Construction. Next, conditioned in the joint event
Evy, = Uiem Evyi,» the algorithm aims to satisfy safety
constraints when picking actions. To achieve this, it con-
servatlvely constructs a safe set of actions PZ ={rel;
Vig(x—xf)+45 <7—77}, where DS, = UzEMF'7

Theorem 5.3. Suppose Assumptions 5.1 & 5.2 hold. For
any § € (0,1), after T' time steps of pure exploration per

. Sk safe -\ ysafe safe
constraint set, we have i) x* € D) p, and ii) Dy, C Dy

. i 46? 2
6 i e 2 (2t )

The proof is in Appendix D.1. The main idea of the proof is
to show that we can control the error from non-linearity us-
ing smoothness and simultaneously learn the gradient at that
point by uniformly playing actions around and close to the
known safe actions. We then build DT;‘\?‘T, using V fi (xf)
and add error margin to compensate for smoothness approx-
imation error, away from x;. After this phase, the agent

executes the previously proposed algorithms using DT?\?\T/

Corollary 5.4 (Regret Bound). Suppose 5.1 & 5.2 hold.
Then for the given duration of T' in Theorem 5.3, for any
0 € (0,1), with probability at least 1 — 26, the regret of
Algorithm 3 the above algorithm is O(|M|T" + \/T).

with probability at least 1 —
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Figure 2. Do and D respectively for affine constraints. Different
colors represent different feedback sets I';.
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Figure 3. Dy and D respectively for nonlinear (¢2 norm bound)
constraints. Different colors represent different feedback sets I';.

6. Experiments
6.1. INlustrative 2D Simulations

We first empirically study the proposed algorithms in 2D ac-
tion space. In the setting with 6 unknown affine constraints
and feedback regions, we perform 5 independent runs of
Safe-LinUCB and Safe-LinTS for 2000 time steps and re-
port their performance. An example of the decision set Dy
with different (color) feedback regions and the region of
safe actions determined by the affine constraints are shown
in Figure 2. The cumulative regret of the algorithms in this
setting is given in the first plot of Figure 4. We observe that
both of the algorithms achieve competitive, i.e., sublinear, re-
gret without any safety violations. We show that Safe-LinTS
achieves improved practical performance in this setting with
optimized exploration parameters 7; and 7;, which further
motivates the use of sampling-based methods in practice.

Next, we study the setting with 10 unknown nonlinear
constraints and feedback regions. We model the constraints
as fo-norm bound constraints. An example of Dy and D
are given in Figure 3. We consider an optimal action with a
safety gap in parallel with Assumption 5.2. We implement
Algorithm 3 using Safe-LinUCB and provide the cumulative
regret in Figure 4. As predicted by the theory, algorithm
attains linear regret during its orthogonal pure exploration
phase. However, this phase allows sufficient exploration
of the safety sets and unknown reward function such that
Algorithm 3 discovers a safe action that achieves at least as
high reward as the optimal action, yielding constant regret
after pure exploration. This shows that the novel initial
exploration strategy in Section 5 is effective in uniformly
exploring the decision set without any safety violations.

— Safe-Linuce

— SofeLinUCB with pure exploration

0 20 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Time Time

Figure 4. Left: Cumulative regret of Safe-LinUCB and Safe-
LinTS for the setting in Fig. 2 (Solid line is the average, shaded
region is one std), Right: Cumulative regret of Algorithm 3 (Safe-
LinUCB with initial pure exploration) for the setting in Fig. 3.

—— Safe-LinUCB

Safe-LinUCB w/o Add. Exp.
350

200
150 /

0 1000 2000 3000 4000 5000 6000 7000 8000
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Figure 5. Cumulative regret in loan approval problem

6.2. Loan Approval as a Safe SLB Problem

We consider the German Credit Dataset from Keogh et al.
(1998). The data classify customers as good or bad for
credit for loan approval and provide 24 attributes per user.
To turn this into a safe SLB problem, We featurize the user
attributes using a neural network by posing it as a regression
problem with affine safety constraints in the feature space.
We impose two safety violations as picking bad customers
with 1) high credit and 2) with high age, where the last one
is a surrogate to retirement discussed in the case study at the
beginning. We compare Safe-LinUCB with a naive version
which does not include the additional exploration bonus
needed to ensure optimism under safety.

Figure 5 gives the cumulative regret comparison. In the
beginning, Safe-LinUCB attains higher regret than the naive
version due to additional exploration incentive as expected.
However, this additional exploration provides the sufficient
exploration needed in the relevant constraint regions and
allows Safe-LinUCB to achieve lower cumulative regret
in the long run with no safety violations, concurring with
the theory. The naive method, on the other hand, does not
select optimistic actions and fails to explore efficiently,
resulting in sub-optimal actions. This result highlights the
importance of the carefully tuned exploration bonus under
safety constraints to recover underlying reward parameter.
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Appendix

In Appendix A, we provide the proofs for the regret analysis of Safe-LinUCB. In Appendix B, we discuss the ways to extend
Safe-LinUCB to tolerate significantly many safety constraints and prove the regret guarantees for the modified algorithm.
We provide the theoretical guarantees of Safe-LinTS in Appendix C. In Appendix D, we analyze the novel pure exploration
strategy and give the regret guarantees for Algorithm 3. Appendix E contains auxiliary theorems and lemmas used in the
proofs.

A. Proofs of Section 3 - Safe-LinUCB
A.1. Proof of Lemma 3.1

Lemma A.1. Conditioned on &, D} is a conservative estimate of DI i.e to say D} C D

Proof. If x € D™, we have following two cases:
Casel:z € D¥
Trivially € D
Case2:z €l
then by definition
ri— 1 2 A% — ) + Bille - ] o
= (@ —a]) + Gie =) " (@ — ) + Bille — 2| 4 (10)

>, (x — ) (Conditioned on &, and Lemma E.1)

Therefore x € D&, O

A.2. Proof of Theorem 3.3
Theorem A.2 (Optimism). . For optimism to hold i.e
uch(zy,ig, t) > p'x* Vit

we require

2LS

T — TiS

k; >

Proof. Recall ‘
web(x, i) = i @ + Bilally, -+ + kBl — 5|

We consider the following two cases :

Case(1) : z* € D§fe

max  uch(x,i,t) > uch(z*,i*,t)
ieM,zel;

>zt + Bellx*[],-1  (Since kiBL |z — ”TfHAZf > 0)
=< u,x*>+<ﬂt—,u,w*>—|—5t|\x*||vt_1 (1D
>< p,x” > +(1 = 1)Bl[a"|[,~+  (Conditioned on &, and Lemma E.1)

> }LTZZZ*

Case(2) : z* ¢ D§fe
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We consider the constraint set I';« in which x* belongs to and define

oy = max{a € [0,1] : a5, (2" — 25.) + afl ||z — a5 A =T Tie}

This definition ensures z; = azz* + (1 — o )zs. € D

Now we have

max  uch(z,i,t) > uth + (i — ,u)th + ﬁtHthth + ki*/BZ*

2 — xf*HAi—;t

ieM,zel; ¢

>z 4 ki B |20 — 2 Az, (Conditioned on &,, and Lemma E.1) 1)

> " (@ — ) + k4 ki B [l — 4

> o (@ = a3+ ki B ot — o ]+ T
Define B = 4,5, (v — 23.) + B ||z — a5 ||Af*1,t , by assumption z* ¢ D{ we have B > 7 — 75
By definition of a; we have

aB=71—-71.
In order to lower bound «; we first upper bound B
B =47 (x" = af) + B llo* — af|lac,
=T = a4 e =) T — i) B o — el .

< it (@ —ah) +26)

x* —xl. A, (Conditioned on &, and Lemma E.1)

<T—78+ 280 ||t — ab

-1
Ai*,t

Therefore we have
T = Th
ap 2 — s+2ﬁi*” * _ .8
T—Th V| x5

A
If we choose k; such that optimism is ensured for this lower bound, overall optimism is guaranteed.

max  uch(xz,i,t) > ay[u’ (x* — z5) + ki i ||2* — x5
i€M,x€l; ¢

T,.s
A;lf]"‘/i L=

T — Th - (14)
1 0T (@ = ) ke Bl — ]y ]+ T

T T —Th 4280 ||ar — x ||Ai_*1,t

To show

T — T T, « R PR s

~ —zf) + ki -z

T— 75 4 28] |Jat — 2l 4 @ = ad) ke B la” —
i* ot

A;*lt] dplabe > pt (2t —al) ol

(r— Tf*)ki*ﬂf* [lz* — af. ey > Q,UT(I‘* — xf)ﬂf [lz* — af. A,
2LS
ki > p
T—Th

(15)

O



Stochastic Linear Bandits with Unknown Safety Constraints and Local Feedback

A.3. Proof of Theorem 3.4

Theorem A.3 (Regret Bound). The regret for the above algorithm is

d\+TL? . d\+ TL?
Rr < 20y 2ratos DETE gt 12 27 d1og BETEY

Proof.

BN M’ﬂ

.
Z ot — ' xy)

(ucb(zy, 4, t) — p ' zy) A2 (16)

INA
P

[
W

(< e = py e > +Bel|ae|[y— + ki Byl — SCZHA;;) n2

o~
Il
-

MH

2Bellelly1 + ki B Nl = 2, |l ) A2 (17

o~
I
-

T
(@Billelly1) A2+ 3 i B2 = 541 ) A2

Mﬂ

~
Il
—

Here (16) follows from optimism and (17) follows from Lemma E.1 conditioned on &,,.

Next we analyse these self normalised summations using standard technique in (Abbasi-Yadkori et al., 2011)

T T
ZthHV;l < TZthH%/,l (Cauchy Schwartz)

t=1 t=1
det(A
< \/ or log(dzt(( Af)) ) (18)
< \/Qleog(dAz/\TLz) (19)

In inequality (18), we used the standard argument in regret analysis of linear bandits (Abbasi-Yadkori et al., 2011) (Lemma

11) as follows:
n—1

= det V.
: 2 n+1 _ T
él min (Hyt”Vt—l , 1) < 2log Frave where V,=V;+ t:E 1 Yiys -

In inequality (19), we used Assumption 2.2 and the fact that det(A) = H?Zl Ai(A) < (trace(A)/d)?. Combining all
these, we have with probability at least 1 — 26

X+ T ; d+ N(T)L?
Ry < 2ﬁT\/2leog(d/\) + (Kipoa B )EieM\/QNi(T)dIOg(d)\())

d\+TL? . d\+TL?
< 250/ 2ratos DT gt 2 27 d1og BETEY

Last step from AM-QM inequality. O
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B. Extension of Safe-LinUCB to Many Affine Constraints Setting

Additional assumptions

Assumption B.1 (Safe ball of actions). There exists a safe ball of actions D}’ of radius r > 0, known apriori to the agent
such that

DZj’:{a:ERd:Hnggr}ng

Assumption B.1 is a standard assumption where the agent knows the minimum radius of the known safe set D;”. Having a
known surface of safe actions of fixed norm makes the analysis much cleaner. In order to efficiently restrict learning all the
constraint sets, we need some assumptions on the structure of the environment.

Assumption B.2 (Similar direction of optimal action and reward parameter ). We assume that the optimal action is a-close
in angle to the reward parameter (i i.e

,Lth*

T 2 Cosa

[lell2][z*[]2

Assumption B.2 states that the direction of the optimal arm z* is similar to the unknown reward parameter u. Since the
optimal action maximises the projection onto j, one can expect that in many scenarios that we have x* aligned in similar
direction as .

Since we have many constraints, a good way to model them is by using a constraint density function. If we consider a vector
2 and a f-cone around it defined as

vl

0) = Doy :
O 6) = tv € Do oy

> cosf}

Then the set of constraints intersected by this cone is given by
B(z,0)={ieM:T;NC(x,0) # 0}

Since these constraint sets mostly occur on the boundaries of the constraint, the surface area on the boundary that the cone
captures should be proportional to the number of constraint sets it intersects. It is a well known fact that the surface area of
a d-dimensional sphere of radius R captured by the cone C(x, #) is O((Rsin #)?~1). Therefore we model our constraint
density as follows

Assumption B.3 (Constraint density). For any vector 2 € R and for any 6 < 5 we have the following bound on the
number of constraints intersected by the cone C(x, )

pi(sin@)4= < |B(z,0)| < pu(sinf)?1 + 1,

for p;, pu > 0.

Algorithm 4

fort=1,2,...,7" do
Randomly choose x; € D}’ and observe loss ¢, = ¢; ().

Construct important constraints set B using (21)

fort =T7"+1,7"+2,...,Tdo
Compute /i; as (4)
Compute ;¢ as (6)
Compute 3; and 3! Vi € M using (5) and (7) respectively
Construct Dzafe according to (23)
Pick ; = arg max, ¢ pwe ueb(z,4,t — 1) and observe reward 7. (where ueb(z, 4, ¢) is defined in (24))
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B.1. Algorithm Description
B.1.1. PURE EXPLORATION PHASE

In the initial pure exploration phase the agent randomly samples safe actions from D™ for T” steps. Since D" is known
apriori to the agent, actions sampled from this set satisfy the safety condition. The agent uses this feedback data to have a
good estimate of the unknown reward parameter p. This additional information helps the agent in restricting itself from
learning safety constraints that are far away from the optimal action z*. Therefore the agent exploits the fact that it doesn’t
need to learn all the constraints in order to minimize its regret.

To be more precise, for ¢ € [0, '] we sample i.i.d z; ~ D}, where D{* is the d — 1 dimensional boundary surface of the
ball D}’ defined as
Dy ={z € R": ||zll> =7} C Dy’

. . . . . . . . . . . 2
This ensures uniform persistent excitation in all directions and the covariance matrix of the actions ¥ := E[zyx/ ] = =1

This implies that the minimum eigen value of covariance matix A := A,in(X) = 4.

B.1.2. EXPLORATION EXPLOITATION PHASE

The Exploration Exploitation Phase is very similar to the previous algorithm. The main difference is that we have a reduced
set of constraints which the agent might need to explore. Using the feedback history from the pure exploration phase, the
agent constructs a reduced set of constraints B C M.

So the agent now estimates the reward parameter using linear regression using the previous data of actions and noisy
feedback till t = T’ using the following update rule

t—1 t—1
= Vfl ZTT$T where Vy =M + ZCETII (20)
T=1 T=1

The next step is to build a high confidence interval around /i which contains true reward parameter x4 with high probability.

Cr={veR": o= jull,, <br}
we define the event of 1 belonging to this high confidence region as

€= {nec)
We choose (7 according to Theorem E.2 from (Abbasi-Yadkori et al., 2011), which ensure that £, holds with high
probability.
The previous pure exploration phase establishes the following confidence region on p

Lemma B.4. Conditioned on &, if agent has done pure exploration for T' steps then for any § € [0, 1] it holds with
probability 1 — § that

X Br
[ — fir ]2 < 7TQT/
A+ 54
provided
L? d dL? d
T'2t5:8—logf:8 log —

A By T T 0B

Since the explorations of actions is uniform in all directions, the high confidence region around /i is a l2-ball, See Appendix
B.3 for more details. This geometry makes it easy to analyse the new restricted set of constraints to which contain x*.

Conditioned on &,,, this establishes a high confidence cone C'(fi7, #) around ji» which contains
Lemma B.5. Conditioned on &,,, if p € C(firs,0) then

sinf > iR =sinf(7")
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where s is the lower bound on |1 and r is defined as:
B

r2T’
A+ 55

R=

We report proof in Appendix B.4. The above lemmas in conjunction with assumption B.2 imply that conditioned on &, the
optimal action z* € C(firr,a + 6(T")). Therefore we construct the restricted constraint set as

B:=B(jir,a+0(T))={ie M :T;NC(ir,a+0(T")) # ¢} (21)
Using assumption B.3 we have an upper bound on the number of important constraints as
IB| < pusin(a—+6(T)" " +1

Therefore this exponentially decreases the number of constraints under consideration with d and can make the algorithm
quite efficient in for high dimensional problems.

Next we build confidence regions for each ; as

ci={veRr": Ju—dul

i < 5:}
we define the event of ~; belonging to this high confidence region as
g’Yi = {’Yi € Ctl}

Again using Theorem E.2 we choose

, 14+ N;(t)L2/ A
Bi = R\/dlog <|B|+((S)/> + A28, (22)
This ensures that the event £, happens with probability 1 — % . Next conditioned in the joint event £ := &, U ;¢ &,

we want the agent to satisfy safety constraints when picking actions. To achieve this the algorithm conservatively constructs
safe set of actions as follows

Diafe _ U{x SVE ;le,t(x —2f) + Bil|lz — xf||Ai—1 <7 -7} (23)
i€B

Here &Zt(m —x3) + B |z — x| |A?_1 is a high probability upper bound on ;' (z — z§) Vi € B. This ensures that by picking
any action from D, we satisfy the safety constraints as shown by Lemma 3.1.

The next step of the algorithm is to pick action ; from the constructed safe set D§*¢ which maximises the Upper Confidence
Bound (UCB) defined as:

ueh(z,i,) = i &+ fulally 1 + ki, Bt o — 23, | g1 = max il + Bzl + L € Tabkalla - o],y @4)

where k; > 2LS_

Ti—T,

The second phase of the algorithm follows OFU policy similar to the previous case, with the replacement of M with B C M,
as now we only consider these reduced set of constraints.

Theorem B.6 (Regret Bound). If Assumptions 2.1-2.3 and Assumptions B.1-B.3 hold and then for any § € [0, %] if we define
Br and B according to (5) and (7) and k; = —2__ with probability 1 — 36, the regret for the above algorithm is

Ti—T; "’

d\+ TL2 . _ ; d\+ TL?
Ry < 2T + ZBT\/Qleog(d)\) + (pu(sin (@ + 0(T)) " + 1) (ks Bimes + 2)\/2Tdbg(d)\)
where 6;1”“ = maX;ep B% and k;,, . = max;cpk;

The regret analysis is quite similar to Theorem 3.4 with the addition of pure exploration time and is shown in Appendix B.5
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B.2. Many Constraints Proofs
B.3. Proof of Lemma B.4

Lemma B.7. Conditioned on &, if agent has done pure exploration for T' steps then for any 6 € [0, 1] it holds with
probability 1 — § that

Br

= el < ——L
T
A+ 5y

provided
8L?2 o d 8dL? o d
Tl BE T T %5

Proof. Recall, for ¢t € [0,7"] we sample i.i.d z; ~ DZ;”, where D}j’ is the d — 1 dimensional boundary surface of the ball
D}’ defined as

Dy ={x € R:|jzll2 =r} C Dy

Clearly from this construction we get ¥ := E[z;z/ | = I Also define A\ = A\, (2) = %

In order to bound the minimum eigenvalue of the Gram matrix at round 7" + 1, we use the Matrix Chernoff Inequality in
Theorem E.3.

We use a similar analysis as (Amani et al., 2019). Let X; = xtxtT for t € [T"], such that each X} is a symmetric matrix with

Amin (X¢) > 0 and Apax (X¢) < L2, In this notation, Apr = A\ + Zthll X;. In order to apply the above Theorem, we
compute:

fenin = Amin | D E[Xe] | = Amin | DB [wea] | | = Anin (T'S) = A_T".

Thus, the theorem implies the following for any € € [0, 1) :

I JAT
Pr | Amin ZXt <ed_T'| <d-exp ( (1—¢)? 517 ) .
t=1

To complete the proof of the lemma, simply choose ¢ = 0.5 (say) and T > éf\ijlog (%). This gives
Pr | Amin (A7r41) > ] > 1 — 4. This implies with probability 1 — §

AT At 2T’

rninA’ Z
Amin (A741) 2 A+ =5 2d

For any T < t < T, conditioned on &, we have

Bre 2 = frr || a-x 2l = forlly V/ Amin (A7)

This gives us the desired bound
e s < ——22
\/)\mln AT’ \/)\ + T 2T/
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B.4. Proof of Lemma B.5
Lemma B.8. Conditioned on &,,, if p € C(firs,0) then

sin 0 Z % = Sin@(T')

where s is the lower bound on | and r is defined as:
Br

r2T’
A+ 55

R =

Proof. As a consequence of Lemma B.4, the high confidence region of p is a ball of radius R defines as:
Br

r277
A+ 5y

[l = frrr[]2 < =R

The smallest cone C'(fi¢, v) along fi; that intersects this entire ball of radius R, has its surface tangential to this ball at the

point they touch. This implies that:
R R

~ <
[ fie]|2 [l — R

sino =

Since by Assumption 2.2 p > s we can further upper bound sin « as
R R
sina < < = sin§(T")
Wh-r=s—r

Since C(,[Lt; Oé) Q C(I[Lt,eT/), ne C(,[Lt, GT/) O

B.5. Proof of Theorem B.6

Theorem B.9 (Regret Bound). The regret for the above algorithm is

d\+TL?
dX

d\+TL?

Ry < 2T' + 287 ¢ 2Td log( )+ 1BI(ks, .. Bires + 2>\/ 2Tdlog( =)

Proof. The proof analysis is very similar to Theorem 3.4, so we briefly go over it for completeness.

T T
Rr = 26t = Z(,uTx* — ' xy)
t=1 t=1
T
<2T' + Z (ueb(xs,i,t) — p' ;) A2 (optimism)
t=T"+1
T
=27+ Y (<o — x> +B[welly o + Y U € Tidkibil|a — 5[ 1) A2
t=T"+1 i€B ' (25)
T
<2+ Y 2Billwelly - + ki Y Uz € T} Billz — | 42) A2
t=T"+1 i€B '
T T
<27+ Y Bl ) A2+ Y (Ko D Uz € TBlle —af]|41) A2
t=T"+1 t=T"+1 i€eB '

A\ + TL? ; d\+TL?
DLTLE Bk, B +2)y 2T dlog( DT

The last step follows from standard analysis of stochastic linear bandits (Abbasi-Yadkori et al., 2011) and 3.4 O

<27 + QBT\/Qleog(
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C. Proofs of Section 4 - Safe-LinTS

Theorem C.1. Suppose Assumptions 2.1-2.3 and 3.2 hold. Then for any 6 € (0, 1), with probability at least 1 -6, the regret
of Safe-LinTS is Ry = O(d®/?\/|M|T).

C.1. Optimism
Proof. Recall

fy = fig + ﬁt(‘/})_%m

iy ; 1
wp = Bi(Aie) g

Anti-Concentration
Plu"n > 1) =pm

2
P(u'nt > — LSY) = po

Concentration

cd )

P(llmell2 < Cleg(T)) >1-— 5
c 2LS57 cd §
P(lrglla < ———fedlog()) = 1 -5

*

We prove sub-linear regret by first showing that the algorithm is optimistic with constant probability. To be more precise we
define the following high probability events:

Let§ € (0,1), 8’ = - then

* &1 is the event that the RLS estimate /i; concentrates around p for all s < ¢ defined as

Ep ={Vs <t 2 |lfis — pllv, < Bs(6")}

then P(€,7) > 12

» &, is the event that the RLS estimate 4; ; concentrates around -; for all s < ¢ and for all : € M defined as

. . i 0
Eyp=A{Vs <t,Vie M: |[Yis —illa; ., < ﬂs(m)}
thenP(E,7) > 12
« £ be the event that such the sampled 7; and 7 are bounded for all ¢ < T'
~ 12Tc'd 127¢c'd
E = (vt < T, mils < /edlog(~—5—)} N {¥¢ < T Il < 3 edlog(——5—)}
then P(£) > 1 — s
e Let
Zy =8y NEuy

thenP(Zr) >1-3
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e Let
E,=ENE s NEL,

s
then P(E7) > 1 — §
Recall f‘i’t is defined as:
Do = {w €Ty : VAl (x — &f) + Bille — 2f|| , 1 <777}

Let
af :=max{a € [0,1] : 2 = az” + (1 — a)zj. € I+ 4}

then we can show that there exists oy < o such that

o (@* — o) + 20 Billz — il s = 7 — 7

rearranging we get

¥ —1
Al
t

1 2 i
— =1+ Pl —
a; T—TZ-S* ﬂt H i*

The goal is to show that playing the safe action z, = 2™ + (1 — o)z}, is optimistic with constant probability. Now we
define
c _ ~T ~T s
Je(ns i x) = i, @ + w0 (x — 27)

Ji(n,n°, i) = max Jy(n,n%, i, )
el ¢

Je(n,1°) = max Ji (1, 1°, 9)
and we analyse the probability with which the sampled parameters are optimistic i.e.

*

Jt(ntan;‘) Z NT:E

Let
pr = P(Je(ne,mf) > MTJC*\]‘}/, Zy)
then
pe = P(Ji(ne,mf) = ' a*| Fe, Ze)
> P(Je (e, nf i, ona™ + (1 — ag)ale) > p' 2% | Fy, Zy)

= P(i] 2+ ol (o7 — ) 2 u T 4 T (2" — )

]:t7 Zt)
where z; = ax* 4+ (1 — a)z?.. Consider:

. . 1
Bz = iz + 2] Be(Vi) "2y
1
>z — 5t||Zt||V;1 +Z;r6t(vt) 20

By construction of 7; we have:

P(z Bi(V)) "2 > Billzilly 1| Fo, Ze) = Plu" i > 1) = pa
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Using the fact that 7, ¢ are independent and then substituting in oix we have :

pe > piP(p’ 2z + oztdz;[’t(m* —al) > ptah 4t (2t — 2l

Zy)
> piP(pl af + o (o7 — i) + @ (@7 —af) > plad ol (@7 2

ty Zt)

- % 1-— O *
:plp(w;7t(m‘ —x) > TtMT(x — i)

2LS

Zy)

S
- "L,’L'*

2LS

> pﬂP’( (.T — CC ) Z - A;‘lt‘Ft’Zt)

.k Sk l
=pmP(B; (A}) g (¢ —ah) > — 1 | Fe Zi) = piP(u > ) = p1p2
Next we need to show that Conditioned on Er , algorlthm is still optimistic. This is because the chosen conﬁdence bound
' = & is small enough compared to the anti-concentration property. Moreover, we assume that 7" >

that 6’ § P22 We know that for any events A ans 13, we have

P(ANB)=1-P(A°UB°) >P(A) —P(B°)
choosing A = J;(1;,mf) > u'x* and B = Er we get

P(Jy (e, n) > ' a*|Foy Z4) > pipa — & > A2

2
C.2. Regret
T T
= |\ Tu— Tlen) | + D0\ Jelnesng) =2l |- (16)
—_————— %,_/
G Term I t=1 Term II
Term 1 RTS(T)
RS =Ty — Jy (e, 0f)
<E[J(n,n° ) Je(ne;mi)|(n,n°) € O]
S]E[Jt(n 77 )_Jt(nt7ntazvx)|(n?nc7ia’r) 66]
<E[(7— fu ) x+( — o) (@ —a5)|(n, 0, i, ) € O]
<E[lli— fellalelly -1 + 107 = | asll — il az 210 %0, 2) € O]
< 204 (O)E[|zlly,~1|(n. 1 i, ) € O] + 201 (DE[llx — 27| o1 |(n, 1, i, @) € O]
4 7 s
< ——{0(O)E[|[zl[y,-1] + ot (S)E[|lz — 27| 4-1]}
P1p2 t it
where

01(8) = f(5)y edlog()

2LC C /
S cd log(C d)
-7 )

01(8) = Bi(9) =

and (n,n¢,i,x) € © denotes optimistic parameters.

Next consider the sum

R(T) = Si Efzly,-] = ZHIEIIV—HrZ Wlly,] =Ml
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The second summation is a martingale sum, so we use Azuma’s Inequality to get the following bound with probability 1 — g

S

TI? 4
S Ellelyi] = el < 4/ log 5

t=1

Since [|z¢|l» < Land V7" < $1s0
2L

1 < —
VA

Now using standard analysis from previous sections and previous inequality we get

E[

A;l] -

404(8) \/ TL? 8TL? . 8. doime=(§)+2 TL? 8TL? 8
RTS(T) < 2dT log(1 + ——)+ log =)+ ————2—=(y/2d|M|Tlog(1 + — )+ log =
(T) < 22T log(1 -+ =)y =5 log ) = = (4[24 MIT log (1 + =)/ =~ log )
Term 2 REES(T) :
RRLS Je (e mi s i, ) — MTxt
=i+ &7 (x — ) — u'a,
< ({1, — T A*% T itAit*% cT .8
_(Mt ,U) e+ BeAy Pmyp 1 + B A, un (xt xit)
< Billzelly1 + rllellyr + oft e = 3, g
So

2

TL? TL
REES(T) < (Br + aT)\/sz log(1+——) +0 Loz \/2d|MTlog( +)

R < O(d*?\/|M|T) (26)
We provide the regret proof for completeness, detailed analysis of the proof technique is done in (Moradipari et al., 2021).

O

D. Proofs of Section 5 Nonlinear Constraints

Theorem D.1. Suppose Assumptions 5.1 & 5.2 hold. For any 6 € (0,1), after T time steps of pure exploration per

N : - L 32
constraint set, we have i) T* € Dmfe and i) D;\Zf?p, C D with probability at least 1 — 6, lfk)gTw > (Qd(Aff’;Z)g) .
¥

First, we prove the following helper lemma

Lemma D.2. If we consider a ¢ ¢-ball around a point, the approximation error for the first order Taylor expansion for a
(-smooth function is bounded as

/(@) ~ fla) = V(@) (@~ a)| < &0

Then least squares parameter of this approximation error is bounded as
[€:,7[l2 < 2¢6-/2dlog T' = O((d,+/dlog T))

Proof. Recall
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where

ei(we) = flae) = (f(25) + Vf(5)" (we — )

Define Y. ; as the column vector enumerating the approximation errors y. » = €;(x,) for 0 < 7 < ¢, and X, corresponds to
the matrix enumerating the shifted actions z, — 7 for 0 < 7 <.

By definition we have
- . Ty2
éie = argmin [[Ye, — X, 6|3

Next, define
T1(0) == |[Yer — X013 = (Y. Yer — 2. X704+ 07X, X[ 0)

and
T5(0) = |Yet+1 — $:+19||§ = (yz,t+1 - 2ye,t+1$tT+19 + 9T$t+1x;r+19)

Now consider €; ;1

€it+1 = arg HgnTl (0) + T>(0)

= argmin(Y\Yer = 2V, X[ 0+ 07 X X00) + (V21— Werr12 500 + 0" 2112,10)

at the minimiser we have V1 4+ V15, = 0 and

VT = 2X, X, 0 — 2X,Y.,

.
VTy = 2w 117,10 — 2241 1Ye t 41

If we re-parameterise 0 = €; ; + w, then at minima we have

2XtXtTw = 2$t+1(ye,t+1 - xtT+19)

(XX, + 2l )w =21 Yeas1 — 7 1600)

w= (XX, +xi12 ) T w1 Werr1 — 3600

Recall that in pure exploration we picks action such that

= max ||z — 7| 41
zeDY ot

as consequence we pick orthogonal vectors in subsequent turns, which ensures that x; is always an eigen vector, which
implies
Tt41

T 4
W= ——(Yett1 — xt+1€i,t)
At41

Note that there is no rotation as the exploration strategy ensures that x; ; are eigen vector of X; X,  + x;, 12/, 1 with eigen
value )\t+1 > 63

Next we upper bound the magnitude difference at each step. By definition we have
€041 11* = [léqe +w]?

substituting w and rearranging we get
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. 2 .2 (B T 2 \2 2x:+1éi7t T
€ eallz = llEiellz = = (et = 2ea&ie)” + — Wett1 — T br11) 27
1 t+1
Now re-parameterise as : ||€; +|| = B, ||z¢+1]| = 6y, cosa = % and L = ||é; 44113 — ||éi.¢]|3, expanding L we get
52 5 2
L= )\—(ygﬁtﬂ — B9, cos(a))® + r(ye’t+1 — Bo, cos(a))Bd, cos(a)
t+1 t+1

rearranging gives us

B%5*  2B262 214180, 2y 411BS3 8242
L=(=%—- ) cos?(a) + ( Jert - ’t;ﬂ L) cos(a) + 72’t+1
A1 A At41 Att1 Att1
Now, to upper-bound L, we maximise L over «, to do this we set
oL
=
Oa
which gives us the following condition
B2(52 62 Y t+136 (52
" (2 — —"—) cos(a) sin(a) — 2= “(1 - —)sin(a) =0
N (2 3 cos(a) sinfa) — PRI (L - ) sin(a)
B(Sr . 2>\t+1 - 63 )\t+1 - 53
sin(a)[———LBd, cos(a) — ———ye 141 =0
At41 At41 At41

Case 1: (sina = 0)

So cos(a) = %1, which implies the increment w is along the direction of ¢; ;, now recall that

= %(yﬁ_’tﬂ — Bd,. cos(a))
t+1

because cos(a) = £1, we get the following equality.

0y cos(a)

A (ye,t+1 - B(ST COS(O())
t+1

€011 = [éie| +
. , . . 52
if B > % then using our smoothness assumption, we have y¢ ;41 < %, S0 as a consequence we always have:
|€it+1] — [€i,e| <0

otherwise when B < C—gr, we get the following bound

. o, o
; <

|€'L7t+1| — 2 + )\t+1
Recall \¢y; > 02 by construction, so

. 3¢4

€ 1] < = < 2¢6,

. _ Apyp1—82
Case 2 : (B, cos() = Ye 141 m)
Substituting we get
ST Air1— 02 5 202,44 A1 — 02 Aey1 — 62

L* = - -
)\% ( 2)\t+1 — 57% )\t+1 2>\t+1 - 62 2)\t+1 - 52)
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which simplifies to

2 2
L* _ ye,t—i—l < y67t+1
2X41 — 02 T A

last inequality is because \;11 > 62.

Taking both cases into consideration and adding the telescopic series (27) we get

e, 7113 < 46207 + 22 (116513 — 105-1]13)

< ac2g? 4 w7, Vs

s

y2sd
<AC0 + 25 15 s (28)
< 4¢3 + 1C253 log T (29)

where (28), comes because we need to pick d orthogonal vectors before all the eigen values become equal again, and (29) is
a standard bound on harmonic sum and because y; ; is bounded by (U by smoothness assumption.

Therefore

[€:,7[l2 < 2¢6-v/2dlog T' = O((d,+/dlog T))

D.1. Optimal Action in the Estimated Safe Set

. 2 2
Next we show i) z* € D55, and ii) Dy, C D§* with probability at least 1 — 4, if ; 7; = > (Qd C Afi{s?)?) .
Proof. Recall

) . A
Féz{x€Fi:Vf;—(wfmf)+§57775}

There exists 7”(A) such that
[ d
2/
where T"(A) is defines as

T'(z) = min{t > 0: A > 2¢6%+/2dlogt + sﬁTﬂ}

Now Consider

Vil —at) = VIEST (2 — af) + € (e — )
< VAN )+ Bl — iy, + (e —af)

< Vf;*r(x* — i) +B;*Hx - .’L‘f*HA_—*lt +2¢0,07+/2dlogT
i f Azt + 206, 571/2dlog T

< fir (@) = fir(@h) + 55+ B N —
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Since we pick actions as :

= — 2,
xt—g%gllx %”Ai_;

i

any d consecutive actions are orthogonal and uniformly expand the eigen spectrum i.e

t=s+d

E zx] =021
t=s

as a consequence

s N \/a s \/g
xi*”A;f,’l < By 6r\/77,||$ — Ty 5 \/—

which gives us the following upper bound:

i~
Bl

2
Viip @ — ) < fi(@*) = fir (23.) + < + B 5 \\fﬁ&f +2(6,67+/2dlog T

= fir(2") = fis (x3s) +

Last inequality follows when T is large enough such that
A Co; d s
32 %f +260,87/2d10g T + Bry | 7 6f

further we can scale 8, ~ (77)%2° to get

A (0% 2dlogT’
3= 7f ATV T5f\/
(1)

To find T”, we show that upper bound of RHS is less than LHS, show the following relation:

(0% 2dlogT’ ]% 2dlog T’
2t 49 27 =250 (2 <=
5t Coy + Briy Wi 5 + 05 W (2¢+Br) < 5
rearranging the above we get
2
/ 452
el BT
log” 1" (A= C(Sf)

Therefore for any A > ¢ 6;, we can arbitrarily find large enough exploration time 7" to satisfy safety gap.

>

Now plugging into the definition of I .t» We get

A
Jie (x7) — fir(x}) + 5

which gives

as desired.
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Next we use similar argument to show that if x € f‘@t, then f;(x) < 7. To this we consider the following lower bound:

i s s C52 i \/g
Vil (@ = a3) > fi(x) = fix) - Tj - 5T’ﬁ5f + 206,05/ 2d1og T
o A
= filz) — fi(a}) — 35
Plugging into definition of f‘i,t, the % terms cancel out to give
filz) <7

as desired. O
E. Helpful Lemmas
Lemma E.1 (Cauchy Schwarz). If

lv—plla < B

then
(v —p) "z < |Jo—pl|allz]| a1 < Blle|la
Theorem E.2 (Confidence Region). . Let Assumptions 2.2 and 2.3 hold. Fix any § € (0, 1) and let B, in (6) be chosen as

follows,
_ 2
By = R\/dlog <1+(tl)L/>\> + A28, forall t>0

0
Then, with probability at least 1 — 6, for all t > 0, it holds that 1 € C.

Proof. This result is from Theorem 4.1 in (Abbasi-Yadkori et al., 2011). O

Theorem E.3. (Matrix Chernoff Inequality, (Tropp et al., 2015)). Consider a finite sequence { X} of independent, random,
symmetric matrices in R%. Assume that Apin (X1) > 0 and Ayax (Xi) < L for each index k. Introduce the random matrix
Y =3, Xy Let iyin denote the minimum eigenvalue of the expectation E[Y],

Hmin = )‘min(E[Y]) = Amin (ZE [Xk]> .
k

Then, for any € € (0, 1), it holds,

Pr ()‘min(y) < G,U/min) < d - exp (_(1 _ 6)2 MQI}I/H) )



