
Under review as a conference paper at ICLR 2021

GUARANTEES FOR TUNING THE STEP SIZE USING A
LEARNING-TO-LEARN APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning-to-learn—using optimization algorithms to learn a new optimizer—has
successfully trained efficient optimizers in practice. This approach relies on meta-
gradient descent on a meta-objective based on the trajectory that the optimizer
generates. However, there were few theoretical guarantees on how to avoid meta-
gradient explosion/vanishing problems, or how to train an optimizer with good
generalization performance. In this paper we study the learning-to-learn ap-
proach on a simple problem of tuning the step size for quadratic loss. Our results
show that although there is a way to design the meta-objective so that the meta-
gradient remain polynomially bounded, computing the meta-gradient directly us-
ing backpropagation leads to numerical issues that look similar to gradient explo-
sion/vanishing problems. We also characterize when it is necessary to compute
the meta-objective on a separate validation set instead of the original training set.
Finally, we verify our results empirically and show that a similar phenomenon ap-
pears even for more complicated learned optimizers parametrized by neural net-
works.

1 INTRODUCTION

Choosing the right optimization algorithm and related hyper-parameters is important for training a
deep neural network. Recently, a series of works (e.g., Andrychowicz et al. (2016); Wichrowska
et al. (2017)) proposed to use learning algorithms to find a better optimizer. These papers use
a learning-to-learn approach: they design a class of possible optimizers (often parametrized by
a neural network), and then optimize the parameters of the optimizer (later referred to as meta-
parameters) to achieve better performance. We refer to the optimization of the optimizer as the
meta optimization problem, and the application of the learned optimizer as the inner optimization
problem. The learning-to-learn approach solves the meta optimization problem by defining a meta-
objective function based on the trajectory that the inner-optimizer generates, and then using back-
propagation to compute the meta-gradient (Franceschi et al., 2017).

Although the learning-to-learn approach has shown empirical success, there are very few theoreti-
cal guarantees for learned optimizers. In particular, since the optimization for meta-parameters is
usually a nonconvex problem, does it have bad local optimal solutions? Current ways of optimizing
meta-parameters rely on unrolling the trajectory of the inner-optimizer, which is very expensive and
often lead to exploding/vanishing gradient problems. Is there a way to alleviate these problems?
Can we have a provable way of designing meta-objective to make sure that the inner optimizers can
achieve good generalization performance?

In this paper we answer some of these problems in a simple setting, where we use the learning-
to-learn approach to tune the step size of the standard gradient descent/stochastic gradient descent
algorithm. We will see that even in this simple setting, many of the challenges still remain and we
can get better learned optimizers by choosing the right meta-objective function. Though our results
are proved only in the simple setting, we empirically verify the results using complicated learned
optimizers with neural network parametrizations.

1

Under review as a conference paper at ICLR 2021

1.1 CHALLENGES OF LEARNING-TO-LEARN APPROACH AND OUR RESULTS

Metz et al. (2019) highlighted several challenges in the meta-optimization for learning-to-learn ap-
proach. First, they observed that the optimal parameters for the learned optimizer (or even just the
step size for gradient descent) can depend on the number of training steps t of the inner-optimization
problem, which is also observed by Wu et al. (2018). Ge et al. (2019) theoretically proved this in a
least-squares setting. Because of this, one needs to ensure that the inner training has enough number
of steps (similar to the number of steps that it would take when we apply the learned optimizer).
However, when the number of steps is large, the meta-gradient can often explode or vanish, which
makes it difficult to solve the meta-optimization problem.

Our first result shows that this is still true in the case of tuning step size for gradient descent on a
simple quadratic objective. In this setting, we show that there is a unique local and global minimizer
for the step size, and we also give a simple way to get rid of the gradient explosion/vanishing
problem.

Theorem 1 (Informal). For tuning the step size of gradient descent on a quadratic objective, if the
meta-objective is the loss of the last iteration, then the meta-gradient can explode/vanish. If the
meta-objective is the log of the loss of the last iteration, then the meta-gradient is polynomially
bounded. Further, doing meta-gradient descent with a meta step size of 1/

√
k (where k is the

number of meta-gradient steps) provably converges to the optimal step size for the inner-optimizer.

Surprisingly, even though taking the log of the objective solves the gradient explosion/vanishing
problem, one cannot simply implement such an algorithm using auto-differentiation tools such as
those used in TensorFlow (Abadi et al., 2016). The reason is that even though the meta-gradient is
polynomially bounded, if we compute the meta-gradient using the standard back-propagation algo-
rithm, the meta-gradient will be the ratio of two exponentially large/small numbers, which causes
numerical issues. Detailed discussion for the first result appears in Section 3 (Theorem 3 and Theo-
rem 4).

The generalization performance of the learned optimizer is another challenge. If one just tries to
optimize the performance of the learned optimizer on the training set (we refer to this as the train-
by-train approach), then the learned optimizer might overfit. Metz et al. (2019) proposed to use a
train-by-validation approach instead, where the meta-objective is defined to be the performance of
the learned optimizer on a separate validation set.

Our second result considers a simple least squares setting where y = 〈w∗, x〉+ ξ and ξ ∼ N (0, σ2).
We show that when the number of samples is small and the noise is large, it is important to use
train-by-validation; while when the number of samples is much larger train-by-train can also learn a
good optimizer.

Theorem 2 (Informal). For a simple least squares problem in d dimensions, if the number of samples
n is a constant fraction of d (e.g., d/2), and the samples have large noise, then the train-by-train ap-
proach performs much worse than train-by-validation. On the other hand, when number of samples
n is large, train-by-train can get close to error dσ2/n, which is optimal.

We discuss the details in Section 4 (Theorem 5 and Theorem 6). In Section 5 we show that
such observations also hold empirically for more complicated learned optimizers—an optimizer
parametrized by neural network.

1.2 RELATED WORK

Learning-to-learn for supervised learning Hochreiter et al. (2001) introduced the application of
gradient descent method to meta-learning. The idea of using a neural network to parametrize an
optimizer started in Andrychowicz et al. (2016), which used an LSTM to directly learn the update
rule. Before that, the idea of using optimization to tune parameters for optimzers also appeared
in Maclaurin et al. (2015). Later, Li & Malik (2016); Bello et al. (2017) applied techniques from
reinforcement learning to learn an optimizer. Wichrowska et al. (2017) used a hierarchical RNN as
the optimizer. Metz et al. (2019) adopted a small MLP as the optimizer and used dynamic weighting
of two gradient estimators to stabilize and speedup the meta-training process.

2

Under review as a conference paper at ICLR 2021

Learning-to-learn in other settings Ravi & Larochelle (2016) used LSTM as a meta-learner to
learn the update rule for training neural networks in the few-shot learning setting, Wang et al. (2016)
learned an RL algorithm by another meta-learning RL algorithm, and Duan et al. (2016) learned a
general-purpose RNN that can adapt to different RL tasks.

Gradient-based meta-learning Finn et al. (2017) proposed Model-Agnostic Meta-Learning
(MAML) where they parameterize the update rule for network parameters and learn a shared ini-
tialization for the optimizer using the tasks sampled from some distribution. Subsequent works
generalized or improved MAML, e.g., Rusu et al. (2018) learned a low-dimensional latent repre-
sentation for gradient-based meta-learning, and Li et al. (2017) enabled the concurrent learning of
learning rate and update direction. Chen et al. (2020) studied a model with an optimization solver
stacked on another neural component. They computed Rademacher complexity of the model, but
didn’t give any optimization guarantee or study train-by-train versus train-by-validation.

Learning assisted algorithms design Similar ideas can also be extended to develop a meta-
algorithm selecting an algorithm from a family of parametrized algorithms. Gupta & Roughgarden
(2017) first modeled the algorithm-selection process as a statistical learning problem and bounded
the number of tasks it takes to tune a step size for gradient descent. However, they didn’t consider
the meta-optimization problem. Based on Gupta & Roughgarden (2017), people have developed
and analyzed the meta-algorithms in many problems (Balcan et al., 2016; 2018a;c;b; Denevi et al.,
2018; Alabi et al., 2019; Denevi et al., 2019)

Tuning step size/step size schedule for SGD Shamir & Zhang (2013) showed that SGD with
polynomial step size scheduling can almost match the minimax rate in convex non-smooth settings,
which was later tightened by Harvey et al. (2018) for standard step size scheduling. Assuming that
the horizon T is known to the algorithm, the information-theoretically optimal bound in convex non-
smooth setting was later achieved by Jain et al. (2019) which used another step size schedule, and
Ge et al. (2019) showed that exponentially decaying step size scheduling can achieve near optimal
rate for least squares regression. There are also a line of works that investigate methods which adapt
a vector of step sizes (Sutton, 1992; Schraudolph, 1999; Kearney et al., 2018; Günther et al., 2019;
Jacobsen et al., 2019).

2 PRELIMINARIES

In this section, we first introduce some notations, then formulate the learning-to-learn framework.

2.1 NOTATIONS

For any integer n, we use [n] to denote {1, 2, · · · , n}. We use ‖·‖ to denote the `2 norm for a vector
and the spectral norm for a matrix. We use 〈·, ·〉 to denote the inner product of two vectors. For
a symmetric matrix A ∈ Rd×d, we denote its eigenvalues as λ1(A) ≥ · · · ≥ λd(A). We denote
the d-dimensional identity matrix as Id. We also denote the identity matrix simply as I when the
dimension is clear from the context. We use O(·),Ω(·),Θ(·) to hide constant factor dependencies.
We use poly(·) to represent a polynomial on the relevant parameters with constant degree. We say
an event happens with high probability if it happens with probability 1− c for small constant c.

2.2 LEARNING-TO-LEARN FRAMEWORK

We consider the learning-to-learn approach applied to training a distribution of learning tasks. Each
task is specified by a tuple (D, Strain, Svalid, `). Here D is a distribution of samples in X × Y , where
X is the domain for the sample and Y is the domain for the label/value. The sets Strain and Svalid
are samples generated independently from D, which serve as the training and validation set (the
validation set is optional). The learning task looks to find a parameter w ∈ W that minimizes the
loss function `(w, x, y) : W × X × Y → R, which gives the loss of the parameter w for sample
(x, y). The training loss for this task is f̂(w) := 1

|Strain|
∑

(x,y)∈Strain
`(w, x, y), while the population

loss is f(w) := E(x,y)∼D[`(w, x, y)].

3

Under review as a conference paper at ICLR 2021

The goal of inner-optimization is to minimize the population loss f(w). For the learned op-
timizer, we consider it as an update rule u(·) on weight w. The update rule is a parame-
terized function that maps the weight at step τ and its history to the step τ + 1 : wτ+1 =

u(wτ ,∇f̂(wτ),∇f̂(wτ−1), · · · ; θ). In most parts of this paper, we consider the update rule u
as gradient descent mapping with step size as the trainable parameter (here θ = η which is
the step size for gradient descent). That is, uη(w) = w − η∇f̂(w) for gradient descent and
uη(w) = w − η∇w`(w, x, y) for stochastic gradient descent where (x, y) is a sample randomly
chosen from the training set Strain.

In the outer (meta) level, we consider a distribution T of tasks. For each task P ∼ T , we can define
a meta-loss function ∆(θ, P). The meta-loss function measures the performance of the optimizer
on this learning task. The meta objective, for example, can be chosen as the target training loss f̂ at
the last iteration (train-by-train), or the loss on the validation set (train-by-validation).

The training loss for the meta-level is the average of the meta-loss across m different specific tasks
P1, P2, ..., Pm, that is, F̂ (θ) = 1

m

∑m
i=1 ∆(θ, Pk). The population loss for the meta-level is the

expectation over all the possible specific tasks F (θ) = EP∼T [∆(θ, P)].

In order to train an optimizer by gradient descent, we need to compute the gradient of meta-objective
F̂ in terms of meta parameters θ. The meta parameter is updated once after applying the optimizer
on the inner objective t times to generate the trajectory w0, w1, ..., wt. The meta-gradient is then
computed by unrolling the optimization process and back-propagating through the t applications of
the optimizer. As we will see later, this unroll procedure is costly and can introduce meta-gradient
explosion/vanishing problems.

3 ALLEVIATING GRADIENT EXPLOSION/VANISHING PROBLEMS

First we consider the meta-gradient explosion/vanishing problem. More precisely, we say the meta-
gradient explodes/vanishes if it is exponentially large/small with respect to the number of steps t of
the inner-optimizer.

In this section, we consider a very simple instance of the learning-to-learn approach, where the
distribution T only contains a single task P , and the task also just defines a single loss function f 1.
Therefore, in this section F̂ (η) = F (η) = ∆(η, P). We will simplify notation and only use F̂ (η).

The inner task P is a simple quadratic problem, where the starting point is fixed at w0, and the loss
function is f(w) = 1

2w
>Hw for some fixed positive definite matrix H . Without loss of general-

ity, assume w0 has unit `2 norm. Suppose the eigenvalue decomposition of H is
∑d
i=1 λiuiu

>
i .

Throughout this section we assume L = λ1(H) and α = λd(H) are the largest and smallest eigen-
values of H with L > α. For each i ∈ [d], let ci be 〈w0, ui〉 and let cmin = min(|c1|, |cd|). We
assume cmin > 0 for simplicity. Note that if w0 is uniformly sampled from the unit sphere, with
high probability cmin is at least Ω(1/

√
d); if H is XX> with X ∈ Rd×2d as a random Gaussian

matrix, with constant probability, both α and L− α are at least Ω(d).

Let {wτ,η} be the GD sequence running on f(w) starting from w0 with step size η. We consider
several ways of defining meta-objective, including using the loss of the last point directly, or using
the log of this value. We first show that although choosing F̂ (η) = f(wt,η) does not have any bad
local optimal solution, it has the gradient explosion/vanishing problem. We use F̂ ′(η) to denote the
derivative of F̂ in η.

Theorem 3. Let the meta objective be F̂ (η) = f(wt,η) = 1
2w
>
t,ηHwt,η. We know F̂ (η) is a strictly

convex function in η with an unique minimizer. However, for any step size η < 2/L, |F̂ ′(η)| ≤
t
∑d
i=1 c

2
iλ

2
i |1− ηλi|2t−1; for any step size η > 2/L, |F̂ ′(η)| ≥ c21L2t(ηL− 1)2t−1 − L2t.

Note that in Theorem 3, when η < 2/L, |F̂ ′(η)| is exponentially small because |1 − ηλi| < 1 for
all i ∈ [d]; when η > 2/L, |F̂ ′(η)| is exponentially large because ηL− 1 > 1. Intuitively, gradient

1In the notation of Section 2, one can think that D contains a single point (0, 0) and the loss function
f(w) = `(w, 0, 0).

4

Under review as a conference paper at ICLR 2021

explosion/vanishing happens because the meta-loss function becomes too small or too large. A
natural idea to fix the problem is to take the log of the meta-loss function to reduce its range. We
show that this indeed works. More precisely, if we choose F̂ (η) = 1

t log f(wt,η), then we have

Theorem 4. Let the meta objective be F̂ (η) = 1
t log f(wt,η). We know F̂ (η) has a unique minimizer

η∗ and F̂ ′(η) = O
(

L3

c2minα(L−α)

)
for all η ≥ 0. Let {ηk} be the GD sequence running on F̂ with

meta step size µk = 1/
√
k. Suppose the starting step size η0 ≤ M. Given any 1/L > ε > 0, there

exists k′ = M6

ε2 poly(1
cmin

, L, 1
α ,

1
L−α) such that for all k ≥ k′, |ηk − η∗| ≤ ε.

For convenience, in the above algorithmic result, we reset η to zero once η goes negative. Note
that although we show the gradient is bounded and there is a unique optimizer, the problem of
optimizing η is still not convex because the meta-gradient is not monotone. We use ideas from
quasi-convex optimization to show that meta-gradient descent can find the unique optimal step size
for this problem.

Surprisingly, even though we showed that the meta-gradient is bounded, it cannot be effectively
computed by doing back-propagation due to numerical issues. More precisely:

Corollary 1. If we choose the meta-objective as F̂ (η) = 1
t log f(wt,η), when computing the meta-

gradient using back-propagation, there are intermediate results that are exponentially large/small
in number of inner-steps t.

Indeed, in Section 5 we empirically verify that standard auto-differentiation tools can still fail in this
setting. This suggests that one should be more careful about using standard back-propagation in the
learning-to-learn approach. The proofs of the results in this section are deferred into Appendix A.

4 TRAIN-BY-TRAIN VS. TRAIN-BY-VALIDATION

Next we consider the generalization ability of simple optimizers. In this section we consider
a simple family of least squares problems. Let T be a distribution of tasks where every task
(D(w∗), Strain, Svalid, `) is determined by a parameter w∗ ∈ Rd which is chosen uniformly at ran-
dom on the unit sphere. For each individual task, (x, y) ∼ D(w∗) is generated by first choosing
x ∼ N (0, Id) and then computing y = 〈w∗, x〉 + ξ where ξ ∼ N (0, σ2) with σ ≥ 1. The loss
function `(w, x, y) is just the squared loss `(w, x, y) = 1

2 (y − 〈w, x〉)2. That is, the tasks are just
standard least-squares problems with ground-truth equal to w∗ and noise level σ2.

For the meta-loss function, we consider two different settings. In the train-by-train setting, the
training set Strain contains n independent samples, and the meta-loss function is chosen to be the
training loss. That is, in each task P , we first choose w∗ uniformly at random, then generate
(x1, y1), ..., (xn, yn) as the training set Strain. The meta-loss function ∆TbT (n)(η, P) is defined
to be

∆TbT (n)(η, P) =
1

2n

n∑
i=1

(yi − 〈wt,η, xi〉)2.

Here wt,η is the result of running t iterations of gradient descent starting from point 0 with step size
η. Note we truncate a sequence and declare the meta loss is high once the weight norm exceeds
certain threshold. We can safely do this because we assume the ground truth weight w∗ has unit
norm, so if the weight norm of our model is too high, it means the inner training has diverged and
the step size is too large. Specifically, if at the τ -th step, ‖wτ,η‖ ≥ 40σ,we freeze the training on this
task and set wτ ′,η = 40σu for all τ ≤ τ ′ ≤ t, for some arbitrary vector u with unit norm. Setting
the weight to a large vector is just one way to declare the loss is high; we choose this particular way
for some proof convenience.

As before, the empirical meta objective in train-by-train setting is the average of the meta-loss across
m different specific tasks P1, P2, ..., Pm, that is,

F̂TbT (n)(η) =
1

m

m∑
k=1

∆TbT (n)(η, Pk). (1)

5

Under review as a conference paper at ICLR 2021

In the train-by-validation setting, the specific tasks are generated by sampling n1 training samples
and n2 validation samples for each task, and the meta-loss function is chosen to be the valida-
tion loss. That is, in each specific task P , we first choose w∗ uniformly at random, then generate
(x1, y1), ..., (xn1

, yn1
) as the training set Strain and (x′1, y

′
1), ..., (x′n2

, y′n2
) as the validation set Svalid.

The meta-loss function ∆TbV (n1,n2)(η, P) is defined to be

∆TbV (n1,n2)(η, P) =
1

2n2

n2∑
i=1

(y′i − 〈wt,η, x′i〉)2.

Here again wt,η is the result of running t iterations of the gradient descent on the training set starting
from point 0, and we use the same truncation as before. The empirical meta objective is defined as

F̂TbV (n1,n2)(η) =
1

m

m∑
k=1

∆TbV (n1,n2)(η, Pk), (2)

where each Pk is independently sampled according to the described procedure.

We first show that when the number of samples is small (in particular n < d) and the noise is a large
enough constant, train-by-train can be much worse than train-by-validation, even when n1 +n2 = n
(the total number of samples used in train-by-validation is the same as train-by-train)

Theorem 5. Let F̂TbT (n)(η) and F̂TbV (n1,n2)(η) be as defined in Equation (1) and Equation (2)
respectively. Assume n, n1, n2 ∈ [d/4, 3d/4]. Assume noise level σ is a large constant c1. Assume
unroll length t ≥ c2, number of training tasks m ≥ c3 log(mt) and dimension d ≥ c4 log(mt) for
certain constants c2, c3, c4. With high probability in the sampling of training tasks, we have

η∗train = Θ(1) and E
∥∥wt,η∗train

− w∗
∥∥2

= Ω(1)σ2,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η);

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg minη≥0 F̂TbV (n1,n2)(η). In both equations the expectation is taken over new
tasks.

Note that in this case, the number of samples n is smaller than d, so the least square problem is under-
determined and the optimal training loss would go to 0 (there is always a way to simultaneously
satisfy all n equations). This is exactly what train-by-train would do—it will choose a large constant
learning rate which guarantees the optimizer converges exponentially to the empirical risk minimizer
(ERM). However, when the noise is large making the training loss go to 0 will overfit to the noise
and hurt the generalization performance. Train-by-validation on the other hand will choose a smaller
learning rate which allows it to leverage the information in the training samples without overfitting
to noise. Theorem 5 is proved in Appendix B. We also prove similar results for SGD in Appendix D

We emphasize that neural networks are often over-parameterized, which corresponds to the case
when d > n. Indeed Liu & Belkin (2018) showed that variants of stochastic gradient descent can
converge to the empirical risk minimizer with exponential rate in this case. Therefore in order to
train neural networks, it is better to use train-by-validation. On the other hand, we show when the
number of samples is large (n� d), train-by-train can also perform well.

Theorem 6. Let F̂TbT (n)(η) be as defined in Equation 1. Assume noise level is a constant c1. Given
any 1 > ε > 0, assume training set size n ≥ cd

ε2 log(nmεd), unroll length t ≥ c2 log(nεd), number
of training tasks m ≥ c3n

2

ε4d2 log(tnmεd) and dimension d ≥ c4 for certain constants c, c2, c3, c4. With
high probability in the sampling of training tasks, we have

E
∥∥wt,η∗train

− w∗
∥∥2 ≤ (1 + ε)

dσ2

n
,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

Therefore if the learning-to-learn approach is applied to a traditional optimization problem that is not
over-parameterized, train-by-train can work well. In this case, the empirical risk minimizer (ERM)
already has good generalization performance, and train-by-train optimizes the convergence towards
the ERM. We defer the proof of Theorem 6 into Appendix C.

6

Under review as a conference paper at ICLR 2021

5 EXPERIMENTS

Optimizing step size for quadratic objective We first validate the results in Section 3. We fixed
a 20-dimensional quadratic objective as the inner problem and vary the number of inner steps t
and initial value η0. We compute the meta-gradient directly using a formula which we derive in
Appendix A. In this way, we avoid the computation of exponentially small/large intermediate terms.
We use the algorithm suggested in Theorem 4, except we choose the meta-step size to be 1/(100

√
k)

as the constants in the theorem were not optimized.

An example training curve of η for t = 80 and η0 = 0.1 is shown in Figure 1, and we can see that
η converges quickly within 300 steps. Similar convergence also holds for larger t or much larger
initial η0. In contrast, we also implemented the meta-training with Tensorflow, where the code
was adapted from the previous work of Wichrowska et al. (2017). Experiments show that in many
settings (especially with large t and large η0) the implementation does not converge. In Figure 1,
under the TensorFlow implementation, the step size is stuck at the initial value throughout the meta
training because the meta gradient explodes and gives NaN value.

In Figure 2, we verify the observation from Metz et al. (2019) that the optimal step size depends on
inner training length.

0 100 200 300

Meta steps

0

0.2

0.4

Ours

Tensorflow

Figure 1: Training η (t = 80, η0 = 0.1)

0 50 100 150 200

Inner training length t

0.029

0.03

0.031

O
p
ti
m

a
l

*

Figure 2: Optimal η∗ for different t

Train-by-train vs. train-by-validation, synthetic data Here we validate our theoretical results
in Section 4 using the least-squares model defined there. We fix the input dimension d to be 1000.

In the first experiment, we fix the size of the data (n = 500 for train-by-train, n1 = n2 = 250
for train-by-validation). Under different noise levels, we find the optimal η∗ by a grid search on
its meta-objective for train-by-train and train-by-validation settings respectively. We then use the
optimal η∗ found in each of these two settings to test on 10 new least-squares problem. The mean
RMSE, as well as its range over the 10 test cases, are shown in Figure 3. We can see that for all
of these cases, the train-by-train model overfits easily, while the train-by-validation model performs
much better and does not overfit. Also, when the noise becomes larger, the difference between these
two settings becomes more significant.

0 1 2 3 4

0

2

4

6

R
M

S
E

 (
tr

a
in

)

TbT

TbV

0 1 2 3 4

0

2

4

6

R
M

S
E

 (
te

s
t)

TbT

TbV

Figure 3: Training and testing RMSE for different σ values (500 samples)

In the next experiment, we fix σ = 1 and change the sample size. For train-by-validation, we always
split the samples evenly into training and validation set. From Figure 4, we can see that the gap
between these two settings is decreasing as we use more data, as expected by Theorem 6.

7

Under review as a conference paper at ICLR 2021

0 2500 5000 7500 10000

Sample size

0

0.5

1

1.5

2

R
M

S
E

 (
tr

a
in

)

TbT

TbV

0 2500 5000 7500 10000

Sample size

0

0.5

1

1.5

2

R
M

S
E

 (
te

s
t)

TbT

TbV

Figure 4: Training and testing RMSE for different samples sizes (σ = 1)

Train-by-train vs. train-by-validation, MLP optimizer on MNIST Finally we consider a more
complicated multi-layer perceptron (MLP) optimizer on MNIST data set. We use the same MLP
optimizer as in Metz et al. (2019), details of this optimizer is discussed in Appendix F. As the
inner problem, we use a two-layer fully-connected network of 100 and 20 hidden units with ReLU
activations. The inner objective is the classic 10-class cross entropy loss, and we use mini-batches
of 32 samples at inner training. In all the following experiments, we use SGD as a baseline with step
size tuned by grid search against validation loss.

To see whether the comparison between train-by-train and train-by-validation behave similarly to
our theoretical results, we consider different number of samples and different levels of label noise.
For each optimizer, we run 5 independent tests and collect training accuracy and test accuracy for
evaluation. The plots show the mean of the 5 tests. We didn’t show the measure of the spread because
the results of these 5 tests are so close to each other, such that the range or standard deviation marks
will not be readable in the plots.

First, consider optimizing the MNIST dataset with small number of samples. In this case, the train-
by-train setting uses 1,000 samples (denoted as “TbT1000”), and we use another 1,000 samples as
the validation set for the train-by-validation case (denoted as “TbV1000+1000”). To be fair to train-
by-train we also consider TbT2000 where the train-by-train algorithm has access to 2000 data points.
Figure 5 shows the results—all the models have training accuracy close to 1, but both TbT1000 and
TbT2000 overfits the data significantly, whereas TbV1000+1000 performs well.

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y
 (

tr
a
in

)

SGD

TbT1000

TbV1000+1000

TbT2000

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y
 (

te
s
t)

SGD

TbT1000

TbV1000+1000

TbT2000

Figure 5: Training and testing accuracy for different models (1000 samples, no noise)

To show that when the noise is higher, the advantage of train-by-validation increases, we keep the
same sample size and consider a “noisier” version of MNIST, where we randomly change the label
of a sample with probability 0.2 (the new label is chosen uniformly at random, including the original
label). The results are shown in Figure 6. We can see that both train-by-train models, as well as SGD,
overfit easily with training accuracy close to 1 and their test performances are low. The train-by-
validation model performs much better.

Finally we run experiments on the complete MNIST data set (without label noise). For the train-by-
validation setting, we split the data set to 50,000 training samples and 10,000 validation samples.
As shown in Figure 7, in this case train-by-train and train-by-validation performs similarly (in fact
both are slightly weaker than the tuned SGD baseline). This shows that when the sample size is
sufficiently large, train-by-train can get comparable results as train-by-validation.

8

Under review as a conference paper at ICLR 2021

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y
 (

tr
a
in

)

SGD

TbT1000

TbV1000+1000

TbT2000

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y
 (

te
s
t)

SGD

TbT1000

TbV1000+1000

TbT2000

Figure 6: Training and testing accuracy for different models (1000 samples, 20% noise)

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 10
4

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u
ra

c
y
 (

tr
a
in

)

SGD

TbT60000

TbV50000+10000

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 10
4

0.9

0.92

0.94

0.96

0.98

1

A
c
c
u
ra

c
y
 (

te
s
t)

SGD

TbT60000

TbV50000+10000

Figure 7: Training and testing accuracy for different models (all samples, no noise)

6 CONCLUSION AND FUTURE WORKS

In this paper, we have proved optimization and generalization guarantees for tuning the step size
for quadratic loss. From the optimization perspective, we considered a simple task whose objective
is a quadratic function. We proved that the meta-gradient can explode/vanish if the meta-objective
is simply the loss of the last iteration; we then showed that the log-transformed meta-objective has
polynomially bounded meta-gradient and can be successfully optimized. To study the generalization
issues, we considered the least squares problem. We showed that when the number of samples is
small and the noise is large, train-by-validation approach generalizes better than train-by-train; while
when the number of samples is large, train-by-train can also work well. Although our theoretical
results are proved for quadratic loss, this simple setting already yields interesting phenomenons
and requires non-trivial techniques to analyze. We have also verified our theoretical results on an
optimizer parameterized by neural networks and MNIST dataset.

Since this is a very first work studying the learning to learn approach, there are many potential future
works. One immediate future work is to extend the result for least squares to log-transformed meta
objective (as in Section 3). This is probably doable because compositing the log function with the
current meta-objective should not change its minimizer. For the least squares problem, we only
studied the generalization properties of the optimal step size under the meta-objective, it’s unclear if
meta-gradient descent can converge to such an optimal step size. We believe our techniques for the
meta-optimization of the simple quadratic objective function (Section 3) can also be useful in this
analysis. More broadly, we are also interested in analyzing more complicated optimizers on more
complicated tasks.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pp. 265–283, 2016.

Daniel Alabi, Adam Tauman Kalai, Katrina Ligett, Cameron Musco, Christos Tzamos, and
Ellen Vitercik. Learning to prune: Speeding up repeated computations. arXiv preprint
arXiv:1904.11875, 2019.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in neural information processing systems, pp. 3981–3989, 2016.

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-theoretic
foundations of algorithm configuration for combinatorial partitioning problems. arXiv preprint
arXiv:1611.04535, 2016.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
arXiv preprint arXiv:1803.10150, 2018a.

Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dispersion for data-driven algorithm design,
online learning, and private optimization. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 603–614. IEEE, 2018b.

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. A general theory of sample complex-
ity for multi-item profit maximization. In Proceedings of the 2018 ACM Conference on Economics
and Computation, pp. 173–174, 2018c.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 459–468. JMLR. org, 2017.

Xinshi Chen, Yufei Zhang, Christoph Reisinger, and Le Song. Understanding deep architectures
with reasoning layer. arXiv preprint arXiv:2006.13401, 2020.

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Incremental learning-to-
learn with statistical guarantees. arXiv preprint arXiv:1803.08089, 2018.

Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn
stochastic gradient descent with biased regularization. arXiv preprint arXiv:1903.10399, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1126–1135. JMLR. org, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. arXiv preprint arXiv:1703.01785, 2017.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
near optimal, geometrically decaying learning rate procedure for least squares. In Advances in
Neural Information Processing Systems, pp. 14951–14962, 2019.

Johannes Günther, Alex Kearney, Nadia M Ady, Michael R Dawson, and Patrick M Pilarski. Meta-
learning for predictive knowledge architectures: A case study using tidbd on a sensor-rich robotic
arm. In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 1967–1969, 2019.

Rishi Gupta and Tim Roughgarden. A pac approach to application-specific algorithm selection.
SIAM Journal on Computing, 46(3):992–1017, 2017.

10

Under review as a conference paper at ICLR 2021

Nicholas JA Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses for
non-smooth stochastic gradient descent. arXiv preprint arXiv:1812.05217, 2018.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, pp. 87–94. Springer, 2001.

Andrew Jacobsen, Matthew Schlegel, Cameron Linke, Thomas Degris, Adam White, and Martha
White. Meta-descent for online, continual prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 3943–3950, 2019.

Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Making the last iterate of sgd information
theoretically optimal. arXiv preprint arXiv:1904.12443, 2019.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Alex Kearney, Vivek Veeriah, Jaden B Travnik, Richard S Sutton, and Patrick M Pilarski.
Tidbd: Adapting temporal-difference step-sizes through stochastic meta-descent. arXiv preprint
arXiv:1804.03334, 2018.

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-
shot learning. arXiv preprint arXiv:1707.09835, 2017.

Chaoyue Liu and Mikhail Belkin. Accelerating sgd with momentum for over-parameterized learn-
ing. arXiv preprint arXiv:1810.13395, 2018.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International Conference on Machine Learning, pp. 2113–
2122, 2015.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556–4565, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Nicol N Schraudolph. Local gain adaptation in stochastic gradient descent. 1999.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. In International conference on machine learning,
pp. 71–79, 2013.

Richard S Sutton. Adapting bias by gradient descent: An incremental version of delta-bar-delta. In
AAAI, pp. 171–176. San Jose, CA, 1992.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo,
Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and
generalize. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 3751–3760. JMLR. org, 2017.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

11

Under review as a conference paper at ICLR 2021

In the appendix, we first give the missing proofs for the theorems in the main paper. Later in
Appendix F we give details for the experiments.

Notations: Besides the notations defined in Section 2, we define more notations that will be used
in the proofs.

For a matrix X ∈ Rn×d with n ≤ d, we denote its singular values as σ1(X) ≥ · · · ≥ σn(X).

For a positive semi-definite matrix A ∈ Rd×d, we denote u>Au as ‖u‖2A . For a matrix X ∈ Rd×n,
let ProjX ∈ Rd×d be the projection matrix onto the column span of X . That means, ProjX = SS>,
where the columns of S form an orthonormal basis for the column span of X.

For any event E , we use 1 {E} to denote its indicator function: 1 {E} equals 1 when E holds and
equals 0 otherwise. We use Ē to denote the complementary event of E .

A PROOFS FOR SECTION 3 – ALLEVIATING GRADIENT
EXPLOSION/VANISHING PROBLEM FOR QUADRATIC OBJECTIVE

In this section, we prove the results in Section 3. Recall the meta learning problem as follows:

The inner task is a fixed quadratic problem, where the starting point is fixed at w0, and the loss
function is f(w) = 1

2w
>Hw for some fixed positive definite matrix H ∈ Rd×d. Suppose the

eigenvalue decomposition of H is
∑d
i=1 λiuiu

>
i . In this section, we assume L = λ1(H) and α =

λd(H) are the largest and smallest eigenvalues of H with L > α. We assume the starting point w0

has unit `2 norm. For each i ∈ [d], let ci be 〈w0, ui〉 and let cmin = min(|c1|, |cd|). We assume
cmin > 0 for simplicity, which is satisfied if w0 is chosen randomly from the unit sphere.

Let {wτ,η} be the GD sequence running on f(w) starting from w0 with step size η. For the meta-
objective, we consider using the loss of the last point directly, or using the log of this value. In
Section A.1, we first show that although choosing F̂ (η) = f(wt,η) does not have any bad local
optimal solution, it has the gradient explosion/vanishing problem (Theorem 3). Then, in Section A.2,
we show choosing F̂ (η) = 1

t log f(wt,η) leads to polynomially bounded meta-gradient and further
show meta-gradient descent converges to the optimal step size (Theorem 4). Although the meta-
gradient is polynomially bounded, if we simply use back-propogation to compute the meta-gradient,
the intermediate results can still be exponentially large/small (Corollary 1). This is also proved in
Section A.2.

A.1 META-GRADIENT VANISHING/EXPLOSION

In this section, we show although choosing F̂ (η) = f(wt,η) does not have any bad local optimal
solution, it has the meta-gradient explosion/vanishing problem. Recall Theorem 3 as follows.

Theorem 3. Let the meta objective be F̂ (η) = f(wt,η) = 1
2w
>
t,ηHwt,η. We know F̂ (η) is a strictly

convex function in η with an unique minimizer. However, for any step size η < 2/L, |F̂ ′(η)| ≤
t
∑d
i=1 c

2
iλ

2
i |1− ηλi|2t−1; for any step size η > 2/L, |F̂ ′(η)| ≥ c21L2t(ηL− 1)2t−1 − L2t.

Intuitively, if we write wt,η in the basis of the eigen-decomposition of H , then each coordinate
evolve exponentially in t. The gradient of the standard objective is therefore also exponential in t.

Proof of Theorem 3. According to the gradient descent iterations, we have

wt,η = wt−1,η − η∇f(wt−1,η) = wt−1,η − ηHwt−1,η = (I − ηH)wt−1,η = (I − ηH)tw0.

Therefore, F̂ (η) := f(wt,η) = 1
2w
>
0 (I − ηH)2tHw0. Taking the derivative of F̂ (η),

F̂ ′(η) = −tw>0 (I − ηH)2t−1H2w0 = −t
d∑
i=1

c2iλ
2
i (1− ηλi)2t−1,

12

Under review as a conference paper at ICLR 2021

where ci = 〈w0, ui〉 . Taking the second derivative of F (η),

F ′′(η) =t(2t− 1)w>0 (I − ηH)2t−2H3w0 = t(2t− 1)

d∑
i=1

c2iλ
3
i (1− ηλi)2t−2.

Since L > α, we have F̂ ′′(η) > 0 for any η. That means F̂ (η) is a strictly convex function in η with
a unique minimizer.

For any fixed η ∈ (0, 2/L) we know |1− ηλi| < 1 for all i ∈ [d]. We have∣∣∣F̂ ′(η)
∣∣∣ ≤ t d∑

i=1

c2iλ
2
i |1− ηλi|2t−1.

For any fixed η ∈ (2/L,∞), we know ηL− 1 > 1. We have

F̂ ′(η)

=− tc21L2(1− ηL)2t−1 − t
∑

i 6=1:(1−ηλi)≤0

c2iλ
2
i (1− ηλi)2t−1 − t

∑
i 6=1:(1−ηλi)>0

c2iλ
2
i (1− ηλi)2t−1

≥tc21L2(ηL− 1)2t−1 − t
d∑
i=1

c2iλ
2
i ≥ tc21L2(ηL− 1)2t−1 − L2t,

where the last inequality uses
∑d
i=1 c

2
i = 1. �

A.2 ALLEVIATING META-GRADIENT VANISHING/EXPLOSION

We prove when the the meta objective is chosen as 1
t log f(wt,η), the meta-gradient is polynomially

bounded. Furthermore, we show meta-gradient descent can converge to the optimal step size within
polynomial iterations. Recall Theorem 4 as follows.

Theorem 4. Let the meta objective be F̂ (η) = 1
t log f(wt,η). We know F̂ (η) has a unique minimizer

η∗ and F̂ ′(η) = O
(

L3

c2minα(L−α)

)
for all η ≥ 0. Let {ηk} be the GD sequence running on F̂ with

meta step size µk = 1/
√
k. Suppose the starting step size η0 ≤ M. Given any 1/L > ε > 0, there

exists k′ = M6

ε2 poly(1
cmin

, L, 1
α ,

1
L−α) such that for all k ≥ k′, |ηk − η∗| ≤ ε.

When we take the log of the function value, the derivative of the function value with respect to η
becomes much more stable. We will first show some structural result on F̂ (η) – it has a unqiue
minimizer and the gradient is polynomially bounded. Further the gradient is only close to 0 when
the point η is close to the unique minimizer. Then using such structural result we prove that meta-
gradient descent converges.

Proof of Theorem 4. The proof consists of three claims. In the first claim, we show that F̂ has
a unique minimizer and the minus meta derivative always points to the minimizer. In the second
claim, we show that F̂ has bounded derivative. In the last claim, we show that for any η that is
outside the ε-neighborhood of η∗, |F̂ ′(η)| is lower bounded. Finally, we combine these three claims
to finish the proof.

Claim 1. The meta objective F̂ has only one stationary point that is also its unique minimizer η∗.
For any η ∈ [0, η∗), F̂ ′(η) < 0 and for any η ∈ (η∗,∞), F̂ ′(η) > 0. Furthermore, we know
η∗ ∈ [1/L, 1/α].

We can compute the derivative of F̂ in η as follows,

F̂ ′(η) =
−2w>0 (I − ηH)2t−1H2w0

w>0 (I − ηH)2tHw0
=
−2
∑d
i=1 c

2
iλ

2
i (1− ηλi)2t−1∑d

i=1 c
2
iλi(1− ηλi)2t

. (3)

It’s not hard to verify that the denominator
∑d
i=1 c

2
iλi(1 − ηλi)2t is always positive. Denote the

numerator −2
∑d
i=1 c

2
iλ

2
i (1− ηλi)2t−1 as g(η). Since g′(η) > 0 for any η ∈ [0,∞), we know g(η)

13

Under review as a conference paper at ICLR 2021

is strictly increasing in η. Combing with the fact that g(0) < 0 and g(∞) > 0, we know there is a
unique point (denoted as η∗) where g(η∗) = 0 and g(η) < 0 for all η ∈ [0, η∗) and g(η) > 0 for all
η ∈ (η∗,∞). Since the denominator in F̂ ′(η) is always positive and the numerator equals g(η), we
know there is a unique point η∗ where F̂ ′(η∗) = 0 and F̂ ′(η) < 0 for all η ∈ [0, η∗) and F̂ ′(η) > 0

for all η ∈ (η∗,∞). It’s clear that η∗ is the minimizer of F̂ .

Also, it’s not hard to verify that for any η ∈ [0, 1/L), F̂ ′(η) < 0 and for any η ∈ (1/α,∞),

F̂ ′(η) > 0. This implies that η∗ ∈ [1/L, 1/α].

Claim 2. For any η ∈ [0,∞), we have

|F̂ ′(η)| ≤ 4L3

c2minα(L− α)
:= Dmax.

For any η ∈ [0, 2
α+L], we have |1−ηλi| ≤ 1−ηα for all i. Dividing the numerator and denominator

in F̂ ′(η) by (1− ηα)2t, we have

∣∣∣F̂ ′(η)
∣∣∣ = 2

∣∣∣∑d
i=1

c2iλ
2
i

1−ηα (1−ηλi
1−ηα)2t−1

∣∣∣
c2dα+

∑d−1
i=1 c

2
iλi(

1−ηλi
1−ηα)2t

≤
2
∑d
i=1 c

2
iλ

2
i

c2dα(1− ηα)
≤

2(α+ L)
∑d
i=1 c

2
iλ

2
i

c2dα(L− α)
≤ 4L3

c2dα(L− α)
,

where the second last inequality uses η ≤ 2
α+L .

Similarly for any η ∈ (2
α+L ,∞), we have |1− ηλi| ≤ ηL− 1 for all i. Dividing the numerator and

denominator in F̂ ′(η) by (ηL− 1)2t, we have

F̂ ′(η) = 2

∣∣∣∑d
i=1

c2iλ
2
i

ηL−1 (1−ηλi
ηL−1)2t−1

∣∣∣
c21L+

∑d
i=2 c

2
iλi(

1−ηλi
ηL−1)2t

≤
2
∑d
i=1 c

2
iλ

2
i

c21L(ηL− 1)
≤

2(α+ L)
∑d
i=1 c

2
iλ

2
i

c21L(L− α)
≤ 4L3

c21L(L− α)

where the last inequality uses η ≥ 2
α+L .

Overall, we know for any η ≥ 0,

|F̂ ′(η)| ≤ 4L3

L− α
max

(
1

c2dα
,

1

c21L

)
≤ 4L3

c2minα(L− α)
.

Claim 3. Given M̂ ≥ 2/α and 1/L > ε > 0, for any η ∈ [0, η∗ − ε] ∪ [η∗ + ε, M̂], we have

|F ′(η)| ≥ min

(
2εc2dα

3

L
,

2εc21L
2

(M̂L− 1)2

)
≥ 2εc2min min

(
α3

L
,

1

M̂2

)
:= Dmin(M̂).

If η ∈ [0, η∗ − ε] and η ≤ 2
α+L , we have

F̂ ′(η) = −2

∑d
i=1 c

2
iλ

2
i (1− ηλi)2t−1∑d

i=1 c
2
iλi(1− ηλi)2t

= −2

∑d
i=1 c

2
iλ

2
i (1− ηλi)2t−1 −

∑d
i=1 c

2
iλ

2
i (1− η∗λi)2t−1∑d

i=1 c
2
iλi(1− ηλi)2t

,

where the second equality holds because
∑d
i=1 c

2
iλ

2
i (1 − η∗λi)

2t−1 = 0. For the numerator, we
have
d∑
i=1

c2iλ
2
i (1− ηλi)2t−1 −

d∑
i=1

c2iλ
2
i (1− η∗λi)2t−1 ≥c2dα2

(
(1− ηα)2t−1 − (1− η∗α)2t−1

)
≥c2dα2

(
(1− ηα)2t−1 − (1− ηα− εα)2t−1

)
;

for the denominator, we have

d∑
i=1

c2iλi(1− ηλi)2t ≤

(
d∑
i=1

c2iλi

)
(1− ηα)2t,

14

Under review as a conference paper at ICLR 2021

where the second inequality holds because |1 − ηλi| ≤ 1 − ηα for all i. Overall, we have when
η ∈ [0, η∗ − ε] and η ≤ 2

α+L ,∣∣∣F̂ ′(η)
∣∣∣ ≥2

c2dα
2
(
(1− ηα)2t−1 − (1− ηα− εα)2t−1

)(∑d
i=1 c

2
iλi

)
(1− ηα)2t

≥ 2εc2dα
3(∑d

i=1 c
2
iλi

)
(1− ηα)

≥ 2εc2dα
3

L
,

where the last inequality holds because (1− ηα) ≤ 1 and
∑d
i c

2
iλi ≤ L.

Similarly, if η ∈ [0, η∗ − ε] and η ≥ 2
α+L , we have∣∣∣F̂ ′(η)

∣∣∣ ≥2
c21L

2
(
(1− ηL)2t−1 − (1− ηL− εL)2t−1

)(∑d
i=1 c

2
iλi

)
(1− ηL)2t

=2
c21L

2
(
(ηL+ εL− 1)2t−1 − (ηL− 1)2t−1

)(∑d
i=1 c

2
iλi

)
(ηL− 1)2t

≥ 2εc21L
3(∑d

i=1 c
2
iλi

)
(ηL− 1)2

≥ 2εc21α
2L2

(L− α)2
,

where the last inequality holds because η ≤ η∗ − ε ≤ 1/α and
∑d
i c

2
iλi ≤ L.

If η ∈ [η∗ + ε,∞) and η ≤ 2
α+L , we have∣∣∣F̂ ′(η)
∣∣∣ ≥2

c2dα
2
(
(1− ηα+ εα)2t−1 − (1− ηα)2t−1

)(∑d
i=1 c

2
iλi

)
(1− ηα)2t

≥2εc2dα
3

L
,

If η ∈ [η∗ + ε,∞) and η ≥ 2
α+L , we have∣∣∣F̂ ′(η)
∣∣∣ ≥2

c21L
2
(
(1− ηL+ ηε)2t−1 − (1− ηL)2t−1

)(∑d
i=1 c

2
iλi

)
(1− ηL)2t

≥ 2εc21L
3(∑d

i=1 c
2
iλi

)
(ηL− 1)2

≥ 2εc21L
2

(M̂L− 1)2
,

where the last inequality uses the assumption that η ≤ M̂.

With the above three claims, we are ready to prove the optimization result. By Claim 1, we know
F ′(η) < 0 for any η ∈ [0, η∗) and F ′(η) > 0 for any η ∈ (η∗,∞). So the opposite gradient descent
always points to the minimizer.

Since µk = 1/
√
k, when k ≥ k1 :=

D2
max

ε2 we know µk ≤ ε
Dmax

. By Claim 2, we know |F̂ ′(η)| ≤
Dmax for all η ≥ 0, which implies |µkF̂ ′(η)| ≤ ε for all k ≥ k1. That means, meta gradient descent
will never overshoot the minimizer by more than ε when k ≥ k1. In other words, after k1 meta
iterations, once η enters the ε-neighborhood of η∗, it will never leave this neighborhood.

We also know that at meta iteration k1, we have ηk1 ≤ max(1/α + Dmax,M) := M̂. Here,
1/α+Dmax comes from the case that the eta starts from the left of η∗ and overshoot to the right of
η∗ by Dmax. Since η∗ ∈ [1/L, 1/α], we have |ηk1 − η∗| ≤ max(1/α, 1/α + Dmax − 1/L,M −
1/L) := R. By Claim 3, we know that |F̂ ′(η)| ≥ Dmin(M̂) for any η ∈ [0, η∗ − ε] ∪ [η∗ + ε, M̂].

Choosing some k2 satisfying
∑k2
k=k1

1/
√
k ≥ R

Dmin
, we know for any k ≥ k2, |ηk − η∗| ≤ ε.

15

Under review as a conference paper at ICLR 2021

Plugging in all the bounds for Dmin, Dmax from Claim 3 and Claim 2, we know there exists k1 =
1
ε2 poly(1

cmin
, L, 1

α ,
1

L−α), k2 = M6

ε2 poly(1
cmin

, L, 1
α ,

1
L−α) satisfying these conditions. �

Next, we show although the meta-gradient is polynomailly bounded, the intermediate results can
still vanish or explode if we use back-propogation to compute the meta-gradient.

Corollary 1. If we choose the meta-objective as F̂ (η) = 1
t log f(wt,η), when computing the meta-

gradient using back-propagation, there are intermediate results that are exponentially large/small
in number of inner-steps t.

Proof of Corollary 1. This is done by direct calculation. If we use back-propagation to compute the
derivative of 1

t log(f(wt,η)), we need to first compute ∂f(wt,η)
∂

1
t log(f(wt,η)) that equals 1

tf(wt,η) .
Same as the analysis in Theorem 3, we can show 1

tf(wt,η) is exponentially large when η < 2/L and
is exponentially small when η > 2/L. �

B PROOFS OF TRAIN-BY-TRAIN V.S. TRAIN-BY-VALIDATION (GD)

In this section, we show when the number of samples is small and when the noise level is a large
constant, train-by-train overfits to the noise in training tasks while train-by-validation generalizes
well. We separately prove the results for train-by-train and train-by-validation in Theorem 7 and
Theorem 8, respectively. Then, Theorem 5 is simply a combination of Theorem 7 and Theorem 8.

Recall that in the train-by-train setting, each task P contains a training set Strain with n samples. The
inner objective is defined as f̂(w) = 1

2n

∑
(x,y)∈Strain

(〈w, x〉 − y)
2
. Let {wτ,η} be the GD sequence

running on f̂(w) from initialization 0 (with truncation). The meta-loss on task P is defined as the
inner objective of the last point, ∆TbT (n)(η, P) = f̂(wt,η) = 1

2n

∑
(x,y)∈Strain

(〈wt,η, x〉 − y)
2
. The

empirical meta objective F̂TbT (n)(η) is the average of the meta-loss across m different tasks. We
show that under F̂TbT (n)(η), the optimal step size is a constant and the learned weight is far from
ground truth w∗ on new tasks. We prove Theorem 7 in Section B.2.

Theorem 7. Let the meta objective F̂TbT (n)(η) be as defined in Equation 1 with n ∈ [d/4, 3d/4].
Assume noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks
m ≥ c3 log(mt) and dimension d ≥ c4 log(m) for certain constants c2, c3, c4. With probability at
least 0.99 in the sampling of the training tasks, we have

η∗train = Θ(1) and E
∥∥wt,η∗train

− w∗
∥∥2

= Ω(1)σ2,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

In Theorem 7, Ω(1) is an absolute constant independent with σ. Intuitively, the reason that train-by-
train performs badly in this setting is because there is a way to set the step size to a constant such
that gradient descent converges very quickly to the empirical risk minimizer, therefore making the
train-by-train objective very small. However, when the noise is large and the number of samples is
smaller than the dimension, the empirical risk minimizer (ERM) overfits to the noise and is not the
best solution.

In the train-by-validation setting, each task P contains a training set Strain with n1 sam-
ples and a validation set with n2 samples. The inner objective is defined as f̂(w) =

1
2n1

∑
(x,y)∈Strain

(〈w, x〉 − y)
2
. Let {wτ,η} be the GD sequence running on f̂(w) from initial-

ization 0 (with truncation). For each task P , the meta-loss ∆TbV (n1,n2)(η, P) is defined as the
loss of the last point wt,η evaluated on the validation set Svalid. That is, ∆TbV (n1,n2)(η, P) =

1
2n2

∑
(x,y)∈Svalid

(〈wt,η, x〉 − y)
2
. The empirical meta objective F̂TbV (n1,n2)(η) is the average of

the meta-loss across m different tasks P1, P2, ..., Pm. We show that under F̂TbV (n1,n2)(η), the op-
timal step size is Θ(1/t) and the learned weight is better than initialization 0 by a constant on new
tasks. Theorem 8 is proved in Section B.3.

Theorem 8. Let the meta objective F̂TbV (n1,n2)(η) be as defined in Equation 2 with n1, n2 ∈
[d/4, 3d/4]. Assume noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of

16

Under review as a conference paper at ICLR 2021

training tasks m ≥ c3 and dimension d ≥ c4 log(t) for certain constants c2, c3, c4. With probability
at least 0.99 in the sampling of training tasks, we have

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg minη≥0 F̂TbV (n1,n2)(η), where the expectation is taken over new tasks.

Intuitively, train-by-validation is optimizing the right objective. As long as the meta-training prob-
lem has good generalization performance (that is, good performance on a few tasks implies good
performance on the distribution of tasks), then train-by-validation should be able to choose the op-
timal learning rate. The step size of Θ(1/t) here serves as regularization similar to early-stopping,
which allows gradient descent algorithm to achieve better error on test data.

Notations We define more quantities that are useful in the analysis. In the train by train setting,
given a task Pk := (D(w∗k), S

(k)
train, `). The training set S(k)

train contains n samples {x(k)
i , y

(k)
i }ni=1 with

y
(k)
i =

〈
w∗k, x

(k)
i

〉
+ ξ

(k)
i .

Let X(k)
train be an n × d matrix with its i-th row as (x

(k)
i)>. Let H(k)

train := 1
n (X

(k)
train)>X

(k)
train be the

covariance matrix of the inputs in S(k)
train. Let ξ(k)

train be an n-dimensional column vector with its i-th
entry equal to ξ(k)

i .

Since n ≤ d, with probability 1, we know X
(k)
train is full row rank. Therefore, X(k)

train has pseudo-
inverse (X

(k)
train)† such that X(k)

train(X
(k)
train)† = In. It’s not hard to verify that there exists w(k)

train =

Proj
(X

(k)
train)>

w∗k + (X
(k)
train)†ξ

(k)
train such that y(k)

i =
〈
w

(k)
train, x

(k)
i

〉
for every (x

(k)
i , y

(k)
i) ∈ S

(k)
train.

Here, Proj
(X

(k)
train)>

is the projection matrix onto the column span of (X
(k)
train)>. We also denote

Proj
(X

(k)
train)>

w∗k as (w
(k)
train)∗. We use B(k)

t,η to denote (I − (I − ηH
(k)
train)t). Let w(k)

t,η be the weight

obtained by running GD on S(k)
train with step size η (with truncation).

With the above notations, it’s not hard to verify that for task Pk, the inner objective f̂(w) =

1
2

∥∥∥w − w(k)
train

∥∥∥2

H
(k)
train

. The meta-loss on task Pk is just ∆TbT (n)(η, Pk) = 1
2

∥∥∥wt,η − w(k)
train

∥∥∥2

H
(k)
train

.

In the train-by-validation setting, each task Pk contains a training set S(k)
train with n1 sam-

ples and a validation set S(k)
valid with n2 samples. Similar as above, for the training set S(k)

train,

we can define ξ
(k)
train, X

(k)
train, H

(k)
train, w

(k)
train, B

(k)
t,η , w

(k)
t,η ; for the validation set S(k)

valid, we can define

ξ
(k)
valid, X

(k)
valid, H

(k)
valid, w

(k)
valid. With these notations, the inner objective is f̂(w) = 1

2

∥∥∥w − w(k)
train

∥∥∥2

H
(k)
train

and the meta-loss is ∆TbV (n1,n2)(η, Pk) = 1
2

∥∥∥wt,η − w(k)
valid

∥∥∥2

H
(k)
valid

.

We also use these notations without index k to refer to the quantities defined
on task P. In the proofs, we ignore the subsripts on n, n1, n2 and simply write
∆TbT (η, Pk),∆TbV (η, Pk), F̂TbT , F̂TbV , FTbT , FTbV .

B.1 OVERALL PROOF STRATEGY

In this section (and the next), we follow similar proof strategies that consists of three steps.

Step 1: First, we show for both train-by-train and train-by-validation, there is a good step size that
achieves small empirical meta-objective (however the step sizes and the empirical meta-objective
they achieve are different in the two settings). This does not necessarily mean that the actual optimal
step size is exactly the good step size that we propose, but it gives an upperbound on the empirical
meta-objective for the optimal step size.

17

Under review as a conference paper at ICLR 2021

Step 2: Second, we define a threshold step size such that for any step size larger than it, the
empirical meta-objective must be higher than what was achieved at the good step size in Step 1.
This immediately implies that the optimal step size cannot exceed this threshold step size.

Step 3: Third, we show the meta-learning problem has good generalization performance, that
is, if a learning rate η performs well on the training tasks, it must also perform well on the task
distribution, and vice versa. Thanks to Step 1 and Step 2, we know the optimal step size cannot
exceed certain threshold and then only need to prove generalization result within this range. The
generalization result is not surprising as we only have a single trainable parameter η, however we
also emphasize that this is non-trivial as we will not restrict the step size η to be small enough that the
algorithms do not diverge. Instead we use a truncation to alleviate the diverging problem (this allows
us to run the algorithm on distribution of data whose largest possible learning rate is unknown).

Combing Step 1, 2, 3, we know the population meta-objective has to be small at the optimal step
size. Finally, we show that as long as the population meta-objective is small, the performance of the
algorithms satisfy what we stated in Theorem 5. The last step is easier for the train-by-validation
setting, because its meta-objective is exactly the correct measure that we are looking at; for the train-
by-train setting we instead look at the property of empirical risk minimizer (ERM), and show that
anything close to the ERM is going to behave similarly.

B.2 TRAIN-BY-TRAIN (GD)

Recall Theorem 7 as follows.

Theorem 7. Let the meta objective F̂TbT (n)(η) be as defined in Equation 1 with n ∈ [d/4, 3d/4].
Assume noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks
m ≥ c3 log(mt) and dimension d ≥ c4 log(m) for certain constants c2, c3, c4. With probability at
least 0.99 in the sampling of the training tasks, we have

η∗train = Θ(1) and E
∥∥wt,η∗train

− w∗
∥∥2

= Ω(1)σ2,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

According to the data distribution, we know Xtrain is an n × d random matrix with each entry
i.i.d. sampled from standard Gaussian distribution. In the following lemma, we show that the
covariance matrix Htrain is approximately isotropic when d/4 ≤ n ≤ 3d/4. Specifically, we show√
d√
L
≤ σi(Xtrain) ≤

√
Ld and 1

L ≤ λi(Htrain) ≤ L for all i ∈ [n] with L = 100. We use letter
L to denote the upper bound of ‖Htrain‖ to emphasize that this bounds the smoothness of the inner
objective. Throughout this section, we use letter L to denote constant 100. The proof of Lemma 1
follows from random matrix theory. We defer its proof into Section B.2.4.

Lemma 1. Let X ∈ Rn×d be a random matrix with each entry i.i.d. sampled from standard
Gaussian distribution. Let H := 1/nX>X. Assume n = cd with c ∈ [1

4 ,
3
4]. Then, with probability

at least 1− exp(−Ω(d)), there exists constant L = 100 such that
√
d√
L
≤ σi(X) ≤

√
Ld and

1

L
≤ λi(H) ≤ L,

for all i ∈ [n].

In this section, we always assume the size of each training set is within [d/4, 3d/4] so Lemma 1
holds. Since ‖Htrain‖ is upper bounded by L with high probability, we know the GD sequence
converges to wtrain for η ∈ [0, 1/L]. In Lemma 2, we prove that the empirical meta objective F̂TbT
monotonically decreases as η increases until 1/L. Also, we show F̂TbT is exponentially small in t
at step size 1/L. This serves as step 1 in Section B.1. The proof is deferred into Section B.2.1.

Lemma 2. With probability at least 1 −m exp(−Ω(d)), F̂TbT (η) is monotonically decreasing in
[0, 1/L] and

F̂TbT (1/L) ≤ 2L2σ2

(
1− 1

L2

)t
.

18

Under review as a conference paper at ICLR 2021

When the step size is larger than 1/L, the GD sequence can diverge, which incurs a high loss in meta
objective. Later in Definition 1, we define a step size η̃ such that the GD sequence gets truncated
with descent probability for any step size that is larger than η̃. In Lemma 3, we show with high
probability, the empirical meta objective is high for all η > η̃. This serves as step 2 in the proof
strategy described in Section B.1. The proof is deferred into Section B.2.2.
Lemma 3. With probability at least 1− exp(−Ω(m)),

F̂TbT (η) ≥ σ2

10L8
,

for all η > η̃.

By Lemma 2 and Lemma 3, we know the optimal step size must lie in [1/L, η̃]. We can also show
1/L < η̃ < 3L, so η∗train is a constant. To relate the empirical loss at η∗train to the population loss. We
prove a generalization result for step sizes within [1/L, η̃]. This serves as step 3 in Section B.1. The
proof is deferred into Section B.2.3.
Lemma 4. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for certain constants c2, c4.
With probability at least 1−m exp(−Ω(d))−O(t+m) exp(−Ω(m)),

|FTbT (η)− F̂TbT (η)| ≤ σ2

L3
,

for all η ∈ [1/L, η̃],

Combining the above lemmas, we know the population meta objective FTbT is small at η∗train, which
means wt,η∗train

is close to the ERM solution. Since the ERM solution overfits to the noise in training
tasks, we know

∥∥wt,η∗train
− w∗

∥∥ has to be large. We present the proof of Theorem 7 as follows.

Proof of Theorem 7. We assume σ is a large constant in this proof. According to Lemma 2, we
know with probability at least 1−m exp(−Ω(d)), F̂TbT (η) is monotonically decreasing in [0, 1/L]

and F̂TbT (1/L) ≤ 2L2σ2(1 − 1/L2)t. This implies that the optimal step size η∗train ≥ 1/L and
F̂TbT (η∗train) ≤ 2L2σ2(1−1/L2)t.By Lemma 3, we know with probability at least 1−exp(−Ω(m)),

F̂TbT (η) ≥ σ2

10L8 for all η > η̃, where η̃ is defined in Definition 1. As long as t ≥ c2 for certain
constant c2, we know σ2

10L8 > 2L2σ2(1−1/L2)t, which then implies that the optimal step size η∗train
lies in [1/L, η̃]. According to Lemma 6, we know η̃ ∈ (1/L, 3L). Therefore η∗train is a constant.

According to Lemma 4, we know with probability at least 1 − m exp(−Ω(d)) − O(t +

m) exp(−Ω(m)), |FTbT (η) − F̂TbT (η)| ≤ σ2

L3 , for all η ∈ [1/L, η̃]. As long as t is larger than
some constant, we have F̂TbT (η∗train) ≤ σ2

L3 . Combing with the generalization result, we have
FTbT (η∗train) ≤ 2σ2

L3 . Next, we show that under a small population loss, E
∥∥wt,η∗train

− w∗
∥∥2

has to
be large.

Let E1 be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and√

dσ/4 ≤ ‖ξtrain‖ ≤
√
dσ. We have

E
∥∥wt,η∗train

− wtrain
∥∥2

Htrain
≥ 1

L
E
∥∥wt,η∗train

− wtrain
∥∥2
1 {E1}

≥ 1

L

(
E
∥∥wt,η∗train

− w∗train − (Xtrain)†ξtrain
∥∥1 {E1})2

≥ 1

L

(
E
∥∥(Xtrain)†ξtrain

∥∥1 {E1} − E
∥∥wt,η∗train

− w∗train

∥∥1 {E1})2 .
Since E

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
≤ 4σ2

L3 , this then implies

E
∥∥(Xtrain)†ξtrain

∥∥1 {E1} − E
∥∥wt,η∗train

− w∗train

∥∥1 {E1} ≤√L4σ2

L3
=

2σ

L
.

Conditioning on E1, we can lower bound
∥∥(Xtrain)†ξtrain

∥∥ by σ
4
√
L
. According to Lemma 1 and

Lemma 45, we know Pr[E1] ≥ 1 − exp(−Ω(d)). As long as d is at least certain constant, we have

19

Under review as a conference paper at ICLR 2021

Pr[E1] ≥ 0.9. This then implies E
∥∥(Xtrain)†ξtrain

∥∥1 {E1} ≥ 9σ
40
√
L
. Therefore, we have

E
∥∥wt,η∗train

− w∗train

∥∥1 {E1} ≥ 9σ

40
√
L
− 2σ

L
=

9σ

4L
− 2σ

L
=

σ

4L
,

where the first equality uses L = 100. Then, we have

E
∥∥wt,η∗train

− w∗
∥∥2 ≥ E

∥∥wt,η∗train
− w∗train

∥∥2
1 {E1} ≥

(
E
∥∥wt,η∗train

− w∗train

∥∥1 {E1})2 ≥ σ2

16L2
,

where the first inequality holds because for any Strain, w
∗
train is the projection of w∗ on the subspace

of Strain and wt,η∗train
is also in this subspace. Taking a union bound for all the bad events, we know

this result holds with probability at least 0.99 as long as σ is a large constant c1 and t ≥ c2,m ≥
c3 log(mt) and d ≥ c4 log(m) for certain constants c2, c3, c4. �

B.2.1 BEHAVIOR OF F̂TbT FOR η ∈ [0, 1/L]

In this section, we prove the empirical meta objective F̂TbT is monotonically decreasing in [0, 1/L].
Furthermore, we show F̂TbT (1/L) is exponentially small in t.

Lemma 2. With probability at least 1 −m exp(−Ω(d)), F̂TbT (η) is monotonically decreasing in
[0, 1/L] and

F̂TbT (1/L) ≤ 2L2σ2

(
1− 1

L2

)t
.

Proof of Lemma 2. For each k ∈ [m], let Ek be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and

1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Here, L is constant 100 from

Lemma 1. According to Lemma 1 and Lemma 45, we know for each k ∈ [m], Ek happens with
probability at least 1 − exp(−Ω(d)). Taking a union bound over all k ∈ [m], we know ∩k∈[m]Ek
holds with probability at least 1−m exp(−Ω(d)). From now on, we assume ∩k∈[m]Ek holds.

Let’s first consider each individual loss function ∆TbT (η, Pk). Let {ŵ(k)
τ,η} be the GD sequence

without truncation. We have

ŵ(k)
τ,η − w

(k)
train =ŵ

(k)
τ−1,η − w

(k)
train − ηH

(k)
train(ŵ

(k)
τ−1,η − w

(k)
train)

=(I − ηH(k)
train)(ŵ

(k)
τ−1,η − w

(k)
train) = −(I − ηH(k)

train)tw
(k)
train.

For any η ∈ [0, 1/L], we have
∥∥∥ŵ(k)

τ,η

∥∥∥ ≤ ∥∥∥w(k)
train

∥∥∥ =
∥∥∥(w

(k)
train)∗ + (X

(k)
train)†ξ

(k)
train

∥∥∥ ≤ 2
√
Lσ for any

τ. Therefore,
∥∥∥w(k)

t,η

∥∥∥ never exceeds the norm threshold and never gets truncated.

Noticing that ∆TbT (η, Pk) = 1
2 (w

(k)
t,η − w

(k)
train)>H

(k)
train(w

(k)
t,η − w

(k)
train), we have

∆TbT (η, Pk) =
1

2
(w

(k)
train)>H

(k)
train(I − ηH(k)

train)2tw
(k)
train.

Taking the derivative of ∆TbT (η, Pk) in η, we have

∂

∂η
∆TbT (η, Pk) = −t(w(k)

train)>(H
(k)
train)2(I − ηH(k)

train)2t−1w
(k)
train.

Conditioning on Ek, we know 1/L ≤ λi(H
(k)
train) ≤ L for all i ∈ [n] and H(k)

train is full rank in the
row span of X(k)

train. Therefore, we know ∂
∂η∆TbT (η, Pk) < 0 for all η ∈ [0, 1/L). Here, we assume∥∥∥w(k)

train

∥∥∥ > 0, which happens with probability 1.

Overall, we know that conditioning on ∩k∈[m]Ek, every ∆TbT (η, Pk) is strictly decreasing for η ∈
[0, 1/L]. Since F̂TbT (η) := 1

m

∑m
k=1 ∆TbT (η, Pk), we know F̂TbT (η) is strictly decreasing when

η ∈ [0, 1/L].

20

Under review as a conference paper at ICLR 2021

At step size η = 1/L, we have

∆TbT (η, Pk) =
1

2
(w

(k)
train)>H

(k)
train(I − ηH(k)

train)2tw
(k)
train

≤1

2
L

(
1− 1

L2

)t ∥∥∥w(k)
train

∥∥∥2

≤ 2L2σ2

(
1− 1

L2

)t
,

where we upper bound
∥∥∥w(k)

train

∥∥∥2

by 4Lσ2 at the last step. Therefore, we have F̂TbT (1/L) ≤
2L2σ2(1− 1

L2)t. �

B.2.2 LOWER BOUNDING F̂TbT FOR η ∈ (η̃,∞)

In this section, we prove that the empirical meta objective is lower bounded by Ω(σ2) with high
probability for η ∈ (η̃,∞). Step size η̃ is defined such that there is a descent probability of diverging
for any step size larger than η̃. Then, we show the contribution from these truncated sequence will
be enough to provide an Ω(σ2) lower bound for F̂TbT . The proof of Lemma 3 is given at the end of
this section.
Lemma 3. With probability at least 1− exp(−Ω(m)),

F̂TbT (η) ≥ σ2

10L8
,

for all η > η̃.

We define η̃ as the smallest step size such that the contribution from the truncated sequence in the
population meta objective exceeds certain threshold. The precise definition is as follows.

Definition 1. Given a training task P, let E1 be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and

1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let Ē2(η) be the event that the

GD sequence is truncated with step size η. Define η̃ as follows,

η̃ = inf

{
η ≥ 0

∣∣∣∣E1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
≥ σ2

L6

}
.

In the next lemma, we prove that for any fixed training set, 1
{
E1 ∩ Ē2(η′)

}
≥

1
{
E1 ∩ Ē2(η)

}
for any η′ ≥ η. This immediately implies that Pr[E1 ∩ Ē2(η)] and

E 1
2 ‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
is non-decreasing in η.

Basically we need to show, conditioning on E1, if a GD sequence gets truncated at step size η, it
must be also truncated for larger step sizes. Let {w′τ,η} be the GD sequence without truncation. We
only need to show that for any τ, if

∥∥w′τ,η∥∥ exceeds the norm threshold,
∥∥w′τ,η′∥∥ must also exceed

the norm threshold for any η′ ≥ η. This is easy to prove if τ is odd because in this case
∥∥w′τ,η∥∥ is

always non-decreasing in η. The case when τ is even is trickier because there indeed exists certain
range of η such that

∥∥w′τ,η∥∥ is decreasing in η.We manage to prove that this problematic case cannot
happen when

∥∥w′τ,η∥∥ is at least 4
√
Lσ. The full proof of Lemma 5 is deferred into Section B.2.4.

Lemma 5. Fixing a task P, let E1 and Ē2(η) be as defined in Definition 1. We have

1
{
E1 ∩ Ē2(η′)

}
≥ 1

{
E1 ∩ Ē2(η)

}
,

for any η′ ≥ η.

In the next Lemma, we prove that η̃ must lie within (1/L, 3L).We prove this by showing that the GD
sequence never gets truncated for η ∈ [0, 2/L] and almost always gets truncated for η ∈ [2.5L,∞).
The proof is deferred into Section B.2.4.
Lemma 6. Let η̃ be as defined in Definition 1. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥
c4 for some constants c2, c4. We have

1/L < η̃ < 3L.

21

Under review as a conference paper at ICLR 2021

Now, we are ready to give the proof of Lemma 3.

Proof of Lemma 3. Let E1 and Ē2(η) be as defined in Definition 1. For the simplicity of the proof,
we assume E 1

2 ‖wt,η̃ − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η̃)

}
≥ σ2

L6 . We will discuss the proof for the other
case at the end, which is very similar.

Conditioning on E1, we know 1
2 ‖wt,η̃ − wtrain‖2Htrain

≤ 18L2σ2. Therefore, we know Pr[E1 ∩
Ē2(η̃)] ≥ 1

18L8 . For each task Pk, define E(k)
1 and Ē(k)

2 (η) as the corresponding events on train-
ing set S(k)

train. By Hoeffding’s inequality, we know with probability at least 1− exp(−Ω(m)),

1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η̃)

}
≥ 1

20L8
.

By Lemma 5, we know 1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥ 1

{
E(k)

1 ∩ Ē(k)
2 (η̃)

}
for any η ≥ η̃. Then, we can

lower bound F̂TbT for any η > η̃ as follows,

F̂TbT (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥2σ2 1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥2σ2 1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η̃)

}
≥ σ2

10L8
,

where the second inequality lower bounds the loss for one task by 2σ2 when the sequence gets
truncated.

We have assumed E 1
2 ‖wt,η̃ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
≥ σ2

L6 in the proof. Now, we show the

proof also works when E 1
2 ‖wt,η̃ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
< σ2

L6 with slight changes. Accord-

ing to the definition and Lemma 5, we know E 1
2 ‖wt,η̃ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
> σ2

L6 for all
η > η̃. At each training set Strain, we can define 1

{
E1 ∩ Ē2(η̃′)

}
as limη→η̃+ 1

{
E1 ∩ Ē2(η)

}
. We

also have Pr[E1 ∩ Ē2(η̃′)] ≥ 1
18L8 . The remaining proof is the same as before as we substitute

1
{
E1 ∩ Ē2(η̃)

}
by 1

{
E1 ∩ Ē2(η̃′)

}
. �

B.2.3 GENERALIZATION FOR η ∈ [1/L, η̃]

In this section, we show empirical meta objective F̂TbT is point-wise close to population meta
objective FTbT for all η ∈ [1/L, η̃].

Lemma 4. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for certain constants c2, c4.
With probability at least 1−m exp(−Ω(d))−O(t+m) exp(−Ω(m)),

|FTbT (η)− F̂TbT (η)| ≤ σ2

L3
,

for all η ∈ [1/L, η̃],

In this section, we first show F̂TbT concentrates on FTbT for any fixed η and then construct ε-net for
F̂TbT and FTbT for η ∈ [1/L, η̃]. We give the proof of Lemma 4 at the end.

We first show that for a fixed η, F̂TbT (η) is close to FTbT (η) with high probability. We prove the
meta-loss on each task ∆TbT (η, Pk) is O(1)-subexponential. Then we apply Bernstein’s inequality
to get the result. The proof is deferred into Section B.2.4. We will assume σ is a large constant and
t ≥ c2, d ≥ c4 for some constants c2, c4 so that Lemma 6 holds and η̃ is a constant.
Lemma 7. Suppose σ is a constant. For any fixed η and any 1 > ε > 0, with probability at least
1− exp(−Ω(ε2m)), ∣∣∣F̂TbT (η)− FTbT (η)

∣∣∣ ≤ ε.
22

Under review as a conference paper at ICLR 2021

Next, we construct an ε-net for FTbT .By the definition of η̃,we know for any η ≤ η̃, the contribution
from truncated sequences in FTbT (η) is small. We can show the contribution from the un-truncated
sequences is O(t)-lipschitz.
Lemma 8. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for some constant c2, c4. There
exists an 11σ2

L4 -net N ⊂ [1/L, η̃] for FTbT with |N | = O(t). That means, for any η ∈ [1/L, η̃],

|FTbT (η)− FTbT (η′)| ≤ 11σ2

L4
,

for η′ = arg minη′′∈N,η′′≤η(η − η′′).

Proof of Lemma 8. Let E1 and Ē2(η) be as defined in Definition 1. For the simplicity of the proof,
we assume E 1

2 ‖wt,η̃ − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η̃)

}
≤ σ2

L6 . We will discuss the proof for the other
case at the end, which is very similar.

We can divide E 1
2 ‖wt,η − wtrain‖2Htrain

as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

=E
1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)}+ E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
+ E

1

2
‖wt,η − wtrain‖2Htrain

1
{
Ē1
}
.

We will construct an ε-net for the first term and show the other two terms are small. Let’s first con-
sider the third term. Since 1

2 ‖wt,η − wtrain‖2Htrain
isO(1)-subexponential and Pr[Ē1] ≤ exp(−Ω(d)),

we have E 1
2 ‖wt,η − wtrain‖2Htrain

1
{
Ē1
}

= O(1) exp(−Ω(d)). Choosing d to be at least certain con-
stant, we know 1

2 ‖wt,η − wtrain‖2Htrain
1
{
Ē1
}
≤ σ2/L4.

Then we upper bound the second term. Since E 1
2 ‖wt,η̃ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
≤ σ2

L6 and
1
2 ‖wt,η̃ − wtrain‖2Htrain

≥ 2σ2 when wt,η̃ diverges, we know Pr[E1 ∩ Ē2(η̃)] ≤ 1
2L6 . Then, we can

upper bound the second term as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
≤ 18L2σ2 1

2L6
=

9σ2

L4

Next, we show the first term 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} has desirable Lipschitz condition.
According to Lemma 5, we know 1 {E1 ∩ E2(η)} ≥ 1 {E1 ∩ E2(η̃)} for any η ≤ η̃. Therefore,
conditioning on E1 ∩ E2(η̃), we know wt,η never gets truncated for any η ≤ η̃. This means wt,η =

Bt,ηwtrain with Bt,η = (I − (I − ηHtrain)t). We can compute the derivative of 1
2 ‖wt,η − wtrain‖2Htrain

as follows,
∂

∂η

1

2
‖wt,η − wtrain‖2Htrain

=
〈
tHtrain(I − ηHtrain)t−1wtrain, Htrain(wt,η − wtrain)

〉
.

Since ‖wt,η‖ = ‖(I − (I − ηHtrain)t)wtrain‖ ≤ 4
√
Lσ and ‖wtrain‖ ≤ 2

√
Lσ,

we have ‖(I − ηHtrain)twtrain‖ ≤ 6
√
Lσ. We can bound

∥∥(I − ηHtrain)t−1wtrain
∥∥ with

‖(I − ηHtrain)twtrain‖ + ‖wtrain‖ by bounding the expanding directions using ‖(I − ηHtrain)twtrain‖
and bounding the shrinking directions using ‖wtrain‖ . Therefore, we can bound the derivative as
follows, ∣∣∣∣ ∂∂η 1

2
‖wt,η − wtrain‖2Htrain

∣∣∣∣ ≤ tL× 8
√
Lσ × 6L

√
Lσ = 48L3σ2t.

Suppose σ is a constant, we know E 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} is O(t)-lipschitz. There-

fore, there exists an σ2

L4 -net N for E 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} with size O(t). That
means, for any η ∈ [1/L, η̃],∣∣∣∣E1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} − E
1

2
‖wt,η′ − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)}
∣∣∣∣ ≤ σ2

L4

23

Under review as a conference paper at ICLR 2021

for η′ = arg minη′′∈N,η′′≤η(η − η′′). Note we construct the ε-net in a particular way such that η′ is
chosen as the largest step size in N that is at most η.

Combing with the upper bounds on the second term and the third term, we have for any η ∈ [1/L, η̃],

|FTbT (η)− FTbT (η′)| ≤ 11σ2

L4

for η′ = arg minη′′∈N,η′′≤η(η − η′′).

In the above analysis, we have assumed E 1
2 ‖wt,η̃ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
≤ σ2

L6 . The
proof can be easily generalized to the other case. We can define 1

{
E1 ∩ Ē2(η̃′)

}
as

limη→η̃− 1
{
E1 ∩ Ē2(η)

}
. Then the proof works as long as we substitute 1

{
E1 ∩ Ē2(η̃)

}
by

1
{
E1 ∩ Ē2(η̃′)

}
. We will also add η̃ into the ε-net. �

In order to prove FTbT is close to F̂TbT point-wise in [1/L, η̃], we still need to construct an ε-net
for the empirical meta objective F̂TbT .

Lemma 9. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for certain constants c2, c4.
With probability at least 1 −m exp(−Ω(d)), there exists an σ2

L4 -net N ′ ⊂ [1/L, η̃] for F̂TbT with
|N | = O(t+m). That means, for any η ∈ [1/L, η̃],

|F̂TbT (η)− F̂TbT (η′)| ≤ σ2

L4
,

for η′ = arg minη′′∈N ′,η′′≤η(η − η′′).

Proof of Lemma 9. For each k ∈ [m], let E1,k be the event that
√
d/
√
L ≤ σi(X

(k)
train) ≤

√
Ld and

1/L ≤ λi(H
(k)
train) ≤ L for all i ∈ [n] and

√
dσ/4 ≤

∥∥∥ξ(k)
train

∥∥∥ ≤ √dσ. According to Lemma 1 and
Lemma 45, we know with probability at least 1−m exp(−Ω(d)), E1,k’s hold for all k ∈ [m]. From
now on, we assume all these events hold.

Recall that the empirical meta objective as follows,

F̂TbT (η) :=
1

m

m∑
k=1

∆TbT (η, Pk).

For any k ∈ [m], let ηc,k be the smallest step size such that w(k)
t,η gets truncated. If ηc,k > η̂, by

similar argument as in Lemma 8, we know ∆TbT (η, Pk) is O(t)-Lipschitz in [1/L, η̂] as long as σ
is a constant. If ηc,k ≤ η̂, by Lemma 5 we know w

(k)
t,η gets truncated for any η ≥ ηc,k. This then

implies that ∆TbT (η, Pk) is a constant function for η ∈ [ηc,k, η̂].We can also show that ∆TbT (η, Pk)
is O(t)-Lipschitz in [1/L, ηc,k). There might be a discontinuity in function value at ηc,k, so we need
to add ηc,k into the ε-net.

Overall, we know there exists an σ2

L4 -net N ′ with |N ′| = O(t + m) for F̂TbT . That means, for any
η ∈ [1/L, η̃], ∣∣∣F̂TbT (η)− F̂TbT (η′)

∣∣∣ ≤ σ2

L4

for η′ = arg minη′′∈N ′,η′′≤η(η − η′′). �

Finally, we combine Lemma 7, Lemma 8 and Lemma 9 to prove that F̂TbT is point-wise close to
FTbT for η ∈ [1/L, η̃].

Proof of Lemma 4. We assume σ as a constant in this proof. By Lemma 7, we know with probability
at least 1 − exp(−Ω(ε2m)),

∣∣∣F̂TbT (η)− FTbT (η)
∣∣∣ ≤ ε for any fixed η. By Lemma 8, we know

there exists an 11σ2

L4 -net N for FTbT with size O(t). By Lemma 9, we know with probability at least
1−m exp(−Ω(d)), there exists an σ2

L4 -netN ′ for F̂TbT with sizeO(t+m). According to the proofs

24

Under review as a conference paper at ICLR 2021

of Lemma 8 and Lemma 9, it’s not hard to verify thatN ∪N ′ is still an 11σ2

L4 -net for F̂TbT and FTbT .
That means, for any η ∈ [1/L, η̃], we have

|FTbT (η)− FTbT (η′)|, |F̂TbT (η)− F̂TbT (η′)| ≤ 11σ2

L4
,

for η′ = arg minη′′∈N∪N ′,η′′≤η(η − η′′).
Taking a union bound over N ∪N ′, we have with probability at least 1−O(t+m) exp(−Ω(m)),∣∣∣F̂TbT (η)− FTbT (η)

∣∣∣ ≤ σ2

L4

for all η ∈ N ∪N ′.
Overall, we know with probability at least 1 − m exp(−Ω(d)) − O(t + m) exp(−Ω(m)), for all
η ∈ [1/L, η̃],

|FTbT (η)− F̂TbT (η)|
≤|FTbT (η)− FTbT (η′)|+ |F̂TbT (η)− F̂TbT (η′)|+ |F̂TbT (η′)− FTbT (η′)|

≤23σ2

L4
≤ σ2

L3
,

where η′ = arg minη′′∈N∪N ′,η′′≤η(η − η′′). We use the fact that L = 100 in the last inequality. �

B.2.4 PROOFS OF TECHNICAL LEMMAS

Proof of Lemma 1. Recall thatXtrain is an n×dmatix with n = cdwhere c ∈ [1/4, 3/4].According
to Lemma 48, with probability at least 1− 2 exp(−t2/2), we have

√
d−
√
cd− t ≤ σi(Xtrain) ≤

√
d+
√
cd+ t,

for all i ∈ [n].

Since Htrain = 1/nX>trainXtrain, we know λi(Htrain) = 1/nσ2
i (Xtrain). Since c ∈ [1

4 ,
3
4], we have

1
cd (
√
d +
√
cd)2 ≤ 100 − c′ and 1

cd (
√
d −
√
cd)2 ≥ 1

100 + c′, for some constant c′. Therefore, we
know with probability at least 1− exp(−Ω(d)),

1

100
≤ λi(Htrain) ≤ 100,

for all i ∈ [n].

Similarly, since there exists constant c′′ such that
√
d +
√
cd ≤ (10 − c′′)

√
d and

√
d −
√
cd ≥

(1/10 + c′′)
√
d, we know with probability at least 1− exp(−Ω(d)),

1

10

√
d ≤ σi(Xtrain) ≤ 10

√
d,

for all i ∈ [n]. Choosing L = 100 finishes the proof. �

Proof of Lemma 5. We prove that for any training set Strain, 1
{
E1 ∩ Ē2(η′)

}
≥ 1

{
E1 ∩ Ē2(η′)

}
for

any η′ > η. This is trivially true if E1 is false on Strain. Therefore, we focus on the case when E1 holds
for Strain. Suppose ηc is the smallest step size such that the GD sequence gets truncated. Let {w′τ,ηc}
be the GD sequence without truncation. There must exists τ ≤ t such that

∥∥w′τ,ηc∥∥ ≥ 4
√
Lσ. We

only need to prove that
∥∥w′τ,η∥∥ ≥ 4

√
Lσ for any η ≥ ηc. We prove this by showing the derivative

of
∥∥w′τ,η∥∥2

in η is non-negative assuming
∥∥w′τ,η∥∥2 ≥ 4

√
Lσ.

Recall the recursion of w′τ,η as w′τ,η = wtrain − (I − ηHtrain)τwtrain. If τ is an odd number, it’s

clear that ∂
∂η

∥∥w′τ,η∥∥2
is non-negative at any η ≥ 0. From now on, we assume τ is an even number.

Actually in this case, ∂
∂η

∥∥w′τ,η∥∥2
can be negative for some η. However, we can prove the derivative

must be non-negative assuming
∥∥w′τ,η∥∥2 ≥ 4

√
Lσ.

25

Under review as a conference paper at ICLR 2021

Suppose the eigenvalue decomposition of Htrain is
∑n
i=1 λiuiu

>
i with λ1 ≥ · · ·λn. Denote ci as

〈wtrain, ui〉 . Let λj be the smallest eigenvalue such that (1− ηλj) ≤ −1. This implies λi ≤ 2/η for
any i ≥ j + 1. We can write down

∥∥w′τ,η∥∥2
as follows

∥∥w′τ,η∥∥2
=

j∑
i=1

(
1− (1− ηλi)t

)2
c2i +

n∑
i=j+1

(
1− (1− ηλi)t

)2
c2i

≤
j∑
i=1

(
1− (1− ηλi)t

)2
c2i + ‖wtrain‖2 .

Since E1 holds, we know ‖wtrain‖2 ≤ 4Lσ2. Combining with
∥∥w′τ,η∥∥2 ≥ 16Lσ2, we have∑j

i=1 (1− (1− ηλi)t)
2
c2i ≥ 12Lσ2. We can lower bound the derivative as follows,

∂

∂η
‖wτ,η‖2 =

j∑
i=1

2tλi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i +

n∑
i=j+1

2tλi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i

≥2t

j∑
i=1

λi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i − 2t

2

η

n∑
i=j+1

c2i

≥2t

j∑
i=1

λi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i − 2t× 8Lσ2/η.

Then, we only need to show that
∑j
i=1 λi(1 − ηλi)t−1 (1− (1− ηλi)t) c2i is larger than 8Lσ2/η.

We have
j∑
i=1

λi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i =

j∑
i=1

λi
(1− ηλi)t−1

1− (1− ηλi)t
(
1− (1− ηλi)t

)2
c2i

=

j∑
i=1

λi
(ηλi − 1)t−1

(ηλi − 1)t − 1

(
1− (1− ηλi)t

)2
c2i

=

j∑
i=1

λi
(ηλi − 1)t

(ηλi − 1)t − 1

1

ηλi − 1

(
1− (1− ηλi)t

)2
c2i

≥
j∑
i=1

1

η

(
1− (1− ηλi)t

)2
c2i ≥ 12Lσ2/η > 8Lσ2/η.

�

Proof of Lemma 6. Similar as the analysis in Lemma 2, conditioning on E1, we know the GD
sequence never exceeds the norm threshold for any η ∈ [0, 2/L]. This then implies

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
= 0,

for all η ∈ [0, 2/L].

Let {w′τ,η} be the GD sequence without truncation. For any step size η ∈ [2.5L,∞], conditioning
on E1, we have∥∥w′t,η∥∥ ≥ ((η/L− 1)t − 1

)
‖wtrain‖ ≥

(
1.5t − 1

)(σ

4
√
L
− 1

)
≥ 4
√
Lσ,

where the last inequality holds as long as σ ≥ 5
√
L, t ≥ c2 for some constant c2. Therefore, we

know when η ∈ [2.5L,∞), 1
{
E1 ∩ Ē2(η)

}
= 1 {E1}. Then, we have for any η ≥ 2.5L,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
≥ 1

2L

(
4
√
Lσ − 2

√
Lσ
)2

Pr[E1] ≥ 2σ2 Pr[E1] ≥ σ2

L3
,

26

Under review as a conference paper at ICLR 2021

where the last inequality uses Pr[E1] ≥ 1− exp(−Ω(d)) and assume d ≥ c4 for some constant c4.

Overall, we know E 1
2 ‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
equals zero for all η ∈ [0, 2/L] and is at

least σ
2

L3 for all η ∈ [2.5L,∞). By definition, we know η̃ ∈ (1/L, 3L). �

Proof of Lemma 7. Recall that F̂TbT (η) := 1
m

∑m
k=1 ∆TbT (η, Pk). We prove that each

∆TbT (η, Pk) is O(1)-subexponential. We can further write ∆TbT (η, Pk) as follows,

∆TbT (η, Pk) =
1

2

∥∥∥w(k)
t,η − w∗k − (X

(k)
train)†ξ

(k)
train

∥∥∥2

H
(k)
train

≤1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2 ∥∥∥H(k)
train

∥∥∥+
1

2n

∥∥∥ξ(k)
train

∥∥∥2

+
∥∥∥w(k)

t,η − w∗k
∥∥∥(1√

n

∥∥∥ξ(k)
train

∥∥∥)(1√
n

∥∥∥X(k)
train

∥∥∥) .
We can write

∥∥∥H(k)
train

∥∥∥ as σ2
max(1√

n
X

(k)
train). According to Lemma 47, we know σmax(X

(k)
train) −

Eσmax(X
(k)
train) is O(1)-subgaussian, which implies that σmax(1√

n
X

(k)
train) − Eσmax(1√

n
X

(k)
train) is

O(1/
√
d)-subgaussian. Since Eσmax(1√

n
X

(k)
train) is a constant, we know σmax(1√

n
X

(k)
train) is O(1)-

subgaussian and σ2
max(1√

n
X

(k)
train) is O(1)-subexponential. Similarly, we know both 1

2n

∥∥∥ξ(k)
train

∥∥∥2

and(
1√
n

∥∥∥X(k)
train

∥∥∥)(1√
n

∥∥∥ξ(k)
train

∥∥∥) are O(1)-subexponential.

Suppose σ is a constant, we know
∥∥∥w(k)

t,η − w∗k
∥∥∥ is upper bounded by a constant. Then, we

know ∆TbT (η, Pk) is O(1)-subexponential. Therefore, F̂TbT (η) is the average of m i.i.d. O(1)-
subexponential random variables. By standard concentration inequality, we know for any 1 > ε > 0,
with probability at least 1− exp(−Ω(ε2m)),∣∣∣F̂TbT (η)− FTbT (η)

∣∣∣ ≤ ε.
�

B.3 TRAIN-BY-VALIDATION (GD)

In this section, we show that the optimal step size under F̂TbV is Θ(1/t). Furthermore, we show un-
der this optimal step size, GD sequence makes constant progress towards the ground truth. Precisely,
we prove the following theorem.

Theorem 8. Let the meta objective F̂TbV (n1,n2)(η) be as defined in Equation 2 with n1, n2 ∈
[d/4, 3d/4]. Assume noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of
training tasks m ≥ c3 and dimension d ≥ c4 log(t) for certain constants c2, c3, c4. With probability
at least 0.99 in the sampling of training tasks, we have

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg minη≥0 F̂TbV (n1,n2)(η), where the expectation is taken over new tasks.

In this section, we still use L to denote constant 100. We start from analyzing the behavior of the
population meta-objective FTbV for step sizes within [0, 1/L]. We show the optimal step size within
this range is Θ(1/t) and GD sequence moves towards w∗ under the optimal step size. This serves
as step 1 in Section B.1 We defer the proof of Lemma 10 into Section B.3.1.
Lemma 10. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 and
dimension d ≥ c4 for some constants c2, c4. There exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3

such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C +

σ2

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

27

Under review as a conference paper at ICLR 2021

To relate the behavior of FTbV to the behavior of F̂TbV , we prove the following generalization
result for step sizes in [0, 1/L]. This serves as step 3 in Section B.1. The proof is deferred into
Section B.3.2.
Lemma 11. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for some constant c4. With probability at
least 1−O(1/ε) exp(−Ω(ε2m)),

|F̂TbV (η)− FTbV (η)| ≤ ε,
for all η ∈ [0, 1/L].

In Lemma 12, we show the empirical meta objective F̂TbV is high for all step size larger than 1/L,
which then implies η∗valid ∈ [0, 1/L]. This serves as step 2 in Section B.1. We prove this lemma in
Section B.3.3.
Lemma 12. Suppose σ is a large constant. Assume t ≥ c2, d ≥ c4 log(t) for some constants c2, c4.
With probability at least 1− exp(−Ω(m)),

F̂TbV (η) ≥C ′σ2 +
1

2
σ2,

for all η ≥ 1/L, where C ′ is a positive constant independent with σ.

Combining Lemma 10, Lemma 11 and Lemma 12, we give the proof of Theorem 8.

Proof of Theorem 8. According to Lemma 10, we know as long as d and t are larger than certain
constants, there exists η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C + σ2/2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C + σ2/2,∀η ∈ [0, η1] ∪ [η3, 1/L],

for some positive constant C.

Choosing ε = min(1, C/10) in Lemma 11, we know as long as d is larger than certain constant,
with probability at least 1− exp(−Ω(m)),

|F̂TbV (η)− FTbV (η)| ≤ C/10,

for all η ∈ [0, 1/L].

Therefore,

F̂TbV (η2) ≤ 1

2
‖w∗‖2 − 8

10
C + σ2/2

F̂TbV (η) ≥ 1

2
‖w∗‖2 − 7

10
C + σ2/2,∀η ∈ [0, η1] ∪ [η3, 1/L].

By Lemma 12, we know as long as t ≥ c2, d ≥ c4 log(t) for some constants c2, c4, with probability
at least 1− exp(−Ω(m)),

F̂TbV (η) ≥ C ′σ2 +
1

2
σ2,

for all η ≥ 1/L. As long as σ ≥ 1/
√
C ′, we have F̂TbV (η) ≥ 1 + 1

2σ
2 for all η ≥ 1/L. Combining

with F̂TbV (η2) ≤ 1
2 ‖w

∗‖2− 8
10C+σ2/2, we know η∗valid ∈ [0, 1/L]. Furthermore, since F̂TbV (η) ≥

1
2 ‖w

∗‖2 − 7
10C + σ2/2,∀η ∈ [0, η1] ∪ [η3, 1/L], we have η1 ≤ η∗valid ≤ η3.

Recall that η1, η3 = Θ(1/t), we know η∗valid = Θ(1/t). At the optimal step size, we have

FTbV (η∗valid) ≤ F̂TbV (η∗valid) + C/10 ≤ F̂TbV (η2) + C/10 ≤ 1

2
‖w∗‖2 − 7

10
C + σ2/2.

Since FTbV (η∗valid) = E 1
2

∥∥wt,η∗valid
− w∗

∥∥2
+ σ2/2, we have

E
∥∥wt,η∗valid

− w∗
∥∥2 ≤ ‖w∗‖2 − 7

5
C.

Choosing m to be at least certain constant, this holds with probability at least 0.99. �

28

Under review as a conference paper at ICLR 2021

B.3.1 BEHAVIOR OF FTbV FOR η ∈ [0, 1/L]

In this section, we study the behavior of FTbV when η ∈ [0, 1/L]. We prove the following Lemma.
Lemma 10. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 and
dimension d ≥ c4 for some constants c2, c4. There exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3

such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C +

σ2

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

It’s not hard to verify that FTbV (η) = E1/2 ‖wt,η − w∗‖2+σ2/2. For convenience, denoteQ(η) :=

1/2 ‖wt,η − w∗‖2 . In order to prove Lemma 10, we only need to show that EQ(η2) ≤ 1
2 ‖w

∗‖2 −
9
10C and EQ(η) ≥ 1

2 ‖w
∗‖2 − 6

10C for all η ∈ [0, η1] ∪ [η3, 1/L]. In Lemma 13, we first show that
this happens with high probability over the sampling of tasks.
Lemma 13. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 for
certain constant c2. Then, with probability at least 1−exp(−Ω(d)) over the sampling of tasks, there
exists η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

Q(η2) :=
1

2
‖wt,η2 − w∗‖

2 ≤ 1

2
‖w∗‖2 − C

Q(η) :=
1

2
‖wt,η − w∗‖2 ≥

1

2
‖w∗‖2 − C

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

Since we are in the small step size regime, we know the GD sequence converges with high proba-
bility and will not be truncated. For now, let’s assume wt,η = Bt,ηw

∗
train +Bt,η(Xtrain)†ξtrain, where

Bt,η = I − (I − ηHtrain)t. We have

Q(η) =
1

2

∥∥Bt,ηw∗train +Bt,η(Xtrain)†ξtrain − w∗
∥∥2

=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
=

1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 − 〈Bt,ηw∗train, w

∗〉

+
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
.

In Lemma 14, we show that with high probability the crossing term〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
is negligible for all η ∈ [0, 1/L]. By Hoeffding’s in-

equality, we know the crossing term is small for any fixed η. Constructing an ε-net for the crossing
term in η, we can take a union bound and show it’s small for all η ∈ [0, 1/L]. We defer the proof of
Lemma 14 to Section B.3.4.
Lemma 14. Assume σ is a constant. For any 1 > ε > 0, we know with probability at least
1−O(1/ε) exp(−Ω(ε2d)),∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤ ε,
for all η ∈ [0, 1/L].

Denote

G(η) :=
1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 − 〈Bt,ηw∗train, w

∗〉 .

Choosing ε = C/4 in Lemma 14, we only need to show G(η2) ≤ ‖w∗‖2 − 5C/4 and G(η) ≥
‖w∗‖2 − C/4 for all η ∈ [0, η1] ∪ [η3, 1/L].

29

Under review as a conference paper at ICLR 2021

We first show that there exists η2 = Θ(1/t) such that G(η2) ≤ 1
2 ‖w

∗‖2 − 5C/4 for some constant
C. It’s not hard to show that 1

2 ‖Bt,ηw
∗
train‖

2
+ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

= O(η2t2σ2). In Lemma 15,
we show that the improvement 〈Bt,ηw∗train, w

∗〉 = Ω(ηt) is linear in η. Therefore there exists η2 =

Θ(1/t) such that G(η2) ≤ 1
2 ‖w

∗‖2 − 5C/4 for some constant C. We defer the proof of Lemma 15
to Section B.3.4.
Lemma 15. For any fixed η ∈ [0, L/t] with probability at least 1− exp(−Ω(d)),

〈Bt,ηw∗train, w
∗〉 ≥ ηt

16L
.

To lower bound G(η) for small η, we notice

G(η) ≥ 1

2
‖w∗‖2 − 〈Bt,ηw∗train, w

∗〉 .

We can show that 〈Bt,ηw∗train, w
∗〉 = O(ηt). Therefore, there exists η1 = Θ(1/t) such that

〈Bt,ηw∗train, w
∗〉 ≤ C/4 for all η ∈ [0, η1].

To lower bound G(η) for large η, we lower bound G(η) using the noise square term,

G(η) ≥ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2
.

We show that with high probability
∥∥Bt,η(Xtrain)†ξtrain

∥∥2
= Ω(σ2) for all η ∈ [log(2)L/t, 1/L].

Therefore, as long as σ is larger than some constant, there exists η3 = Θ(1/t) such that G(η) ≥
1
2 ‖w

∗‖2 for all η ∈ [η3, 1/L].

Combing Lemma 14 and Lemma 15, we give a complete proof for Lemma 13.

Proof of Lemma 13. Recall that

Q(η) =
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
=G(η) +

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
We first show that with probability at least 1 − exp(−Ω(d)), there exist η1, η2, η3 = Θ(1/t) with
η1 < η2 < η3 such that G(η2) ≤ 1/2 ‖w∗‖2 − 5C/4 and G(η) ≥ 1/2 ‖w∗‖2 − C/4 for all
η ∈ [0, η1] ∪ [η3, 1/L].

According to Lemma 1, we know with probability at least 1−exp(−Ω(d)),
√
d/
√
L ≤ σi(Xtrain) ≤√

Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] with L = 100.

Upper bounding G(η2): We can expand G(η) as follows:

G(η) :=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

=
1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 − 〈Bt,ηw∗train, w

∗〉 .

Recall that Bt,η = I − (I − ηHtrain)t, for any vector w in the span of Htrain,

‖Bt,ηw‖ =
∥∥(I − (I − ηHtrain)t

)
w
∥∥ ≤ Lηt ‖w‖ .

According to Lemma 45, we know with probability at least 1 − exp(−Ω(d)), ‖ξtrain‖ ≤
√
dσ.

Therefore, we have
1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≤ L2η2t2/2 + L3η2t2σ2/2 ≤ L3η2t2σ2,

where the second inequality uses σ, L ≥ 1. According to Lemma 15, for any fixed η ∈ [0, L/t], with
probability at least 1− exp(−Ω(d)), 〈Bt,ηw∗train, w

∗〉 ≥ ηt
16L . Therefore,

G(η) ≤ 1

2
‖w∗‖2 + L3η2t2σ2 − ηt

16L
≤ 1

2
‖w∗‖2 − ηt

32L
,

30

Under review as a conference paper at ICLR 2021

where the second inequality holds as long as η ≤ 1
32L4σ2t . Choosing η2 := 1

32L4σ2t , we have

G(η2) ≤ 1

2
‖w∗‖2 − 1

1024L5σ2
=

1

2
‖w∗‖2 − 5C

4
,

where C = 1
819.2L5σ2 . Note C is a constant as σ, L are constants.

Lower bounding G(η) for η ∈ [0, η1] : Now, we prove that there exists η1 = Θ(1/t) with
η1 < η2 such that for any η ∈ [0, η1], G(η) ≥ 1

2 ‖w
∗‖2 − C

4 . Recall that

G(η) =
1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 − 〈Bt,ηw∗train, w

∗〉 .

≥1

2
‖w∗‖2 − 〈Bt,ηw∗train, w

∗〉 .

Since |〈Bt,ηw∗train, w
∗〉| ≤ Lηt, we know for any η ∈ [0, η1],

G(η) ≥ 1

2
‖w∗‖2 − Lη1t.

Choosing η1 = C
4Lt , we have for any η ∈ [0, η1],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Lower bounding G(η) for η ∈ [η3, 1/L]: Now, we prove that there exists η3 = Θ(1/t) with
η3 > η2 such that for all η ∈ [η3, 1/L],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Recall that

G(η) =
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≥ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2
.

According to Lemma 45, we know with probability at least 1 − exp(−Ω(d)),
√
dσ

2
√

2
≤ ‖ξtrain‖ .

Therefore, ∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≥

(
1− e−ηt/L

)2 σ2

8L
≥ σ2

32L
,

where the last inequality assumes η ≥ log(2)L/t. As long as t ≥ log(2)L2, we have log(2)L/t ≤
1/L. Choosing η3 = log(2)L/t, we know for all η ∈ [η3, 1/L],

G(η) ≥ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≥ σ2

64L
.

Note that 1
2 ‖w

∗‖2 = 1/2. Therefore, as long as σ ≥ 8
√
L, we have

G(η) ≥ 1

2
‖w∗‖2

for all η ∈ [η3, 1/L].

Overall, we have shown that there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that G(η2) ≤
1/2 ‖w∗‖2 − 5C/4 and G(η) ≥ 1/2 ‖w∗‖2 − C/4 for all η ∈ [0, η1] ∪ [η3, 1/L]. Recall that
Q(η) = G(η) +

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
. Choosing ε = C/4 in Lemma 14, we know

with probability at least 1 − exp(−Ω(d)),
∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤ C/4 for all
η ∈ [0, 1/L]. Therefore, we know Q(η2) ≤ 1/2 ‖w∗‖2 − C and Q(η) ≥ 1/2 ‖w∗‖2 − C/2 for all
η ∈ [0, η1] ∪ [η3, 1/L]. �

Next, we give the proof of Lemma 10.

31

Under review as a conference paper at ICLR 2021

Proof of Lemma 10. Recall that FTbV (η) = E1/2 ‖wt,η − w∗‖2 + σ2

2 . For convenience, denote
Q(η) := 1/2 ‖wt,η − w∗‖2 . In order to prove Lemma 10, we only need to show that EQ(η2) ≤
1
2 ‖w

∗‖2 − 9
10C and EQ(η) ≥ 1

2 ‖w
∗‖2 − 6

10C for all η ∈ [0, η1] ∪ [η3, 1/L].

According to Lemma 13, as long as σ is a large enough constant c1 and t is at least certain constant
c2, with probability at least 1 − exp(−Ω(d)) over the sampling of Strain, there exists η1, η2, η3 =
Θ(1/t) with η1 < η2 < η3 such that

Q(η2) := 1/2 ‖wt,η2 − w∗‖
2 ≤ 1

2
‖w∗‖2 − C

Q(η) := 1/2 ‖wt,η − w∗‖2 ≥
1

2
‖w∗‖2 − C

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant. Call this event E . Suppose the probability that E happens is 1 − δ.
We can write EQ(η) as follows,

EQ(η) = E[Q(η)|E] Pr[E] + E[Q(η)|Ē] Pr[Ē].

According to the algorithm, we know ‖wt,η‖ is always bounded by 4
√
Lσ. Therefore, Q(η) :=

1/2 ‖wt,η − w∗‖2 ≤ 13Lσ2. When η = η2, we have

EQ(η2) ≤
(

1

2
‖w∗‖2 − C

)
(1− δ) + 13Lσ2δ

=
1

2
‖w∗‖2 − δ

2
− C + (C + 13Lσ2)δ

≤1

2
‖w∗‖2 − 9C

10
,

where the last inequality assumes δ ≤ C
10C+130Lσ2 .

When η ∈ [0, η1] ∪ [η3, 1/L], we have

EQ(η2) ≥
(

1

2
‖w∗‖2 − C

2

)
(1− δ)− 13Lσ2δ

=
1

2
‖w∗‖2 − δ

2
− (1− δ)C

2
− 13Lσ2δ

≥1

2
‖w∗‖2 − C

2
− (1/2 + 13Lσ2)δ

≥1

2
‖w∗‖2 − 6C

10
,

where the last inequality holds as long as δ ≤ C
5C+130Lσ2 .

According to Lemma 13, we know δ ≤ exp(−Ω(d)). Therefore, the conditions for δ can be satisfied
as long as d is larger than certain constant. �

B.3.2 GENERALIZATION FOR η ∈ [0, 1/L]

In this section, we show F̂TbV is point-wise close to FTbV for all η ∈ [0, 1/L]. Recall Lemma 11 as
follows.
Lemma 11. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for some constant c4. With probability at
least 1−O(1/ε) exp(−Ω(ε2m)),

|F̂TbV (η)− FTbV (η)| ≤ ε,

for all η ∈ [0, 1/L].

In order to prove Lemma 11, let’s first show that for a fixed η with high probability F̂TbV (η) is close
to FTbV (η). Similar as in Lemma 7, we show each ∆TbV (η, Pk) is O(1)-subexponential. We defer
its proof to Section B.3.4.

32

Under review as a conference paper at ICLR 2021

Lemma 16. Suppose σ is a constant. For any fixed η ∈ [0, 1/L] and any 1 > ε > 0, with probability
at least 1− exp(−Ω(ε2m)), ∣∣∣F̂TbV (η)− FTbV (η)

∣∣∣ ≤ ε.
Next, we show that there exists an ε-net for FTbV with size O(1/ε). By ε-net, we mean there exists
a finite set Nε of step size such that |FTbV (η) − FTbV (η′)| ≤ ε for any η ∈ [0, 1/L] and η′ ∈
arg minη∈Nε |η − η′|. We defer the proof of Lemma 17 to Section B.3.4.
Lemma 17. Suppose σ is a constant. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for constant c4.
There exists an ε-net Nε for FTbV with |Nε| = O(1/ε). That means, for any η ∈ [0, 1/L],

|FTbV (η)− FTbV (η′)| ≤ ε,
for η′ ∈ arg minη∈Nε |η − η′|.

Next, we show that with high probability, there also exists an ε-net for F̂TbV with size O(1/ε).

Lemma 18. Suppose σ is a constant. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for constant c4.
With probability at least 1−exp(−Ω(ε2m)), there exists an ε-netN ′ε for F̂TbV with |Nε| = O(1/ε).
That means, for any η ∈ [0, 1/L],

|F̂TbV (η)− F̂TbV (η′)| ≤ ε,
for η′ ∈ arg minη∈Nε |η − η′|.

Combing Lemma 16, Lemma 17 and Lemma 18, now we give the proof of Lemma 11.

Proof of Lemma 11. The proof is very similar as in Lemma 4. By Lemma 16, we know with
probability at least 1 − exp(−Ω(ε2m)),

∣∣∣F̂TbV (η)− FTbV (η)
∣∣∣ ≤ ε for any fixed η. By Lemma 17

and Lemma 18, we know as long as d = Ω(log(1/ε)), with probability at least 1− exp(−Ω(ε2m)),

there exists ε-net Nε and N ′ε for FTbV and F̂TbV respectively. Here, both of Nε and N ′ε have size
O(1/ε). According to the proofs of Lemma 17 and Lemma 18, it’s not hard to verify that Nε ∪N ′ε
is still an ε-net for F̂TbV and FTbV . That means, for any η ∈ [0, 1/L], we have

|FTbV (η)− FTbV (η′)|, |F̂TbV (η)− F̂TbV (η′)| ≤ ε,
for η′ ∈ arg minη∈Nε∪N ′ε |η − η

′|.

Taking a union bound over Nε ∪N ′ε, we have with probability at least 1−O(1/ε) exp(−Ω(ε2m)),∣∣∣F̂TbV (η)− FTbV (η)
∣∣∣ ≤ ε

for any η ∈ Nε ∪N ′ε.
Overall, we know with probability at least 1−O(1/ε) exp(−Ω(ε2m)), for all η ∈ [0, 1/L],

|FTbV (η)− F̂TbV (η)|
≤|FTbV (η)− FTbV (η′)|+ |F̂TbV (η)− F̂TbV (η′)|+ |F̂TbV (η′)− FTbV (η′)|
≤3ε,

where η′ ∈ arg minη∈Nε∪N ′ε |η − η
′|. Changing ε to ε′/3 finishes the proof. �

B.3.3 LOWER BOUNDING F̂TbV FOR η ∈ [1/L,∞)

In this section, we prove F̂TbV is large for any step size η ≥ 1/L. Therefore, the optimal step size
η∗valid must be smaller than F̂TbV .
Lemma 12. Suppose σ is a large constant. Assume t ≥ c2, d ≥ c4 log(t) for some constants c2, c4.
With probability at least 1− exp(−Ω(m)),

F̂TbV (η) ≥C ′σ2 +
1

2
σ2,

for all η ≥ 1/L, where C ′ is a positive constant independent with σ.

33

Under review as a conference paper at ICLR 2021

When the step size is very large (larger than 3L), we know the GD sequence gets truncated with
high probability, which immediately implies the loss is high. The proof of Lemma 19 is deferred
into Section B.3.4.
Lemma 19. Assume t ≥ c2, d ≥ c4 for some constants c2, c4. With probability at least
1− exp(−Ω(m)),

F̂TbV (η) ≥ σ2,

for all η ∈ [3L,∞)

The case for step size within [1/L, 3L] requires more efforts. We give the proof of Lemma 20 in this
section later.
Lemma 20. Suppose σ is a large constant. Assume t ≥ c2, d ≥ c4 log(t) for some constants c2, c4.
With probability at least 1− exp(−Ω(m)),

F̂TbV (η) ≥C4σ
2 +

1

2
σ2,

for all η ∈ [1/L, 3L], where C4 is a positive constant independent with σ.

With the above two lemmas, Lemma 12 is just a combination of them.

Proof of Lemma 12. The result follows by taking a union bound and choosing C ′ = min(C4, 1/2).
�

In the remaining of this section, we give the proof of Lemma 20. When the step size is between 1/L
and 3L, if the GD sequence has a reasonable probability of diverging, we can still show the loss is
high similar as before. If not, we need to show the GD sequence overfits the noise in the training
set, which incurs a high loss.

Recall that the noise term is roughly 1
2

∥∥(I − (I − ηHtrain)t)(Xtrain)†ξtrain
∥∥2

. When η ∈ [1/L, 3L],
the eigenvalues of I − ηHtrain in Strain subspace can be negative. If all the non-zero n eigenvalues
of Htrain have the same value, there exists a step size such that the eigenvalues of I − ηHtrain in
subspace Strain is −1. If t is even, the eigenvalues of I − (I − ηHtrain)t in Strain subspace are zero,
which means GD sequence does not catch any noise in Strain.

Notice that the above problematic case cannot happen when the eigenvalues of Htrain are spread out.
Basically, when there are two different eigenvalues, there won’t exist any large η that can cancel
both directions at the same time. In Lemma 21, we show with constant probability, the eigenvalues
of Htrain are indeed spread out. The proof is deferred into Section B.3.4.
Lemma 21. Let the top n eigenvalues of Htrain be λ1 ≥ · · · ≥ λn. Assume dimension d ≥ c4 for
certain constant c4. There exist positive constants µ, µ′, µ′′ such that with probability at least µ,

λµ′n − λn−µ′n+1 ≥ µ′′.

Next, we utilize this variance in eigenvalues to prove that the GD sequence has to learn a constant
fraction of the noise in training set.
Lemma 22. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 and
dimension d ≥ c4 for some constants c2, c4. Then, with probability at least C1

‖Bt,ηwtrain − w∗‖2Htrain
≥ C2σ

2,

for all η ∈ [1/L, 3L], where C1, C2 are positive constants.

Proof of Lemma 22. Let E1 be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤

L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let E3 be the event that

√
d/
√
L ≤ σi(Xvalid) ≤√

Ld and 1/L ≤ λi(Hvalid) ≤ L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξvalid‖ ≤

√
dσ. According to

Lemma 1 and Lemma 45, we know both E1 and E3 hold with probability at least 1− exp(−Ω(d)).

Let the top n eigenvalues of Htrain be λ1 ≥ · · · ≥ λn. According to Lemma 21, assuming d is larger
than certain constant, we know there exist positive constants µ1, µ2, µ3 such that with probability at
least µ1, λµ2n − λn−µ2n+1 ≥ µ3. Call this event E2.

34

Under review as a conference paper at ICLR 2021

Let S1 and S2 be the span of the bottom and top µ2n eigenvectors of Htrain respectively. Ac-
cording to Lemma 45, we know ‖ξtrain‖ ≥

√
d

4 σ with probability at least 1 − exp(−Ω(d)).

Let P1 ∈ Rn×n be a rank-µ2n projection matrix such that the column span of (Xtrain)†P1

is S1. By Johnson-Lindenstrauss Lemma, we know with probability at least 1 − exp(−Ω(d)),∥∥ProjP1
ξtrain

∥∥ ≥ √
µ2

2 ‖ξtrain‖ . Taking a union bound, with probability at least 1 − exp(−Ω(d)),∥∥ProjP1
ξtrain

∥∥ ≥ √µ2dσ
8 . Similarly, we can define P2 for the S2 subspace and show with probability

at least 1− exp(−Ω(d)),
∥∥ProjP2

ξtrain
∥∥ ≥ √µ2dσ

8 . Call the intersection of both events as E4, which
happens with with probability at least 1− exp(−Ω(d)).

Taking a union bound, we know E1 ∩ E2 ∩ E3 ∩ E4 holds with probability at least µ1/2 as long as d
is larger than certain constant. Through the proof, we assume E1 ∩ E2 ∩ E3 ∩ E4 holds.

Let’s first lower bound ‖Bt,ηwtrain − w∗train‖ as follows,

‖Bt,ηwtrain − w∗train‖ =
∥∥Bt,η (w∗train + (Xtrain)†ξtrain

)
− w∗train

∥∥
≥
(∥∥Bt,η (w∗train + (Xtrain)†ξtrain

)∥∥− 1
)

Recall that we define S1 and S2 as the span of the bottom and top µ2n eigenvectors of Htrain re-
spectively. We rely on S1 to lower bound ‖wt,η − w∗‖ when η is small and rely on S2 when η is
large.

Case 1: Let σS1

min(Bt,η) be the smallest singular value of Bt,η within S1 subspace. If
ηλn−µ2n+1 ≤ 2− µ3/(2L), we have

σS1

min(Bt,η) ≥ min

(
1−

(
1− 1

L2

)t
, 1−

(
1− µ3

2L

)t)
≥ 1

2
,

where the second inequality assumes t ≥ max(L2, 2L/µ3) log 2. Then, we have

‖wt,η − w∗‖ ≥
(
σS1

min(Bt,η)
(∥∥ProjS1

(Xtrain)†ξtrain
∥∥− 1

)
− 1
)

≥
(

1

2

(√
µ2σ

8
√
L
− 1

)
− 1

)
≥
√
µ2σ

32
√
L
,

where the second inequality uses
∥∥ProjP1

ξtrain
∥∥ ≥ √µ2dσ

8 and the last inequality assumes σ ≥ 48
√
L√

µ2
.

Case 2: If ηλn−µ2n+1 > 2−µ3/(2L), we have ηλµ2n ≥ 2 +µ3/(2L) since λµ2n−λn−µ2n+1 ≥
µ3 and η ≥ 1/L. Let σS2

min(Bt,η) be the smallest singular value of Bt,η within S2 subspace. We
have

σS2

min(Bt,η) ≥
((

1 +
µ3

2L

)t
− 1

)
≥ 1

2
,

where the last inequality assumes t ≥ 4L/µ3. Then, similar as in Case 1, we can also prove
‖wt,η − w∗‖ ≥

√
µ2σ

32
√
L
.

Therefore, we have

‖Bt,ηwtrain − w∗‖2Htrain
= ‖Bt,ηwtrain − w∗train‖

2
Htrain
≥ 1

L
‖Bt,ηwtrain − w∗train‖

2 ≥ µ2σ
2

1024L2
,

for all η ∈ [1/L, 3L]. We denote C1 := µ1/2 and C2 = µ2

1024L2 . �

Before we present the proof of Lemma 20, we still need a technical lemma that shows the noise in
Svalid concentrates at its mean. The proof of Lemma 23 is deferred into Section B.3.4.
Lemma 23. Suppose σ is constant. For any 1 > ε > 0, with probability at least 1 −
O(t/ε) exp(−Ω(ε2d)), λn(Hvalid) ≥ 1/L and

‖wt,η − wvalid‖2Hvalid
≥ ‖wt,η − w∗‖2Hvalid

+ (1− ε)σ2,

for all η ∈ [1/L, 3L].

35

Under review as a conference paper at ICLR 2021

Combing the above lemmas, we give the proof of Lemma 20.

Proof of Lemma 20. According to Lemma 23, we know given 1 > ε > 0, with probability at least
1 − O(t/ε) exp(−Ω(ε2d)), λn(Hvalid) ≥ 1/L and ‖wt,η − wvalid‖2Hvalid

≥ ‖wt,η − w∗‖2Hvalid
+ (1 −

ε)σ2 for all η ∈ [1/L, 3L]. Call this event E1. Suppose Pr[E1] ≥ 1− δ/2, where δ will be specifies
later. For each training set S(k)

train, we also define E(k)
1 . By concentration, we know with probability

at least 1− exp(−Ω(δ2m)), 1/m
∑m
k=1 1

{
E(k)

1

}
≥ 1− δ.

According to Lemma 22, we know there exist constants C1, C2 such that with probability at least
C1,
‖Bt,ηwtrain − w∗‖2Htrain

≥ C2σ
2 for all η ∈ [1/L, 3L]. Call this event E2. For each training set

S
(k)
train, we also define E(k)

2 . By concentration, we know with probability at least 1 − exp(−Ω(m)),

1/m
∑m
k=1 1

{
E(k)

2

}
≥ C1/2.

For any step size η ∈ [1/L, 3L], we can lower bound F̂TbV (η) as follows,

F̂TbV (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

1

{
E(k)

1

}
≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1

}
+

1

2
(1− ε)(1− δ)σ2

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2

}
+

1

2
(1− ε)(1− δ)σ2.

As long as δ ≤ C1/4, we know 1
m

∑m
k=1 1

{
E(k)

1 ∩ E(k)
2

}
≥ C1/4. Let Ē3(η) be the event that w(k)

t,η

gets truncated with step size η. We have

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2

}
=

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2 ∩ E(k)

3

}
+

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2 ∩ Ē(k)

3

}
.

If 1
m

∑m
k=1 1

{
E(k)

1 ∩ E(k)
2 ∩ Ē(k)

3

}
≥ C1/8, we have

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2

}
≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2 ∩ Ē(k)

3

}
≥C1

8
× 9σ2

2
=

9C1σ
2

16
.

Here, we lower bound
∥∥∥w(k)

t,η − w∗k
∥∥∥2

Hvalid

by 9σ2 when the sequence gets truncated.

If 1
m

∑m
k=1 1

{
E(k)

1 ∩ E(k)
2 ∩ Ē(k)

3

}
< C1/8, we know 1

m

∑m
k=1 1

{
E(k)

1 ∩ E(k)
2 ∩ E(k)

3

}
≥ C1/8.

Then, we have
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2

}
≥ 1

m

m∑
k=1

1

2

∥∥∥B(k)
t,η wtrain − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2 ∩ E(k)

3

}
≥C1

8
× C2σ

2

2
=
C1C2σ

2

16

36

Under review as a conference paper at ICLR 2021

Letting C3 = min(9C1

16 ,
C1C2

16), we then have

F̂TbV (η) ≥ C3σ
2 +

1

2
(1− ε)(1− δ)σ2 ≥ C3σ

2

2
+

1

2
σ2,

where the last inequality chooses δ = ε = C3/2. In order for Pr[E1] ≥ 1 − δ/2, we only need
d ≥ c4 log(t) for some constant c4. Replacing C3/2 by C4 finishes the proof. �

B.3.4 PROOFS OF TECHNICAL LEMMAS

Proof of Lemma 14. We first show that for a fixed η ∈ [0, 1/L], the crossing term∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain
〉∣∣ is small with high probability. We can write down the cross-

ing term as follows:〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
=
〈
[(Xtrain)†]>Bt,η(Bt,ηw

∗
train − w∗), ξtrain

〉
.

Noticing that ξtrain is independent with [(Xtrain)†]>Bt,η(Bt,ηw
∗
train − w∗), we will use Hoeffding’s

inequality to bound
∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣. According to Lemma 1, we know with
probability at least 1 − exp(−Ω(d)),

√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for

all i ∈ [n] with L = 100. Since η ≤ 1/L, we know ‖Bt,η‖ = ‖I − (I − ηHtrain)t‖ ≤ 1. Therefore,
we have ∥∥[(Xtrain)†]>Bt,η(Bt,ηw

∗
train − w∗)

∥∥ ≤ 2
√
L√
d
,

for any η ∈ [0, 1/L]. Then, for any ε > 0, by Hoeffding’s inequality, with probability at least
1− exp(−Ω(ε2d)), ∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤ ε.
Next, we construct an ε-net on η and show the crossing term is small for all η ∈ [0, 1/L]. Let

g(η) :=
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
.

We compute the derivative of g(η) as follows:

g′(η) =
〈
tHtrain(I − ηHtrain)t−1w∗train, Bt,η(Xtrain)†ξtrain

〉
+
〈
Bt,ηw

∗
train − w∗, tHtrain(I − ηHtrain)t−1(Xtrain)†ξtrain

〉
By Lemma 45, we know with probability at least 1− exp(−Ω(d)), ‖ξtrain‖ ≤

√
dσ. Therefore,

|g′(η)| ≤ L1.5t
(

1− η

L

)t−1

σ + 2L1.5t
(

1− η

L

)t−1

σ = 3L1.5t
(

1− η

L

)t−1

σ.

We can control |g′(η)| in different regimes:

• For η ∈ [0, L
t−1], we have |g′(η)| ≤ 3L1.5tσ.

• Given any 1 ≤ i ≤ log t− 1, for any η ∈ (iL
t−1 ,

(i+1)L
t−1], we have |g′(η)| ≤ 3L1.5tσ

ei .

• For any η ∈ (L log t
t−1 , 1/L], we have |g′(η)| ≤ 3L1.5σ.

Fix any ε > 0, we know there exists an ε-net Nε with size

|Nε| =
1

ε

(
L

t− 1

log t−1∑
i=0

3L1.5tσ

ei
+

(
1

L
− L log t

t− 1

)
3L1.5σ

)

≤1

ε

(
3eL2.5tσ

t− 1
+ 3
√
Lσ

)
= O(

1

ε
)

such that for any η ∈ [0, 1/L], there exists η′ ∈ Nε with |g(η)− g(η′)| ≤ ε. Note that L = 100 and
σ is a constant. Taking a union bound over Nε and all the other bad events, we have with probability
at least 1− exp(−Ω(d))−O(1/ε) exp(−Ω(ε2d)), for all η ∈ [0, 1/L],∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤ ε+ ε = 2ε.

37

Under review as a conference paper at ICLR 2021

As long as 1 > ε > 0, this happens with probability at least 1 − O(1/ε) exp(−Ω(ε2d)). Replacing
ε by ε′/2 finishes the proof. �

Proof of Lemma 15. According to Lemma 1, we know with probability at least 1 − exp(−Ω(d)),
1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] with L = 100.We can lower bound 〈Bt,ηw∗train, w

∗〉 as follows,

〈Bt,ηw∗train, w
∗〉 =

〈(
I − (I − ηHtrain)t

)
w∗train, w

∗
train

〉
≥λmin

(
I − (I − ηHtrain)t

)
‖w∗train‖

2

≥
(

1− exp

(
−ηt
L

))
‖w∗train‖

2
.

By Johnson-Lindenstrauss lemma (Lemma 49), we know with probability at least 1 −
2 exp(−cε2d/4),

‖w∗train‖ ≥
1

2
(1− ε) ‖w∗‖ =

1

2
(1− ε).

Then, we know with probability at least 1− 2 exp(−cε2d/4)− exp(−Ω(d)),

〈Bt,ηw∗train, w
∗〉 ≥

(
1− exp

(
−ηt
L

))
‖w∗train‖

2

≥
(

1− exp

(
−ηt
L

))
1

4
(1− ε)2

≥1− 2ε

4

(
1− exp

(
−ηt
L

))
Since ex ≤ 1− x+ x2/2 for any x ≤ 0, we know exp(−ηt/L) ≤ 1− ηt/L+ η2t2/(2L2). For any
η ≤ L/t,we have exp(−ηt/L) ≤ 1−ηt/(2L). Then with probability at least 1−2 exp(−cε2d/4)−
exp(−Ω(d)),

〈Bt,ηw∗train, w
∗〉 ≥1− 2ε

4

ηt

2L

≥ ηt

16L
,

where the second inequality holds by choosing ε = 1/4. �

Proof of Lemma 16. Recall that

F̂TbV (η) :=
1

m

m∑
k=1

∆TbV (η, Pk)

For each individual loss function ∆TbV (η, Pk), we have

∆TbV (η, Pk) =
1

2

∥∥∥w(k)
t,η − w∗ − (X

(k)
valid)†ξ

(k)
valid

∥∥∥2

H
(k)
valid

=
1

2

∥∥∥w(k)
t,η − w∗

∥∥∥2

H
(k)
valid

+
1

2n

∥∥∥ξ(k)
valid

∥∥∥2

+

〈
w

(k)
t,η − w∗,

1

n
(X

(k)
valid)>ξ

(k)
valid

〉
≤25Lσ2

2

∥∥∥H(k)
valid

∥∥∥+
1

2n

∥∥∥ξ(k)
valid

∥∥∥2

+ 5
√
Lσ

(
1√
n

∥∥∥X(k)
valid

∥∥∥)(1√
n

∥∥∥ξ(k)
valid

∥∥∥)

We can write
∥∥∥H(k)

valid

∥∥∥ as σ2
max(1√

n
X

(k)
valid). According to Lemma 47, we know σmax(X

(k)
valid) −

Eσmax(X
(k)
valid) is O(1)-subgaussian, which implies that σmax(1√

n
X

(k)
valid) − Eσmax(1√

n
X

(k)
valid) is

O(1/
√
d)-subgaussian. Since Eσmax(1√

n
X

(k)
valid) is a constant, we know σmax(1√

n
X

(k)
valid) is O(1)-

subgaussian and σ2
max(1√

n
X

(k)
valid) is O(1)-subexponential. Similarly, we know both 1

2n

∥∥∥ξ(k)
valid

∥∥∥2

and(
1√
n

∥∥∥X(k)
valid

∥∥∥)(1√
n

∥∥∥ξ(k)
valid

∥∥∥) are O(1)-subexponential. This further implies that ∆TbV (η, Pk) is

38

Under review as a conference paper at ICLR 2021

O(1)-subexponential. Therefore, F̂TbV is the average of m i.i.d. O(1)-subexponential random vari-
ables. By standard concentration inequality, we know for any 1 > ε > 0, with probability at least
1− exp(−Ω(ε2m)), ∣∣∣F̂TbV (η)− FTbV (η)

∣∣∣ ≤ ε.
�

Proof of Lemma 17. Recall that

FTbV (η) =E
1

2
‖wt,η − w∗‖2 + σ2/2.

We only need to construct an ε-net for E 1
2 ‖wt,η − w

∗‖2. Let E be the event that
√
d/
√
L ≤

σi(Xtrain) ≤
√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and ‖ξtrain‖ ≤

√
dσ. We have

E
1

2
‖wt,η − w∗‖2 = E

[
1

2
‖wt,η − w∗‖2 |E

]
Pr[E] + E

[
1

2
‖wt,η − w∗‖2 |Ē

]
Pr[Ē]

We first construct an ε-net for E
[

1
2 ‖wt,η − w

∗‖2 |E
]

Pr[E]. Let Q(η) := 1
2 ‖wt,η − w

∗‖2 . Fix a
training set Strain under which event E holds. We show that Q(η) has desirable lipschitz property.

The derivative of Q(η) can be computed as follows,

Q′(η) =
〈
tHtrain(I − ηHtrain)t−1wtrain, wt,η − w∗

〉
.

Conditioning on E , we have

|Q′(η)| = O(1)t(1− η

L
)t−1.

Therefore, we have ∣∣∣∣ ∂∂ηE
[

1

2
‖wt,η − w∗‖2 |E

]
Pr[E]

∣∣∣∣ = O(1)t(1− η

L
)t−1.

Similar as in Lemma 14, for any ε > 0, we know there exists an ε-net Nε with size O(1/ε) such that
for any η ∈ [0, 1/L],∣∣∣∣E [1

2
‖wt,η − w∗‖2 |E

]
Pr[E]− E

[
1

2
‖wt,η′ − w∗‖2 |E

]
Pr[E]

∣∣∣∣ ≤ ε
for η′ ∈ arg minη∈Nε |η − η′|.

Suppose the probability of Ē is δ. We have

E
[

1

2
‖wt,η − w∗‖2 |Ē

]
Pr[Ē] ≤ 25Lσ2

2
δ ≤ ε,

where the last inequality assumes δ ≤ 2ε
25Lσ2 . According to Lemma 1 and Lemma 45, we know

δ := Pr[Ē] ≤ exp(−Ω(d)). Therefore, given any ε > 0, there exists constant c4 such that δ ≤ 2ε
25Lσ2

as long as d ≥ c4 log(1/ε).

Overall, for any ε > 0, as long as d = Ω(log(1/ε)), there exists Nε with size O(1/ε) such that for
any η ∈ [0, 1/L], |FTbV (η) − FTbV (η′)| ≤ 3ε for η′ ∈ arg minη∈Nε |η − η′|. Changing ε to ε′/3
finishes the proof. �

Proof of Lemma 18. For each k ∈ [m], let Ek be the event that
√
d/
√
L ≤ σi(X

(k)
train) ≤

√
Ld for

any i ∈ [n] and
∥∥∥ξ(k)

train

∥∥∥ ≤ √dσ. Then, we can write the empirical meta objective as follows,

F̂TbV (η) :=
1

m

m∑
k=1

∆TbT (η, Pk)1Ek +
1

m

m∑
k=1

∆TbT (η, Pk)1Ēk .

39

Under review as a conference paper at ICLR 2021

Similar as Lemma 17, we will show that the first term has desirable Lipschitz property and the
second term is small. Now, let’s focus on the first term 1

m

∑m
k=1 ∆TbT (η, Pk)1Ek . Recall that

∆TbT (η, Pk) =
1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

=
1

2

∥∥∥B(k)
t,η w

(k)
train − w

∗ − (X
(k)
valid)†ξ

(k)
valid

∥∥∥2

H
(k)
valid

.

Computing the derivative of ∆TbT (η, Pk) in terms of η, we have

∂

∂η
∆TbT (η, Pk) =

〈
tH

(k)
train(I − ηH(k)

train)t−1w
(k)
train, H

(k)
valid

(
w

(k)
t,η − w∗ − (X

(k)
valid)†ξ

(k)
valid

)〉
Conditioning on Ek, we can bound the derivative,∣∣∣∣ ∂∂η∆TbT (η, Pk)

∣∣∣∣ = O(1)t
(

1− η

L

)t−1
(∥∥∥H(k)

valid

∥∥∥+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥)) .
Therefore, we have∣∣∣∣∣ 1

m

m∑
k=1

∂

∂η
∆TbT (η, Pk)1Ek

∣∣∣∣∣ = O(1)t
(

1− η

L

)t−1 1

m

m∑
k=1

(∥∥∥H(k)
valid

∥∥∥+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥)) .
Similar as in Lemma 16, we know both

∥∥∥H(k)
valid

∥∥∥ and
(

1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥) are
O(1)-subexponential. Therefore, we know with probability at least 1 − exp(−Ω(m)),
1
m

∑m
k=1

(∥∥∥H(k)
valid

∥∥∥+
(

1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥)) = O(1). This further shows that with proba-
bility at least 1− exp(−Ω(m)),∣∣∣∣∣ 1

m

m∑
k=1

∂

∂η
∆TbT (η, Pk)1Ek

∣∣∣∣∣ = O(1)t
(

1− η

L

)t−1

.

Similar as in Lemma 14, we can show that for any ε > 0, there exists an ε-net with size O(1/ε) for
1
m

∑m
k=1 ∆TbT (η, Pk)1Ek .

Next, we show that the second term 1
m

∑m
k=1 ∆TbT (η, Pk)1Ēk is small with high probability. Ac-

cording to the proof in Lemma 16, we know

∆TbT (η, Pk) = O(1)

(∥∥∥H(k)
valid

∥∥∥+
1

d

∥∥∥ξ(k)
valid

∥∥∥2

+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥))
Therefore, there exists constant C such that

1

m

m∑
k=1

∆TbT (η, Pk)1Ēk ≤ C
1

m

m∑
k=1

(∥∥∥H(k)
valid

∥∥∥+
1

d

∥∥∥ξ(k)
valid

∥∥∥2

+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥))1Ēk .
It’s not hard to verify that

(∥∥∥H(k)
valid

∥∥∥+ 1
d

∥∥∥ξ(k)
valid

∥∥∥2

+
(

1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥))1Ēk is O(1)-

subexponential. Suppose the expectation of
(∥∥∥H(k)

valid

∥∥∥+ 1
d

∥∥∥ξ(k)
valid

∥∥∥2

+
(

1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥))
is µ, which is a constant. Suppose the probability of Ēk be δ. We know the expectation of(∥∥∥H(k)

valid

∥∥∥+ 1
d

∥∥∥ξ(k)
valid

∥∥∥2

+
(

1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥))1Ēk is µδ due to independence. By

standard concentration inequality, for any 1 > ε > 0, with probability at least 1− exp(−Ω(ε2m)),

C
1

m

m∑
k=1

(∥∥∥H(k)
valid

∥∥∥+
1

d

∥∥∥ξ(k)
valid

∥∥∥2

+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)(1√
d

∥∥∥ξ(k)
valid

∥∥∥))1Ēk ≤ Cµδ+Cε ≤ (C+1)ε,

where the second inequality assumes δ ≤ ε/(Cµ). By Lemma 1 and Lemma 45, we know δ ≤
exp(−Ω(d)). Therefore, as long as d ≥ c4 log(1/ε) for some constant c4, we have δ ≤ ε/(Cµ).

40

Under review as a conference paper at ICLR 2021

Overall, we know that as long as d ≥ c4 log(1/ε), with probability at least 1 − exp(−Ω(ε2m)),
there exists N ′ε with |N ′ε| = O(1/ε) such that for any η ∈ [0, 1/L],

|F̂TbV (η)− F̂TbV (η′)| ≤ (2C + 3)ε,

for η′ ∈ arg minη∈Nε |η − η′|. Changing ε to ε′/(2C + 3) finishes the proof. �

Proof of Lemma 19. Let E1 be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤

L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let E2 be the event that

√
d/
√
L ≤ σi(Xvalid) ≤√

Ld and 1/L ≤ λi(Hvalid) ≤ L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξvalid‖ ≤

√
dσ. According to

Lemma 1 and Lemma 45, we know both E1 and E2 hold with probability at least 1 − exp(−Ω(d)).

Assuming d ≥ c4 for certain constant c4, we know Pr[E1 ∩E2] ≥ 2/3. Also define E(k)
1 and E(k)

2 on
each training set S(k)

train. By concentration, we know with probability at least 1− exp(−Ω(m)),

1

m

m∑
k=1

1

{
E(k)

1 ∩ E(k)
2

}
≥ 1

2
.

It’s easy to verify that conditioning on E1, the GD sequence always exceeds the norm threshold and
gets truncated for η ≥ 3L as long as t is larger than certain constant. We can lower bound F̂TbV for
any η ≥ 3L as follows,

F̂TbV (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

1 {E1 ∩ E2} ≥ 2σ2 1

2
= σ2,

where the last inequality lower bounds
∥∥∥w(k)

t,η − w
(k)
valid

∥∥∥2

H
(k)
valid

by 2σ2 when w(k)
t,η gets truncated. �

Proof of Lemma 21. We first show that with constant probability in Xtrain, the variance of the
eigenvalues of Htrain is lower bounded by a constant. Let λ̄ be 1/n

∑n
i=1 λi. Specifically, we show

1/n
∑n
i=1 λ

2
i − λ̄2 is lower bounded by a constant.

Let’s first compute the variance of the eigenvalues in expectation. Let the i-th row of Xtrain be x>i .
We have,

E
[
λ̄2
]

=
1

n2
E

[(
tr
(

1

n
X>trainXtrain

))2
]

=
1

n4
E

(n∑
i=1

‖xi‖2
)2

=
1

n4

n∑
i=1

E ‖xi‖4 +
1

n4

∑
1≤i 6=j≤n

E ‖xi‖2 ‖xj‖2

=
1

n4

(
nd(d+ 2) + n(n− 1)d2

)
=
d2

n2
+

2d

n3
.

Similarly, we compute E
[
1/n

∑n
i=1 λ

2
i

]
as follows,

E

[
1

n

n∑
i=1

λ2
i

]
=

1

n3
E
[
tr
(
X>trainXtrainX

>
trainXtrain

)]
=

1

n3

n∑
i=1

E ‖xi‖4 +
1

n3

∑
1≤i 6=j≤n

E 〈xi, xj〉2

=
1

n3
(nd(d+ 2) + n(n− 1)d) =

d2

n2
+
d

n
+

d

n2

Therefore, we have

E

[
1

n

n∑
i=1

λ2
i − λ̄2

]
=
d

n
+

d

n2
− 2d

n3
≥ d

n
≥ 4

3
,

41

Under review as a conference paper at ICLR 2021

where the first inequality assumes n ≥ 2 and the last inequality uses n ≤ 3d
4 . Since n ≥ 1

4d, we
know n ≥ 2 as long as d ≥ 8.

Let E be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for i ∈ [n] with

L = 100. According to Lemma 1, we know E happens with probability at least 1 − exp(−Ω(d)).
Let 1 {E} be the indicator function for event E . Next we show that E[1/n

∑n
i=1(λi − λ̄)2

1 {E}] is
also lower bounded.

It’s clear that E
[
λ̄2
1 {E}

]
is upper bounded by E

[
λ̄2
]
. In order to lower bound

E
[

1
n

∑n
i=1 λ

2
i1 {E}

]
, we first show that E

[
1
n

∑n
i=1 λ

2
i1
{
Ē
}]

is small. We can decompose
E
[

1
n

∑n
i=1 λ

2
i1
{
Ē
}]

into two parts,

E

[
1

n

n∑
i=1

λ2
i1
{
Ē
}]

=E

[
1

n

n∑
i=1

λ2
i1
{
Ē and λ1 ≤ L

}]
+ E

[
1

n

n∑
i=1

λ2
i1 {λ1 > L}

]
.

The first term can be bounded by L2 Pr[Ē]. Since Pr[Ē] ≤ exp(−Ω(d)), we know the first term
is at most 1/6 as long as d is larger than certain constant. The second term can be bounded by
E
[
λ2

11 {λ1 > L}
]
. According to Lemma 48, we know Pr[λ1 ≥ L+ t] ≤ exp(−Ω(dt)). Then, it’s

not hard to verify that E
[
λ2

11 {λ1 > L}
]

= O(1/d) that is bounded by 1/6 as long as d is larger
than certain constant. Overall, we know E

[
1
n

∑n
i=1 λ

2
i1 {E}

]
≥ E

[
1
n

∑n
i=1 λ

2
i

]
− 1/3. Combing

with the upper bounds on E
[
λ̄2
1 {E}

]
, we have E

[
1
n

∑n
i=1(λi − λ̄)2

1 {E}
]
≥ 1.

Since conditioning on E , λi is bounded by L for all i ∈ [n]. In order to make
E
[

1
n

∑n
i=1(λi − λ̄)2

1 {E}
]

lower bounded by one, there must exist positive constants µ1, µ2 such
that with probability at least µ1, E holds and 1

n

∑n
i=1(λi − λ̄)2 ≥ µ2.

Since 1
n

∑n
i=1(λi−λ̄)2 ≥ µ2 and λi ≤ L for all i ∈ [n],we know there exists a subset of eigenvalues

S ⊂ {λi}n1 with size µ3n such that |λi − λ̄| ≥ µ4 for all λi ∈ S, where µ3, µ4 are both positive
constants.

If at least half of eigenvalues in S are larger than λ̄, we know at least µ3µ4n
2L number of eigenval-

ues are smaller than λ̄. Otherwise, the expectation of the eigenvalues will be larger than λ̄, which
contradicts the definition of λ̄. Similarly, if at least half of eigenvalues in S are smaller than λ̄,
we know at least µ3µ4n

2L number of eigenvalues are larger than λ̄. Denote µ5 := µ3µ4

2L . We know
λµ5n − λn−µ5n+1 ≥ µ4. �

Proof of Lemma 23. Let E1 be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤

L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let E3 be the event that

√
d/
√
L ≤ σi(Xvalid) ≤√

Ld and 1/L ≤ λi(Hvalid) ≤ L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξvalid‖ ≤

√
dσ. According to

Lemma 1 and Lemma 45, we know both E1 and E3 hold with probability at least 1 − exp(−Ω(d)).
In this proof, we assume both properties hold and take a union bound at the end.

We can lower bound ‖wt,η − wvalid‖2Hvalid
as follows,

‖wt,η − wvalid‖2Hvalid
=
∥∥wt,η − w∗ − (Xvalid)†ξvalid

∥∥2

Hvalid

≥‖wt,η − w∗‖2Hvalid
+

1

n
‖ξvalid‖2 − 2

∣∣〈wt,η − w∗, Hvalid(Xvalid)†ξvalid
〉∣∣ .

For the second term, by Lemma 45, we know for any 1 > ε > 0, with probability at least 1 −
exp(−Ω(ε2d)),

1

n
‖ξvalid‖2 ≥ (1− ε)σ2.

We can write down the third term as
〈
[(Xvalid)†]>Hvalid(wt,η − w∗), ξvalid

〉
. Suppose σ is a constant,

we know
∥∥[(Xvalid)†]>Hvalid(wt,η − w∗)

∥∥ = O(1/
√
d). Therefore, for a fixed η ∈ [1/L, 3L], we

have with probability at least 1− exp(−Ω(ε2d)),∣∣〈wt,η − w∗, Hvalid(Xvalid)†ξvalid
〉∣∣ ≤ ε.

42

Under review as a conference paper at ICLR 2021

To prove this crossing term is small for all η ∈ [1/L, 3L], we need to construct an ε-net for the
crossing term. Similar as in Lemma 9, we can show there exists an ε-net for the crossing term with
size O(t/ε). Taking a union bound over this ε-net, we are able to show with probability at least
1−O(t/ε) exp(−Ω(ε2d)), ∣∣〈wt,η − w∗, Hvalid(Xvalid)†ξvalid

〉∣∣ ≤ ε,
for all η ∈ [1/L, 3L].

Overall, we have with probability at least 1−O(t/ε) exp(−Ω(ε2d)),

‖wt,η − wvalid‖2Hvalid
≥‖wt,η − w∗‖2Hvalid

+
1

n
‖ξvalid‖2 − 2

∣∣〈wt,η − w∗, Hvalid(Xvalid)†ξvalid
〉∣∣

≥‖wt,η − w∗‖2Hvalid
+ (1− ε)σ2 − 2ε ≥ (1− 3ε)σ2,

for all η ∈ [1/L, 3L], where the last inequality uses σ ≥ 1. The proof finishes as we change 3ε to
ε′. �

C PROOFS OF TRAIN-BY-TRAIN WITH LARGE NUMBER OF SAMPLES (GD)

In this section, we give the proof of Theorem 6. We show when the size of each training set n
and the the number of training tasks m are large enough, train-by-train also performs well. Recall
Theorem 6 as follows.
Theorem 6. Let F̂TbT (n)(η) be as defined in Equation 1. Assume noise level is a constant c1. Given
any 1 > ε > 0, assume training set size n ≥ cd

ε2 log(nmεd), unroll length t ≥ c2 log(nεd), number
of training tasks m ≥ c3n

2

ε4d2 log(tnmεd) and dimension d ≥ c4 for certain constants c, c2, c3, c4. With
high probability in the sampling of training tasks, we have

E
∥∥wt,η∗train

− w∗
∥∥2 ≤ (1 + ε)

dσ2

n
,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

In the proof, we use the same notations defined in Section B. On each training task P , in Lemma 24
we show the meta-loss can be decomposed into two terms:

∆TbT (η, P) =
1

2
‖wt,η − wtrain‖2Htrain

+
1

2n

∥∥(In − ProjXtrain
)ξtrain

∥∥2
,

where wtrain = w∗ + (Xtrain)†ξtrain. Recall that Xtrain is a n × d matrix with its i-th row as x>i . The
pseudo-inverse (Xtrain)† has dimension d×n satisfying X†trainXtrain = Id. Here, ProjXtrain

∈ Rn×n is
a projection matrix onto the column span of Xtrain.

In Lemma 24, we show with a constant step size, the first term in ∆TbT (η, P) is exponentially small.
The second term is basically the projection of the noise on the orthogonal subspace of the data span.
We show this term concentrates well on its mean. This lemma servers as step 1 in Section B.1. The
proof of Lemma 24 is deferred into Section C.1.
Lemma 24. Assume n ≥ 40d. Given any 1 > ε > 0, with probability at least 1−m exp(−Ω(n))−
exp(−Ω(ε4md/n)),

F̂TbT (2/3) ≤ 20(1− 1

3
)2tσ2 +

n− d
2n

σ2 +
ε2dσ2

20n
.

In the next lemma, we show the empirical meta objective is large when η exceeds certain threshold.
We define this threshold η̂ such that for any step size larger than η̂ the GD sequence has reasonable
probability being truncated. In the proof, we rely on the truncated sequences to argue the meta-
objective must be high. The precise definition of η̂ is in Definition 2. This lemma serves as step 2 in
Section B.1. We leave the proof of Lemma 25 into Section C.2.
Lemma 25. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Assume n ≥ cd, t ≥ c2, d ≥ c4 for
some constants c, c2, c4. With probability at least 1− exp(−Ω(ε4md2/n2)),

F̂TbT (η) ≥ ε2dσ2

8n
+
n− d

2n
σ2 − ε2dσ2

20n
,

for all η > η̂.

43

Under review as a conference paper at ICLR 2021

By Lemma 24 and Lemma 25, we know when t is reasonably large, F̂TbT (η) is larger than
F̂TbT (2/3) for all step sizes η > η̂. This means the optimal step size η̂ must lie in [0, η̂]. In
Lemma 26, we show a generalization result for η ∈ [0, η̂]. This serves as step 3 in Section B.1.
We prove this lemma in Section C.3.
Lemma 26. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Suppose σ is a constant. Assume n ≥
c log(nεd)d, t ≥ c2, d ≥ c4 for some constants c, c2, c4.With probability at least 1−m exp(−Ω(n))−
O(tnε2d +m) exp(−Ω(mε4d2/n2)),

|FTbT (η)− F̂TbT (η)| ≤ 17ε2dσ2

n
,

for all η ∈ [0, η̂],

Combining Lemma 24, Lemma 25 and Lemma 26, we present the proof of Theorem 6 as follows.

Proof of Theorem 6. According to Lemma 24, assuming n ≥ 40d, given any 1/2 > ε > 0,
with probability at least 1−m exp(−Ω(n))− exp(−Ω(ε4md/n)), F̂TbT (2/3) ≤ 20(1− 1

3)2tσ2 +
n−d
2n σ

2 + ε2dσ2

20n . As long as t ≥ c2 log(nεd) for certain constant c2, we have

F̂TbT (2/3) ≤ n− d
2n

σ2 +
7ε2dσ2

100n
.

Let η̂ be as defined in Definition 2 with the same ε. According to Lemma 25, as long as n ≥ cd, t ≥
c2, d ≥ c4 with probability at least 1− exp(−Ω(ε4md2/n2)),

F̂TbT (η) ≥ ε2dσ2

8n
+
n− d

2n
σ2 − ε2dσ2

20n
=
n− d

2n
σ2 +

7.5ε2dσ2

100n

for all η > η̂. We have F̂TbT (η) > F̂TbT (2/3) for all η ≥ η̂. This implies that η∗train is within [0, η̂]

and F̂TbT (η∗train) ≤ F̂TbT (2/3) ≤ n−d
2n σ

2 + 7ε2dσ2

100n .

By Lemma 26, assuming σ is a constant and assuming n ≥ c log(nεd)d for some constant c, we have
with probability at least 1−m exp(−Ω(n))−O(tnε2d +m) exp(−Ω(mε4d2/n2)),

|FTbT (η)− F̂TbT (η)| ≤ 17ε2dσ2

n
,

for all η ∈ [0, η̂]. This then implies

FTbT (η∗train) ≤ F̂TbT (η∗train) +
17ε2dσ2

n
≤ n− d

2n
σ2 +

24ε2dσ2

n
.

By the analysis in Lemma 24, we have

FTbT (η∗train) =E
1

2

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
+ E

1

2n

∥∥(In − ProjXtrain
)ξtrain

∥∥2

=E
1

2

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
+
n− d

2n
σ2.

Therefore, we know E 1
2

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
≤ 24ε2dσ2

n . Next, we show this implies

E
∥∥wt,η∗train

− w∗
∥∥2

is small.

Let E be the event that 1− ε ≤ λi(Htrain) ≤ 1 + ε for all i ∈ [d]. According to Lemma 27, we know
Pr[E] ≥ 1 − exp(−Ω(ε2n)) as long as n ≥ 10d/ε2. Then, we can decompose E

∥∥wt,η∗train
− w∗

∥∥2

as follows,

E
∥∥wt,η∗train

− w∗
∥∥2

= E
∥∥wt,η∗train

− w∗
∥∥2
1 {E}+ E

∥∥wt,η∗train
− w∗

∥∥2
1
{
Ē
}
.

Let’s first show the second term is small. Due to the truncation in our algorithm, we know∥∥wt,η∗train
− w∗

∥∥2 ≤ 412σ2, which then implies E
∥∥wt,η∗train

− w∗
∥∥2
1
{
Ē
}
≤ 412σ2 exp(−Ω(ε2n)).

As long as n ≥ c
ε2 log(nεd) for some constant c, we have E

∥∥wt,η∗train
− w∗

∥∥2
1
{
Ē
}
≤ εdσ2

n .

44

Under review as a conference paper at ICLR 2021

We can upper bound the first term by Young’s inequality,

E
∥∥wt,η∗train

− w∗
∥∥2
1 {E} ≤ (1 +

1

ε
)E
∥∥wt,η∗train

− wtrain
∥∥2
1 {E}+ (1 + ε)E ‖wtrain − w∗‖2 1 {E} .

Conditioning on E , we have
∥∥wt,η∗train

− wtrain
∥∥2

Htrain
≥ (1 − ε)

∥∥wt,η∗train
− wtrain

∥∥2
which implies∥∥wt,η∗train

− wtrain
∥∥2 ≤ (1 + 2ε)

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
as long as ε ≤ 1/2. Similarly, we also have

‖wtrain − w∗‖2 ≤ (1 + 2ε) ‖wtrain − w∗‖2Htrain
. Then, we have

E
∥∥wt,η∗train

− w∗
∥∥2
1 {E}

≤(1 +
1

ε
)(1 + 2ε)E

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
1 {E}+ (1 + ε)(1 + 2ε)E ‖wtrain − w∗‖2Htrain

1 {E}

≤(5 +
1

ε
)E
∥∥wt,η∗train

− wtrain
∥∥2

Htrain
+ (1 + 5ε)E ‖wtrain − w∗‖2Htrain

≤(5 +
1

ε
)
48ε2dσ2

n
+ (1 + 5ε)

dσ2

n
≤ (1 + 293ε)

dσ2

n
.

Overall, we have E
∥∥wt,η∗train

− w∗
∥∥2 ≤ (1 + 293ε)dσ

2

n + εdσ2

n = (1 + 294ε)dσ
2

n . Combining all
the conditions, we know this holds with probability at least 0.99 as long as σ is a constant c1,
n ≥ cd

ε2 log(nmεd), t ≥ c2 log(nεd),m ≥ c3n
2

ε4d2 log(tnmεd), d ≥ c4 for some constants c, c2, c3, c4. We
finish the proof by choosing ε = ε′/294. �

C.1 UPPER BOUNDING F̂TbT (2/3)

In this section, we show there exists a step size that achieves small empirical meta objective. On
each training task P , we show the meta-loss can be decomposed into two terms:

∆TbT (η, P) =
1

2n

n∑
i=1

(
〈wt,η − wtrain, xi〉 −

(
ξi − x>i X

†
trainξtrain

))2

=
1

2
‖wt,η − wtrain‖2Htrain

+
1

2n

∥∥(In − ProjXtrain
)ξtrain

∥∥2
,

where wtrain = w∗+ (Xtrain)†ξtrain. In Lemma 24, we show with a constant step size, the first term is
exponentially small and the second term concentrates on its mean.

Lemma 24. Assume n ≥ 40d. Given any 1 > ε > 0, with probability at least 1−m exp(−Ω(n))−
exp(−Ω(ε4md/n)),

F̂TbT (2/3) ≤ 20(1− 1

3
)2tσ2 +

n− d
2n

σ2 +
ε2dσ2

20n
.

Before we go to the proof of Lemma 24, let’s first show the covariance matrix Htrain is very close to
identity when n is much larger than d. The proof follows from the concentration of singular values
of random Gaussian matrix (Lemma 48). We leave the proof into Section C.4.

Lemma 27. Given 1 > ε > 0, assume n ≥ 10d/ε2. With probability at least 1− exp(−Ω(ε2n)),

(1− ε)
√
n ≤ σi(Xtrain) ≤ (1 + ε)

√
n and 1− ε ≤ λi(Htrain) ≤ 1 + ε,

for all i ∈ [d].

Now, we are ready to present the proof of Lemma 24.

Proof of Lemma 24. Let’s first look at one training set Strain, in which yi = 〈w∗, xi〉+ ξi for each
sample. Recall the meta-loss as

∆TbT (η, P) =
1

2n

n∑
i=1

(〈wt,η, xi〉 − 〈w∗, xi〉 − ξi)2
.

45

Under review as a conference paper at ICLR 2021

Recall thatXtrain is an n×dmatrix with its i-th row as x>i .With probability 1, we knowXtrain is full
column rank. Denote the pseudo-inverse of Xtrain as X†train ∈ Rd×n that satisfies X†trainXtrain = Id
and XtrainX

†
train = ProjXtrain

, where ProjXtrain
∈ Rn×n is a projection matrix onto the column span of

Xtrain.

Let wtrain be w∗ + X†trainξtrain, where ξtrain is an n-dimensional vector with its i-th entry as ξi. We
have,

∆TbT (η, P)

=
1

2n

n∑
i=1

(
〈wt,η − wtrain, xi〉 −

(
ξi − x>i X

†
trainξtrain

))2

=
1

2
‖wt,η − wtrain‖2Htrain

+
1

2n

∥∥(In − ProjXtrain
)ξtrain

∥∥2 − 1

n

n∑
i=1

〈
wt,η − wtrain, xiξi − xix>i X

†
trainξtrain

〉
.

We first show the crossing term is actually zero. We have,

1

n

n∑
i=1

〈
wt,η − wtrain, xiξi − xix>i X

†
trainξtrain

〉
=

1

n

〈
wt,η − wtrain,

n∑
i=1

xiξi −
n∑
i=1

xix
>
i X
†
trainξtrain

〉

=
1

n

〈
wt,η − wtrain, X

>
trainξtrain −X>trainXtrainX

†
trainξtrain

〉
=

1

n

〈
wt,η − wtrain, X

>
trainξtrain −X>trainξtrain

〉
= 0,

where the second last equality holds because XtrainX
†
train = ProjXtrain

.

We can define w(k)
train as w∗k + (X

(k)
train)†ξ

(k)
train for every training set S(k)

train. Then, we have

F̂TbT (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

+
1

m

m∑
k=1

1

2n

∥∥∥(In − Proj
X

(k)
train

)ξ
(k)
train

∥∥∥2

We first prove that the second term concentrates on its mean. We can concatenate m noise vectors
ξ

(k)
train into a single noise vector ξ̄train with dimension nm.We can also construct a data matrix X̄train ∈
Rnm×dm that consists of X(k)

train as diagonal blocks. Then the second term can be written as

1

2

∥∥∥∥ 1√
nm

(Inm − ProjX̄train
)ξ̄train

∥∥∥∥2

.

According to Lemma 45, with probability at least 1− exp(−Ω(ε4md2/n)),(
1− ε2d

n

)
σ ≤ 1√

nm

∥∥ξ̄train
∥∥ ≤ (1 +

ε2d

n

)
σ.

By Johnson-Lindenstrauss Lemma (Lemma 49), we know with probability at least 1 −
exp(−Ω(ε4md)),

1√
nm

∥∥ProjX̄train
ξ̄train

∥∥ ≥ (1− ε2)

√
md√
mn

1√
nm

∥∥ξ̄train
∥∥ ≥ (1− ε2)

√
d

n
(1− ε2d

n
)σ.

Therefore, we have
∥∥∥ 1√

nm
ξ̄train

∥∥∥2

≤ (1 + 3ε2d
n)σ2 and

∥∥∥ 1√
nm

ProjX̄train
ξ̄train

∥∥∥2

≥ (1 − 2ε2) dnσ
2.

Overall, we know with probability at least 1− exp(−Ω(ε4md/n)),

1

2

∥∥∥∥ 1√
nm

(Inm − ProjX̄train
)ξ̄train

∥∥∥∥2

≤ n− d
2n

σ2 +
5ε2dσ2

2n
.

Now, we show the first term in meta objective is small when we choose a right step size. According
to Lemma 27, we know as long as n ≥ 40d, with probability at least 1 − exp(−Ω(n)),

√
n/2 ≤

46

Under review as a conference paper at ICLR 2021

σi(X
(k)
train) ≤ 3

√
n/2 and 1/2 ≤ λi(H(k)

train) ≤ 3/2, for all i ∈ [d]. According to Lemma 45, we know

with probability at least 1− exp(−Ω(n)),
∥∥∥ξ(k)

train

∥∥∥ ≤ 2
√
nσ. Taking a union bound on m tasks, we

know all these events hold with probability at least 1−m exp(−Ω(n)).

For each k ∈ [m], we have
∥∥∥w(k)

train

∥∥∥ ≤ 1+ 2√
n

2
√
nσ ≤ 5σ. It’s easy to verify that for any step size at

most 2/3, the GD sequence will not be truncated since we choose the threshold norm as 40σ. Then,
for any step size η ≤ 2/3, we have

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

=
1

m

m∑
k=1

1

2

∥∥∥(I − ηH(k)
train)tw

(k)
train

∥∥∥2

H
(k)
train

≤3

4
(1− η

2
)2t25σ2 ≤ 20(1− 1

3
)2tσ2,

where the last inequality chooses η as 2/3.

Overall, we know with probability at least 1−m exp(−Ω(n))− exp(−Ω(ε4md/n)),

F̂TbT (2/3) ≤ 20(1− 1

3
)2tσ2 +

n− d
2n

σ2 +
5ε2dσ2

2n
.

We finish the proof by changing 5ε2

2 by (ε′)2/20. �

C.2 LOWER BOUNDING F̂TbT FOR η ∈ (η̂,∞)

In this section, we show the empirical meta objective is large when the step size exceeds certain
threshold. Recall Lemma 25 as follows.
Lemma 25. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Assume n ≥ cd, t ≥ c2, d ≥ c4 for
some constants c, c2, c4. With probability at least 1− exp(−Ω(ε4md2/n2)),

F̂TbT (η) ≥ ε2dσ2

8n
+
n− d

2n
σ2 − ε2dσ2

20n
,

for all η > η̂.

Roughly speaking, we define η̂ such that for any step size larger than η̂ the GD sequence has a
reasonable probability being truncated. The definition is very similar as η̃ in Definition 1.
Definition 2. Given a training task P, let E1 be the event that

√
n/2 ≤ σi(Xtrain) ≤ 3

√
n/2 and

1/2 ≤ λi(Htrain) ≤ 3/2 for all i ∈ [d] and
√
nσ/2 ≤ ‖ξtrain‖ ≤ 2

√
nσ. Let Ē2(η) be the event that

the GD sequence is truncated with step size η. Given 1 > ε > 0, define η̂ as follows,

η̂ = inf

{
η ≥ 0

∣∣∣∣E1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
≥ ε2dσ2

n

}
.

Similar as in Lemma 5, we show 1
{
E1 ∩ Ē2(η′)

}
≥ 1

{
E1 ∩ Ē2(η)

}
for any η′ ≥ η. This means

conditioning on E1, if a GD sequence gets truncated with step size η, it has to be truncated with any
step size η′ ≥ η. The proof is deferred into Section C.4.
Lemma 28. Fixing a training set Strain, let E1 and Ē2(η) be as defined in Definition 2. We have

1
{
E1 ∩ Ē2(η′)

}
≥ 1

{
E1 ∩ Ē2(η)

}
,

for any η′ ≥ η.

Next, we show η̂ does exist and is a constant. Similar as in Lemma 6, we show that the GD sequence
almost never diverges when η is small and diverges with high probability when η is large. The proof
is left in Section C.4.
Lemma 29. Let η̂ be as defined in Definition 2. Suppose σ is a constant. Assume n ≥ cd, t ≥
c2, d ≥ c4 for some constants c, c2, c4. We have

4

3
< η̃ < 6.

47

Under review as a conference paper at ICLR 2021

Next, we show the empirical loss is large for any η larger than η̃. The proof is very similar as the
proof of Lemma 3.

Proof of Lemma 25. By Lemma 29, we know η̂ is a constant as long as n ≥ cd, t ≥ c2, d ≥ c4
for some constants c, c2, c4. Let E1 and Ē2(η) be as defined in Definition 2. For the simplicity of the
proof, we assume E 1

2 ‖wt,η̂ − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η̂)

}
≥ ε2dσ2

n . The other case can be resolved
using same techniques in Lemma 3

Conditioning on E1, we know 1
2 ‖wt,η̂ − wtrain‖2Htrain

≤ 3
4452σ2. Therefore, we know Pr[E1 ∩

Ē2(η̂)] ≥ 4ε2d
3×452n . For each task k, define E(k)

1 and Ē(k)
2 (η) as the corresponding events on training

set S(k)
train. By Hoeffding’s inequality, we know with probability at least 1− exp(−Ω(ε4md2/n2)),

1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η̂)

}
≥ ε2d

452n
.

By Lemma 28, we know 1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥ 1

{
E(k)

1 ∩ Ē(k)
2 (η̂)

}
for any η ≥ η̂.

Recall that

F̂TbT (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

+
1

m

m∑
k=1

1

2n

∥∥∥(In − Proj
X

(k)
train

)ξ
(k)
train

∥∥∥2

.

We can lower bound the first term for any η > η̂ as follows,

F̂TbT (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥352σ2

4

1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥352σ2

4

1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η̂)

}
≥ ε2dσ2

8n
,

where the second inequality lower bounds the loss for one task by 352σ2 when the sequence gets
truncated.

For the second term, according to the analysis in Lemma 24, with probability at least 1 −
exp(−Ω(ε4md/n)),

1

m

m∑
k=1

1

2n

∥∥∥(In − Proj
X

(k)
train

)ξ
(k)
train

∥∥∥2

≥ n− d
2n

σ2 − ε2dσ2

20n
.

Overall, with probability at least 1− exp(−Ω(ε4md2/n2)),

F̂TbT (η) ≥ ε2dσ2

8n
+
n− d

2n
σ2 − ε2dσ2

20n
,

for all η > η̂. �

C.3 GENERALIZATION FOR η ∈ [0, η̂]

Combing Lemma 24 and Lemma 25, it’s not hard to see that the optimal step size η∗train lies in [0, η̂].
In this section, we show a generalization result for step sizes in [0, η̂]. The proof of Lemma 26 is
given at the end of this section.
Lemma 26. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Suppose σ is a constant. Assume n ≥
c log(nεd)d, t ≥ c2, d ≥ c4 for some constants c, c2, c4.With probability at least 1−m exp(−Ω(n))−
O(tnε2d +m) exp(−Ω(mε4d2/n2)),

|FTbT (η)− F̂TbT (η)| ≤ 17ε2dσ2

n
,

for all η ∈ [0, η̂],

48

Under review as a conference paper at ICLR 2021

In Lemma 30, we show F̂TbT concentrates on FTbT at any fixed step size. The proof is almost the
same as Lemma 7. We omit its proof.
Lemma 30. Suppose σ is a constant. For any fixed η and any 1 > ε > 0, with probability at least
1− exp(−Ω(ε2m)), ∣∣∣F̂TbT (η)− FTbT (η)

∣∣∣ ≤ ε.
Next, we construct an ε-net for FTbT in [0, η̂]. The proof is very similar as in Lemma 8. We defer
its proof into Section C.4.
Lemma 31. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Assume the conditions in Lemma 29
hold. Assume n ≥ c log(nεd)d for some constant c. There exists an 8ε2dσ2

n -net N ⊂ [0, η̂] for FTbT
with |N | = O(tnε2d). That means, for any η ∈ [0, η̂],

|FTbT (η)− FTbT (η′)| ≤ 8ε2dσ2

n
,

for η′ = arg minη′′∈N,η′′≤η(η − η′′).

We also construct an ε-net for the empirical meta objective. The proof is very similar as in Lemma 9.
We leave its proof into Section C.4.
Lemma 32. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Assume the conditions in Lemma 29
hold. Assume n ≥ 40d. With probability at least 1 − m exp(−Ω(n)), there exists an ε2dσ2

n -net
N ′ ⊂ [0, η̂] for F̂TbT with |N ′| = O(tnε2d +m). That means, for any η ∈ [0, η̂],

|F̂TbT (η)− F̂TbT (η′)| ≤ ε2dσ2

n
,

for η′ = arg minη′′∈N ′,η′′≤η(η − η′′).

Combing the above three lemmas, we give the proof of Lemma 26.

Proof of Lemma 26. We assume σ as a constant in this proof. By Lemma 30, we know with
probability at least 1 − exp(−Ω(mε4d2/n2)),

∣∣∣F̂TbT (η)− FTbT (η)
∣∣∣ ≤ ε2dσ2

n for any fixed η. By

Lemma 31, we know as long as n ≥ c log(nεd)d for some constant c, there exists an 8ε2dσ2

n -net N
for FTbT with size O(tnε2d). By Lemma 32, we know with probability at least 1 −m exp(−Ω(n)),
there exists an ε2dσ2

n -net N ′ for F̂TbT with size O(tnε2d + m). It’s not hard to verify that N ∪N ′ is
still an 8ε2dσ2

n -net for F̂TbV and FTbV . That means, for any η ∈ [0, η̂], we have

|FTbT (η)− FTbT (η′)|, |F̂TbT (η)− F̂TbT (η′)| ≤ 8ε2dσ2

n
,

for η′ = arg minη′′∈N∪N ′,η′′≤η(η − η′′).

Taking a union bound over N ∪ N ′, we have with probability at least 1 − O(tnε2d +

m) exp(−Ω(mε4d2/n2)), ∣∣∣F̂TbT (η)− FTbT (η)
∣∣∣ ≤ ε2dσ2

n
for all η ∈ N ∪N ′.
Overall, we know with probability at least 1−m exp(−Ω(n))−O(tnε2d +m) exp(−Ω(mε4d2/n2)),
for all η ∈ [0, η̂],

|FTbT (η)− F̂TbT (η)|
≤|FTbT (η)− FTbT (η′)|+ |F̂TbT (η)− F̂TbT (η′)|+ |F̂TbT (η′)− FTbT (η′)|

≤17ε2dσ2

n
,

where η′ = arg minη′′∈N∪N ′,η′′≤η(η − η′′). �

49

Under review as a conference paper at ICLR 2021

C.4 PROOFS OF TECHNICAL LEMMAS

Proof of Lemma 27. According to Lemma 48, we know with probability at least 1−2 exp(−t2/2),

√
n−
√
d− t ≤ σi(Xtrain) ≤

√
n+
√
d+ t

for all i ∈ [d]. Since d ≤ ε2n
10 , we have

√
n − ε

√
n√

10
− t ≤ σi(Xtrain) ≤

√
n + ε

√
n√

10
+ t. Choosing

t = (1
3 −

1√
10

)ε
√
n, we have with probability at least 1− exp(−Ω(ε2n)),

(1− ε

3
)
√
n ≤ σi(Xtrain) ≤ (1 +

ε

3
)
√
n.

Since λi(Htrain) = 1/nσ2
i (Xtrain), we have 1− ε ≤ λi(Htrain) ≤ 1 + ε. �

Proof of Lemma 28. The proof is almost the same as in Lemma 5. We omit the details here.
Basically, in Lemma 5, the only property we rely on is that the norm threshold is larger than 2 ‖wtrain‖
conditioning on E1. Conditioning on E1, we know ‖wtrain‖ ≤ 5σ. Recall that the norm threshold is
still set as 40σ. So this property is preserved and the previous proof works. �

Proof of Lemma 29. The proof is very similar as in Lemma 6. Conditioning on E1, we know
‖Htrain‖ ≤ 3/2 and ‖wtrain‖ ≤ 5σ. So the GD sequence never exceeds the norm threshold 40σ for
any η ≤ 4/3. That means,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
= 0

for all η ≤ 4/3.

To lower bound the loss for large step size, we need to first lower bound ‖wtrain‖ . Recall that
wtrain = w∗+(Xtrain)†ξtrain. Conditioning on E1, we know ‖ξtrain‖ ≤ 2

√
nσ and σd(Xtrain) ≥

√
n/2,

which implies
∥∥(Xtrain)†

∥∥ ≤ 2/
√
n. By Johnson-Lindenstrauss Lemma (Lemma 49), we have∥∥ProjXtrain

ξtrain
∥∥ ≤ 3

2

√
d/n ‖ξtrain‖ with probability at least 1 − exp(−Ω(d)). Call this event E3.

Conditioning on E1 ∩ E3, we have

∥∥(Xtrain)†ξtrain
∥∥ ≤ 2

√
nσ

2√
n

3

2

√
d

n
≤ 6

√
d

n
σ,

which is smaller than 1/2 as long as n ≥ 122dσ2. Note that we assume σ is a constant. This then
implies ‖wtrain‖ ≥ 1/2.

Let {w′τ,η} be the GD sequence without truncation. For any step size η ∈ [6,∞], conditioning on
E1 ∩ E3, we have ∥∥w′t,η∥∥ ≥ ((6× 1

2
− 1)t − 1

)
‖wtrain‖ ≥

(
2t − 1

) 1

2
≥ 40σ,

where the last inequality holds as long as t ≥ c2 for some constant c2. Therefore, we know when
η ∈ [6,∞), 1

{
E1 ∩ Ē2(η)

}
= 1 {E1 ∩ E3}. Assuming n ≥ 40d,we know E1 holds with probability

at least 1− exp(−Ω(n)). Then, we have for any η ≥ 6,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
≥1

4
(40σ − 5σ)

2
Pr[E1 ∩ E3] ≥ ε2dσ2

n
,

where the last inequality assumes n ≥ c, d ≥ c4 for some constant c, c4.

Overall, we know E 1
2 ‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
equals zero for all η ∈ [0, 4/3] and is at

least ε
2dσ2

n for all η ∈ [6,∞). By definition, we know η̂ ∈ (4/3, 6). �

Proof of Lemma 31. By Lemma 29, we know η̂ is a constant. The proof is very similar as in
Lemma 8. Let E1 and Ē2(η) be as defined in Definition 2. For the simplicity of the proof, we assume
E 1

2 ‖wt,η̂ − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η̂)

}
≤ ε2dσ2

n . The other case can be resolved using techniques
in the proof of Lemma 8.

50

Under review as a conference paper at ICLR 2021

Recall the population meta objective

FTbT (η) = E
1

2
‖wt,η − wtrain‖2Htrain

+
n− d

2n
σ2.

Therefore, we only need to construct an ε-net for the first term.

We can divide E 1
2 ‖wt,η − wtrain‖2Htrain

as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

=E
1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)}+ E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̂)

}
+ E

1

2
‖wt,η − wtrain‖2Htrain

1
{
Ē1
}
.

We will construct an ε-net for the first term and show the other two terms are small. Let’s
first consider the third term. Assuming n ≥ 40d, we know Pr[E1] ≤ exp(−Ω(n)).

Since 1
2 ‖wt,η − wtrain‖2Htrain

is O(1)-subexponential, by Cauchy-Schwarz inequality, we have
E 1

2 ‖wt,η − wtrain‖2Htrain
1
{
Ē1
}

= O(1) exp(−Ω(n)). Choosing n ≥ c log(n/(εd)) for some con-

stant c, we know 1
2 ‖wt,η̂ − wtrain‖2Htrain

1
{
Ē1
}
≤ ε2dσ2

n .

Then we upper bound the second term. Since E 1
2 ‖wt,η̂ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̂)

}
≤ ε2dσ2

n and
1
2 ‖wt,η̂ − wtrain‖2Htrain

≥ 352σ2

4 when wt,η̂ diverges, we know Pr[E1 ∩ Ē2(η̂)] ≤ 4ε2d
352n . Then, we can

upper bound the second term as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̂)

}
≤ 3× 452σ2

4

4ε2d

352n
≤ 6ε2dσ2

n

Next, similar as in Lemma 8, we can show the first term 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)} is

O(t)-lipschitz. Therefore, there exists an ε2dσ2

n -net N for E 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)}
with size O(tnε2d). That means, for any η ∈ [0, η̂],∣∣∣∣E1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)} − E
1

2
‖wt,η′ − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)}
∣∣∣∣ ≤ ε2dσ2

n

for η′ = arg minη′′∈N,η′′≤η(η − η′′).
Combing with the upper bounds on the second term and the third term, we have for any η ∈ [0, η̂],

|FTbT (η)− FTbT (η′)| ≤ 8ε2dσ2

n

for η′ = arg minη′′∈N,η′′≤η(η − η′′). �

Proof of Lemma 32. By Lemma 29, we know η̂ is a constant. For each k ∈ [m], let E1,k be
the event that

√
n/2 ≤ σi(X

(k)
train) ≤ 3

√
n/2 and 1/2 ≤ λi(H

(k)
train) ≤ 3/2 for all i ∈ [d] and

√
nσ/2 ≤

∥∥∥ξ(k)
train

∥∥∥ ≤ 2
√
nσ. Assuming n ≥ 40d, by Lemma 27, we know with probability at least

1−m exp(−Ω(n)), E1,k’s hold for all k ∈ [m].

Then, similar as in Lemma 9, there exists an ε2dσ2

n -net N ′ with |N ′| = O(ntε2d +m) for F̂TbT . That
means, for any η ∈ [0, η̂], ∣∣∣F̂TbT (η)− F̂TbT (η′)

∣∣∣ ≤ ε2dσ2

n

for η′ = arg minη′′∈N ′,η′′≤η(η − η′′). �

51

Under review as a conference paper at ICLR 2021

D PROOFS OF TRAIN-BY-TRAIN V.S. TRAIN-BY-VALIDATION (SGD)

Previously, we have shown that train-by-validation generalizes better than train-by-train when the
tasks are trained by GD and when the number of samples is small. In this section, we show a similar
phenomenon also appears in the SGD setting.

In the train-by-train setting, each task P contains a training set Strain = {(xi, yi)}ni=1. The
inner objective is defined as f̂(w) = 1

2n

∑
(x,y)∈Strain

(〈w, x〉 − y)
2
. Let {wτ,η} be the SGD

sequence running on f̂(w) from initialization 0 (without truncation). That means, wτ,η =

wτ−1,η − η∇̂f̂(wτ−1,η), where ∇̂f̂(wτ−1,η) =
(〈
wτ−1,η, xi(τ−1)

〉
− yi(τ−1)

)
xi(τ−1). Here in-

dex i(τ − 1) is independently and uniformly sampled from [n]. We denote the SGD noise as
nτ−1,η := ∇̂f̂(wτ−1,η)−∇f̂(wτ−1,η). The meta-loss on task P is defined as follows,

∆TbT (n)(η, P) = ESGDf̂(wt,η) = ESGD
1

2n

∑
(x,y)∈Strain

(〈wt,η, x〉 − y)
2
,

where the expectation is taken over the SGD noise. Note wt,η depends on the SGD noise along the
trajectory. Then, the empirical meta objective F̂TbT (n)(η) is the average of the meta-loss across m
different specific tasks

F̂TbT (n)(η) =
1

m

m∑
k=1

∆TbT (n)(η, Pk). (4)

In order to control the SGD noise in expectation, we restrict the feasible set of step sizes intoO(1/d).

We show within this range, the optimal step size under F̂TbT (n) is Ω(1/d) and the learned weight is
far from ground truth w∗ on new tasks. We prove Theorem 9 in Section D.1.

Theorem 9. Let the meta objective F̂TbT (n) be as defined in Equation 4 with n ∈ [d/4, 3d/4].
Suppose σ is a constant. Assume unroll length t ≥ c2d and dimension d ≥ c4 log(m) for certain
constants c2, c4. Then, with probability at least 0.99 in the sampling of training tasks P1, · · · , Pm
and test task P ,

η∗train = Ω(1/d) and ESGD
∥∥wt,η∗train

− w∗
∥∥2

= Ω(σ2),

for all η∗train ∈ arg min0≤η≤ 1
2L3d

F̂TbT (n)(η), where L = 100 and wt,η∗train
is trained by running SGD

on test task P.

In the train-by-validation setting, each task P contains a training set Strain with n1 sam-
ples and a validation set with n2 samples. The inner objective is defined as f̂(w) =

1
2n1

∑
(x,y)∈Strain

(〈w, x〉 − y)
2
. Let {wτ,η} be the SGD sequence running on f̂(w) from ini-

tialization 0 (with the same truncation defined in Section 4). For each task P , the meta-loss
∆TbV (n1,n2)(η, P) is defined as

∆TbV (n1,n2)(η, P) = ESGD
1

2n2

∑
(x,y)∈Svalid

(〈wt,η, x〉 − y)
2
.

The empirical meta objective F̂TbV (n1,n2)(η) is the average of the meta-loss acrossm different tasks
P1, P2, ..., Pm,

F̂TbV (n1,n2)(η) =
1

m

m∑
k=1

∆TbV (n1,n2)(η, Pk). (5)

In order to bound the SGD noise with high probability, we restrict the feasible set of the step sizes
into O(1

d2 log2 d
). Within this range, we prove the optimal step size under F̂TbV (n1,n2) is Θ(1/t) and

the learned weight is better than initialization 0 by a constant on new tasks. Theorem 10 is proved
in Section D.2.

Theorem 10. Let the meta objective F̂TbV (n1,n2) be as defined in Equation 5 with n1, n2 ∈
[d/4, 3d/4]. Assume noise level σ is a large constant c1. Assume unroll length t ≥ c2d

2 log2(d),

52

Under review as a conference paper at ICLR 2021

number of training tasks m ≥ c3 and dimension d ≥ c4 for certain constants c2, c3, c4. There exists
constant c5 such that with probability at least 0.99 in the sampling of training tasks, we have

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg min0≤η≤ 1
c5d

2 log2(d)
F̂TbV (n1,n2)(η), where the expectation is taken over the new

tasks and SGD noise.

Notations: In the following proofs, we use the same set of notations defined in Appendix B.
We use EP∼T to denote the expectation over the sampling of tasks and use ESGD to denote the
expectation over the SGD noise. We use E to denote EP∼T ESGD. Same as in Appendix B, we use
letter L to denote constant 100, which upper bounds ‖Htrain‖ with high probability.

D.1 TRAIN-BY-TRAIN (SGD)

Recall Theorem 9 as follows.
Theorem 9. Let the meta objective F̂TbT (n) be as defined in Equation 4 with n ∈ [d/4, 3d/4].
Suppose σ is a constant. Assume unroll length t ≥ c2d and dimension d ≥ c4 log(m) for certain
constants c2, c4. Then, with probability at least 0.99 in the sampling of training tasks P1, · · · , Pm
and test task P ,

η∗train = Ω(1/d) and ESGD
∥∥wt,η∗train

− w∗
∥∥2

= Ω(σ2),

for all η∗train ∈ arg min0≤η≤ 1
2L3d

F̂TbT (n)(η), where L = 100 and wt,η∗train
is trained by running SGD

on test task P.

In order to prove Theorem 9, we first show that η∗train is Ω(1/d) in Lemma 33. The proof is similar
as in the GD setting. As long as η = O(1/d), the SGD noise is dominated by the full gradient.
Then, we can show that ∆TbT (η, P) is roughly (1 − Θ(1)η)t, which implies that η∗train = Ω(1/d).
We leave the proof of Lemma 33 into Section D.1.1.
Lemma 33. Assume t ≥ c2d with certain constant c2. With probability at least 1−m exp(−Ω(d))
in the sampling of m training tasks,

η∗train ≥
1

6L5d
,

for all η∗train ∈ arg min0≤η≤ 1
2L3d

F̂TbT (η).

Let P = (D(w∗), Strain, `) be an independently sampled test task with |Strain| = n ∈ [d/4, 3d/4].

For any step size η ∈ [1
6L5d ,

1
2L3d], let wt,η be the weight obtained by running SGD on f̂(w) for t

steps. Next, we show ESGD ‖wt,η − w∗‖2 = Ω(σ2) with high probability in the sampling of P.
Lemma 34. Suppose σ is a constant. Assume unroll length t ≥ c2d for some constant c2. With
probability at least 1− exp(−Ω(d)) in the sampling of test task P ,

ESGD ‖wt,η − w∗‖2 ≥
σ2

128L
,

for all η ∈ [1
6L5d ,

1
2L3d], where wt,η is obtained by running SGD on task P for t iterations.

With Lemma Lemma 33 and Lemma 34, the proof of Theorem 9 is straightforward.

Proof of Theorem 9. Combing Lemma 33 and Lemma 34, we know as long as σ is a constant,
t ≥ c2d, d ≥ c4 log(m),with probability at least 0.99, η∗train = Ω(1/d) and ESGD

∥∥wt,η∗train
− w∗

∥∥2
=

Ω(σ2), for all η∗train ∈ arg min0≤η≤ 1
2L3d

F̂TbT (η). �

D.1.1 DETAILED PROOFS

Proof of Lemma 33. The proof is very similar to the proof of Lemma 2 except that we need to
bound the SGD noise term. For each k ∈ [m], let Ek be the event that

√
d/
√
L ≤ σi(Xtrain) ≤

53

Under review as a conference paper at ICLR 2021

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. According

to Lemma 1 and Lemma 45, we know for each k ∈ [m], Ek happens with probability at least
1− exp(−Ω(d)). Taking a union bound over all k ∈ [m], we know ∩k∈[m]Ek holds with probability
at least 1−m exp(−Ω(d)). From now on, we assume ∩k∈[m]Ek holds.

For each k ∈ [m], we have

∆TbT (η, Pk) :=
1

2
ESGD

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

.

Since 1/L ≤ λi(H(k)
train) ≤ L and (w

(k)
t,η − w

(k)
train) is in the span of H(k)

train, we have

1

2L
ESGD

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

≤ ∆TbT (η, Pk) ≤ L

2
ESGD

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

.

Recall the updates of stochastic gradient descent,

w
(k)
t,η − w

(k)
train = (I − ηH(k)

train)(w
(k)
t−1,η − w

(k)
train)− ηn(k)

t−1,η.

Therefore,

ESGD

[∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

|w(k)
t−1,η

]
=
∥∥∥(I − ηH(k)

train)(w
(k)
t−1,η − w

(k)
train)

∥∥∥2

+η2ESGD

[∥∥∥n(k)
t−1,η

∥∥∥2

|w(k)
t−1,η

]
.

We know for any η ≤ 1/L,

(1− 2ηL)
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

≤
∥∥∥(I − ηH(k)

train)(w
(k)
t−1,η − w

(k)
train)

∥∥∥2

≤ (1− η

L
)
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

.

The noise can be bounded as follows,

η2ESGD

[∥∥∥n(k)
t−1,η

∥∥∥2

|w(k)
t−1,η

]
=η2ESGD

[∥∥∥xi(t−1)x
>
i(t−1)(w

(k)
t−1,η − w

(k)
train)−H(k)

train(w
(k)
t−1,η − w

(k)
train)

∥∥∥2

|w(k)
t−1,η

]
≤η2ESGD

[∥∥∥xi(t−1)x
>
i(t−1)(w

(k)
t−1,η − w

(k)
train)

∥∥∥2

|w(k)
t−1,η

]
≤η2 max

i(t−1)

∥∥xi(t−1)

∥∥2
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

H
(k)
train

.

Since ‖Xtrain‖ ≤
√
L
√
d, we immediately know maxi(t−1)

∥∥xi(t−1)

∥∥ ≤ √L√d. Therefore, we can
bound the noise as follows,

η2ESGD

[∥∥∥n(k)
t−1,η

∥∥∥2

|w(k)
t−1,η

]
≤η2 max

i(t−1)

∥∥xi(t−1)

∥∥2
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

H
(k)
train

≤L2η2d
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

.

As long as η ≤ 1
2L3d , we have

(1− ηL)
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

≤ ESGD

[∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

|w(k)
t−1,η

]
≤ (1− η

2L
)
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

.

This further implies

(1− ηL)t ‖wtrain‖2 ≤ ESGD

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

≤ (1− η

2L
)t ‖wtrain‖2 .

Let η2 := 1
2L3d , we have

∆TbT (η, Pk) ≤ L

2
(1− 1

4L4d
)t ‖wtrain‖2

54

Under review as a conference paper at ICLR 2021

Let η1 := 1
6L5d , for all η ∈ [0, η1] we have

∆TbT (η, Pk) ≥ 1

2L
(1− 1

6L4d
)t ‖wtrain‖2 .

As long as t ≥ c2d for certain constant c2, we know
1

2L
(1− 1

6L4d
)t ‖wtrain‖2 >

L

2
(1− 1

4L4d
)t ‖wtrain‖2 .

As this holds for all k ∈ [m] and F̂TbT = 1/m
∑m
i=1 ∆TbT (η, Pk), we know the optimal step size

η∗train is within [1
6L5d ,

1
2L3d]. �

We rely the following technical lemma to prove Lemma 34.
Lemma 35. Suppose σ is a constant. Given any ε > 0, with probability at least 1 −
O(1/ε) exp(−Ω(ε2d)), ∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤ ε,
for all η ∈ [0, 1

2L3d].

Proof of Lemma 35. By Lemma 1, with probability at least 1 − exp(−Ω(d)),
√
d/
√
L ≤

σi(Xtrain) ≤
√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]. There-

fore
∥∥[(Xtrain)†]>Bt,η(Bt,ηw

∗
train − w∗)

∥∥ ≤ 2
√
L/
√
d. Notice that ξtrain is independent with

[(Xtrain)†]>Bt,η(Bt,ηw
∗
train − w∗). By Hoeffding’s inequality, with probability at least 1 −

exp(−Ω(ε2d)), ∣∣〈[(Xtrain)†]>Bt,η(Bt,ηw
∗
train − w∗), ξtrain

〉∣∣ ≤ ε.
Next, we construct an ε-net for η and show the crossing term is small for all η ∈ [0, 1

2L3d]. For
simplicity, denote g(η) :=

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
. Taking the derivative of g(η), we

have
g′(η) =t

〈
Htrain(I − ηHtrain)t−1w∗train, Bt,η(Xtrain)†ξtrain

〉
+ t
〈
Bt,ηw

∗
train − w∗, Htrain(I − ηHtrain)t−1(Xtrain)†ξtrain

〉
According to Lemma 45, we know with probability at least 1 − exp(−Ω(d)), ‖ξtrain‖ ≤

√
dσ.

Therefore, the derivative g′(η) can be bounded as follows,

|g′(η)| = O(1)t(1− η

L
)t−1

Similar as in Lemma 14, there exists an ε-net Nε with size O(1/ε) such that for any η ∈ [0, 1
3L3d],

there exists η′ ∈ Nε with |g(η)−g(η′)| ≤ ε. Taking a union bound overNε,we have with probability
at least 1−O(1/ε) exp(−Ω(ε2d)), for every η ∈ Nε,∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤ ε.
which implies for every η ∈ [0, 1

3L3d].∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain
〉∣∣ ≤ 2ε.

Changing ε to ε′/2 finishes the proof. �

Proof of Lemma 34. According to Lemma 1 and Lemma 45, we know with probability at least
1 − exp(−Ω(d)),

√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and√

dσ/4 ≤ ‖ξtrain‖ ≤
√
dσ. We assume these properties hold in the proof and take a union bound at

the end.

Recall that ESGD ‖wt,η − w∗‖2 can be lower bounded as follows,

ESGD ‖wt,η − w∗‖2 =ESGD

∥∥∥∥∥Bt,η(w∗train + (Xtrain)†ξtrain)− η
t−1∑
τ=0

(I − ηHtrain)t−1−τnτ,η − w∗
∥∥∥∥∥

2

≥
∥∥Bt,η(w∗train + (Xtrain)†ξtrain)− w∗

∥∥2

≥
∥∥Bt,η(Xtrain)†ξtrain

∥∥2
+ 2

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
55

Under review as a conference paper at ICLR 2021

For any η ∈ [1
6L5d ,

1
2L3d], we can lower bound the first term as follows,∥∥Bt,η(Xtrain)†ξtrain

∥∥2 ≥
(

1− exp

(
−ηt
L

))2
σ2

16L

≥
(

1− exp

(
− t

6L6d

))2
σ2

16L

≥ σ2

64L
,

where the last inequality holds as long as t ≥ c2d for certain constant c2.

Choosing ε = σ2

256L in Lemma 35, we know with probability at least 1− exp(−Ω(d)),∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain
〉∣∣ ≤ σ2

256L
,

for all η ∈ [0, 1
2L3d].

Overall, we have ESGD ‖wt,η − w∗‖2 ≥ σ2

128L . Taking a union bound over all the bad events, we
know this happens with probability at least 1− exp(−Ω(d)). �

D.2 TRAIN-BY-VALIDATION (SGD)

Recall Theorem 10 as follows.
Theorem 10. Let the meta objective F̂TbV (n1,n2) be as defined in Equation 5 with n1, n2 ∈
[d/4, 3d/4]. Assume noise level σ is a large constant c1. Assume unroll length t ≥ c2d

2 log2(d),
number of training tasks m ≥ c3 and dimension d ≥ c4 for certain constants c2, c3, c4. There exists
constant c5 such that with probability at least 0.99 in the sampling of training tasks, we have

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg min0≤η≤ 1
c5d

2 log2(d)
F̂TbV (n1,n2)(η), where the expectation is taken over the new

tasks and SGD noise.

To prove Theorem 10, we first study the behavior of the population meta objective FTbV . That is,

FTbV (η) := EP∼T∆TbV (η, P) =EP∼T ESGD
1

2

∥∥wt,η − w∗ − (Xvalid)†ξvalid
∥∥2

Hvalid

=EP∼T ESGD
1

2
‖wt,η − w∗‖2 +

σ2

2
.

We show that the optimal step size for the population meta objective FTbV is Θ(1/t) and
EP∼T ESGD ‖wt,η − w∗‖2 = ‖w∗‖2 − Ω(1) under the optimal step size.

Lemma 36. Suppose σ is a large constant c1. Assume t ≥ c2d2 log2(d), d ≥ c4 for some constants
c2, c4. There exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 and constant c5 such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C +

σ2

2
,∀η ∈ [0, η1] ∪ [η3,

1

c5d2 log2(d)
]

where C is a positive constant.

In order to relate the behavior of FTbV to F̂TbV ,we show a generalization result from F̂TbV to FTbV
for η ∈ [0, 1

c5d2 log2(d/ε)
].

Lemma 37. For any 1 > ε > 0, assume σ is a constant and d ≥ c4 log(1/ε) for some constant c4.
There exists constant c5 such that with probability at least 1−O(1/ε) exp(−Ω(ε2m)),

|F̂TbV (η)− FTbV (η)| ≤ ε,
for all η ∈ [0, 1

c5d2 log2(d/ε)
].

56

Under review as a conference paper at ICLR 2021

Combining Lemma 36 and Lemma 37, we give the proof of Theorem 10.

Proof of Theorem 10. The proof is almost the same as in the GD setting (Theorem 8). We omit the
details here. �

D.2.1 BEHAVIOR OF FTbV FOR η ∈ [0, 1
c5d2 log2 d

]

In this section, we give the proof of Lemma 36. Recall the lemma as follows,

Lemma 36. Suppose σ is a large constant c1. Assume t ≥ c2d2 log2(d), d ≥ c4 for some constants
c2, c4. There exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 and constant c5 such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C +

σ2

2
,∀η ∈ [0, η1] ∪ [η3,

1

c5d2 log2(d)
]

where C is a positive constant.

Recall that FTbV (η) = EP∼T ESGD1/2 ‖wt,η − w∗‖2 + σ2/2. Denote Q(η) :=

ESGD1/2 ‖wt,η − w∗‖2. Recall that we truncate the SGD sequence once the weight norm
exceeds 4

√
Lσ. Due to the truncation, the expectation of 1/2 ‖wt,η − w∗‖2 over SGD noise is very

tricky to analyze.

Instead, we define an auxiliary sequence {w′τ,η} that is obtained by running SGD on task P without

truncation and we first study Q′(η) := 1/2ESGD
∥∥w′t,η − w∗∥∥2

. In Lemma 38, we show that with
high probability in the sampling of task P , the minimizer of Q′(η) is Θ(1/t). The proof is very
similar as the proof of Lemma 13 except that we need to bound the SGD noise at step size η2. We
defer the proof into Section D.2.3.

Lemma 38. Given a task P , let {w′τ,η} be the weight obtained by running SGD on task P without
truncation. Choose σ as a large constant c1. Assume unroll length t ≥ c2d for some constant c2.
With probability at least 1 − exp(−Ω(d)) over the sampling of task P,

√
d/
√
L ≤ σi(Xtrain) ≤√

Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ and there exists

η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

Q′(η2) := 1/2ESGD
∥∥w′t,η2 − w∗∥∥2 ≤ 1

2
‖w∗‖2 − C

Q′(η) := 1/2ESGD
∥∥w′t,η − w∗∥∥2 ≥ 1

2
‖w∗‖2 − C

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

To relate the behavior of Q′(η) defined on {w′τ,η} to the behavior of Q(η) defined on {wτ,η}.
We show when the step size is small enough, the SGD sequence gets truncated with very small
probability so that sequence {wτ,η} almost always coincides with sequence {w′τ,η}. The proof of
Lemma 39 is deferred into Section D.2.3.

Lemma 39. Given a task P , assume
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for

all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Given any ε > 0, suppose η ≤ 1

c5d2 log2(d/ε)
for some

constant c5, we have
|Q(η)−Q′(η)| ≤ ε.

Combining Lemma 38 and Lemma 39, we give the proof of lemma 36.

Proof of Lemma 36. Recall that we define Q(η) := 1/2ESGD ‖wt,η − w∗‖2 and Q′(η) =

1/2ESGD
∥∥w′t,η − w∗∥∥2

. Here, {w′τ,η} is a SGD sequence running on task P without truncation.

According to Lemma 38, with probability at least 1 − exp(−Ω(d)) over the sampling of task P,√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤ ‖ξtrain‖ ≤

57

Under review as a conference paper at ICLR 2021

√
dσ and there exists η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

Q′(η2) ≤ 1

2
‖w∗‖2 − C

Q′(η) ≥ 1

2
‖w∗‖2 − C

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant. Call this event E . Suppose the probability that E happens is 1 − δ.
We can write EP∼TQ(η) as follows,

EP∼TQ(η) = EP∼T [Q(η)|E] Pr[E] + EP∼T [Q(η)|Ē] Pr[Ē].

According to the algorithm, we know ‖wt,η‖ is always bounded by 4
√
Lσ. Therefore, Q(η) :=

1/2 ‖wt,η − w∗‖2 ≤ 13Lσ2. By Lemma 39, we know conditioning on E , |Q(η) − Q′(η)| ≤ ε

for any η ≤ 1
c5d2 log2(d/ε)

. As long as t ≥ c2d
2 log2(d/ε) for certain constant c2, we know η3 ≤

1
c5d2 log2(d/ε)

.

When η = η2, we have

EP∼TQ(η2) ≤ (Q′(η2) + ε) (1− δ) + 13Lσ2δ

≤
(

1

2
‖w∗‖2 − C + ε

)
(1− δ) + 13Lσ2δ

≤1

2
‖w∗‖2 − C + 13Lσ2δ + ε ≤ 1

2
‖w∗‖2 − 9C

10
,

where the last inequality assumes δ ≤ C
260Lσ2 and ε ≤ C

20 .

When η ∈ [0, η1] ∪ [η3,
1

c5d2 log2(d/ε)
], we have

EP∼TQ(η2) ≥ (Q′(η)− ε) (1− δ)− 13Lσ2δ

≥
(

1

2
‖w∗‖2 − C

2
− ε
)

(1− δ)− 13Lσ2δ

≥1

2
‖w∗‖2 − C

2
− δ

2
− 13Lσ2δ − ε ≥ 1

2
‖w∗‖2 − 6C

10
,

where the last inequality holds as long as δ ≤ C
280Lσ2 and ε ≤ C

20 .

According to Lemma 38, we know δ ≤ exp(−Ω(d)). Therefore, the conditions for δ can be satisfied
as long as d is larger than certain constant. The condition on ε can be satisfied as long as η ≤

1
c5d2 log2(d)

for some constant c5. �

D.2.2 GENERALIZATION FOR η ∈ [0, 1
c5d2 log2 d

]

In this section, we prove Lemma 37 by showing that F̂TbV (η) is point-wise close to FTbV (η) for all
η ∈ [0, 1

c5d2 log2(d/ε)
]. Recall Lemma 37 as follows.

Lemma 37. For any 1 > ε > 0, assume σ is a constant and d ≥ c4 log(1/ε) for some constant c4.
There exists constant c5 such that with probability at least 1−O(1/ε) exp(−Ω(ε2m)),

|F̂TbV (η)− FTbV (η)| ≤ ε,

for all η ∈ [0, 1
c5d2 log2(d/ε)

].

In order to prove Lemma 37, we first show that for a fixed η with high probability F̂TbV (η) is close to
FTbV (η). Similar as in Lemma 16, we can still show that each ∆TbV (η, P) isO(1)-subexponential.
The proof is deferred into Section D.2.3.
Lemma 40. Suppose σ is a constant. Given any 1 > ε > 0, for any fixed η with probability at least
1− exp(−Ω(ε2m)), ∣∣∣F̂TbV (η)− FTbV (η)

∣∣∣ ≤ ε.
58

Under review as a conference paper at ICLR 2021

Next, we show that there exists an ε-net for FTbV with sizeO(1/ε). By ε-net, we mean there exists a
finite set Nε of step sizes such that |FTbV (η)−FTbV (η′)| ≤ ε for any η and η′ ∈ arg minη∈Nε |η−
η′|. The proof is very similar as in Lemma 17. We defer the proof of Lemma 41 into Section D.2.3.
Lemma 41. Suppose σ is a constant. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for some c4.
There exists constant c5 and an ε-net Nε ⊂ [0, 1

c5d2 log2(d/ε)
] for FTbV with |Nε| = O(1/ε). That

means, for any η ∈ [0, 1
c5d2 log2(d/ε)

],

|FTbV (η)− FTbV (η′)| ≤ ε,
for η′ ∈ arg minη∈Nε |η − η′|.

Next, we show that with high probability, there also exists an ε-net for F̂TbV with size O(1/ε). The
proof is very similar as the proof of Lemma 18. We defer the proof into Section D.2.3.
Lemma 42. Suppose σ is a constant. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for some c4. With
probability at least 1−exp(−Ω(ε2m)), there exists constant c5 and an ε-netN ′ε ⊂ [0, 1

c5d2 log2(d/ε)
]

for F̂TbV with |Nε| = O(1/ε). That means, for any η ∈ [0, 1
c5d2 log2(d/ε)

],

|F̂TbV (η)− F̂TbV (η′)| ≤ ε,
for η′ ∈ arg minη∈Nε |η − η′|.

Combing Lemma 40, Lemma 41 and Lemma 42, now we give the proof of Lemma 37.

Proof of Lemma 37. The proof is almost the same as the proof of Lemma 11. We omit the details
here. �

D.2.3 PROOFS OF TECHNICAL LEMMAS

In Lemma 43, we show when the step size is small, the expected SGD noise square is well bounded.
The proof follows from the analysis in Lemma 33.
Lemma 43. Let {w′τ,η} be an SGD sequence running on task P without truncation. Let n′τ,η be the
SGD noise at w′τ,η . Assume

√
d/
√
L ≤ σi(Xtrain) ≤

√
L
√
σ for all i ∈ [n] and ‖ξtrain‖ ≤

√
dσ.

Suppose η ∈ [0, 1
2L3d], we have

ESGD
∥∥n′τ,η∥∥2 ≤ 4L3σ2d

for all τ ≤ t.

Proof of Lemma 43. Similar as the analysis in Lemma 33, for η ≤ 1
2L3d , we have

ESGD

[∥∥n′τ,η∥∥2 |w′τ−1,η

]
≤ L2d

∥∥w′τ−1,η − wtrain
∥∥2
.

and

ESGD
∥∥w′τ−1,η − wtrain

∥∥2 ≤ (1− η

2L
)τ−1 ‖wtrain‖2 ≤

∥∥w∗train + (Xtrain)†ξtrain
∥∥2 ≤ 4Lσ2.

Therefore, we have

ESGD
∥∥n′τ,η∥∥2 ≤ L2dESGD

∥∥w′τ,η − wtrain
∥∥2 ≤ 4L3σ2d.

�

Proof of Lemma 38. We can expand Q′(η) as follows,

Q′(η) :=
1

2
ESGD

∥∥w′t,η − w∗∥∥2

=
1

2
ESGD

∥∥∥∥∥Bt,ηw∗train +Bt,η(Xtrain)†ξtrain − η
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η − w∗
∥∥∥∥∥

2

=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

+
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
59

Under review as a conference paper at ICLR 2021

Denote

G(η) :=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

.

We first show that with probability at least 1 − exp(−Ω(d)), there exist η1, η2, η3 = Θ(1/t) with
η1 < η2 < η3 such that G(η2) ≤ 1/2 ‖w∗‖2 − 5C/4 and G(η) ≥ 1/2 ‖w∗‖2 − C/4 for all
η ∈ [0, η1] ∪ [η3, 1/L].

According to Lemma 1, we know with probability at least 1−exp(−Ω(d)),
√
d/
√
L ≤ σi(Xtrain) ≤√

L
√
d and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n].According to Lemma 45, we know with probability

at least 1− exp(−Ω(d)),
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ.

Upper bounding G(η2): We can expand G(η) as follows:

G(η) :=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

=
1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

− 〈Bt,ηw∗train, w
∗〉 .

Same as in Lemma 13, we know 1
2 ‖Bt,ηw

∗
train‖

2
+ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≤ L3η2t2σ2. For the

SGD noise, by Lemma 43 we know ESGD
∥∥n′τ,η∥∥2 ≤ 4L3σ2d for all τ ≤ t as long as η ≤ 1

2L3d .
Therefore,

η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

≤ η2

2

t−1∑
τ=0

ESGD
∥∥n′τ,η∥∥2 ≤ 2L3η2σ2dt ≤ 2L3η2σ2t2,

where the last inequality assumes t ≥ d. According to Lemma 15, for any fixed η ∈ [0, L/t], with
probability at least 1− exp(−Ω(d)) over Xtrain,

〈Bt,ηw∗train, w
∗〉 ≥ ηt

16L
.

Therefore, for any step size η ≤ 1
2L3d ,

G(η) ≤ 1

2
‖w∗‖2 + 3L3η2σ2t2 − ηt

16L
≤ 1

2
‖w∗‖2 − ηt

32L
,

where the second inequality holds as long as η ≤ 1
96L4σ2t . Choosing η2 := 1

96L4σ2t that is smaller
than 1

2L3d assuming t ≥ d. Then, we have

G(η2) ≤ 1

2
‖w∗‖2 − 5C

4
,

where constant C = 1
3072L5σ2 .

Lower bounding G(η) for η ∈ [0, η1] : Now, we prove that there exists η1 = Θ(1/t) with
η1 < η2 such that for any η ∈ [0, η1], G(η) ≥ 1

2 ‖w
∗‖2 − C

4 . Recall that

G(η) =
1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

− 〈Bt,ηw∗train, w
∗〉 .

≥1

2
‖w∗‖2 − 〈Bt,ηw∗train, w

∗〉 .

Same as in Lemma 13, by choosing η1 = C
4Lt , we have for any η ∈ [0, η1],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

60

Under review as a conference paper at ICLR 2021

Lower bounding G(η) for η ∈ [η3, 1/L]: Now, we prove that there exists η3 = Θ(1/t) with
η3 > η2 such that for all η ∈ [η3, 1/L],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Recall that

G(η) =
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

≥1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2
.

Same as in Lemma 13, by choosing η3 = log(2)L/t, as long as σ ≥ 8
√
L, we have

G(η) ≥ 1

2
‖w∗‖2

for all η ∈ [η3, 1/L]. Note η3 ≤ 1/L as long as t ≥ log(2)L2.

Overall, we have shown that there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that G(η2) ≤
1/2 ‖w∗‖2 − 5C/4 and G(η) ≥ 1/2 ‖w∗‖2 − C/4 for all η ∈ [0, η1] ∪ [η3, 1/L]. Recall that
Q′(η) = G(η) +

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
. Choosing ε = C/4 in Lemma 14, we know

with probability at least 1 − exp(−Ω(d)),
∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤ C/4 for all
η ∈ [0, 1/L]. Therefore, we know Q′(η2) ≤ 1/2 ‖w∗‖2 −C and Q′(η) ≥ 1/2 ‖w∗‖2 −C/2 for all
η ∈ [0, η1] ∪ [η3, 1/L]. �

In order to prove Lemma 39, we first construct a super-martingale to show that as long as task P
is well behaved, with high probability in SGD noise, the weight norm along the trajectory never
exceeds 4

√
Lσ.

Lemma 44. Assume
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and√

dσ/4 ≤ ‖ξtrain‖ ≤
√
dσ. Given any 1 > δ > 0, suppose η ≤ 1

c5d2 log2(d/δ)
for some constant c5,

with probability at least 1− δ in the SGD noise,∥∥w′τ,η∥∥ < 4
√
Lσ

for all τ ≤ t.

Proof of Lemma 44. According to the proofs of Lemma 43, as long as η ≤ 1
2L3d , we have

ESGD

[∥∥w′t,η − wtrain
∥∥2 |w′t−1,η

]
≤ (1− η

2L
)
∥∥w′t−1,η − wtrain

∥∥2
.

Since log is a concave function, by Jenson’s inequality, we know

ESGD

[
log
∥∥w′t,η − wtrain

∥∥2 |w′t−1,η

]
≤ logESGD

[∥∥w′t,η − wtrain
∥∥2 |w′t−1,η

]
≤ log

∥∥w′t−1,η − wtrain
∥∥2

+ log(1− η

2L
).

Defining Gt = log
∥∥w′t,η − wtrain

∥∥2 − t log(1 − η
2L), we know Gt is a super-martingale. Next, we

bound the martingale differences.

We can bound |Gt − ESGD[Gt|w′t−1,η]| as follows,

|Gt − ESGD[Gt|w′t−1,η]| ≤ max
n′t−1,η,n

′′
t−1,η

log

(∥∥(I − ηHtrain)(w′t−1,η − wtrain)− ηn′t−1,η

∥∥2∥∥(I − ηHtrain)(w′t−1,η − wtrain)− ηn′′t−1,η

∥∥2

)

We can expand
∥∥(I − ηHtrain)(w′t−1,η − wtrain)− ηn′t−1,η

∥∥2
as follows,∥∥(I − ηHtrain)(w′t−1,η − wtrain)− ηn′t−1,η

∥∥2

=
∥∥(I − ηHtrain)(w′t−1,η − wtrain)

∥∥2 − 2η
〈
n′t−1,η, (I − ηHtrain)(w′t−1,η − wtrain)

〉
+ η2

∥∥n′t−1,η

∥∥2

61

Under review as a conference paper at ICLR 2021

We can bound the norm of the noise as follows,∥∥n′t−1,η

∥∥ =
∥∥∥xi(t−1)x

>
i(t−1)(w

′
t−1,η − wtrain)−Htrain(w′t−1,η − wtrain)

∥∥∥
≤
∥∥∥xi(t−1)x

>
i(t−1)(w

′
t−1,η − wtrain)

∥∥∥+
∥∥Htrain(w′t−1,η − wtrain)

∥∥
≤ (Ld+ L)

∥∥w′t−1,η − wtrain
∥∥ ≤ 2Ld

∥∥w′t−1,η − wtrain
∥∥ ,

where the second inequality uses
∥∥xi(t−1)

∥∥ ≤ √Ld. Therefore, we have∣∣2η 〈n′t−1,η, (I − ηHtrain)(w′t−1,η − wtrain)
〉∣∣ ≤ 4Lηd

∥∥w′t−1,η − wtrain
∥∥2
,

η2
∥∥n′t−1,η

∥∥2 ≤ 4L2η2d2
∥∥w′t−1,η − wtrain

∥∥2
.

This further implies,

|Gt − ESGD[Gt|w′t−1,η]|

≤ log

(∥∥(I − ηHtrain)(w′t−1,η − wtrain)
∥∥2

+
(
4Lηd+ 4L2η2d2

) ∥∥w′t−1,η − wtrain
∥∥2∥∥(I − ηHtrain)(w′t−1,η − wtrain)

∥∥2 − 4Lηd
∥∥w′t−1,η − wtrain

∥∥2

)

≤ log

(
1 +

8Lηd+ 4L2η2d2

(1− 2Lη − 4Lηd)

)
≤ 16Lηd+ 8L2η2d2,

where the second inequality uses
∥∥(I − ηHtrain)(w′t−1,η − wtrain)

∥∥2 ≥ (1 −
2Lη)

∥∥w′t−1,η − wtrain
∥∥2
. The last inequality assumes η ≤ 1

12Ld and uses numerical inequal-
ity log(1 + x) ≤ x. Assuming η ≤ 1/(Ld), we further have |Gt − ESGD[Gt|w′t−1,η]| ≤ L2ηd.

By Azuma’s inequality, we know with probability at least 1− δ/t,

Gt ≤ G0 + L2
√

2tηd log(t/δ).

Plugging inGt = log
∥∥w′t,η − wtrain

∥∥2−t log(1− η
2L) andG0 = log ‖w0 − wtrain‖2 = log ‖wtrain‖2 ,

we have

log
∥∥w′t,η − wtrain

∥∥2 ≤ log ‖wtrain‖2 + t log(1− η

2L
) + L2

√
2tηd log(t/δ)

≤ log ‖wtrain‖2 −
η

2L
t+ L2

√
2tηd log(t/δ).

This implies, ∥∥w′t,η − wtrain
∥∥2 ≤‖wtrain‖2 exp

(
η

(
− 1

2L
t+ L2

√
2 log(t/δ)d

√
t

))
= ‖wtrain‖2 exp

(
O(d2 log2(d/δ))η

)
≤‖wtrain‖2 exp (2/3) ,

where the second inequality assumes η ≤ 1
c5d2log2(d/δ) for some constant c5. Furthermore, since

‖wtrain‖ ≤ (1 +
√
L)σ, we have

∥∥w′t,η∥∥ ≤ (1 + e1/3) ‖wtrain‖ < 4
√
Lσ.

Overall, we know as long as η ≤ 1
c5d2log2(d/δ) , with probability at least 1 − δ/t,

∥∥w′t,η∥∥ ≤ 4
√
Lσ.

Since this analysis also applies to any τ ≤ t, we know for any τ, with probability at least 1 − δ/t,∥∥w′τ,η∥∥ < 4
√
Lσ. Taking a union bound over τ ≤ t, we have with probability at least 1 − δ,∥∥w′τ,η∥∥ < 4

√
Lσ for all τ ≤ t. �

Proof of Lemma 39. Let E be the event that
∥∥w′τ,η∥∥ < 4

√
Lσ for all τ ≤ t. We first show that

ESGD ‖wt,η − w∗‖2 is close to ESGD
∥∥w′t,η − w∗∥∥2

1 {E}. It’s not hard to verify that

ESGD ‖wt,η − w∗‖2 = ESGD
∥∥w′t,η − w∗∥∥2

1 {E}+ ‖u− w∗‖2 Pr[Ē],

62

Under review as a conference paper at ICLR 2021

where u is a fixed vector with norm 4
√
Lσ. By Lemma 44, we know Pr[Ē] ≤ ε/(25Lσ2) as long as

η ≤ 1
c5d2 log2(d/ε)

for some constant c5. Therefore, we have∣∣∣ESGD ‖wt,η − w∗‖2 − ESGD
∥∥w′t,η − w∗∥∥2

1 {E}
∣∣∣ ≤ ε.

Next, we show that ESGD
∥∥w′t,η − w∗∥∥2

1 {E} is close to ESGD
∥∥w′t,η − w∗∥∥2

. For any 1 ≤ τ ≤ t,

let Eτ be the event that
∥∥w′τ,η∥∥ ≥ 4

√
Lσ and

∥∥w′τ ′,η∥∥ < 4
√
Lσ for all τ ′ < τ. Basically Eτ means

the weight norm exceeds the threshold at step τ for the first time. It’s easy to see that ∪tτ=1Eτ = Ē .
Therefore, we have

ESGD
∥∥w′t,η − w∗∥∥2

= ESGD
∥∥w′t,η − w∗∥∥2

1 {E}+

t∑
τ=1

ESGD
∥∥w′t,η − w∗∥∥2

1 {Eτ} .

Conditioning on Eτ , we know
∥∥w′τ−1,η

∥∥ < 4
√
Lσ. Since we assume

√
d√
L
≤ σi(Xtrain) ≤

√
L
√
d for

all i ∈ [n] and ξtrain ≤
√
dσ, we know ‖wtrain‖ ≤ 2

√
Lσ. Therefore, we have

∥∥w′τ−1,η − wtrain
∥∥ ≤

6
√
Lσ. Recall the SGD updates,

w′τ,η − wtrain = (I − ηHtrain)(w′τ−1,η − wtrain)− ηn′τ−1,η.

For the noise term, we have η
∥∥n′τ−1,η

∥∥ ≤ 2ηLd
∥∥w′τ−1,η − wtrain

∥∥ that is at most
∥∥w′τ−1,η − wtrain

∥∥
assuming η ≤ 1

2Ld . Therefore, we have
∥∥w′τ,η − wtrain

∥∥ ≤ 2
∥∥w′τ−1,η − wtrain

∥∥ ≤ 12
√
Lσ. Note

that event Eτ is independent with the SGD noises after step τ . Therefore, according to the previous
analysis, we know as long as η ≤ 1

2L3d ,

ESGD

[∥∥w′t,η − wtrain
∥∥2 |Eτ

]
≤
∥∥w′τ,η − wtrain

∥∥2 ≤ 2L2σ2.

Then, we can bound ESGD

[∥∥w′t,η − w∗∥∥2 |Eτ
]

as follows,

ESGD

[∥∥w′t,η − w∗∥∥2 |Eτ
]

=ESGD

[∥∥w′t,η − wtrain + wtrain − w∗
∥∥2 |Eτ

]
≤ESGD

[∥∥w′t,η − wtrain
∥∥2 |Eτ

]
+ 2ESGD

[∥∥w′t,η − wtrain
∥∥ |Eτ] ‖wtrain − w∗‖+ ‖wtrain − w∗‖2

≤2L2σ2 + 2 · 2Lσ · 3
√
Lσ + 9Lσ2 ≤ 3L2σ2.

Therefore, we have
t∑

τ=1

ESGD
∥∥w′t,η − w∗∥∥2

1 {Eτ} =

t∑
τ=1

ESGD

[∥∥w′t,η − w∗∥∥2 |Eτ
]

Pr[Eτ]

≤3L2σ2
t∑

τ=1

Pr[Eτ] = 3L2σ2 Pr[Ē] ≤ 3L2σ2ε.

This then implies that
∣∣∣ESGD

∥∥w′t,η − w∗∥∥2 − ESGD
∥∥w′t,η − w∗∥∥2

1 {E}
∣∣∣ ≤ 3L2σ2ε.

Finally, we have∣∣∣ESGD ‖wt,η − w∗‖2 − ESGD
∥∥w′t,η − w∗∥∥2

∣∣∣
≤
∣∣∣ESGD ‖wt,η − w∗‖2 − ESGD

∥∥w′t,η − w∗∥∥2
1 {E}

∣∣∣+
∣∣∣ESGD

∥∥w′t,η − w∗∥∥2 − ESGD
∥∥w′t,η − w∗∥∥2

1 {E}
∣∣∣

≤
(
3L2σ2 + 1

)
ε

as long as η ≤ 1
c5d2 log2(d/ε)

. Therefore, |Q(η)−Q′(η)| ≤
(
3L2σ2 + 1

)
ε/2. Choosing ε′ =

2ε
(3L2σ2+1) finishes the proof. �

63

Under review as a conference paper at ICLR 2021

Proof of Lemma 40. Recall that

F̂TbV (η) :=
1

m

m∑
k=1

∆TbV (η, P) =
1

m

m∑
k=1

ESGD
1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

.

Similar as in Lemma 11, we can show 1
2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

isO(1)-subexponential, which implies

ESGD
1
2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

is O(1)-subexponential. Therefore, F̂TbV (η) is the average of m i.i.d.

O(1)-subexponential random variables. By standard concentration inequality, we know for any
1 > ε > 0, with probability at least 1− exp(−Ω(ε2m)),∣∣∣F̂TbV (η)− FTbV (η)

∣∣∣ ≤ ε.
�

Proof of Lemma 41. Recall that

FTbV (η) =EP∼T ESGD
1

2
‖wt,η − w∗‖2 + σ2/2

We only need to construct an ε-net for EP∼T ESGD
1
2 ‖wt,η − w

∗‖2. Let E be the event that√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤ ‖ξtrain‖ ≤√

dσ We have

EP∼T ESGD
1

2
‖wt,η − w∗‖2

=EP∼T
[

1

2
ESGD ‖wt,η − w∗‖2 |E

]
Pr[E] + EP∼T

[
1

2
ESGD ‖wt,η − w∗‖2 |Ē

]
Pr[Ē]

According to Lemma 39, we know conditioning on E ,∣∣∣∣12ESGD ‖wt,η − w∗‖2 −
1

2
ESGD

∥∥w′t,η − w∗∥∥2
∣∣∣∣ ≤ ε,

as long as η ≤ 1
c5d2 log2(d/ε)

. Note {w′τ,η} is the SGD sequence without truncation.

For the second term, we have

EP∼T
[

1

2
ESGD ‖wt,η − w∗‖2 |Ē

]
Pr[Ē] ≤ 13Lσ2 Pr[Ē] ≤ ε,

where the last inequality assumes Pr[Ē] ≤ ε
13Lσ2 . According to Lemma 1 and Lemma 45, we

know Pr[Ē] ≤ exp(−Ω(d)). Therefore, given any ε > 0, we have Pr[Ē] ≤ ε
13Lσ2 as long as

d ≥ c4 log(1/ε) for some constant c4.

Then, we only need to construct an ε-net for EP∼T
[

1
2ESGD

∥∥w′t,η − w∗∥∥2 |E
]

Pr[E].By the analysis
in Lemma 33, it’s not hard to prove∣∣∣∣ ∂∂ηEP∼T

[
1

2
ESGD

∥∥w′t,η − w∗∥∥2 |E
]

Pr[E]

∣∣∣∣ = O(1)t(1− η

2L
)t−1,

for all η ∈ [0, 1
c5d2 log2(d/ε)

]. Similar as in Lemma 14, for any ε > 0, we know there exists an ε-net
Nε with size O(1/ε) such that for any η ∈ [0, 1

c5d2 log2(d/ε)
],∣∣∣∣EP∼T [1

2
ESGD

∥∥w′t,η − w∗∥∥2 |E
]

Pr[E]− EP∼T
[

1

2
ESGD

∥∥w′t,η′ − w∗∥∥2 |E
]

Pr[E]

∣∣∣∣ ≤ ε
for η′ ∈ arg minη∈Nε |η − η′|.

Combing with the bounds on
∣∣∣ 12ESGD ‖wt,η − w∗‖2 1 {E} − 1

2ESGD
∥∥w′t,η − w∗∥∥2

1 {E}
∣∣∣ and

EP∼T
[

1
2ESGD ‖wt,η − w∗‖2 |Ē

]
Pr[Ē], we have for any η ∈ [0, 1

c5d2 log2(d/ε)
],

FTbV (η)− FTbV (η′) ≤ 4ε

64

Under review as a conference paper at ICLR 2021

for η′ ∈ arg minη∈Nε |η − η′|. We finish the proof by replacing 4ε by ε′. �

Proof of Lemma 42. The proof is very similar as the proof of Lemma 18. The only difference is that
we need to first relate the SGD sequence with truncation to the SGD sequence without truncation
and then bound the Lipschitzness on the SGD sequence without truncation (as we did in Lemma 41).
We omit the details here. �

E TOOLS

E.1 NORM OF RANDOM VECTORS

We use the following lemma to bound the noise in least squares model.

Lemma 45 (Theorem 3.1.1 in Vershynin (2018)). Let X = (X1, X2, · · · , Xn) ∈ Rn be a random
vector with each entry independently sampled from N (0, 1). Then

Pr[
∣∣‖x‖ − √n∣∣ ≥ t] ≤ 2 exp(−t2/C2),

where C is an absolute constant.

E.2 SINGULAR VALUES OF GAUSSIAN MATRICES

Given a random Gaussian matrix, in expectation its smallest and largest singular value can be
bounded as follows.

Lemma 46 (Theorem 5.32 in Vershynin (2010)). Let A be an N × n matrix whose entries are
independent standard normal random variables. Then

√
N −

√
n ≤ Esmin(A) ≤ Esmax(A) ≤

√
N +

√
n

Lemma 47 shows a lipchitz function over i.i.d. Gaussian variables concentrate well on its mean.
We use this lemma to argue for any fixed step size, the empirical meta objective concentrates on the
population meta objective.

Lemma 47 (Proposition 5.34 in Vershynin (2010)). Let f be a real valued Lipschitz function on
Rn with Lipschitz constant K. Let X be the standard normal random vector in Rn. Then for every
t ≥ 0 one has

Pr[f(X)− Ef(X) ≥ t] ≤ exp(− t2

2K2
).

The following lemma shows a tall random Gaussian matrix is well-conditioned with high probability.
The proof follows from Lemma 46 and Lemma 47. We use Lemma 48 to show the covariance matrix
is well conditioned in the least squares model.

Lemma 48 (Corollary 5.35 in Vershynin (2010)). Let A be an N × n matrix whose entries are
independent standard normal random variables. Then for every t ≥ 0 with probability at least
1− 2 exp(−t2/2) one has

√
N −

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
n+ t

E.3 JOHNSON-LINDENSTRAUSS LEMMA

We also use Johnson-Lindenstrauss Lemma in some of the lemmas. Johnson-Lindenstrauss Lemma
tells us the projection of a fixed vector on a random subspace concentrates well as long as the
subspace is reasonably large.

Lemma 49 (Johnson & Lindenstrauss (1984)). Let P be a projection in Rd onto a random n-
dimensional subspace uniformly distributed in Gd,n. Let z ∈ Rd be a fixed point and ε > 0, then
with probability at least 1− 2 exp(−cε2n),

(1− ε)
√
n

d
‖z‖ ≤ ‖Pz‖ ≤ (1 + ε)

√
n

d
‖z‖ .

65

Under review as a conference paper at ICLR 2021

F EXPERIMENT DETAILS

We describe the detailed settings of our experiments in Section F.1 and give more experimental
results in Section F.2.

F.1 EXPERIMENT SETTINGS

Optimizing step size for quadratic objective In this experiment, we meta-train a learning rate
for gradient descent on a fixed quadratic objective. Our goal is to show that the autograd mod-
ule in popular deep learning softwares, such as Tensorflow, can have numerical issues when using
the log-transformed meta objective. Therefore, we first implement the meta-training process with
Tensorflow to see the results. We then re-implement the meta-training using the hand-derived meta-
gradient (see Eqn 3) to compare the result.

A general setting for both implementations is as follows. The inner problem is fixed as a 20-
dimensional quadratic objective as described in Section 3, and we use the log-transformed meta
objective for training. The positive semi-definite matrix H is generated by first sampling a 20× 20
matrix X with all entries drawn from the standard normal distribution and then setting H = XTX .
The initial point w0 is drawn from standard normal as well. Note that we use the same quadratic
problem (i.e., the same H and w0) throughout the meta-training. We do 1000 meta-training iter-
ations, and collect results for different settings of the initial learning rate η0 and the unroll length
t.

We first implement the meta-training code with Tensorflow. Our code is adapted from Wichrowska
et al. (2017) 2. We use their global learning rate optimizer and specify the problem set to have
only one quadratic objective instance. We implemented the quadratic objective class ourselves (the
”MyQuadratic” class). We also turned off multiple advanced features in the original code, such as
attention and second derivatives, by assigning their flags as false. This ensures that the experiments
have exactly the same settings as we described. The meta-training learning rate is set to be 0.001,
which is of similar scale as our next experiment. We also try RMSProp as the meta optimizer, which
alleviates some of the numerical issues as it renormalizes the gradient, but our experiments show
that even RMSProp is still much worse than our implementation.

We then implement the meta-training by hand to show the accurate training results that avoid nu-
merical issues. Specifically, we compute the meta-gradient using Eq (3), where we also scaled the
numerator and denominator as described in Claim 2 to avoid numerical issues. We use the algorithm
suggested in Theorem 4, except we choose the meta-step size to be 1/(100

√
k) as the constants in

Theorem 4 were not optimized.

Train-by-train vs. train-by-validation, synthetic data In this experiment, we find the optimal
learning rate η∗ for least-squares problems trained in train-by-train and train-by-validation settings
and then see how the learning rate works on new tasks.

Specifically, we generate 300 different 1000-dimensional least-squares tasks with noise as defined
in Section 4 for inner-training and then use the meta-objectives defined in Eq (1) and (2) to find the
optimal learning rate. The inner-training number of steps t is set as 40. We try different sample sizes
and different noise levels for comparison. Subsequently, in order to test how the two η∗ (for train-
by-train and train-by-validation respectively) work, we use them on 10 test tasks (the same setting
as the inner-training problem) and compute training and testing root mean squared error (RMSE).

Note that since we only need the final optimal η∗ found under the two meta-objective settings (re-
gardless of how we find it), we do not need to actually do the meta-training. Instead, we do a grid
search on the interval [10−6, 1], which is divided log-linearly to 25 candidate points. For both the
train-by-train and train-by-validation settings, we average the meta-objectives over the 300 inner
problems and see which η minimizes this averaged meta-objective.

Train-by-train vs. train-by-validation, MLP optimizer on MNIST To observe the trade-off
between train-by-train and train-by-validation in a broader and more realistic case, we also do ex-

2Their open source code is available at https://github.com/tensorflow/models/tree/
master/research/learned_optimizer

66

https://github.com/tensorflow/models/tree/master/research/learned_optimizer
https://github.com/tensorflow/models/tree/master/research/learned_optimizer

Under review as a conference paper at ICLR 2021

periments to meta-train an MLP optimizer as in Metz et al. (2019) to solve the MNIST classification
problem. We use part of their code 3 to integrate with our code in the first experiment, and we use
exactly the same default setting as theirs, which is summarized below.

The MLP optimizer is a trainable optimizer that works on each parameter separately. When doing
inner-training, for each parameter, we first compute some statistics of that parameter (explained be-
low), which are combined into a feature vector, and then feed that feature vector to a Muti-Layer
Perceptron (MLP) with ReLU activations, which outputs two scalars, the update direction and mag-
nitude. The update is computed as the direction times the exponential of the magnitude. The feature
vector is 31-dimensional, which includes gradient, parameter value, first-order moving averages
(5-dim), second-order moving averages (5-dim), normalized gradient (5-dim), reciprocal of square
root second-order moving averages (5-dim) and a step embedding (9-dim). All moving averages
are computed using 5 different decay rates (0.5, 0.9, 0.99, 0.999, 0.9999), and the step embedding
is tanh distortion of the current number of steps divided by 9 different scales (3, 10, 30, 100, 300,
1000, 3000, 10000, 300000). After expanding the 31-dimensional feature vector for each parameter,
we also normalize the set of vectors dimension-wise across all the parameters to have mean 0 and
standard deviation 1 (except for the step embedding part). More details can be found in their original
paper and original implementation.

The inner-training problem is defined as using a two-layer fully connected network (i.e., another
“MLP”) with ReLU activations to solve the classic MNIST 10-class classification problem. We use
a very small network for computational efficiency, and the two layers have 100 and 20 neurons. We
fix the cross-entropy loss as the inner-objective and use mini-batches of 32 samples when inner-
training.

When we meta-train the MLP optimizer, we use exactly the same process as fixed in experiments
by Wichrowska et al. (2017). We use 100 different inner problems by shuffling the 10 classes and
also sampling a new subset of data if we do not use the complete MNIST data set. We run each of
the problems with three inner-training trajectories starting with different initialization. Each inner-
training trajectory is divided into a certain number of unrolled segments, where we compute the
meta-objective and update the meta-optimizer after each segment. The number of unrolled segments
in each trajectory is sampled from 10 + Exp(30), and the length of each segment is sampled from
50 + Exp(100), where Exp(·) denotes the exponential distribution. Note that the meta-objective
computed after each segment is defined as the average of all the inner-objectives (evaluated on the
train/validation set for train-by-train/train-by-val) within that segment for a better convergence. We
also do not need to log-transform the inner-objective this time because the cross entropy loss has a
log operator itself. The meta-training, i.e. training the parameters of the MLP in the MLP optimzier,
is completed using a classic RMSProp optimizer with meta learning rate 0.01.

For each settings of sample sizes and noise levels, we train two MLP optimizer: one for train-by-
train, and one for train-by-validation. When we test the learned MLP optimizer, we use similar
settings as the inner-training problem, and we run the trajectories longer for full convergence (4000
steps for small data sets; 40000 steps for the complete data set). We run 5 independent tests and
collect training accuracy and test accuracy for evaluation. The plots show the mean of the 5 tests.
We have also tuned a SGD optimizer (with the same mini-batch size) by doing a grid-search of the
learning rate as baseline.

F.2 ADDITIONAL RESULTS

Optimizing step size for quadratic objective We try experiments for the same settings of the
initial η0 and inner training length t for all of three implementations (our hand-derived GD version,
Tensorflow GD version and the Tensorflow RMSProp version). We do 1000 meta-training steps for
all the experiments.

For both Tensorflow versions, we always see infinite meta-objectives if η0 is large or t is large, whose
meta-gradient is usually treated as zero, so the training get stuck and never converge. Even for the
case that both η0 and t is small, it still has very large meta-objectives (the scale of a few hundreds),
and that is why we also try RMSProp, which should be more robust against the gradient scales. Our

3Their code is available at https://github.com/google-research/google-research/
tree/master/task_specific_learned_opt

67

https://github.com/google-research/google-research/tree/master/task_specific_learned_opt
https://github.com/google-research/google-research/tree/master/task_specific_learned_opt

Under review as a conference paper at ICLR 2021

Table 1: Whether the implementation converges for different t (fixed η0 = 0.1)
t 10 20 40 80

Ours X X X X
Tensorflow GD × × × ×

Tensorflow RMSProp X X × ×

Table 2: Whether the implementation converges for different η0 (fixed t = 40)
η0 0.001 0.01 0.1 1

Ours X X X X
Tensorflow GD × × × ×

Tensorflow RMSProp X X × ×

hand-derived version, however, does not have the numerical issues and can always converge to the
optimal η∗. The detailed convergence is summarized in Tab 1 and Tab 2. Note that the optimal η∗ is
usually around 0.03 under our settings.

Train-by-train vs. train-by-validation, MLP optimizer on MNIST We also do additional ex-
periments on training an MLP optimizer on the MNIST classification problem. We first try using all
samples under the 20% noised setting. The results are shown in Fig 8. The train-by-train setting can
perform well if we have a large data set, but since there is also noise in the data, the train-by-train
model still overfits and is slightly worse than the train-by-validation model.

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 10
4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
c
c
u
ra

c
y
 (

tr
a
in

)

SGD

TbT60000

TbV50000+10000

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 10
4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
c
c
u
ra

c
y
 (

te
s
t)

SGD

TbT60000

TbV50000+10000

Figure 8: Training and testing accuracy for different models (all samples, 20% noise)

We then try an intermediate sample size 12000. The results are shown in Fig 9 (no noise) and Fig
10 (20% noise). We can see that as the theory predicts, as the amount of data increases (from 1000
samples to 12000 samples and then to 60000 samples) the gap between train-by-train and train-by-
validation decreases. Also, when we condition on the same number of samples, having additional
label noise always makes train-by-train model much worse compared to train-by-validation.

68

Under review as a conference paper at ICLR 2021

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 10
4

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y
 (

tr
a
in

)

SGD

TbT12000

TbV8000+4000

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 10
4

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y
 (

te
s
t)

SGD

TbT12000

TbV8000+4000

Figure 9: Training and testing accuracy for different models (12000 samples, no noise)

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 10
4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y
 (

tr
a
in

)

SGD

TbT12000

TbV8000+4000

0 0.5 1 1.5 2 2.5 3 3.5 4

Steps 10
4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y
 (

te
s
t)

SGD

TbT12000

TbV8000+4000

Figure 10: Training and testing accuracy for different models (12000 samples, 20% noise)

69

	Introduction
	Challenges of learning-to-learn approach and our results
	Related work

	Preliminaries
	Notations
	Learning-to-learn framework

	Alleviating gradient explosion/vanishing problems
	Train-by-train vs. train-by-validation
	Experiments
	Conclusion and Future Works
	Proofs for Section 3 – alleviating gradient explosion/vanishing problem for quadratic objective
	Meta-gradient vanishing/explosion
	Alleviating meta-gradient vanishing/explosion

	Proofs of train-by-train v.s. train-by-validation (GD)
	Overall Proof Strategy
	Train-by-train (GD)
	Behavior of TbT for [0,1/L]
	Lower bounding TbT for (,)
	Generalization for [1/L,]
	Proofs of Technical Lemmas

	Train-by-validation (GD)
	Behavior of FTbV for [0,1/L]
	Generalization for [0,1/L]
	Lower bounding TbV for [1/L,)
	Proofs of Technical Lemmas

	Proofs of train-by-train with large number of samples (GD)
	Upper bounding TbT(2/3)
	Lower bounding TbT for (,)
	Generalization for [0,]
	Proofs of Technical Lemmas

	Proofs of train-by-train v.s. train-by-validation (SGD)
	Train-by-train (SGD)
	Detailed Proofs

	Train-by-validation (SGD)
	Behavior of FTbV for [0,1c5d2log2 d]
	Generalization for [0,1c5d2log2 d]
	Proofs of Technical Lemmas

	Tools
	Norm of random vectors
	Singular values of Gaussian matrices
	Johnson-Lindenstrauss lemma

	Experiment details
	Experiment settings
	Additional results

