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ABSTRACT

Vision Language Models (VLMs) have demonstrated remarkable capabilities in various
open-vocabulary tasks, yet their zero-shot performance lags behind task-specific fine-
tuned models, particularly in complex tasks like Referring Expression Comprehension
(REC). Fine-tuning usually requires ‘white-box’ access to the model’s architecture and
weights, which is not always feasible due to proprietary or privacy concerns. In this
work, we propose LLM-wrapper, a method for ‘black-box’ adaptation of VLMs
for the REC task using Large Language Models (LLMs). LLM-wrapper capitalizes
on the reasoning abilities of LLMs, improved with a light fine-tuning, to select the most
relevant bounding box matching the referring expression, from candidates generated by
a zero-shot black-box VLM. Our approach offers several advantages: it enables the adap-
tation of closed-source models without needing access to their internal workings, it is
versatile as it works with any VLM, it transfers to new VLMs and datasets, and it allows
for the adaptation of an ensemble of VLMs. We evaluate LLM-wrapper on multiple
datasets using different VLMs and LLMs, demonstrating significant performance
improvements and highlighting the versatility of our method. While LLM-wrapper
is not meant to directly compete with standard white-box fine-tuning, it offers a practical
and effective alternative for black-box VLM adaptation. The code will be open-sourced.

1 INTRODUCTION

Vision Language Models (VLMs), a class of foundation models (Bommasani et al., 2021), trained on large-
scale and diverse tasks and datasets, have shown remarkable abilities to solve various open-vocabulary tasks,
as image captioning (Xiao et al., 2023; Li et al., 2023), visual question answering (Alayrac et al., 2022; Liu
et al., 2023; Li et al., 2023), text-image retrieval (Radford et al., 2021; Zhai et al., 2023; Li et al., 2023), object
detection (Liu et al., 2024c; Xiao et al., 2023; Cheng et al., 2024), or semantic segmentation (Ding et al.,
2023; Xiao et al., 2023). Recent VLMs show promising zero-shot generalization abilities to new tasks and
data domains (Wei et al., 2022; Alayrac et al., 2022). However, there is still a significant performance gap
between zero-shot VLMs and those that have been specifically trained or adapted for a particular task and
data domain. This work focuses on the challenging open-vocabulary detection task of Referring Expression
Comprehension (REC) (Mao et al., 2016), which involves localizing an object in an image based on a
complex textual query, requiring both spatial and semantic reasoning. While zero-shot VLMs can typically
detect most objects mentioned in the query with reasonably accurate bounding boxes and labels, they
struggle to identify only the described object. Moreover, VLMs often have difficulty understanding complex
descriptions that involve relations between objects, attributes, or negations (Xie et al., 2023; Yao et al., 2024).

To improve performance, VLMs are typically fine-tuned on the specific REC task and corresponding
datasets. This fine-tuning is usually done in a ‘white-box’ manner, with full access to the model’s
architecture and weights for back-propagation. However, this process requires expertise to design
fine-tuning objectives and optimize hyper-parameters, specific to each VLM and downstream task.
Moreover, white-box fine-tuning is not always feasible. Some models are closed-source, either because
they are proprietary and released behind APIs (Ren et al., 2024), or because they are trained on private
data, making their weights and gradients inaccessible. While companies may provide APIs for adapting
proprietary models, e.g., (OpenAI, 2024), these solutions are limited to predefined scopes and require
sharing data with external private companies, raising legal and privacy concerns.
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Table 1: Comparison between white-box fine-tuning and LLM-wrapper on the REC task.

Classic white-box fine-tuning LLM-wrapper

Model access Needs complete access (loss, archi-
tecture, weights, gradients)

Only needs a forward call of a frozen
black-box VLM

Fine-tuning knowledge Specific for each VLM Agnostic to the choice of VLM and
LLM, and parameter-efficient

Specificity of adaptation None Leverages LLM semantic reasoning
Fine-tuning generalization Limited: no ensembling, no transfer

to new VLMs or datasets
Flexible: supports ensembling and
transfers across VLMs and datasets

Expected performances Best results Good results

To address these challenges, we explore ‘black-box’ adaptation of VLMs, where only forward calls to
the model are possible. We propose LLM-wrapper, a new method for the black-box adaptation of
VLMs for the REC task, by using an LLM to reason on the VLM’s outputs. This approach builds on
the recent development of Large Language Models (LLMs) (Touvron et al., 2023; Jiang et al., 2024;
Mesnard et al., 2024), which have shown interesting reasoning capabilities. The underlying idea is that
a zero-shot black-box VLM can generate high-quality labeled bounding boxes, and that LLM-wrapper
can then leverage the semantic and spatial reasoning abilities of the LLM (Lian et al., 2024a;b) to ‘reason’
on such outputs, further enhanced with a light fine-tuning. As illustrated in Figure 1, our method involves
translating VLM’s outputs into a natural language prompt and feeding it to the LLM. The LLM is then
tasked with identifying the box that best matches the referring expression from the given candidates.

LLM-wrapper offers several advantages, summarized in Table 1. First, since the adaptation is done
in a black-box manner, it removes the need for back-propagation through the VLM and allows for the
adaptation of closed-source models, without requiring access to the model’s architecture, weights, or
gradients. This makes black-box fine-tuning versatile and easy to use, as it can be applied to any model
without requiring specific model knowledge or assumptions about the model’s architecture. Additionally,
as the adaptation is delegated to the LLM via text, LLM-wrapper retains the pre-trained knowledge
of the original VLM. We find that LLM-wrapper transfers well to other VLMs, generalizes to model
updates, and can adapt effectively to new datasets without additional fine-tuning. Finally, LLM-wrapper
enables the adaptation of an ensemble of VLMs, leveraging the flexibility of text-based adaptation to
handle varying numbers of bounding boxes, thereby combining strengths from multiple models.

We experiment with LLM-wrapper on three REC datasets – RefCOCO (Yu et al., 2016), RefCOCO+
(Yu et al., 2016), RefCOCOg (Mao et al., 2016); additionaly we evaluate LLM-wrapper on
HC-RefLoCo Wei et al. (2024) – using two notably different VLMs – Grounding-DINO (Liu et al., 2024c)
and Florence-2 (Xiao et al., 2023). We also experiment with two LLMs for the adaptation: the recent
Mixtral 8x7B (Jiang et al., 2024) and Llama 3 8B (Dubey et al., 2024). While LLM-wrapper is not
meant to outperform standard white-box fine-tuning, we show that LLM-wrapper significantly enhances
the VLM’s performances, across all combinations of VLMs, LLMs and datasets, thus demonstrating
the versatility of our method. Notably, on RefCOCOg, our most challenging benchmark with respect
to semantic understanding, LLM-wrapper improves the results of zero-shot VLMs with gains ranging
from +9.5 up to +18.0 P@1.

2 RELATED WORK

Referring Expression Comprehension (REC) and Vision Language Models (VLMs). Referring
Expression Comprehension (REC) (Kazemzadeh et al., 2014; Mao et al., 2016; Qiao et al., 2021) is the task
of identifying objects in an image based on referring expressions. Typically, REC involves selecting the best
region from a set of region proposals extracted from the image, guided by a referring expression. This task
is challenging because the referring expression can range from a short phrase (Kazemzadeh et al., 2014; Yu
et al., 2016) to a long sentence that may require multi-step reasoning (Mao et al., 2016). REC is distinct from
similar tasks such as visual grounding (Rohrbach et al., 2016), where multiple object regions described by
multiple noun phrases must be localized in an image. It also differs from object detection (Girshick, 2015),
which uses predefined categories instead of natural language expressions. The recent surge of interest in
VLMs, starting from CLIP (Radford et al., 2021) to the recent Florence-2 (Xiao et al., 2023) has significantly
improved performance on tasks requiring both vision and language. For REC, several approaches have used
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Prompt
“You are a helpful AI assistant, capable 
of understanding spatial information. 
In an image, there are 7 boxes: 

In box 0: ‘flower’ with xyxy coordinates 
`[402, 181, 603, 224]',
In box 1: ‘plate with flower details’ with 
xyxy coordinates `[5, 212, 502, 587]', 
In box 2: ‘yellow bowl’ with xyxy 
coordinates `[1182, 211, 1582, 452]',
[...]

Which box is best matching `The plate 
with flower details next to the yellow 
bowl' ? Answer with just the index of the 
best box. No explanation. 
Answer:”

bl
ac

k-
bo

x 
V
LM

flower

bowl

yellow
bowl

plate with
flower details

plate

bowl

LL
M

LoRA

  Query: 'The plate with flower
 details next to the yellow bowl'

plate with
flower details

Figure 1: Illustration of LLM-wrapper. Our method adapts a black-box VLM for the REC task. The
output of the VLM is translated into a natural language text that is used to prompt an LLM. The LLM is
then tasked with identifying the box that best matches the referring expression among the given candidates.
The LLM must learn to identify the subject of the query and to disambiguate the correct object from other
distractor objects (e.g., several plates with ‘flower details’).

VLMs. For instance, Grounding-DINO (Liu et al., 2024c) relies on multiple stages of modality fusion to
align visual and textual features. The more recent Florence-2 (Xiao et al., 2023) is a sequence-to-sequence
model trained on a huge collection of data. However, despite being trained on extensive amounts of image-
text data (e.g., 126 million images with 500 million to 3.6 billion annotations for Florence-2), these models’
zero-shot performances on REC are sub-optimal compared to their performances when including REC
data in their training set or when fine-tuned (see Section 4.2). Our approach, LLM-wrapper, addresses
this clear limitation in a black-box manner, without the need to re-train the VLM with task-specific data.

VLM adaptation. While retraining the entire VLM on a new task or data domain is computationally
expensive (Liu et al., 2023; Wang et al., 2023; Chen et al., 2023; Xiao et al., 2023), fine-tuning offers
a more efficient alternative. However, even fine-tuning can be costly. To address this, parameter-efficient
fine-tuning, e.g., LoRa (Hu et al., 2022), DoRa (Liu et al., 2024a), or VeRa (Kopiczko et al., 2024), and
soft prompt (Li & Liang, 2021) learning have been proposed. These methods avoid updating the model’s
pre-trained weights but require access to the model’s architecture and gradients.

A few recent methods propose strategies to adapt VLMs when back-propagation through the VLM is not
feasible (Ouali et al., 2023; Yu et al., 2023; Liu et al., 2024b; Oh et al., 2023). Both Ouali et al. (2023) and
Yu et al. (2023) focus on CLIP-based methods and adapt the VLM by learning either a feature projection
or soft prompts. They however require access to the inner representations, which is generally not possible
with APIs. Liu et al. (2024b) optimize the input prompt template, but also focuses on CLIP-based models.
Instead, we target VLMs that perform open-vocabulary detection, e.g., Grounding-DINO and Florence-2.
Finally, (Oh et al., 2023) adapt a VLM in a black-box manner by modifying the image input. However,
this method is designed to address visual domain gaps and is not directly applicable to adapt a VLM to
a new task. Moreover, it requires multiple API calls for each training image. In this work, we propose
a strategy to adapt VLMs, and more specifically open-vocabulary detectors, to a new task, in a complete
black-box fashion. Our method does not require access to the model’s intermediate representations or
gradients, runs a single API call for each (text-image) input pair, and enables adaptation to a new task
(REC in our case) that the VLM was not originally trained for.

3 LLM-WRAPPER: BLACK-BOX SEMANTIC-AWARE ADAPTATION OF VLMS.

In this section, we present LLM-wrapper, a novel LLM-based approach to adapt an open-ended VLM
for the REC task. We present the general idea in Section 3.1, the construction of the prompt for the LLM
in Section 3.2, the fine-tuning details in Section 3.3.

3.1 GENERAL IDEA

Our method wraps the open-vocabulary detections of a frozen black-box VLM with an LLM that reasons
over these outputs. An overview is presented in Figure 1. Given a complex textual query, LLM-wrapper
leverages the fact that detection-oriented VLMs can typically localize well most nouns of the query, even
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if they struggle with the reasoning step required to precisely select the object of interest among several
distractors. Therefore, LLM-wrapper delegates the reasoning task to an LLM, which has interesting
abilities to handle difficult text queries, including attributes, negation, and relational or spatial descriptions
of objects. As the gradients of the black-box VLM are not accessible, we propose to adapt its outputs
with the LLM. It gives us access to the LLM gradients and we can thus specialize the LLM for the task,
with a simple and light fine-tuning, performed on the outputs of the VLM to learn to select the right box
among them. Overall, LLM-wrapper only requires black-box access to the VLM, whereas standard
fine-tuning strategies need white-box access to perform back-propagation. This makes our approach more
flexible and applicable in scenarios where the internal workings of the VLM are not accessible.

3.2 PROMPT CONSTRUCTION

The key idea of our method is to convert the VLM’s outputs into natural language. To achieve this, we
list all predicted outputs in the LLM prompt, including their box coordinates, labels, and, when applicable,
prediction scores (displayed below in light gray). This allows the ‘blind’ LLM, which only reads text,
to understand the scene and reason about the image. The prompt then reminds the query and asks the LLM
to select the best matching box. For instance, given the query (in green in Figure 1), and the associated
outputs (e.g., ‘flower’, ‘plate with flower details’, ‘yellow bowl’, etc.), we ask the LLM for the best
matching box index, as follows:

You are a helpful AI assistant, capable of understanding spatial information.
In an image, there are 7 boxes:
* In box 0: ‘flower’ with xyxy coordinates ‘[402, 181, 603, 224]’ with score 0.92,
* In box 1: ‘plate with flower details’ with xyxy coordinates ‘[5, 212, 502, 587]’ with score 0.88,
* In box 2: ‘yellow bowl’ with xyxy coordinates ‘[1182, 211, 1582, 452]’ with score 0.86,
* [...]
Which box is best matching ‘The plate with flower details next to the yellow bowl’ ?
Answer with just the index of the best box. No explanation.
Answer:

3.3 FINE-TUNING THE LLM

While a zero-shot LLM can already reason on the new task to some extent, we find that fine-tuning the
LLM significantly improves performances on the task. Therefore, we fine-tune the LLM for prompt
completion with a cross-entropy loss, using the prompt described above. Specifically, the expected answer
for the LLM is the index of the best box proposal, corresponding to the closest match to the known
ground truth box. To build the training dataset, we use the REC training data, which consists of (image,
query) pairs and ground truth boxes. The detection outputs (boxes, labels, scores), used to create the
training prompts, are inferred using the VLM being adapted. We only keep the samples where at least
one of the VLM box proposals has an Intersection over Union (IoU) with the ground truth box higher
than 0.5, ensuring no noisy samples. To make LLM-wrapper robust to any shortcut learning based
on the box order, we randomly permute the order of the box proposals in the prompt during training.

We leverage the extensive literature on LLM fine-tuning to specialize the LLM of LLM-wrapper.
Specifically, we use LoRA (Hu et al., 2022), which introduces additive updates to the model’s activations,
parameterized by low-rank modules. Doing so reduces the number of new parameters to learn while
preserving the LLM’s general knowledge. We also use flash attention (Dao et al., 2022) and 4-bit
quantization (Dettmers et al., 2024), making LLM-wrapper trainable on a single 40GB-A100 GPU
in less than 7 hours. This approach makes the training efficient in terms of compute and very simple to
implement in practice. Overall, we find that LLM-wrapper is not very sensitive to the choice of the
few hyper-parameters introduced (see Section 4.4).

4 EXPERIMENTS

In this section we present the experimental validation of LLM-wrapper. We first state our protocol
in Section 4.1. In Section 4.2, we show how LLM-wrapper improves VLMs. We then conduct further
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analysis of LLM-wrapper’s benefits in Section 4.3. We finally conduct ablation studies showcasing
LLM-wrapper’s robustness in Section 4.4.

4.1 EXPERIMENTAL SETUP AND TECHNICAL DETAILS

4.1.1 REFERRING EXPRESSION COMPREHENSION (REC) TASK

Datasets. We evaluate LLM-wrapper on the REC task. In REC, given an input pair (image,
query), a model is expected to predict a single bounding box around the object described in the query,
as illustrated in Figure 1. We use three standard datasets for REC, RefCOCO (Yu et al., 2016), RefCOCO+
(Yu et al., 2016), and RefCOCOg (Mao et al., 2016) which is more challenging as it contains longer and
more complex descriptions (8.4 words per query in average). Additionnally, we evaluate LLM-wrapper
on the HC-RefLoCo (Wei et al., 2024) benchmark for zero-shot dataset transfer experiments. All of these
datasets contain multiple distractor objects in each image for the given text query. Dataset’s statistics are
reported in Table 2.

Table 2: REC datasets statistics.
Split Size # words

Dataset used train val test / query

RefCOCO unc 120,624 10,834 10,752 3.6
RefCOCO+ unc 120,191 10,758 10,615 3.5
RefCOCOg umd 80,512 4,896 9,602 8.4
HC-RefLoCo — — 13,360 31,378 84.4

Metric. We measure performance with the
standard precision@1 (P@1) metric, de-
scribed in (Qiao et al., 2021). A true posi-
tive is defined when the predicted box has
an Intersection-Over-Union (IoU) greater
than 0.5 with the ground truth box. The
metric is averaged over the evaluation set.

4.1.2 THE VLMS

We evaluate the impact of LLM-wrapper on two different VLMs. In all cases, we use the official model
checkpoints and unless specified otherwise, we use the model versions that are not fine-tuned for the REC
task, meaning that the models have not been exposed to any of the RefCOCO/+/g datasets. Using the
model setup described below, we feed from 2 to 20 boxes to LLM-wrapper per prompt.

Grounding-DINO (GD) (Liu et al., 2024c) aligns visual queries with text through stages of modality
fusion and contrastive learning. Initially designed for open-vocabulary grounding, the model produces
900 bounding boxes, achieving a high recall but an under-performing precision on the REC task. For
REC, we use GD by selecting the bounding box with the highest score relative to any token in the query.
However, this method sometimes selects boxes based on query parts unrelated to the main object, such
as other nouns in the sentence. To address this, we introduce Grounding-DINO-REC (GDrec), a more
targeted approach for REC. GDrec identifies the query’s subject, defined as the first noun group detected
by SpaCy’s dependency parser (Honnibal et al., 2020), and selects the bounding box that scores best against
this subject. GDrec significantly outperforms GD on all datasets, and particularly on RefCOCOg, where
the noun identification is more challenging, with e.g., +7 P@1 for zero-shot models as shown in Table 3.
To ensure a rather short prompt, we limit the number of box proposals by setting the box confidence score
threshold to 0.15 for GDrec and to 0.2 for GD. GD / GDrec, not fine-tuned, use a SwinT(T) backbone
while the fine-tuned versions are based on SwinB(B), as they are the only publicly available models. We
also run experiments on a subset of RefCOCOg using Grounding-DINO 1.5 (Ren et al., 2024) (GD-1.5),
a recent detector behind API (online at: Grounding-DINO-1.5-API), which provides 300 free API
calls. GD-1.5 extends GD with a larger backbone, ViT-L (Fang et al., 2024), and training dataset.

Florence-2 (Flo2) (Xiao et al., 2023) is a sequence-to-sequence multi-task model. We use the Florence-2
Large version from the Hugging Face Hub. It is composed of a DaViT vision encoder (Ding et al., 2022)
and a multi-modal encoder-decoder. Flo2 can be prompted for several tasks, and we keep and concatenate
the boxes from the ‘open vocabulary detection’ and the ‘phrase grounding’ task modes.

4.1.3 THE LLMS AND THEIR FINE-TUNING

Our main experiments are conducted using two different LLMs: Mixtral 8x7B Instruct (Jiang et al., 2024)
(v0.1) and Llama 3 8B Instruct (AI@Meta, 2024) with Hugging Face’s implementation. We use Hugging
Face’s supervised fine-tuning pipeline (SFT) (HuggingFace, 2024), that allows to implement the training
choices discussed in Section 3. Specifically, for Llama 3 8B, we train 352M parameters, which is 4.20%
of the original model size. For Mixtral 8x7B, we train 114M parameters, which is 0.24% of the original
size. To further study the impact of the LLM scale, we also experiment with two additional families of
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Table 3: Main results of LLM-wrapper on the REC task, in P@1↑, on RefCOCO/+/g datasets.
‘(T)’ and ‘(B)’ stand for the ‘SwinT’ and ‘SwinB’ backbones respectively.

Model RefCOCOg RefCOCO RefCOCO+
Adaptation access VLM LLM val-umd test-umd val-unc test-unc val-unc test-unc

∅ (zero-shot) GD(T) 60.09 59.32 50.69 50.94 51.65 51.79
Fine-tuning White-box GD(B) 78.51 77.99 83.86 84.12 73.46 73.46
LLM-wrapper Black-box GD(T) Mixtral 77.57 ↑17.5 77.05 ↑17.7 74.61↑23.9 73.46↑22.5 60.32↑8.7 60.08↑8.3
LLM-wrapper Black-box GD(T) Llama3 78.12 ↑18.0 77.36 ↑18.0 74.78↑24.1 73.98↑23.0 64.18↑12.5 63.82↑12.0
∅ (zero-shot) GDrec(T) 67.61 68.37 51.82 52.12 53.28 53.16
Fine-tuning White-box GDrec(B) 80.19 79.85 83.84 84.21 73.68 73.58
LLM-wrapper Black-box GDrec(T) Mixtral 78.47 ↑10.9 77.92 ↑9.6 72.61↑20.8 71.48↑19.4 63.79↑10.5 63.69↑10.5
LLM-wrapper Black-box GDrec(T) Llama3 78.25 ↑10.6 78.01 ↑9.6 73.97↑22.2 73.07↑21.0 64.13↑10.9 64.08↑10.9
∅ (zero-shot) Flo2 68.28 66.90 56.32 57.01 53.71 54.43
Fine-tuning White-box Flo2 90.32 91.06 93.08 93.42 88.20 88.49
LLM-wrapper Black-box Flo2 Mixtral 77.74 ↑9.5 76.98 ↑10.1 67.29↑11.0 66.62↑9.6 57.38↑3.7 57.48↑3.1
LLM-wrapper Black-box Flo2 Llama3 77.94 ↑9.7 77.15 ↑10.3 70.19↑13.9 70.00↑13.0 61.95↑8.2 61.87↑7.4

models, Gemma 2 (Gemma, 2024) and GPT-Neo (Gao et al., 2021). The latter is a class of LLMs, based
on a replication of the GPT-3 architecture, trained on the large curated Pile dataset (Gao et al., 2021), and
which was not ‘instructed’ (Ouyang et al., 2022). We train LLM-wrapper with Adam (Kingma, 2014),
with a batch-size of four, until convergence. We discuss in Section 4.4 the sample efficiency of LLM-
wrapper. Unless stated otherwise, we use a learning rate of 10−5 and a rank of r=128 for LoRA. These
hyper-parameters work consistently across three datasets, two LLMs and two VLMs, demonstrating the
robustness of LLM-wrapper. We study the performance robustness of LLM-wrapper for different
hyper-parameters in Section 4.4. We provide further ablations in Appendix B and some statistics on invalid
generated outputs in Appendix C.

4.2 LLM-WRAPPER CAN ADAPT VLMS TO THE REC TASK

In Table 3, we report the performances of VLMs on the REC task in three settings: zero-shot off-the-shelf
VLM, after classic white-box fine-tuning, and after black-box adaptation with LLM-wrapper. The
results are obtained by adapting the VLM using exclusively the training data specific to each benchmark.

Our first observation confirms that while VLMs demonstrate remarkable zero-shot performance on new
tasks and datasets, their performance is still significantly lower than models specifically adapted to the
given task (white-box fine-tuning). As shown in Table 3, for both GD (and its variant GDrec) and Flo2,
there is a notable gap in REC performance, ranging from -11.5 to -37 P@1, between the zero-shot and
fine-tuned versions.

Interestingly, we observe that for all combinations of VLMs and LLMs, LLM-wrapper can adapt VLMs
to the new REC task, despite the black-box setting. For instance, on RefCOCOg, LLM-wrapper brings
improvements over the zero-shot models ranging from +9.5 to +18 P@1. Notably, while our proposed
variant GDrec outperforms GD by large margins in a zero-shot setting (e.g., +9.05 P@1-test) due to better
subject identification, both models perform similarly when adapted with LLM-wrapper. This shows
that LLM-wrapper particularly improves VLMs that lack abilities useful for the task, such as subject
identification in the case of REC for GD. On RefCOCO, LLM-wrapper improves again by significant
margins zero-shot VLMs, e.g., +23.0 P@1 (test) for GD with Llama 3 8B. Given that textual queries in
RefCOCO are very short (3.6 words on average), subject identification is relatively easy for these queries.
Therefore, these gains indicate that LLM-wrapper greatly helps to disambiguate the object of interest
from the distractors. On RefCOCO+, the improvement brought by LLM-wrapper is lower but still
significant (between +3.1 and +12.5 P@1). This is expected as RefCOCO+ is designed to exclude location
words, and most referring expressions are thus purely appearance-based descriptions (Qiao et al., 2021)
where LLM-wrapper brings less value for adaptation.

We present some qualitative results in Figure 2, where we show predictions from Flo2 before and
after being adapted with LLM-wrapper, with Llama 3 8B. We observe that the adaptation with LLM-
wrapper enables better spatial understanding (Fig. 2a, Fig. 2d), subject identification (Fig. 2b, Fig. 2e)
and relational reasoning (Fig. 2b, Fig. 2c, Fig. 2e). We display additional qualitative results in Appendix D.
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           LLM-wrapper
           Flo2
           Ground truth

(a) “The front most cow to the right of
other cows”

(b) “Person on the skateboard”
l

(c) “Green plant behind a table
visible behind a lady’s head”

(d) “The tie at the second from the
left”

(e) “A boy wearing a grey shirt”
l

(f) “White plane in the front”
l

Figure 2: Qualitative results of Flo2 outputs on RefCOCOg, before and after adaptation by LLM-
wrapper, provided with the query in caption. Adapting Flo2 (in orange) with LLM-wrapper (using
Llama 3 8B, and represented in blue) leads to improved reasoning and better bounding box selection.

Finally, LLM-wrapper is not designed to outperform classic white-box fine-tuning but demonstrates
competitive performance in some settings. For example, with GD and GDrec on RefCOCOg, LLM-
wrapper achieves comparable results despite using a smaller vision backbone. Additionally, LLM-
wrapper can complement white-box fine-tuning by adapting VLMs already optimized for the REC
task. As shown in Appendix A, applying LLM-wrapper on top of fine-tuned models does not degrade
performances and, in some cases, provides a slight boost. This highlights LLM-wrapper’s compatibility
with state-of-the-art methods and its ability to enhance existing adaptations.

4.3 BENEFITS OF WRAPPING VLMS’ OUTPUTS WITH LLM-WRAPPER

Ensembling VLMs. One advantage of LLM-wrapper is its free-text input format, which allows
adapting to various inputs. Indeed, we show that LLM-wrapper can learn to ensemble outputs from
different VLMs, as shown in Table 4. Specifically, we concatenate the predictions of the two VLMs in
the prompt described in Section 3. The results show that when ensembling GDrec and Flo2, scores
are boosted by +3.0 P@1 (val-umd) and +2.1 P@1 (test-umd) when compared to those obtained with
the best-performing VLM adapted with LLM-wrapper, namely GDrec. This demonstrates that LLM-
wrapper is capable of reasoning on multiple sources and leveraging the strengths of different models.

Indeed, we observe that Flo2 has a high precision, while GD and GDrec have lower precision but high
recall. We show qualitatively in Figure 3 an example where LLM-wrapper leverages the complementar-
ity of the two models. The figure displays predictions from Flo2 (e), GDrec (f), and LLM-wrapper
ensembling predictions from both Flo2 and GDrec (d). We observe that while Flo2 fails to detect the

Table 4: Results of VLMs ensembling using LLM-wrapper with Llama 3 8B, in P@1↑ on Ref-
COCOg using ‘umd’ splits. (Comparable findings for Mixtral).

Adaptation VLM P@1 - val ↑ P@1 - test ↑
∅ (zero-shot VLM) GDrec 67.61 68.37
∅ (zero-shot VLM) Flo2 68.28 66.90
LLM-wrapper Flo2 77.94 77.15
LLM-wrapper GDrec 78.25 78.01

LLM-wrapper Flo2 + GDrec 81.25 80.13
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Query: “A bottle of wine between the vegetables”

          Ground truth

(a) Ground truth

          Flo2

(b) All candidates of Flo2

         GDrec

(c) All candidates of GDrec

          LLM-wrapper

(d) Final pred. of LLM-wrapper

          Flo2

(e) Final pred. of Flo2

         GDrec

(f) Final pred. of GDrec

Figure 3: Visualizations of the candidates and predictions for the query “A bottle of wine between the
vegetables”. We visualize the ground truth (a) and the set of box candidates generated by Flo2 (b) and
GDrec (c). In the second row, we visualize the final predictions of Flo2 (e) and GDrec (f) and in (d)
the prediction of LLM-wrapper applied on the ensemble of both VLMs’ outputs, using Llama 3 8B.
We observe that LLM-wrapper discards the distractor bottle and selects the correct object.

target object as a possible candidate (b), the additional proposals from GDrec (c) enable LLM-wrapper
to find the correct object (d) that each independent models missed.

Transferring a trained LLM-wrapper to a new VLM. Another advantage of using text as the input
format is that LLM-wrapper does not rely on model-specific activation values, making it transferable
from one VLM to another. For instance, LLM-wrapper can be fine-tuned on Flo2 and transferred
to GD or GDrec. This is illustrated in Table 5, where, for instance, when fine-tuned on GDrec’s or
Flo2’s outputs, transferring it at inference time to the other model’s outputs gives an increase from +5.6
to +6.3 P@1 over zero-shot VLMs. This shows that during fine-tuning, LLM-wrapper learns spatial
and semantic notions that generalize to other models. This capacity of LLM-wrapper is particularly
useful for private models, such as GD-1.5 (Ren et al., 2024), where creating the training set can be
expensive – for instance, getting predictions for RefCOCOg train would cost ≈ $1,600 ($20 per 1,000 API
calls). To illustrate this use case, we use a RefCOCOg val subset corresponding to 300 free API calls to
GD-1.5. When LLM-wrapper is fine-tuned on GDrec’s outputs and applied on GD-1.5’s outputs
for inference, results are boosted by a significant +29.0 P@1. To ensure that the val-subset reflects the full
val set’s difficulty, we evaluate GDrec and Flo2 on both sets. The results are consistent, confirming
that the val-subset is a good proxy for the full set and that the performance gains from LLM-wrapper

Table 5: Results of LLM-wrapper when using different VLMs’ outputs during fine-tuning and
inference, in P@1↑ on RefCOCOg using ‘umd’ splits. Results obtained with Llama 3 8B. Comparable
findings for Mixtral. †Scores obtained on a subset of 300 samples from RefCOCOg val-umd.

VLM VLM P@1 - val ↑ P@1 - val ↑ P@1 - test ↑
Adaptation (fine-tuning) (inference) (subset 300) ↑ (full) (full)

∅ (zero-shot VLM) ∅ GDrec 66.00† 67.61 68.37
LLM-wrapper Flo2 GDrec 74.00† ↑8.0 73.90 ↑6.3 73.45 ↑5.1
∅ (zero-shot VLM) ∅ Flo2 71.00† 68.28 66.90
LLM-wrapper GDrec Flo2 75.33† ↑4.3 73.86 ↑5.6 73.03 ↑6.1
∅ (zero-shot VLM) ∅ GD-1.5 47.67† — —
LLM-wrapper GDrec GD-1.5 76.67† ↑29.0 — —
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Table 6: LLM-wrapper performance on zero-shot dataset transfer. Results obtained with Llama 3
8B. (‘FT’ stands for ‘fine-tuning’. † Flo2 is fine-tuned using ‘a collection of public supervised data on a
wide range of downstream tasks’, including but not limited to RefCOCO/+/g (Xiao et al., 2023).)

Adaptation VLM Finetuning Data Inference Data P@1 - val ↑ P@1 - test ↑
∅ (zero-shot VLM) Flo2 — HC-RefLoCo 48.64 48.87
White-box FT Flo2 RefCOCO/+/g† HC-RefLoCo 56.74 ↑8.10 55.62 ↑6.75
LLM-wrapper Flo2 RefCOCOg HC-RefLoCo 67.40 ↑18.76 67.26 ↑18.39
∅ (zero-shot VLM) Flo2 — RefCOCO 56.32 57.01
LLM-wrapper Flo2 RefCOCO RefCOCO 70.19 ↑13.87 70.00 ↑12.99
LLM-wrapper Flo2 RefCOCOg RefCOCO 69.00 ↑12.68 68.88 ↑11.87
∅ (zero-shot VLM) Flo2 — RefCOCO+ 53.71 54.43
LLM-wrapper Flo2 RefCOCO+ RefCOCO+ 61.95 ↑8.24 61.87 ↑7.44
LLM-wrapper Flo2 RefCOCOg RefCOCO+ 61.00 ↑7.29 61.07 ↑6.64

on GD-1.5 are significant. This showcases how LLM-wrapper can be used on continuously updated
versions of models without the need to re-train it with each model update.

Transferring a trained LLM-wrapper to new datasets. LLM-wrapper demonstrates strong gen-
eralization across datasets, reducing the need for training data and resources on new target domains. To
demonstrate this property, we fine-tune Flo2 with LLM-wrapper on RefCOCOg and evaluate it
on RefCOCO and RefCOCO+. Results in Table 6 show substantial gains over zero-shot Flo2, with
improvements up to +12.7 P@1 on RefCOCO and +7.3 P@1 on RefCOCO+. Although slightly below
results from direct fine-tuning on target datasets, these improvements demonstrate LLM-wrapper’s
ability to transfer knowledge effectively. To test generalization to more complex scenarios, we evaluate
Flo2 adapted with LLM-wrapper on RefCOCOg to HC-RefLoCo, a benchmark with longer and more
complex referring expressions and no training split. LLM-wrapper achieves +18.8 and +18.4 P@1
improvements on the validation and test sets, respectively, compared to zero-shot Flo2. Interestingly,
when white-box fine-tuned Flo2 is transferred to HC-RefLoCo, its performance boost over zero-shot
Flo2 is less than half of that achieved by LLM-wrapper. These results highlight LLM-wrapper’s
ability to handle in a zero-shot setting complex referring expressions, with an average length of 84 words,
despite being fine-tuned on ten times shorter expressions. More information on the impact of text queries’
complexity is given in Appendix B.2. Qualitative examples on HC-RefLoCo are shown in Appendix D.1.

4.4 ABLATION STUDIES

Unless specified otherwise, we run ablations on RefCOCOg val-umd, using GD’s outputs and Llama 3 8B.

Impact of LLM scale. In Figure 4a, we report the P@1 REC performance (y-axis) for various LLM
sizes (x-axis). We observe that LLM-wrapper is effective across all model families, and that the gain
in performance positively correlates with the LLM size. Indeed, though the sub-billion model, GPT-Neo
139M, slightly boosts the P@1 performance of GD zero-shot (+2.2 P@1), this increase is only incremental
when compared to Llama 3 8B’s gains (+18 P@1). Further analysis shows a Pearson correlation of 0.88
between the LLM’s original performance on reasoning benchmarks, measured by the HellaSwag score
(Zellers et al., 2019), and REC performance (details in Appendix B.1). Overall, these findings demonstrate
that larger, more capable LLMs are substantially more effective, while smaller models offer only limited
improvements.

Robustness to hyper-parameters. In Figure 4b, we show that LLM-wrapper is not overly sensitive to
the value of the LoRA rank, which controls the number of fine-tuned parameters. In the explored range,
r∈{12,64,128,192}, corresponding to fine-tuning{0.41%, 2.15%, 4.20%, 6.18%} of total parameters,
the performance varies by only ±0.4 P@1. We provide a more in-depth analysis of the impact of the
number of fine-tuned parameters on performance in Appendix B.1. Similarly, we observe in Figure 4c
that LLM-wrapper is loosely sensitive to the learning rate choice within the range {10−6,10−5}. With
learning rate values higher that 10−5, we observe unstable training behaviors.

Ablation on the number of training samples. Figure 5 displays the P@1 REC performance on RefCOCOg
val with respect to the number of training samples, when fine-tuning Llama 3 8B on RefCOCOg train. It
shows a sharp increase in P@1 for all VLMs (most impressive for GD) during the first 30k samples, which
takes ∼2h of training in our setting. Thus, even with a restricted amount of samples, LLM-wrapper
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0.11.4 7.02.8 9.7 12.9
# Parameters (billions).
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67.5
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75.0
77.5

P@
1 GPT-Neo

Gemma-2
Llama 3
Mixtral
GD zero-shot

(a) LLM size.
l
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LoRA rank (r).
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(b) LoRA parametrization.
(updated figure adding r=12 value)

1x10 5x10 1x10
Learning rate.

72
73
74
75
76
77
78
79
80

(c) Learning rate.
l

Figure 4: Study of LLM-wrapper’s sensitivity to hyper-parameters. Impact on LLM-wrapper’s
performances (with GD on RefCOCOg) of the (a) LLM scale; (b) LoRA rank r; and (c) learning rate.

can boost performances. In the extreme case of no training samples for the LLM, i.e., a zero-shot LLM,
we observe on Table 7 that in most settings the VLM and the VLM + zero-shot LLM have very similar
results. This follows the observation that, while LLMs have an extensive general knowledge, they may lack
off-the-shelf reasoning (Kazemi et al., 2023; Fu et al., 2024).

0K 20K 40K 60K 80K 100K 120K
# of fine-tuning samples

58

62

66

70

74

78

P@
1 GD + zero-shot LLM

GD + LLM-wrapper
GDrec + zero-shot LLM
GDrec + LLM-wrapper
Flo2 + zero-shot LLM
Flo2 + LLM-wrapper

Figure 5: Performance (P@1) of LLM-wrapper on
RefCOCOg (val) with respect to the number of training
samples. We fine-tune Llama 3 8B on RefCOCOg (train).

P@1-val↑ P@1-test↑

VLM VLM
only

+ LLM
zero-shot

VLM
only

+ LLM
zero-shot

GD 60.09 58.05 59.32 58.47
GDrec 67.61 67.48 68.37 68.17
GD-1.5 47.67† 59.00† — —
Flo2 68.28 67.69 66.90 66.44

Table 7: Results of wrapping the VLM’s
outputs with a zero-shot LLM. ‘VLM only’
are the scores of the VLM without any adap-
tation, and ‘+ LLM zero-shot’ corresponds to
LLM-wrapper without any fine-tuning of
the LLM (Llama 3 8B here). † see Table 5.

5 CONCLUSION

This work introduces LLM-wrapper, a simple approach for the black-box adaptation of VLMs to
the REC task, that leverages an LLM to reason on VLMs’ outputs, translated into natural language. We
demonstrate that LLM-wrapper significantly boosts the performance of VLMs, for several combinations
of LLMs and VLMs, and, in some settings, even bridges the gap to classic fine-tuning. We also show
how LLM-wrapper can ensemble predictions from different VLMs to leverage their respective strengths
and how it can transfer across VLMs and to out-of-domain datasets. Thanks to efficient and well-studied
methods for LLM fine-tuning, LLM-wrapper is simple to use in practice, requiring limited hyper-
parameter tuning, and computationally efficient. Future works include relying on fewer examples to
fine-tune LLM-wrapper, and applying LLM-wrapper to different tasks, such as text-video retrieval
(Fang et al., 2021).

Limitations. LLM-wrapper comes with some limitations. First, an additional inference cost is intro-
duced by integrating LLM reasoning on VLM outputs. Second, the effectiveness of LLM-wrapper
relies on the quality of the underlying VLM. Diverse and accurate bounding boxes are crucial for success,
and bounding box information alone may not be sufficient in some cases. For instance, as shown in Fig. 2f,
distinguishing the ‘White plane in the front’ requires understanding the planes’ direction, which is not
provided via bounding boxes’ coordinates and labels alone. Similar examples are shown in Appendix D.2.
To address this issue, a promising direction is to enhance LLM-wrapper by using the LLM to identify
missing visual information and suggest augmented queries for the VLM. This would help disambiguate
cases where additional visual cues are needed.
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A ADDITIONAL RESULTS: LLM-WRAPPER ON ALREADY REC-TUNED VLMS

We explore the use of LLM-wrapper on VLMs that are already optimized to deal with the REC task.
This supplementary experiment aims to confirm whether LLM-wrapper is compatible with pre-existing
REC-specific adaptations. Our analysis includes two VLMs from our main experiments after white-box
fine-tuning on REC data i.e., GDrec SwinB and Flo2 fine-tuned. We also include an additional VLM,
Kosmos-2 (Peng et al., 2023), that is directly designed to ground referring expressions. For each candidate
VLM, we compare P@1 scores, with and without additional LLM-wrapper tuning using RefCOCOg-
train (umd) data. The evaluation is made on RefCOCOg val-umd and test-umd and results are shown
in Table 8.

Table 8: Results of LLM-wrapper on the REC task, in P@1↑, when applied to already REC-adapted
VLMs. (‘FT’ stands for ‘fine-tuning’ and ‘(B)’ for the ‘SwinB’ backbone.)

RefCOCOg
Adaptation VLM LLM val-umd test-umd

White-box FT GDrec(B) 80.19 79.85
White-box FT + LLM-wrapper GDrec(B) Mixtral 82.58 ↑2.39 81.95 ↑2.10
White-box FT + LLM-wrapper GDrec(B) Llama3 81.66 ↑1.47 81.47 ↑1.62
White-box FT Flo2 FT 90.32 91.06
White-box FT + LLM-wrapper Flo2 FT Mixtral 90.38 ↑0.06 90.92 ↓0.14
White-box FT + LLM-wrapper Flo2 FT Llama3 90.50 ↑0.18 91.03 ↓0.03
Designed for REC Kosmos-2 60.60 61.41
Designed for REC + LLM-wrapper Kosmos-2 Mixtral 62.03 ↑1.43 62.59 ↑1.18
Designed for REC + LLM-wrapper Kosmos-2 Llama3 62.09 ↑1.49 62.39 ↑0.98

While the performance gains are modest — an expected outcome as the VLMs are already adapted and
optimized for the REC task —, it is important to note that LLM-wrapper avoids degrading performances
by any significant value and, in some cases, achieves a slight improvement of up to +2.4 P@1. These
results highlight the compatibility of LLM-wrapper with any state-of-the-art VLM, whether previously
fine-tuned on REC data or not.

B ADDITIONAL ABLATIONS ON POSSIBLE VARIABLES IMPACTING
PERFORMANCES

B.1 IMPACT OF THE NUMBER OF FINE-TUNED PARAMETERS ON PERFORMANCE

Our ablation study on LoRA’s rank r, presented in Figure 4b, shows the P@1 variations for different r
values. As the number of trainable parameters scales linearly with LoRA’s rank r, this analysis highlights
how trainable parameters count impacts performance. To ablate more precisely this aspect, we analyze
the impact of the number of fine-tuned parameters on the P@1 performance in Table 9. In this table,
we also report the original performance of the respective LLMs on the standard MMLU benchmark
(Hendrycks et al., 2021) and HellaSwag (Zellers et al., 2019), a benchmark for LLM commonsense
reasoning evaluation. As part of our analysis, we also compute the Pearson correlation between the P@1
scores and other variables from Table 9 and summarize results in Table 10.

Table 10 shows that the absolute number of fine-tuned parameters has a loose correlation with performance
(pearson=-0.07). This supports findings from Table 9 showing the limited impact of the number of
parameters, such as:

• Variations in LoRA’s rank r do not have a large effect on the P@1 score of Llama3 8B on
RefCOCOg (cf Table 9, rows 1 to 4).

• Llama3 8B (r=64, 176M trainable parameters) and Mixtral 8×7B (r=128, 114M trainable
parameters) yield very similar P@1 scores (77.72 vs. 77.57), despite Llama3 8B fine-tuning
a much higher percentage (2.15% vs. 0.24%) of parameters. The similarity of results, despite
different fine-tuning settings, could then be due to architectural differences, with Mixtral being a
Mixture of Experts model.
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Table 9: Impact of the number of trainable parameters on LLM-wrapper’s performances on Reg-
COCOg.

Trainable Total Trainable P@1 LLM LLM
LLM Rank (r) params params params % (val splits) MMLU HellaSwag
Llama3 8B 12 33M 8.1B 0.41 % 77.84 66.6 82
Llama3 8B 64 176M 8.2B 2.15% 77.72 66.6 82
Llama3 8B 128 352M 8.4B 4.20 % 78.12 66.6 82
Llama3 8B 192 529M 8.6B 6.18% 77.70 66.6 82
Mixtral 8x7B 128 114M 46.8B 0.24 % 77.57 70.6 84.4
Gemma-2 9B 128 465M 9.7B 4.79 % 74.12 71.3 81.9
Gemma-2 2B 128 199M 2.8B 7.08 % 70.51 52.2 72.9

Table 10: Pearson Correlation with LLM-wrapper’s P@1 for various variables.

Variable Pearson Correlation with P@1
LLM Total Params (count) 0.33
LLM Trainable Params (count) -0.07
LLM Trainable Params (%) -0.64
LLM MMLU score 0.72
LLM HellaSwag score 0.88

• Gemma-2 9B (r=128, 465M trainable params) underperforms compared to Llama3 8B (r=64,
176M trainable params), even though its setting includes fine-tuning more than double the number
of parameters.

These findings suggest that the architecture of the LLM and training specifics may have more influence
on performances. Furthermore, our analysis finds a strong correlation between LLM-wrapper’s P@1
scores and the LLM’s performances on reasoning tasks, with a Pearson correlation of 0.88 with HellaSwag.
This indicates that LLM-wrapper’s performance is mostly dependent on the original performance of the
LLM on reasoning tasks. In conclusion, the number of fine-tuned parameters has a small impact, but the
LLM’s architecture and other training factors play a more significant role regarding performance.

B.2 IMPACT OF THE COMPLEXITY OF REFERRING EXPRESSIONS ON PERFORMANCE

To ablate the robustness of LLM-wrapper to the degree of complexity of referring expressions, we count
the average number of words and noun groups1 for all queries in the datasets’ validation splits (for instance,
the sentence ‘Green plant behind a table visible behind a lady’s head’ yields three noun groups: ‘Green
plant’, ‘a table’, and ‘a lady’s head’). Results are summarized in Table 11.

Table 11: LLM-wrapper’s performance with respect to referring expression complexity, on all our
datasets. (All statistics and P@1 scores are computed on datasets’ val splits. LLM-wrapper is implemented
on Flo2, with Llama 3).

Avg # of Avg # of Avg. # of P@1 ↑ P@1 boost ↑
Dataset words noun groups boxes (val splits) (wrt 0-shot VLM)

RefCOCO 3.6 1.4 2.8 70.19 +13.9
RefCOCO+ 3.6 1.6 2.8 61.95 +8.2
RefCOCOg 8.3 2.7 3.7 77.94 +9.7
HC-RefLoCo 84.4 22.9 17.6 67.40 +18.8

LLM-wrapper demonstrates robust performances across datasets, showing no clear correlation between
the number of entities in referring expressions and either the P@1 score or the performance boost.

1Noun groups in text queries are identified using Spacy’s noun chunks method (Honnibal et al., 2020).
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Interestingly, on the challenging HC-RefLoCo dataset, which features long queries with many entities
(more than 20 noun groups per query on average), LLM-wrappermaintains strong reasoning capabilities
and performs well on the numerous boxes proposed by the VLM (more than 17 per prompt on average).

C FAILURE CASE ANALYSIS

A failure case arises when the LLM does not succeed in producing only the index of a candidate bounding
box as output. In such cases, the LLM may output non-integer values or indices that are out of range of the
candidate boxes’ list. However, these issues are very rare. Indeed, in Table 12, we report the percentage of
invalid outputs, when Flo2 is adapted with LLM-wrapper, with either Mixtral or Llama3. We observe
that issues due to invalid generation outputs occur on less than 0.5% of the evaluation sets. In this rare
cases, we use a simple fallback strategy: the best-ranked box from the zero-shot VLM is used as prediction.

Table 12: Percentages of invalid LLM generation when using LLM-wrapper on Flo2

RefCOCOg RefCOCO RefCOCO+
Method LLM val test val test val test
LLM-wrapper Mixtral 0.02% 0.05% 0.03% 0.10% 0.13% 0.09%
LLM-wrapper Llama3 0.02% 0% 0.41% 0.35% 0.16% 0.18%

For qualitative examples of failure cases due to reasoning issues, rather than generative issues, visualizations
are given in Appendix D.2.

D ADDITIONAL QUALITATIVE EXAMPLES

In this entire section, we use LLM-wrapper to adapt a zero-shot Flo2 VLM, using Llama3 8B to
perform black-box fine-tuning on RefCOCOg data.

D.1 QUALITATIVE SUCCESS CASES ON LONGER QUERIES

We show qualitative examples of LLM-wrapper’s successes against white-box fine-tuned Flo2 on
HC-RefLoCo in Figure 6 and Figure 7. In these two examples, LLM-wrapper is able to properly
process more than 10 candidate boxes, aligned with long and complex queries, to identify the correct box,
while fine-tuned Flo2 is predicting distractor objects.

D.2 QUALITATIVE FAILURE CASES

We display qualitative examples of LLM-wrapper’s failures against zero-shot Flo2 on RefCOCOg. In
particular, as mentioned in Section 5, the main failure case of LLM-wrapper occurs when bounding box
coordinates and labels alone are insufficient to ground certain referring expressions that require additional
visual cues. For example, in Fig. 2f, correctly localizing the query ‘White plane in the front’ requires
knowing the orientation of the planes. We give more examples showing this type of failures in Figure 8.
For instance, LLM-wrapper is missing visual information on the zebra’s head direction in Fig. 8a, on
the relative position of the curtains and chairs in Fig. 8b and on the position of each person with respect to
the camera in Fig. 8c.

Going beyond LLM-wrapper’s main failure scenario, we add visualizations of corner failure cases in
Figure 9. They illustrate possible issues hindering the LLM’s reasoning, i.e., when no proper candidate
box is identified by the zero-shot VLM in the first place (Fig. 9a), when the VLM fails to detect important
contextual objects, necessary to ‘perceive’ the scene and localize the object of interest (Fig. 9b), when rich
candidate boxes exist but without adequate labels (Fig. 9c).
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Query: “This individual appears to be a woman with long, straight blonde hair that drapes over her right shoulder.
She is wearing a light-colored, possibly cream or pale yellow blazer. The woman is engaged in an activity where she is
bringing a clear glass, which she holds in her right hand, towards her mouth as if to take a sip of a beverage. Her left
hand is not visible in the image. She is positioned on the far left in the group of people captured in the photograph.”

(a) Ground truth (b) All 13 candidates from Flo2

(c) Final pred. of LLM-wrapper (d) Final pred. of Flo2 FT

Figure 6: First qualitative result of LLM-wrapper tuned on RefCOCOg, evaluated on HC-RefLoCo.
LLM-wrapper takes multiple candidates from zero-shot Flo2 as inputs (in orange in Fig. b) to identify
the best box (in blue, in Fig. c), while white-box fine-tuned Flo2 fails (in red in Fig. d).

Query: “The individual is a middle-aged man with short, dark hair, appearing startled or comically alarmed. He is
wearing a pale dress shirt and is positioned as if emerging from a mirror, with his left side showing.”

(a) Ground truth (b) All 10 candidates from Flo2

(c) Final pred. of LLM-wrapper (d) Final pred. of Flo2 FT

Figure 7: Second result of LLM-wrapper evaluated on HC-RefLoCo. Same legend as Figure 6.
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(a) Query: “Zebra whose head is not
facing down.”

l

(b) Query: “Chair without the curtain
on it”

l

(c) Query: “A man with his back
turned toward the camera, enjoying a

conversation with a friend.”

Figure 8: Visualizations on RefCOCOg of LLM-wrapper’s main failure case. LLM-wrapper’s
predictions are in blue vs. zero-shot Flo2’s predictions in orange. In these three examples, LLM-
wrapper fails to identify the best candidate box as coordinates and labels are not providing enough visual
cues for the LLM to choose correctly. For instance, LLM-wrapper is missing visual information on
the zebra’s head direction (Fig. a), on the relative position of the curtains and chairs (Fig. b) and on the
position of each person with respect to the camera (Fig. c).

(a) Query: ‘Black and white dog with
pointy ears.’

l

(b) Query: ‘Dark chicken closest to
the fence.’

l

(c) Query: ‘The head and shoulders
and one leg of a goat closest to the
dog.’

Figure 9: Visualizations of three corner failure cases of LLM-wrapper on RefCOCOg. As we use
LLM-wrapper to adapt a zero-shot Flo2, we show on the first row in orange, for each sample, the
respective Flo2’s candidate boxes that LLM-wrapper takes as inputs. In the second row, we visualize
the prediction of LLM-wrapper in blue, chosen among Flo2’s candidates, as well as the ground truth
box. We observe that the LLM reasoning can be hindered if candidate boxes are missing the object of
interest (the correct dog in Fig. a), necessary contextual objects (the fence in Fig. b) or proper labels (goats
are detected but not properly labeled in Fig. c, bringing confusion with respect to the scene description).
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