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ABSTRACT

Recent advances in continuous generative models, encompassing multi-step pro-
cesses such as diffusion and flow matching (typically requiring 8-1000 steps) and
few-step methods such as consistency models (typically 1-8 steps), have yielded
impressive generative performance. However, existing work often treats these ap-
proaches as distinct paradigms, leading to disparate training and sampling method-
ologies. We propose a unified framework for the training, sampling, and analysis of
diffusion, flow matching, and consistency models. Within this framework, we de-
rive a surrogate unified objective that, for the first time, theoretically shows that the
few-step objective can be viewed as the multi-step objective plus a regularization
term. Building on this framework, we introduce the Unified Continuous Generative
Models Trainer and Sampler (UCGM-{T, S}), which enables efficient and sta-
ble training of both multi-step and few-step models. Empirically, our framework
achieves state-of-the-art results. On ImageNet 256× 256 with a 675M diffusion
transformer, UCGM-T trains a multi-step model achieving 1.30 FID in 20 steps,
and a few-step model achieving 1.42 FID in only 2 steps. Moreover, applying
UCGM-S to REPA-E (Leng et al., 2025) improves its FID from 1.26 (at 250 steps)
to 1.06 in only 40 steps, without additional cost.

1 INTRODUCTION

(a) NFE = 40, FID = 1.48. (b) NFE = 2, FID = 1.75.

Figure 1: Generated samples from two 675M diffusion transformers trained with our UCGM on
ImageNet-1K 512×512. The figure showcases generated samples illustrating the flexibility of Number of
Function Evaluation (NFE) and superior performance achieved by our UCGM. The left subfigure presents
results with NFE = 40 (multi-step), while the right subfigure shows results with NFE = 2 (few-step). Note that
the samples are sampled without classifier-free guidance (CFG) or other guidance techniques.

Continuous generative models, encompassing diffusion models (Ho et al., 2020; Song et al., 2020a),
flow-matching models (Lipman et al., 2022; Ma et al., 2024), and consistency models (Song et al.,
2023; Lu & Song, 2024), have demonstrated remarkable success in synthesizing high-fidelity data
across diverse applications, including image and video generation (Peebles & Xie, 2023; Chen et al.,
2024; Ma et al., 2024; Xie et al., 2024; Ho et al., 2022; Chen et al., 2025).
Training and sampling of these models necessitate substantial computational resources (Karras et al.,
2022; 2024b). Moreover, current research treats distinct model paradigms (diffusion models/flow
matching (Karras et al., 2022) v.s. consistency models (Song et al., 2023)) independently, leading to
paradigm-specific training and sampling methodologies. This fragmentation introduces two primary
challenges: (a) a deficit in unified theoretical and empirical understanding, which constrains the
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Table 1: Existing continuous generative paradigms as special cases of our UCGM. Prominent continuous
generative models, such as Diffusion, Flow Matching, and Consistency models, can be formulated as specific
parameterizations of our UCGM. The columns detail the required parameterizations for the transport coefficients
α(·), γ(·), α̂(·), γ̂(·) and parameters λ, ρ, ν of UCGM. Note that σ(t) is defined as e4(2.68t−1.59) in this table.

Paradigm UCGM-based Parameterization

Type e.g., α(t) = γ(t) = α̂(t) = γ̂(t) = λ ∈ [0, 1] ρ ∈ [0, 1] ν ∈ {1, 2}

Diffusion EDM (Karras et al., 2022) σ(t)√
σ2(t)+ 1

4

1√
σ2(t)+ 1

4

−0.5√
σ2(t)+ 1

4

2σ(t)√
σ2(t)+ 1

4

0 ≥ 0 2

Flow
Matching FM (Lipman et al., 2022) t 1− t 1 −1 0 ≥ 0 1

Consistency sCM (Lu & Song, 2024) sin(t · π2 ) cos(t · π2 ) cos(t · π2 ) sin(t · −π
2 ) 1 1 1

transfer of advancements across different paradigms; and (b) limited cross-paradigm generalization,
as algorithms optimized for one paradigm (e.g., diffusion models) are often incompatible with others.
To address these limitations, we introduce UCGM, a novel framework that establishes a unified
foundation for the theoretical understanding, training and sampling of continuous generative models
(diffusion, flow matching, and consistency models). Within this framework, we derive a surrogate
unified objective, which not only offers a formulation equivalent to the unified objective, but also,
for the first time, shows that the few-step objective can be viewed as the multi-step objective plus a
self-consistency term. Within this formulation, we link the instability of few-step model training to
the self-alignment term that dominates the training dynamics as λ→ 1.
The unified trainer UCGM-T is built upon a unified objective, parameterized by a consistency ratio
λ ∈ [0, 1].This allows a single training paradigm to flexibly produce models tailored for different
inference regimes: models behave akin to multi-step diffusion or flow-matching approaches when λ
is close to 0, and transition towards few-step consistency-like models as λ approaches 1. Furthermore,
our unified framework supports compatibility with diverse noise schedules (e.g., linear, triangular,
quadratic) without requiring algorithm-specific modifications.
Complementing UCGM-T, we propose a unified sampler UCGM-S that operates seamlessly with
models trained under our objective. UCGM-S is designed to enhance and accelerate sampling from
pre-trained models—including those from previous paradigms as well as ones trained via UCGM-T.
The unifying power of UCGM is further demonstrated by its ability to encapsulate several major
continuous generative paradigms as special instances, as summarized in Tab. 1. Moreover, as shown
in Fig. 1, models trained with UCGM achieve high sample quality across a wide range of Number of
Function Evaluations (NFEs).
In summary, our contributions are:
(a) We propose a unified framework that provides a theoretical foundation for the training and

sampling of continuous generative models–including diffusion models, flow matching models, and
consistency models–and derive a surrogate unified objective that, for the first time, theoretically
shows that the few-step objective can be viewed as the multi-step objective plus a self-alignment
term.

(b) We introduce a unified trainer UCGM-T , that seamlessly bridges few-step (e.g., consistency
models) and multi-step (e.g., diffusion, flow matching) generative paradigms, accommodating
diverse model architectures, latent autoencoders, and noise schedules. We also propose a unified
sampler UCGM-S, which is compatible with our trained models and further accelerate and
improve pre-trained models from existing yet distinct paradigms.

(c) We empirically validate the effectiveness and efficiency of UCGM. Our approach consistently
matches or surpasses SOTA methods across various datasets, architectures, and resolutions, for
both few-step and multi-step generation tasks (cf., the experimental results in Sec. 4).

2 PRELIMINARIES

Given a training dataset D, let p(x) represent its underlying data distribution, or p(x|c) under a
condition c. Continuous generative models seek to learn an estimator that gradually transforms a
simple source distribution p(z) into a complex target distribution p(x) within a continuous space.
Typically, p(z) is represented by the standard Gaussian distribution N (0, I). For instance, diffusion
models generate samples by learning to reverse a noising process that gradually perturbs a data sample
x ∼ p(x) into a noisy version xt = α(t)x+ σ(t)z, where z ∼ N (0, I). Over the range t ∈ [0, T ],
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the perturbation intensifies with increasing t, where higher t values indicate more pronounced noise.
Below, we introduce three prominent learning paradigms for deep continuous generative models.

Diffusion models (Ho et al., 2020; Song et al., 2020b; Karras et al., 2022). In the widely adopted
EDM method (Karras et al., 2022), the noising process is defined by setting α(t) = 1, σ(t) = t.
The training objective is given by Ex,z,t

[
ω(t) ∥fθ(xt, t)− x∥22

]
where ω(t) is a weighting function.

The diffusion model is parameterized by fθ(xt, t) = cskip(t)xt+cout(t)F θ(cin(t)xt, cnoise(t)) where
F θ is a neural network, and the coefficients cskip, cout, cin, and cnoise are manually designed. During
sampling, EDM solves the Probability Flow Ordinary Differential Equation (PF-ODE) (Song et al.,
2020b): dxt

dt = [xt − fθ(xt, t)]/t, integrated from t = T to t = 0.

Flow matching (Lipman et al., 2022). Flow matching models are similar to diffusion models but
differ in the transport process from the source to the target distribution and in the neural network train-
ing objective. The forward transport process utilizes differentiable coefficients α(t) and γ(t), such that
xt = α(t)z+γ(t)x. Typically, the coefficients satisfy the boundary conditions α(1) = γ(0) = 1 and

α(0) = γ(1) = 0. The training objective is given by Ex,z,t

[
ω(t)

∥∥∥F θ(xt, t)− (dαt

dt z+
dγt

dt x)
∥∥∥2
2

]
.

Similar to diffusion models, the reverse transport process (i.e., sampling process) begins at t = 1
with x1 ∼ N (0, I) and solves the PF-ODE: dxt

dt = F θ(xt, t), integrated from t = 1 to t = 0.

Consistency models (Song et al., 2023; Lu & Song, 2024). A consistency model fθ(xt, t) is
trained to map the noisy input xt directly to the corresponding clean data x in one or few steps
by following the sampling trajectory of the PF-ODE starting from xt. To be valid, fθ must sat-
isfy the boundary condition fθ(x, 0) ≡ x. Inspired by EDM (Karras et al., 2022), one approach
to enforce this condition is to parameterize the consistency model as fθ(xt, t) = cskip(t)xt +
cout(t)F θ (cin(t)xt, cnoise(t)) with cskip(0) = 1 and cout(0) = 0. The training objective is defined be-
tween two adjacent time steps with a finite distance: Ext,t [ω(t)d (fθ(xt, t),fθ−(xt−∆t, t−∆t))],
where θ− denotes stopgrad(θ), ∆t > 0 is the distance between adjacent time steps, and d(·, ·) is a
metric function. Discrete-time consistency models are sensitive to the choice of ∆t, necessitating
manually designed annealing schedules (Song & Dhariwal, 2023; Geng et al., 2024) for rapid con-
vergence. This limitation is addressed by proposing a training objective for continuous consistency
models (Lu & Song, 2024), derived by taking the limit as ∆t→ 0.

3 METHODOLOGY

This section elaborates on our two primary contributions: (1) the unified framework for continuous
generation models and a surrogate loss function that affords a theoretical interpretation of model
behavior. (2) the concrete instantiation of the unified framework through UCGM-T (for training) and
UCGM-S (for sampling).

3.1 UNIFIED FRAMEWORK FOR CONTINUOUS GENERATIVE MODELS

We first propose a unified multi-step objective for diffusion and flow-matching models, which
constitute all multi-step continuous generative models. Furthermore, we extend this unified multi-step
objective to encompass both few-step models and multi-step models.

Unified objective for multi-step continuous generative models. We introduce a generalized
training objective below that effectively trains generative models while encompassing the formulations
presented in existing studies (Karras et al., 2022; Lipman et al., 2022; Liu et al., 2022; Ho et al., 2020;
Song et al., 2020a):

L(θ) := E(z,x)∼p(z,x),t

[
1

ω(t)
∥F θ(xt, t)− zt∥22

]
, (1)

where time t ∈ [0, 1], ω(t) is the weighting function for the loss, F θ is a neural network1 with
parameters θ, xt = α(t)z + γ(t)x, and zt = α̂(t)z + γ̂(t)x. Here, α(t), γ(t), α̂(t), and γ̂(t) are
the unified transport coefficients defined for UCGM. In this paper, we refer to equation (1) as the
multi-step objective. Additionally, to efficiently and robustly train multi-step continuous generative
models using (1), we propose the following necessary assumption:

1For simplicity, unless otherwise specified, we assume that any conditioning information c is incorporated
into the network input. Thus, F θ(xt, t) should be understood as F θ(xt, t, c) when c is applicable.
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Assumption 1 . The coefficients function α(t), γ(t), α̂(t), γ̂(t) satisfy the following constraints:
(a) α(t) ∈ C1[0, 1] and is non-decreasing, with α(0) = 0, α(1) = 1.
(b) γ(t) ∈ C1[0, 1] and is non-increasing, with γ(0) = 1, γ(1) = 0.
(c) ∀t ∈ [0, 1], |α(t) · γ̂(t)− α̂(t) · γ(t)| > 0.

Under the Assump. 1, diffusion and flow matching are special cases of multi-step objective (1):
(a) Diffusion: following EDM (Karras et al., 2022; 2024b), by setting α(t) = 1 and σ(t) = t,

diffusion models based on EDM can be derived from (1) provided that the constraint γ(t)/α(t) =
t is satisfied2.

(b) Flow Matching: Similarly, flow matching can be derived only when α̂(t) = dα(t)
dt and γ̂(t) =

dγ(t)
dt (see Sec. 2 for more technical details about EDM-based and flow-based models).

Unified objective for both multi-step and few-step models. To facilitate the interpretation of our
framework, we define two prediction functions based on model F θ as:

fx(F θ
t ,xt, t) :=

α(t) · F θ
t − α̂(t) · xt

α(t) · γ̂(t)− α̂(t) · γ(t)
& fz(F θ

t ,xt, t) :=
γ̂(t) · xt − γ(t) · F θ

t

α(t) · γ̂(t)− α̂(t) · γ(t)
, (2)

where we define F θ
t := F θ(xt, t). The training objective (1) thus becomes (cf., App. F.1.1):

L(θ) = E(z,x)∼p(z,x),t

[
1

ω̂(t)
∥fx(F θ(xt, t),xt, t)− x∥22

]
. (3)

To align with the gradient of multi-step objective (1), we define a new weighting function ω̂(t)

in (3) as ω̂(t) := α(t)·α(t)·ω(t)

(α(t)·γ̂(t)−α̂(t)·γ(t))2 . To unify few-step models (such as consistency models) with
multi-step models, we adopt a modified version of (3) by incorporating a consistency ratio λ ∈ [0, 1]:

L(θ) = E(z,x)∼p(z,x),t

[
1

ω̂(t)
∥fx(F θ(xt, t),xt, t)− fx(F θ−(xλt, λt),xλt, λt)∥22

]
, (4)

where consistency models and conventional multi-steps models are special cases within the context
of (4) (cf., App. F.1.1 and App. F.1.3):
(a) Diffusion / Flow Matching: setting λ = 0 yields diffusion and flow matching, and our unified

objective (4) degrades to the objective (3), which is equivalent to the multi-step objective (1).
(b) Consistency Model: setting λ = 1− ∆t

t with ∆t→ 0 recovers consistency models.

Equivalent surrogate objective for unified objective (4). Building on the unified objective (4), we
derive an equivalent surrogate objective. Importantly, this surrogate not only provides an equivalent
reformulation of the unified objective but also sheds light on the theoretical origin of instability in
few-step models, like consistency model.

Theorem 1 (Surrogate objective for unified objective of linear case (α(t) = t, γ(t) = 1− t)) .
Under Assump. 1, let’s consider a surrogate objective

G(θ) = Ez,x, t

[∥∥F θ(xt, t)− zt
∥∥2
2︸ ︷︷ ︸

Flow Matching Objective

+
λ

1− λ

∥∥F θ(xt, t)− F θ−(xλt, λt)
∥∥2
2︸ ︷︷ ︸

Self-Alignment Term

]
, (5)

where xt = t · z + (1 − t) · x, zt = z − x, ω̂(t) = t2 · (1 − λ), 0 < λ < 1. The following
equation holds: ∇θL(θ) = ∇θG(θ), ∀θ. See App. F.1.5 for proof and general case.

Thm. 1 establishes that optimizing the unified objective in (4) is equivalent to optimizing the sur-
rogate objective in (5). This equivalence is useful for analysis because the surrogate, G(θ), can be
decomposed into two distinct components: a multi-step objective term and a self-alignment term.
We can offer a physical interpretation for each component by considering the underlying function
F θ(xt, t) as a learned velocity field:

• Flow matching objective: This term corresponds to the learning objective of multi-step models
(1). It learns the mean velocity zt = z− x = x1−x0

1−0 of a flow trajectory.

2In EDM, with σ(t) = t, the input of neural network F θ is cin(t)xt = cin(t) · (x+ t · z). Although cin(t)
can be manually adjusted, the coefficient before z remains t times that of x.
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• Self-alignment term: This term can be considered as a regularization term, which enforces
consistency of the velocity of any points within a flow trajectory, ultimately helping to straighten
the learned trajectories.

Remark 1 (Analysis of instability of few-step objective (i.e. λ→ 1)) . According to Thm. 1, as
λ→ 1, the self-alignment term dominates the loss function. This term only requires the velocity
to be consistent in each flow trajectory, without constraining it to match the mean velocity. Thus,
while a pre-trained velocity field may initially be straightened under this objective, prolonged
training with few-step objective ultimately degrades the quality of the velocity field.

3.2 INSTANTIATING THE UNIFIED FRAMEWORK FOR TRAINING (UCGM-T)

Referring to previous studies (Lu & Song, 2024), we consider a new equivalent unified objective:

E(z,x)∼p(z,x),t

[∥∥∥∥F θ(xt, t)− F θ−(xt, t) + 2 · ∆fx

B(t)−B(λt)

∥∥∥∥2
2

]
, (6)

where the detailed derivation from (4) to (6) is provided in App. F.1.6, and

∆fx := fx(F θ−

t ,xt, t)− fx(F θ−

λt ,xλt, λt), B(t) := α(t)/(α(t)γ̂(t)− α̂(t)γ(t)) .

Second-order estimator as λ→ 1. We identify that the direct estimation of the difference quotient
in objective (6) is only a first-order approximation, which is susceptible to numerical precision errors.
To mitigate this issue, we propose a second-order estimator:

∆fx

B(t)−B(λt)
≈ fx(F θ−(xt+ϵ, t+ ϵ),xt+ϵ, t+ ϵ)− fx(F θ−(xt−ϵ, t− ϵ),xt−ϵ, t− ϵ)

B(t+ ϵ)−B(t− ϵ)
.

See App. F.2.3 for further analysis of this second-order estimator. To stabilize the training, we
implement two strategies for the second-order estimation: (1) We adopt a distributive reformulation of
the second-difference term to prevent direct subtraction ∆fx

t = fx(F θ−(xt+ϵ, t+ ϵ),xt+ϵ, t+ ϵ) ·
1
2ϵ − fx(F θ−(xt−ϵ, t− ϵ),xt−ϵ, t− ϵ) · 1

2ϵ . (2) we also observe that applying numerical truncation
clip(·,−1, 1) to the second-order estimator enhances training stability (Lu & Song, 2024).

Generalized time distribution (GTD) Beta(θ1, θ2). Previous studies (Yao et al., 2025; Esser
et al., 2024; Song et al., 2023; Lu & Song, 2024; Karras et al., 2022; 2024b) employ non-linear
functions to transform the time variable t, initially sampled from a uniform distribution t ∼ U(0, 1).
This transformation shifts the distribution of sampled times, effectively performing importance
sampling and thereby accelerating the training convergence rate. For example, the lognorm function
flognorm(t;µ, σ) = 1/1+exp(−µ−σ·Φ−1(t)) is widely used (Yao et al., 2025; Esser et al., 2024), where
Φ−1(·) denotes the inverse Cumulative Distribution Function of the standard normal distribution.
In this work, we demonstrate that commonly used time distribution after non-linear time transforma-
tion can be well-approximated by the Beta distribution (a detailed analysis is provided in App. F.2.1).
Consequently, we simplify the process by directly sampling time from a Beta distribution, i.e.,
t ∼ Beta(θ1, θ2), where θ1 and θ2 are parameters that control the shape of time distribution
(see App. D.1.3 for their settings).

Learning enhanced target score function. We additionally incorporate the enhanced target score
function proposed in recent work (Tang et al., 2025) into our unified training objective in (6). This
technique is not our main contribution but can be seamlessly integrated into our framework. For
completeness, we provide the formulation and further analysis in App. F.1.7.
An ablation study for our proposed techniques is shown in Tab. 11, and the pseudocode is in Alg. 1.

3.3 INSTANTIATING THE UNIFIED FRAMEWORK FOR SAMPLING (UCGM-S)

For classical iterative sampling models, such as a trained flow-matching model fθ, sampling from
the learned distribution p(x) involves solving the PF-ODE (Song et al., 2020b). This process
typically uses numerical ODE solvers, such as the Euler or Runge-Kutta methods (Ma et al., 2024),
to iteratively transform the initial Gaussian noise x̃ into a sample from p(x) by solving the ODE (i.e.,
dx̃t

dt = fθ(x̃t, t)), Similarly, sampling processes in models like EDM (Karras et al., 2022; 2024b) and
consistency models (Song et al., 2023) involve a comparable gradual denoising procedure. Building
on these observations and our unified trainer UCGM-T, we first propose a general iterative sampling
process with two stages below:

5
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(a) Decomposition: At time t, the current input x̃t is decomposed into two components: x̃t =
α(t) · ẑt + γ(t) · x̂t. This decomposition uses the estimation model F θ. Specifically, the model
output F t = F θ−(x̃t, t) is computed, yielding the estimated clean component x̂t = fx(F t, x̃t, t)
and the estimated noise component ẑt = fz(F t, x̃t, t).

(b) Reconstruction: The next time step’s input, t′, is generated by combining the estimated compo-
nents: x̃t′ = α(t′) · ẑt + γ(t′) · x̂t. The process then iterates to stage (a).

We then introduce two enhancement techniques below to optimize the sampling process:
(i) Extrapolating the estimation. Directly utilizing the estimated x̂t and ẑt to reconstruct the

subsequent input x̃t′ can result in significant estimation errors, as the estimation model F θ does
not perfectly align with the target function F target for solving the PF-ODE.
Note that CFG guides a conditional model using an unconditional model, i.e., fθ(x̃, t) =
fθ(x̃, t) + κ ·

(
f∅
θ (x̃, t)− fθ(x̃, t)

)
where κ is the guidance ratio. This approach can be inter-

preted as leveraging a less accurate estimation to guide a more accurate one (Karras et al., 2024a).
Extending this insight, we propose to extrapolate the next time-step estimates x̂t′ and ẑt′
using the previous estimates x̂t and ẑt, formulated as: x̂t′ ← x̂t′ + κ · (x̂t′ − x̂t) and
ẑt′ ← ẑt′ + κ · (ẑt′ − ẑt), where κ ∈ [0, 1] is the extrapolation ratio. This extrapolation process
can significantly enhance sampling quality and reduce the number of sampling steps. Notably,
this technique is compatible with CFG and does not introduce additional computational overhead
(see Sec. 4.2 for experimental details and App. F.1.9 for theoretical analysis).

(ii) Incorporating stochasticity. During the aforementioned sampling process, the input x̃t is
deterministic, potentially limiting the diversity of generated samples. To mitigate this, we
introduce a stochastic term ρ to x̃t, defined as: x̃t′ = α(t′) ·

(√
1− ρ · ẑt +

√
ρ · z

)
+ γ(t′) · x̂t,

where z ∼ N (0, I) is a random noise vector, and ρ is the stochasticity ratio. This stochastic term
acts as a random perturbation to x̃t, thereby enhancing the diversity of generated samples.

Unified sampling algorithm UCGM-S. Putting all these factors together, here we introduce
a unified sampling algorithm applicable to consistency models and diffusion/flow-based models,
as presented in Alg. 2. An ablation study for our proposed techniques is in Tab. 12. Extensive
experiments (cf., Sec. 4) demonstrate two key features of this algorithm:

(a) Reduced computational resources: It decreases the number of sampling steps required by existing
models while maintaining or enhancing performance.

(b) High compatibility: It is compatible with existing models, irrespective of their training objectives
or noise schedules, without necessitating modifications to model architectures or tuning.

4 EXPERIMENT

This section details the experimental setup and evaluation of our proposed methodology, UCGM-
{T, S}. Note that our approach relies on specific parameterizations of the transport coefficients
α(·), γ(·), α̂(·), and γ̂(·), as detailed in Alg. 1 and Alg. 2. Therefore, Tab. 6 summarizes the
parameterizations used in experiments, including configurations for compatibility with prior methods.

4.1 EXPERIMENTAL SETTING

Datasets. We utilize ImageNet-1K (Deng et al., 2009) at resolutions of 512 × 512 and 256 ×
256 as our primary datasets, following prior studies (Karras et al., 2024b; Song et al., 2023) and
adhering to ADM’s data preprocessing protocols (Dhariwal & Nichol, 2021). Additionally, CIFAR-
10 (Krizhevsky et al., 2009b) at a resolution of 32× 32 is employed for ablation studies.
For both 512× 512 and 256× 256 images, experiments are conducted using latent space generative
modeling in line with previous works. Specifically: (a) For 256× 256 images, we employ multiple
widely-used autoencoders, including SD-VAE (Rombach et al., 2022), VA-VAE (Yao et al., 2025),
and E2E-VAE (Leng et al., 2025). (b) For 512× 512 images, a DC-AE (f32c32) (Chen et al., 2024)
with a higher compression rate is used to conserve computational resources. When utilizing SD-VAE
for 512× 512 images, a 2× larger patch size is applied to maintain computational parity with the
256× 256 setting. Consequently, the computational burden for generating images at both 512× 512
and 256×256 resolutions remains comparable across our trained models3. Further details on datasets
and autoencoders are provided in App. D.1.1.

3Previous works often employed the same autoencoders and patch sizes for both resolutions, resulting in
higher computational costs for generating 512× 512 images. For example, the DiT-XL/2 model requires 524.60
GFLOPs for 512× 512 generation, in contrast to 118.64 GFLOPs for 256× 256.
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Table 2: System-level quality comparison for multi-step generation task on class-conditional ImageNet-1K.
Notation A⊕B denotes the result obtained by combining methods A and B. ↓/↑ indicate a decrease/increase,
respectively, in the metric compared to the baseline performance of the pre-trained models.

512× 512 256× 256

METHOD NFE (↓) FID (↓) #Params #Epochs METHOD NFE (↓) FID (↓) #Params #Epochs
Diffusion & flow-matching Models

ADM-G (Dhariwal & Nichol, 2021) 250×2 7.72 559M 388 ADM-G (Dhariwal & Nichol, 2021) 250×2 4.59 559M 396
U-ViT-H/4 (Bao et al., 2023) 50×2 4.05 501M 400 U-ViT-H/2 (Bao et al., 2023) 50×2 2.29 501M 400
DiT-XL/2 (Peebles & Xie, 2023) 250×2 3.04 675M 600 DiT-XL/2 (Peebles & Xie, 2023) 250×2 2.27 675M 1400
SiT-XL/2 (Ma et al., 2024) 250×2 2.62 675M 600 SiT-XL/2 (Ma et al., 2024) 250×2 2.06 675M 1400
MaskDiT (Zheng et al., 2023) 79×2 2.50 736M - MDT (Gao et al., 2023) 250×2 1.79 675M 1300
EDM2-S (Karras et al., 2024b) 63 2.56 280M 1678 REPA-XL/2 (Yu et al., 2024) 250×2 1.96 675M 200
EDM2-L (Karras et al., 2024b) 63 2.06 778M 1476 REPA-XL/2 (Yu et al., 2024) 250×2 1.42 675M 800
EDM2-XXL (Karras et al., 2024b) 63 1.91 1.5B 734 Light.DiT (Yao et al., 2025) 250×2 2.11 675M 64
DiT-XL/1⊕Chen et al. (2024) 250×2 2.41 675M 400 Light.DiT (Yao et al., 2025) 250×2 1.35 675M 800
U-ViT-H/1⊕Chen et al. (2024) 30×2 2.53 501M 400 DDT-XL/2 (Wang et al., 2025) 250×2 1.31 675M 256
REPA-XL/2 (Yu et al., 2024) 250×2 2.08 675M 200 DDT-XL/2 (Wang et al., 2025) 250×2 1.26 675M 400
DDT-XL/2 (Wang et al., 2025) 250×2 1.28 675M - REPA-E-XL (Leng et al., 2025) 250×2 1.26 675M 800

GANs & masked & autoregressive models
VQGAN⊕Esser et al. (2021) 256 18.65 227M - VQGAN⊕Sun et al. (2024) - 2.18 3.1B 300
MAGVIT-v2 (Yu et al., 2023) 64×2 1.91 307M 1080 MAR-L (Li et al., 2024) 256×2 1.78 479M 800
MAR-L (Li et al., 2024) 256×2 1.73 479M 800 MAR-H (Li et al., 2024) 256×2 1.55 943M 800
VAR-d36-s (Tian et al., 2024) 10×2 2.63 2.3B 350 VAR-d30-re (Tian et al., 2024) 10×2 1.73 2.0B 350

Ours: UCGM-S sampling with models trained by prior works

UCGM-S⊕Karras et al. (2024b) 40↓23 2.53↓0.03 280M - UCGM-S⊕Wang et al. (2025) 100↓400 1.27↑0.01 675M -
UCGM-S⊕Karras et al. (2024b) 50↓13 2.04↓0.02 778M - UCGM-S⊕Yao et al. (2025) 100↓400 1.21↓0.14 675M -
UCGM-S⊕Karras et al. (2024b) 40↓23 1.88↓0.03 1.5B - UCGM-S⊕Leng et al. (2025) 80↓420 1.06↓0.20 675M -
UCGM-S⊕Wang et al. (2025) 200↓300 1.25↓0.03 675M - UCGM-S⊕Leng et al. (2025) 20↓480 2.00↑0.74 675M -

Ours: models trained and sampled using UCGM-{T, S} (setting λ = 0)
⊕DC-AE (Chen et al., 2024) 40 1.48 675M 800 ⊕SD-VAE (Rombach et al., 2022) 60 1.41 675M 400
⊕DC-AE (Chen et al., 2024) 20 1.68 675M 800 ⊕VA-VAE (Yao et al., 2025) 60 1.21 675M 400
⊕SD-VAE (Rombach et al., 2022) 40 1.67 675M 320 ⊕E2E-VAE (Leng et al., 2025) 40 1.21 675M 800
⊕SD-VAE (Rombach et al., 2022) 20 1.80 675M 320 ⊕E2E-VAE (Leng et al., 2025) 20 1.30 675M 800

Table 3: System-level quality comparison for few-step generation task on class-conditional ImageNet-1K.

512× 512 256× 256

METHOD NFE (↓) FID (↓) #Params #Epochs METHOD NFE (↓) FID (↓) #Params #Epochs
Consistency training & distillation

sCT-M (Lu & Song, 2024) 1 5.84 498M 1837 iCT (Song & Dhariwal, 2023) 2 20.3 675M -
2 5.53 498M 1837 Shortcut-XL/2 (Frans et al., 2024) 1 10.6 676M 250

sCT-L (Lu & Song, 2024) 1 5.15 778M 1274 4 7.80 676M 250
2 4.65 778M 1274 128 3.80 676M 250

sCT-XXL (Lu & Song, 2024) 1 4.29 1.5B 762 IMM-XL/2 (Zhou et al., 2025) 1×2 7.77 675M 3840
2 3.76 1.5B 762 2×2 5.33 675M 3840

sCD-M (Lu & Song, 2024) 1 2.75 498M 1997 4×2 3.66 675M 3840
2 2.26 498M 1997 8×2 2.77 675M 3840

sCD-L (Lu & Song, 2024) 1 2.55 778M 1434 IMM (ω = 1.5) 1×2 8.05 675M 3840
2 2.04 778M 1434 2×2 3.99 675M 3840

sCD-XXL (Lu & Song, 2024) 1 2.28 1.5B 921 4×2 2.51 675M 3840
2 1.88 1.5B 921 8×2 1.99 675M 3840

GANs & masked & autoregressive models
BigGAN (Brock et al., 2018) 1 8.43 160M - BigGAN (Brock et al., 2018) 1 6.95 112M -
StyleGAN (Sauer et al., 2022) 1×2 2.41 168M - GigaGAN (Kang et al., 2023) 1 3.45 569M -
MAGVIT-v2 (Yu et al., 2023) 64×2 1.91 307M 1080 StyleGAN (Sauer et al., 2022) 1×2 2.30 166M -
VAR-d36-s (Tian et al., 2024) 10×2 2.63 2.3B 350 VAR-d30-re (Tian et al., 2024) 10×2 1.73 2.0B 350

Ours: models trained and sampled using UCGM-{T, S} (setting λ = 0)
⊕DC-AE (Chen et al., 2024) 32 1.55 675M 800 ⊕VA-VAE (Yao et al., 2025) 16 2.11 675M 400
⊕DC-AE (Chen et al., 2024) 16 1.81 675M 800 ⊕VA-VAE (Yao et al., 2025) 8 6.09 675M 400
⊕DC-AE (Chen et al., 2024) 8 3.07 675M 800 ⊕E2E-VAE (Leng et al., 2025) 16 1.40 675M 800
⊕DC-AE (Chen et al., 2024) 4 74.0 675M 800 ⊕E2E-VAE (Leng et al., 2025) 8 2.68 675M 800

Ours: models trained and sampled using UCGM-{T, S} (setting λ = 1)
⊕DC-AE (Chen et al., 2024) 1 2.42 675M 840 ⊕VA-VAE (Yao et al., 2025) 2 1.42 675M 432
⊕DC-AE (Chen et al., 2024) 2 1.75 675M 840 ⊕VA-VAE (Yao et al., 2025) 1 2.19 675M 432
⊕SD-VAE (Rombach et al., 2022) 1 2.63 675M 360 ⊕SD-VAE (Rombach et al., 2022) 1 2.10 675M 424
⊕SD-VAE (Rombach et al., 2022) 2 2.11 675M 360 ⊕E2E-VAE (Leng et al., 2025) 1 2.29 675M 264

Neural network architectures. We evaluate UCGM-S sampling using models trained with es-
tablished methodologies. These models employ various architectures from two prevalent families
commonly used in continuous generative models: (a) Diffusion Transformers, including variants such
as DiT (Peebles & Xie, 2023), UViT (Bao et al., 2023), SiT (Ma et al., 2024), Lightening-DiT (Yao
et al., 2025), and DDT (Wang et al., 2025). (b) UNet-based convolutional networks, including
improved UNets (Karras et al., 2022; Song et al., 2020b) and EDM2-UNets (Karras et al., 2024b).
For training models specifically for UCGM-T, we consistently utilize DiT as the backbone architec-
ture. We train models of various sizes (B: 130M, L: 458M, XL: 675M parameters) and patch sizes.
Notation such as XL/2 denotes the XL model with a patch size of 2. Following prior work (Yao et al.,
2025; Wang et al., 2025), minor architectural modifications are applied to enhance training stability
(details in App. D.1.2).
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Implementation details. Our implementation is developed in PyTorch (Paszke, 2019). Training
employs AdamW (Loshchilov & Hutter, 2017) for multi-step sampling models. For few-step sampling
models, RAdam (Liu et al., 2019) is used to improve training stability. Consistent with standard
practice in generative modeling (Yu et al., 2024; Ma et al., 2024), an exponential moving average
(EMA) of model weights is maintained throughout training using a decay rate of 0.9999. All reported
results utilize the EMA model. Comprehensive hyperparameters and additional implementation
details are provided in App. D.1.3. Consistent with prior work (Song et al., 2020b; Ho et al., 2020;
Lipman et al., 2022; Brock et al., 2018), we adopt standard evaluation protocols. The primary metric
for assessing image quality is the Fréchet Inception Distance (FID) (Heusel et al., 2017), calculated
on 50, 000 images (FID-50K).

4.2 COMPARISON WITH SOTA METHODS FOR MULTI-STEP GENERATION

Our experiments on ImageNet-1K at 512×512 and 256×256 resolutions systematically validate the
three key advantages of UCGM: (1) sampling acceleration via UCGM-S on pre-trained models, (2)
ultra-efficient generation with joint UCGM-T + UCGM-S, and (3) broad compatibility.

UCGM-S: Plug-and-play sampling acceleration without additional cost. UCGM-S provides
free sampling acceleration for pre-trained generative models. It reduces the required Number of
Function Evaluations (NFEs) while preserving or improving generation quality, as measured by FID.
Applied to 512× 512 image generation, the approach demonstrates notable efficiency gains:
(a) For the diffusion-based models, such as a pre-trained EDM2-XXL model, UCGM-S reduced

NFEs from 63 to 40 (a 36.5% reduction), concurrently improving FID from 1.91 to 1.88.
(b) When applied to the flow-based models, such as a pre-trained DDT-XL/2 model, UCGM-S

achieved an FID of 1.25 with 200 NFEs, compared to the original 1.28 FID requiring 500 NFEs.
This demonstrates a performance improvement achieved alongside enhanced efficiency.

This approach generalizes across different generative model frameworks and resolutions. For instance,
on 256× 256 resolution using the flow-based REPA-E-XL model, UCGM-S attained 1.06 FID at 80
NFEs, which surpasses the baseline performance of 1.26 FID achieved at 500 NFEs.
In summary, UCGM-S acts as a broadly applicable technique for efficient sampling, demonstrating
cases where performance (FID) improves despite a reduction in sampling steps.

UCGM-T + UCGM-S: Synergistic efficiency. The combination of UCGM-T training and
UCGM-S sampling yields highly competitive generative performance with minimal NFEs:
(a) 512 × 512: With a DC-AE autoencoder, our framework achieved 1.48 FID at 40 NFEs. This

outperforms DiT-XL/1⊕DC-AE (2.41 FID, 500 NFEs) and EDM2-XXL (1.91 FID, 63 NFEs),
with comparable or reduced model size.

(b) 256×256: With an E2E-VAE autoencoder, we attained 1.21 FID at 40 NFEs. This result exceeds
prior SOTA models like MAR-H (1.55 FID, 512 NFEs) and REPA-E-XL (1.26 FID, 500 NFEs).

Importantly, models trained with UCGM-T maintain robustness under extremely low-step sampling
regimes. At 20 NFEs, the 256× 256 performance degrades gracefully to 1.30 FID, a result that still
exceeds the performance of several baseline models sampling with significantly higher NFEs.
In summary, the demonstrated robustness and efficiency of UCGM-{T, S} across various scenarios
underscore the high potential of our UCGM for multi-step continuous generative modeling.

4.3 COMPARISON WITH SOTA METHODS FOR FEW-STEP GENERATION

As evidenced by the results in Tab. 3, our UCGM-{T, S} framework exhibits superior performance
across two key settings: λ = 0, characteristic of a multi-step regime akin to diffusion and flow-
matching models, and λ = 1, indicative of a few-step regime resembling consistency models.
Few-step regime (λ = 1). Configured for few-step generation, UCGM-{T, S} achieves SOTA
sample quality with minimal NFEs, surpassing existing specialized consistency models and GANs:
(a) 512× 512: Using a DC-AE autoencoder, our model achieves an FID of 1.75 with 2 NFEs and

675M parameters. This outperforms sCD-XXL, a leading consistency distillation model, which
reports 1.88 FID with 2 NFEs and 1.5B parameters.

(b) 256 × 256: Using a VA-VAE autoencoder, our model achieves an FID of 1.42 with 2 NFEs.
This is a notable improvement over IMM-XL/2, which obtains 1.99 FID with 8× 2 = 16 NFEs,
demonstrating higher sample quality while requiring 8× fewer sampling steps.

In summary, these results demonstrate the capability of UCGM-{T, S} to deliver high-quality
generation with minimal sampling cost, which is advantageous for practical applications.
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Figure 2: Ablation studies of UCGM on ImageNet-1K 256×256. These studies evaluate key factors of the
proposed UCGM. Ablations presented in (a) and (c) utilize XL/1 models with the VA-VAE autoencoder. For the
results shown in (b), B/2 models with the SD-VAE autoencoder are used to facilitate more efficient training.

Multi-step regime (λ = 0). Even when models are trained for multi-step generation, it nonetheless
demonstrates competitive performance even when utilizing a moderate number of sampling steps.
(a) 512 × 512: Using a DC-AE autoencoder, our model obtains an FID of 1.81 with 16 NFEs

and 675M parameters. This result is competitive with or superior to existing methods such as
VAR-d30-s, which reports 2.63 FID with 10× 2 = 20 NFEs and 2.3B parameters.

(b) 256× 256: Using an E2E-VAE autoencoder, our model achieves an FID of 1.40 with 16 NFEs.
This surpasses IMM-XL/2, which obtains 1.99 FID with 8 × 2 = 16 NFEs, demonstrating
improved quality at the same sampling cost.

In summary, our UCGM-{T, S} framework demonstrates versatility and high performance across
both few-step (λ = 1) and multi-step (λ = 0) sampling regimes. As shown, it consistently achieves
SOTA or competitive sample quality relative to existing methods, often requiring fewer sampling steps
or parameters, which are important factors for efficient high-resolution image synthesis.

4.4 ABLATION STUDY OVER THE KEY FACTORS OF UCGM
Unless otherwise specified, experiments in this section are conducted with κ = 0.0 and λ = 0.0.

Effect of λ in UCGM-T. Fig. 2a demonstrates that varying λ influences the range of effective
sampling steps for trained models. For instance, with λ = 1 4, optimal performance is attained at 2
sampling steps. In contrast, with λ = 0.5, optimal performance is observed at 16 steps.

Impact of ζ and transport type in UCGM. The results in Fig. 2b demonstrates that UCGM-{T, S}
is applicable with various transport types, albeit with some performance variation. Investigating
these performance differences constitutes future work. The results also illustrate that the enhanced
training objective (achieved with ζ = 0.45 compared to ζ = 0.0, per Sec. 3) consistently improves
performance across all tested transport types, underscoring the efficacy of this technique.

Setting different κ in UCGM-S. Experimental results, depicted in Fig. 2c, illustrate the impact
of κ on the trade-off between sampling steps and generation quality: (a) High κ values (e.g., 1.0
and 0.75) prove beneficial for extreme few-step sampling scenarios (e.g., 4 steps); (b) Moreover,
mid-range κ values (0.25 to 0.5) achieve superior performance with fewer steps compared to κ = 0.0.

5 CONCLUSION

We present UCGM, a unified and efficient framework for training and sampling both few-step and
multi-step continuous generative models. Within this framework, we derive a surrogate unified
objective that theoretically decomposes the few-step objective into the multi-step objective plus
a self-alignment term. Building on this foundation, we introduce UCGM-T, which seamlessly
bridges few-step (e.g., consistency models) and multi-step (e.g., diffusion, flow matching) generative
paradigms, supporting diverse model architectures, latent autoencoders, and noise schedules. We
further propose UCGM-S, a unified sampler compatible with our trained models, which can
also accelerate and enhance pre-trained models from existing paradigms. Extensive experiments
demonstrate that UCGM achieves state-of-the-art performance across a variety of tasks, highlighting
the effectiveness of its components.

4For the purpose of a fair ablation study, additional stabilizing techniques were omitted for this λ = 1 case.
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A USE OF LLMS

During the preparation of this paper, we used OpenAI’s ChatGPT to assist with language refinement,
including grammar correction, style polishing, and improving readability. The model was not used
for generating ideas, experimental design, analysis, or writing substantive technical content. All
scientific contributions, including theoretical derivations, method development, and experimental
results, are entirely the work of the authors.

B BROADER IMPACTS

This paper proposes a unified implementation and theoretical framework for recent popular continuous
generative models, such as diffusion models, flow matching models, and consistency models. This
work should provide positive impacts for the generative modeling community.

C LIMITATIONS

Integration of training acceleration techniques. This work does not explore the integration of
advanced training acceleration methods for diffusion models, such as REPA (Yu et al., 2024).
Exploration of downstream applications. The current study focuses on establishing the founda-
tional framework. Comprehensive exploration of its application to complex downstream generative
tasks, including text-to-image and text-to-video generation, is reserved for future research.
Stabilization of few-step objectives. While we theoretically decompose the few-step objective
into the multi-step objective and a self-alignment term, and identify the self-alignment term as the
source of potential instability, methods for stabilizing the few-step objective are not investigated in
this work. We leave this as an important direction for future research.

D DETAILED EXPERIMENT

D.1 DETAILED EXPERIMENTAL SETTING
D.1.1 DETAILED DATASETS

Image datasets. We conduct experiments on two datasets: CIFAR-10 (Krizhevsky et al., 2009a),
ImageNet-1K (Deng et al., 2009):
(a) CIFAR-10 is a widely used benchmark dataset for image classification and generation tasks. It

consists of 60, 000 color images, each with a resolution of 32× 32 pixels, categorized into 10
distinct classes. The dataset is divided into 50, 000 training images and 10, 000 test images.

(b) ImageNet-1K is a large-scale dataset containing over 1.2 million high-resolution images across
1, 000 categories.

Latent space datasets. However, directly training diffusion transformers in the pixel space is
computationally expensive and inefficient. Therefore, following previous studies (Yu et al., 2024; Ma
et al., 2024), we train our diffusion transformers in latent space instead. Tab. 4 presents a comparative
analysis of various Variational Autoencoder (VAE) architectures. SD-VAE is characterized by a
higher spatial resolution in its latent representation (e.g., H/8×W/8) combined with a lower channel
capacity (4 channels). Conversely, alternative models such as VA-VAE, E2E-VAE, and DC-AE
achieve more significant spatial compression (e.g., H/16×W/16 or H/32×W/32) at the expense
of an increased channel depth (typically 32 channels).
A key consideration is that the computational cost of a diffusion transformer subsequently processing
these latent representations is primarily dictated by their spatial dimensions, rather than their channel
capacity (Chen et al., 2024). Specifically, if the latent map is processed by a transformer by dividing it
into non-overlapping patches, the cost is proportional to the number of these patches. This quantity is
given by (H/Compression Ratio/Patch Size) × (W/Compression Ratio/Patch Size). Here, H and
W are the input image dimensions, Compression Ratio refers to the spatial compression factor of
the VAE (e.g., 8, 16, 32 as detailed in Tab. 4), and Patch Size denotes the side length of the patches
processed by the transformer.

D.1.2 DETAILED NEURAL ARCHITECTURE

Diffusion Transformers (DiTs) represent a paradigm shift in generative modeling by replacing the
traditional U-Net backbone with a Transformer-based architecture. Proposed by Scalable Diffusion
Models with Transformers (Peebles & Xie, 2023), DiTs exhibit superior scalability and performance
in image generation tasks. In this paper, we utilize three key variants—DiT-B (130M parameters),
DiT-L (458M parameters), and DiT-XL (675M parameters).
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Table 4: Comparison of different VAE architectures in terms of latent space dimensions and channel
capacity. The table contrasts four variational autoencoder variants (SD-VAE, VA-VAE, E2E-VAE, and DC-AE)
by their spatial compression ratios (latent size) and feature channel dimensions. Here, H and W denote input
image height and width (e.g., 256× 256 or 512× 512), respectively.

SD-VAE (both ema and mse versions)
(Rombach et al., 2022)

VA-VAE
(Yao et al., 2025)

E2E-VAE
(Leng et al., 2025)

DC-AE (f32c32)
(Chen et al., 2024)

Latent Size (H/8)× (W/8) (H/16)× (W/16) (H/16)× (W/16) (H/32)× (W/32)
Channels 4 32 32 32

To improve training stability, informed by recent studies (Yao et al., 2025; Wang et al., 2025),
we incorporate several architectural modifications into the DiT model: (a) SwiGLU feed-forward
networks (FFN) (Shazeer, 2020); (b) RMSNorm (Zhang & Sennrich, 2019) without learnable affine
parameters; (c) Rotary Positional Embeddings (RoPE) (Su et al., 2024); and (d) parameter-free
RMSNorm applied to Key (K) and Query (Q) projections in self-attention layers (Vaswani et al.,
2017).

D.1.3 DETAILED IMPLEMENTATION DETAILS

Experiments were conducted on a cluster equipped with 8 H800 GPUs, each with 80 GB of VRAM.

Hyperparameter configuration. Detailed hyperparameter configurations are provided in Tab. 5
to ensure reproducibility. The design of time schedules for sampling processes varies in complex-
ity. For few-step models, typically employing 1 or 2 sampling steps, manual schedule design is
straightforward. However, the time schedule T utilized by our UCGM-S often comprises a large
number of time points, particularly for a large number of sampling steps N . Manual design of such
dense schedules is challenging and can limit the achievable performance of our UCGM-{T, S}, as
prior work (Yao et al., 2025; Wang et al., 2025) has established that carefully designed schedules
significantly enhance multi-step models, including flow-matching variants. To address this, we
propose transforming each time point t ∈ T using a generalized Kumaraswamy transformation:
fKuma(t; a, b, c) = (1− (1− ta)b)c. This choice is motivated by the common practice in prior studies
of applying non-linear transformations to individual time points to construct effective schedules. A
specific instance of such a transformation is the timeshift function fshift(t; s) =

st
1+(s−1)t , where

s > 0 (Yao et al., 2025). We find that the Kumaraswamy transformation, by appropriate selection of
parameters a, b, c, can effectively approximate fshift and other widely-used functions (cf., App. F.2.2),
including the identity function f(t) = t (Yu et al., 2024; Leng et al., 2025). Empirical evaluations
suggest that the parameter configuration (a, b, c) = (1.17, 0.8, 1.1) yields robust performance across
diverse scenarios, corresponding to the "Auto" setting in Tab. 5.

Detailed implementation techniques of enhancing target score function. We enhance the target
score function for conditional diffusion models by modifying the standard score ∇xt

log pt(xt|c)
(Song et al., 2020b) to an enhanced version derived from the density pt(xt|c) (pt,θ(xt|c)/pt,θ(xt))

ζ .
This corresponds to a target score of ∇xt

log pt(xt|c) + ζ (∇xt
log pt,θ(xt|c)−∇xt

log pt,θ(xt)).
The objective is to guide the learning process towards distributions that yield higher quality conditional
samples.
Accurate estimation of the model probabilities pt,θ is crucial for the effectiveness of this enhancement.
We find that using parameters from an Exponential Moving Average (EMA) of the model during
training improves the stability and quality of these estimates, resulting better x⋆ and z⋆ in Alg. 1.
When training few-step models, direct computation of the enhanced target score gradient typically
requires evaluating the model with and without conditioning (for the pt,θ terms), incurring additional
computational cost. To address this, we propose an efficient approximation that leverages a well-
pre-trained multi-step model, denoted by parameters θ⋆. Instead of computing the score gradient
explicitly, the updates for the variables x⋆ and z⋆ (as used in Alg. 1) are calculated based on features
or outputs derived from a single forward pass of the pre-trained model θ⋆.
Specifically, we compute F t = F θ⋆(xt, t), representing features extracted by the pre-trained model
θ⋆ at time t given input xt. The enhanced updates x⋆ and z⋆ are then computed as follows:
(a) For t ∈ [0, s], the updates are: x⋆ ← x+ζ ·(fx(F t,xt, t)− x), z⋆ ← z+ζ ·(fz(F t,xt, t)− z).
(b) For t ∈ (s, 1], the updates are: x⋆ ← x + 1

2 (f
x(F t,xt, t)− x) and z⋆ ← z +

1
2 (f

z(F t,xt, t)− z).
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Table 5: Hyperparameter configurations for UCGM-{T, S} training and sampling on ImageNet-1K. We
maintain a consistent batch size of 1024 across all experiments. Training durations (epoch counts) are provided
in other tables throughout the paper. The table specifies optimizer choices, learning rates, and key parameters for
both UCGM-T and UCGM-S variants across different model architectures and datasets.

Task Optimizer UCGM-T UCGM-S

Resolution VAE/AE Model Type lr (β1,β2) Transport (θ1,θ2) λ ζ ρ κ T ν

Multi-step model training and sampling

E2E-VAE XL/1 AdamW 0.0002 (0.9,0.95) Linear (1.0,1.0) 0 0.67 0 0.5 Auto 1
256 SD-VAE XL/2 AdamW 0.0002 (0.9,0.95) Linear (2.4,2.4) 0 0.44 0 0.21 Auto 1

VA-VAE XL/1 AdamW 0.0002 (0.9,0.95) Linear (1.0,1.0) 0 0.47 0 0.5 Auto 1

512 DC-AE XL/1 AdamW 0.0002 (0.9,0.95) Linear (1.0,1.0) 0 0.57 0 0.46 Auto 1
SD-VAE XL/4 AdamW 0.0002 (0.9,0.95) Linear (2.4,2.4) 0 0.60 0 0.4 Auto 1

Few-step model training and sampling

E2E-VAE XL/1 RAdam 0.0001 (0.9,0.999) Linear (0.8,1.0) 1 1.3 1 0 {1,0.5} 1
256 SD-VAE XL/2 RAdam 0.0001 (0.9,0.999) Linear (0.8,1.0) 1 2.0 1 0 {1,0.3} 1

VA-VAE XL/2 RAdam 0.0001 (0.9,0.999) Linear (0.8,1.0) 1 2.0 1 0 {1,0.3} 1

512 DC-AE XL/1 RAdam 0.0001 (0.9,0.999) Linear (0.8,1.0) 1 1.5 1 0 {1,0.6} 1
SD-VAE XL/4 RAdam 0.0001 (0.9,0.999) Linear (0.8,1.0) 1 1.5 1 0 {1,0.5} 1

Table 6: Comparison of different transport types employed during the sampling and training phases of our
UCGM-{T, S}. “TrigLinear” and “Random” are introduced herein specifically for ablation studies. “TrigLinear”
is constructed by combining the transport coefficients of “Linear” and “TrigFlow”. “Random” represents a
randomly designed transport type used to demonstrate the generality of our UCGM. Other transport types are
adapted from existing methods and transformed into the transport coefficient representation used by UCGM.

Linear ReLinear TrigFlow EDM (σ(t) = e4·(2.68t−1.59)) TrigLinear Random

α(t) t 1− t sin(t · π2 ) σ(t)/
√

σ2(t)+0.25 sin(t · π2 ) sin(t · π2 )
γ(t) 1− t t cos(t · π2 ) 1/

√
σ2(t)+0.25 cos(t · π2 ) 1− t

α̂(t) 1 −1 cos(t · π2 ) −0.5/
√

σ2(t)+0.25 1 1
γ̂(t) −1 1 − sin(t · π2 ) 2σ(t)/

√
σ2(t)+0.25 −1 −1− e−5t

e.g., (Ma et al., 2024) (Yao et al., 2025) (Chen et al., 2025) (Karras et al., 2022) N/A N/A

We consistently set the time threshold s = 0.75. This approach allows us to incorporate the guidance
from the enhanced target signal with the computational cost equivalent to a single forward evaluation
of the pre-trained model θ⋆ per step. The enhancement ratio ζ is constrained to [0,∞) in this case.

Baselines. We compare our approach against several SOTA continuous and discrete generative
models. We broadly categorize these baselines by their generation process:

(a) Multi-step models. These methods typically synthesize data through a sequence of steps. We
include various diffusion models, encompassing classical formulations like DDPM and score-
based models (Song et al., 2020a; Ho et al., 2020), and advanced variants focusing on improved
sampling or performance in latent spaces (Dhariwal & Nichol, 2021; Karras et al., 2022; Peebles
& Xie, 2023; Zheng et al., 2023; Bao et al., 2023). We also consider flow-matching models
(Lipman et al., 2022), which leverage continuous normalizing flows and demonstrate favorable
training properties, along with subsequent scaling efforts (Ma et al., 2024; Yu et al., 2024; Yao
et al., 2025). Additionally, we also include autoregressive models (Li et al., 2024; Tian et al.,
2024; Yu et al., 2023) as the baselines, which generate data sequentially, often in discrete domains.

(b) Few-step models. These models are designed for efficient, often single-step or few-step, genera-
tion. This category includes generative adversarial networks (Goodfellow et al., 2020), which
achieve efficient one-step synthesis through adversarial training, and their large-scale variants
(Brock et al., 2018; Sauer et al., 2022; Kang et al., 2023). We also evaluate consistency models
(Song et al., 2023), proposed for high-quality generation adaptable to few sampling steps, and
subsequent techniques aimed at improving their stability and scalability (Song & Dhariwal, 2023;
Lu & Song, 2024; Zhou et al., 2025).

Crucially, we demonstrate the compatibility of UCGM-S with models pre-trained using these
methods. We show how these models can be represented within the UCGM framework by defining
the functions α(·), γ(·), α̂(·), and γ̂(·). Detailed parameterizations are provided in Tab. 6, with
guidance for their specification presented in App. F.2.4.
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D.2 EXPERIMENTAL RESULTS ON SMALL DATASETS

Since most existing few-step generation methods (Song et al., 2023; Geng et al., 2024) are limited to
training models on low-resolution, small-scale datasets like CIFAR-10 (Krizhevsky et al., 2009a), we
conduct our comparative experiments on CIFAR-10 to ensure fair comparison. To demonstrate the
versatility of our UCGM, we employ both the "EDM" transport (see Tab. 6 for definition) and the
standard 56M-parameter UNet architecture, following established practices in prior work Song et al.
(2023); Geng et al. (2024).

Table 7: System-level quality comparison for few-step generation task on unconditional CIFAR-10 (32×32).

Metric PD (Salimans & Ho, 2022) 2-RF (Liu et al., 2022) DMD (Yin et al., 2024) CD (Song et al., 2023) sCD (Lu & Song, 2024)

FID (↓) 4.51 4.85 3.77 2.93 2.52
NFE (↓) 2 1 1 2 2

Metric iCT (Song & Dhariwal, 2023) ECT (Geng et al., 2024) sCT (Lu & Song, 2024) IMM (Zhou et al., 2025) UCGM
FID (↓) 2.83 / 2.46 3.60 / 2.11 2.97 / 2.06 3.20 / 1.98 2.82 / 2.17
NFE (↓) 1 / 2 1 / 2 1 / 2 1 / 2 1 / 2

As shown in Tab. 7, our UCGM achieves SOTA performance with just 1 NFE (Neural Function
Evaluation) while maintaining competitive results for 2 NFEs. These results underscore UCGM’s
robust compatibility across diverse datasets, network architectures, and transport types.
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D.3 DETAILED COMPARISON WITH SOTA METHODS FOR MULTI-STEP GENERATION

Table 8: System-level quality comparison for multi-step generation task on class-conditional ImageNet-1K.
Notation A⊕B denotes the result obtained by combining methods A and B. ↓/↑ indicate a decrease/increase,
respectively, in the metric compared to the baseline performance of the pre-trained models.

METHOD VAE/AE Patch Size Activation Size NFE (↓) FID (↓) IS (↑) #Params #Epochs
512× 512

Diffusion & flow-matching models
ADM-G (Dhariwal & Nichol, 2021) - - - 250×2 7.72 172.71 559M 388
U-ViT-H/4 (Bao et al., 2023) SD-VAE (Rombach et al., 2022) 4 16×16 50×2 4.05 263.79 501M 400
DiT-XL/2 (Peebles & Xie, 2023) SD-VAE (Rombach et al., 2022) 2 32×32 250×2 3.04 240.82 675M 600
SiT-XL/2 (Ma et al., 2024) SD-VAE (Rombach et al., 2022) 2 32×32 250×2 2.62 252.21 675M 600
MaskDiT (Zheng et al., 2023) SD-VAE (Rombach et al., 2022) 2 32×32 79×2 2.50 256.27 736M -
EDM2-S (Karras et al., 2024b) SD-VAE (Rombach et al., 2022) - - 63 2.56 - 280M 1678
EDM2-L (Karras et al., 2024b) SD-VAE (Rombach et al., 2022) - - 63 2.06 - 778M 1476
EDM2-XXL (Karras et al., 2024b) SD-VAE (Rombach et al., 2022) - - 63 1.91 - 1.5B 734
DiT-XL/1⊕(Chen et al., 2024) DC-AE (Chen et al., 2024) 1 16×16 250×2 2.41 263.56 675M 400
U-ViT-H/1⊕(Chen et al., 2024) DC-AE (Chen et al., 2024) 1 16×16 30×2 2.53 255.07 501M 400
REPA-XL/2 (Yu et al., 2024) SD-VAE (Rombach et al., 2022) 2 32×32 250×2 2.08 274.6 675M 200
DDT-XL/2 (Wang et al., 2025) SD-VAE (Rombach et al., 2022) 2 32×32 250×2 1.28 305.1 675M -

GANs & masked & autoregressive models
VQGAN⊕(Esser et al., 2021) - - - 256 18.65 - 227M -
MAGVIT-v2 (Yu et al., 2023) - - - 64×2 1.91 324.3 307M 1080
MAR-L (Li et al., 2024) - - - 256×2 1.73 279.9 479M 800
VAR-d36-s (Tian et al., 2024) - - - 10×2 2.63 303.2 2.3B 350

Ours: UCGM-S sampling with models trained by prior works

EDM2-S (Karras et al., 2024b) SD-VAE (Rombach et al., 2022) - - 40↓23 2.53↓0.03 - 280M -
EDM2-L (Karras et al., 2024b) SD-VAE (Rombach et al., 2022) - - 50↓13 2.04↓0.02 - 778M -
EDM2-XXL (Karras et al., 2024b) SD-VAE (Rombach et al., 2022) - - 40↓23 1.88↓0.03 - 1.5B -
DDT-XL/2 (Wang et al., 2025) SD-VAE (Rombach et al., 2022) 2 32×32 200↓300 1.25↓0.03 - 675M -

Ours: models trained and sampled using UCGM-{T, S} (setting λ = 0)
Ours-XL/1 DC-AE (Chen et al., 2024) 1 16×16 40 1.48 - 675M 800
Ours-XL/1 DC-AE (Chen et al., 2024) 1 16×16 20 1.68 - 675M 800
Ours-XL/4 SD-VAE (Rombach et al., 2022) 4 16×16 40 1.67 - 675M 320
Ours-XL/4 SD-VAE (Rombach et al., 2022) 4 16×16 20 1.80 - 675M 320

256× 256

Diffusion & flow-matching models
ADM-G (Dhariwal & Nichol, 2021) - - - 250×2 4.59 186.70 559M 396
U-ViT-H/2 (Bao et al., 2023) SD-VAE (Rombach et al., 2022) 2 16 × 16 50×2 2.29 263.88 501M 400
DiT-XL/2 (Peebles & Xie, 2023) SD-VAE (Rombach et al., 2022) 2 16 × 16 250×2 2.27 278.24 675M 1400
SiT-XL/2 (Ma et al., 2024) SD-VAE (Rombach et al., 2022) 2 16 × 16 250×2 2.06 277.50 675M 1400
MDT (Gao et al., 2023) SD-VAE (Rombach et al., 2022) 2 16 × 16 250×2 1.79 283.01 675M 1300
REPA-XL/2 (Yu et al., 2024) SD-VAE (Rombach et al., 2022) 2 16 × 16 250×2 1.96 264.0 675M 200
REPA-XL/2 (Yu et al., 2024) SD-VAE (Rombach et al., 2022) 2 16 × 16 250×2 1.42 305.7 675M 800
Light.DiT (Yao et al., 2025) VA-VAE (Yao et al., 2025) 1 16 × 16 250×2 2.11 - 675M 64
Light.DiT (Yao et al., 2025) VA-VAE (Yao et al., 2025) 1 16 × 16 250×2 1.35 - 675M 800
DDT-XL/2 (Wang et al., 2025) SD-VAE (Rombach et al., 2022) 2 16 × 16 250×2 1.31 308.1 675M 256
DDT-XL/2 (Wang et al., 2025) SD-VAE (Rombach et al., 2022) 2 16 × 16 250×2 1.26 310.6 675M 400
REPA-E-XL (Leng et al., 2025) E2E-VAE(Leng et al., 2025) 1 16 × 16 250×2 1.26 314.9 675M 800

GANs & masked & autoregressive models
VQGAN⊕(Sun et al., 2024) - - - - 2.18 - 3.1B 300
MAR-L (Li et al., 2024) - - - 256×2 1.78 296.0 479M 800
MAR-H (Li et al., 2024) - - - 256×2 1.55 303.7 943M 800
VAR-d30-re (Tian et al., 2024) - - - 10×2 1.73 350.2 2.0B 350

Ours: UCGM-S sampling with models trained by prior works

DDT-XL/2 (Wang et al., 2025) SD-VAE (Rombach et al., 2022) 2 16 × 16 100↓400 1.27↑0.01 - 675M -
Light.DiT (Yao et al., 2025) VA-VAE (Yao et al., 2025) 1 16 × 16 100↓400 1.21↓0.14 - 675M -
REPA-E-XL (Leng et al., 2025) E2E-VAE(Leng et al., 2025) 1 16 × 16 80↓420 1.06↓0.20 - 675M -
REPA-E-XL (Leng et al., 2025) E2E-VAE(Leng et al., 2025) 1 16 × 16 20↓480 2.00↑0.74 - 675M -

Ours: models trained and sampled using UCGM-{T, S} (setting λ = 0)
Ours-XL/2 SD-VAE (Rombach et al., 2022) 2 16 × 16 60 1.41 - 675M 400
Ours-XL/1 VA-VAE (Yao et al., 2025) 1 16 × 16 60 1.21 - 675M 400
Ours-XL/1 E2E-VAE (Leng et al., 2025) 1 16 × 16 40 1.21 - 675M 800
Ours-XL/1 E2E-VAE (Leng et al., 2025) 1 16 × 16 20 1.30 - 675M 800

D.4 DETAILED COMPARISON WITH SOTA METHODS FOR FEW-STEP GENERATION
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Table 9: System-level quality comparison for few-step generation task on class-conditional ImageNet-1K
(512× 512).

METHOD VAE/AE Patch Size Activation Size NFE (↓) FID (↓) IS #Params #Epochs
512× 512

Consistency training & distillation
sCT-M (Lu & Song, 2024) - - - 1 5.84 - 498M 1837
sCT-M (Lu & Song, 2024) - - - 2 5.53 - 498M 1837
sCT-L (Lu & Song, 2024) - - - 1 5.15 - 778M 1274
sCT-L (Lu & Song, 2024) - - - 2 4.65 - 778M 1274
sCT-XXL (Lu & Song, 2024) - - - 1 4.29 - 1.5B 762
sCT-XXL (Lu & Song, 2024) - - - 2 3.76 - 1.5B 762
sCD-M (Lu & Song, 2024) - - - 1 2.75 - 498M 1997
sCD-M (Lu & Song, 2024) - - - 2 2.26 - 498M 1997
sCD-L (Lu & Song, 2024) - - - 1 2.55 - 778M 1434
sCD-L (Lu & Song, 2024) - - - 2 2.04 - 778M 1434
sCD-XXL (Lu & Song, 2024) - - - 1 2.28 - 1.5B 921
sCD-XXL (Lu & Song, 2024) - - - 2 1.88 - 1.5B 921

GANs & masked & autoregressive models
BigGAN (Brock et al., 2018) - - - 1 8.43 - 160M -
StyleGAN (Sauer et al., 2022) - - - 1×2 2.41 267.75 168M -
MAGVIT-v2 (Yu et al., 2023) - - - 64×2 1.91 324.3 307M 1080
VAR-d36-s (Tian et al., 2024) - - - 10×2 2.63 303.2 2.3B 350

Ours: models trained and sampled using UCGM-{T, S} (setting λ = 0)
Ours-XL/1 DC-AE (Chen et al., 2024) 1 16×16 32 1.55 - 675M 800
Ours-XL/1 DC-AE (Chen et al., 2024) 1 16×16 16 1.81 - 675M 800
Ours-XL/1 DC-AE (Chen et al., 2024) 1 16×16 8 3.07 - 675M 800
Ours-XL/1 DC-AE (Chen et al., 2024) 1 16×16 4 74.0 - 675M 800

Ours: models trained and sampled using UCGM-{T, S} (setting λ = 1)
Ours-XL/1 DC-AE (Chen et al., 2024) 1 16×16 1 2.42 - 675M 840
Ours-XL/1 DC-AE (Chen et al., 2024) 1 16×16 2 1.75 - 675M 840
Ours-XL/4 SD-VAE (Rombach et al., 2022) 4 16×16 1 2.63 - 675M 360
Ours-XL/4 SD-VAE (Rombach et al., 2022) 4 16×16 2 2.11 - 675M 360

256× 256

Consistency training & distillation
iCT (Song & Dhariwal, 2023) - - - 2 20.3 - 675M -
Shortcut-XL/2 (Frans et al., 2024) SD-VAE (Rombach et al., 2022) 2 16×16 1 10.6 - 676M 250
Shortcut-XL/2 (Frans et al., 2024) SD-VAE (Rombach et al., 2022) 2 16×16 4 7.80 - 676M 250
Shortcut-XL/2 (Frans et al., 2024) SD-VAE (Rombach et al., 2022) 2 16×16 128 3.80 - 676M 250
IMM-XL/2 (Zhou et al., 2025) SD-VAE (Rombach et al., 2022) 2 16×16 1×2 7.77 - 675M 3840
IMM-XL/2 (Zhou et al., 2025) SD-VAE (Rombach et al., 2022) 2 16×16 2×2 5.33 - 675M 3840
IMM-XL/2 (Zhou et al., 2025) SD-VAE (Rombach et al., 2022) 2 16×16 4×2 3.66 - 675M 3840
IMM-XL/2 (Zhou et al., 2025) SD-VAE (Rombach et al., 2022) 2 16×16 8×2 2.77 - 675M 3840
IMM (ω = 1.5) SD-VAE (Rombach et al., 2022) 2 16×16 1×2 8.05 - 675M 3840
IMM (ω = 1.5) SD-VAE (Rombach et al., 2022) 2 16×16 2×2 3.99 - 675M 3840
IMM (ω = 1.5) SD-VAE (Rombach et al., 2022) 2 16×16 4×2 2.51 - 675M 3840
IMM (ω = 1.5) SD-VAE (Rombach et al., 2022) 2 16×16 8×2 1.99 - 675M 3840

GANs & masked & autoregressive models
BigGAN (Brock et al., 2018) - - - 1 6.95 - 112M -
GigaGAN (Kang et al., 2023) - - - 1 3.45 225.52 569M -
StyleGAN (Sauer et al., 2022) - - - 1×2 2.30 265.12 166M -
VAR-d30-re (Tian et al., 2024) - - - 10×2 1.73 350.2 2.0B 350

Ours: models trained and sampled using UCGM-{T, S} (setting λ = 0)
Ours-XL/1 VA-VAE (Yao et al., 2025) 1 16×16 16 2.11 - 675M 400
Ours-XL/1 VA-VAE (Yao et al., 2025) 1 16×16 8 6.09 - 675M 400
Ours-XL/1 E2E-VAE (Leng et al., 2025) 1 16×16 16 1.40 - 675M 800
Ours-XL/1 E2E-VAE (Leng et al., 2025) 1 16×16 8 2.68 - 675M 800

Ours: models trained and sampled using UCGM-{T, S} (setting λ = 1)
Ours-XL/1 VA-VAE (Yao et al., 2025) 1 16×16 2 1.42 - 675M 432
Ours-XL/1 VA-VAE (Yao et al., 2025) 1 16×16 1 2.19 - 675M 432
Ours-XL/2 SD-VAE (Rombach et al., 2022) 2 16×16 1 2.10 - 675M 424
Ours-XL/1 E2E-VAE (Leng et al., 2025) 1 16×16 1 2.29 - 675M 264

D.5 CASE STUDIES

In this section, we provide several case studies to intuitively illustrate the technical components
proposed in this paper.

D.5.1 ANALYSIS OF CONSISTENCY RATIO λ

We evaluate our approach on three synthetic benchmark datasets from scikit-learn (Pedregosa
et al., 2011): the Two Moons (non-linear separation, see Fig. 3a), S-Curve (manifold structure,
see Fig. 3b), and Swiss Roll (non-linear dimensionality reduction, see Fig. 3c). These studies yield
two primary observations:
(a) Our UCGM successfully captures the structure of the data distribution and maps initial points

sampled from a Gaussian distribution to the target distribution, regardless of whether the task is
few-step (λ = 1) or multi-step (λ = 0) generation.
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(c) Swiss Roll

Figure 3: Case studies of UCGM on three synthetic datasets. These intuitive studies evaluate the ability of
our UCGM to capture the latent data structure for both few-step generation (λ = 1) and multi-step generation
(λ = 0) tasks.

Figure 4: Intermediate images generated during 60-step sampling from UCGM-S. Columns display
intermediate images x̂t produced at different timesteps t during a single sampling trajectory, ordered from left to
right by decreasing t. Rows correspond to models trained with λ ∈ {0.0, 0.5, 1.0}, ordered from top to bottom.
Note that the initial noise for generating these images is the same.

(b) Models trained for multi-step (λ = 0) and few-step (λ = 1) generation map the same initial
Gaussian noise to nearly identical target data points.

To further validate these findings and explore additional properties of the consistency ratio λ, we
conduct experiments on a real-world dataset (ImageNet-1K). Specifically, we trained three models
with three different settings of λ ∈ {0.0, 0.5, 1.0}.
The experimental results presented in Fig. 4 demonstrate the following:
(a) For λ = 1.0, high visual fidelity is achieved early in the sampling process. In contrast, for

λ = 0.0, high visual fidelity emerges in the mid to late stages. For λ = 0.5, high-quality images
appear in the mid-stage of sampling.

(b) Despite being trained with different settings of λ values, the models produce remarkably similar
generated images.

In summary, we posit that while the setting of λ affects the dynamics of the generation process, it
does not substantially impact the final generated image quality. Detailed analysis of these phenomena
is provided in App. F.1.1, App. F.1.3 and App. F.1.4.

D.5.2 ANALYSIS OF TRANSPORT TYPES

Generated samples, obtained using UCGM-S with two distinct pre-trained models from prior works,
are presented in Fig. 6 and Fig. 5. When using the identical initial Gaussian noise for both models, the
generated images exhibit notable visual similarity. This observation is unexpected, considering the
models were trained independently (Karras et al., 2024b; Wang et al., 2025) using distinct algorithms,
transport formulations, network architectures, and data augmentation strategies. The similarity
suggests that despite these differences, the learned probability flow ODEs may be converging to
similar solutions. See App. F.1.2 for a comprehensive analysis of this phenomenon.
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Figure 5: Visualization of generated images (512× 512) from pre-trained EDM2-S (Karras et al., 2024b).

Figure 6: Visualization of generated images (512× 512) from pre-trained DDT-XL/2 (Wang et al., 2025).

D.6 ANALYSIS OF PRE-TRAINED MODEL TUNING

Table 10: System-level quality comparison for few-step generation on class-conditional ImageNet-1K
after tuning. Notation ↓/↑ indicate performance decrease/increase relative to the baseline "Generation (Gen.)"
performance of the "Original (Orig.)" pre-trained models at the respective NFE. Tuning time is evaluated on a
cluster with 8 NVIDIA H800 GPUs.

Orig. Few-step Gen. Orig. Multi-step Gen. Tuning Efficiency Tuned Few-step Gen.
METHOD #Params NFE (↓) FID (↓) NFE (↓) FID (↓) #Epochs Time NFE (↓) FID (↓)

REPA (Yu et al., 2024) 675M 2 177 80 1.86 0.64 ≈ 13 minutes 2 1.95↓175
Lightning-DiT (Yao et al., 2025) 675M 2 217 80 1.49 0.64 ≈ 10 minutes 2 2.06↓215

REPA-E (Leng et al., 2025) 675M 2 193 80 1.54 0.40 ≈ 8 minutes 2 1.39↓192
DDT (Wang et al., 2025) 675M 2 191 80 1.46 0.32 ≈ 11 minutes 2 1.90↓189

In addition to our previous studies and experiments, where we demonstrated that our UCGM-S is
a plug-and-play, training-free method for accelerating the sampling process of given pre-trained
models from prior works (Yu et al., 2024; Yao et al., 2025; Leng et al., 2025; Wang et al., 2025) (cf.,
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App. D.3), we have also proven that our UCGM-T is an efficient and effective unified framework for
training both few-step and multi-step continuous generative models (cf., App. D.4 and App. D.3).
In this section, we evaluate the effectiveness of UCGM for tuning existing pre-trained generative
models to enhance few-step generation performance. Tab. 10 presents the experimental results.
Specifically, the results demonstrate that UCGM-T facilitates the efficient conversion of continuous
multi-step generative models (including diffusion and flow matching models) into high-performance
few-step variants through minimal fine-tuning. For instance, the pre-trained REPA-E model (Leng
et al., 2025), exhibiting 1.54 FID at 80 NFEs and 193 FID at 2 NFEs, can be efficiently tuned using
UCGM-T in only approximately 8 minutes (0.4 epoch). This tuning process yields a model achieving
1.39 FID at 2 NFEs, representing a substantial improvement in few-step generation quality with
negligible tuning cost.

D.7 ABLATION STUDY ON UCGM TECHNIQUES

Tab. 11 and Tab. 12 present the ablation studies on the proposed techniques in UCGM-T and
UCGM-S, conducted under the same experimental setup as Tab. 10.
For UCGM-T, we observe that removing the generalized time distribution (GTD) does not affect the
performance. This is expected, since GTD is designed to generalize beyond specific time distributions,
whereas our experiments are conducted under a uniform distribution. In contrast, removing both GTD
and the stabilizing technique leads to a significant degradation in FID scores across all backbones,
demonstrating the importance of our proposed training stabilization method.
For UCGM-S, the stochastic sampling technique, which unifies ODE and SDE samplers in a
generalized formulation, does not change the quantitative performance under our setting. However,
removing both the stochastic component and the extrapolation strategy results in a substantial increase
in NFE, indicating that the extrapolation-based acceleration is highly effective for efficient sampling.

Table 11: Ablation study on UCGM-T techniques.

UCGM-T (λ = 1) DDT (Wang et al., 2025) Light.DiT (Yao et al., 2025) REPA-E (Leng et al., 2025)

FID ↓ NFE ↓ FID ↓ NFE ↓ FID ↓ NFE ↓

original 1.90 2 2.06 2 1.39 2
w/o GTD 1.90 2 2.06 2 1.39 2
w/o GTD & stab. 4.75 2 13.87 2 2.45 2

Table 12: Ablation study on UCGM-S techniques.

UCGM-S DDT (Wang et al., 2025) Light.DiT (Yao et al., 2025) REPA-E (Leng et al., 2025)

FID ↓ NFE ↓ FID ↓ NFE ↓ FID ↓ NFE ↓

original 1.27 100 1.21 100 1.06 80
w/o stoch. 1.27 100 1.21 100 1.06 80
w/o stoch. & extr. 1.26 500 1.35 500 1.26 500
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E PSEUDOCODE

E.1 TRAINING ALGORITHM FOR UCGM-T

Algorithm 1 (UCGM-T). A Unified and Efficient Trainer for Few-step and Multi-step Continuous
Generative Models (including Diffusion, Flow Matching, and Consistency Models)

Require: Dataset D, transport coefficients {α(·), γ(·), α̂(·), γ̂(·)}, neural network F θ , enhancement
ratio ζ, Beta distribution parameters (θ1, θ2), learning rate η, θ− = θ only in value.

Ensure: Trained neural network F θ for generating samples from p(x).
1: repeat
2: Sample z ∼ N (0, I), x ∼ D, t ∼ ϕ(t) := Beta(θ1, θ2)
3: Compute input data, such as xt = α(t) · z+ γ(t) · x and xλt = α(λt) · z+ γ(λt) · x
4: Compute model output F t = F θ(xt, t) and set z⋆ = z and x⋆ = x
5: if ζ ∈ (0, 1) then
6: Get enhanced x⋆ = ξ(x, t,fx(F θ−(xt, t),xt, t),f

x(F θ−(xt, t,∅),xt, t)) and z⋆ =
ξ(z, t,fz(F θ−(xt, t),xt, t),f

z(F θ−(xt, t,∅),xt, t)){Note that ξ(a, t,b,d) := a +(
ζ + 1t>s

(
1
2 − ζ

))
· (b− 1t>s · a− d(1− 1t>s)), where 1(·) is the indicator function}

7: end if
8: if λ ∈ [0, 1) then
9: Compute z⋆t = α̂(t) · z⋆ + γ̂(t) · x⋆ and z⋆λt = α̂(λt) · z⋆ + γ̂(λt) · x⋆

10: Compute D(t) = α(t)γ̂(t)− α̂(t)γ(t), B(t) = α(t)
D(t)

11: Let C(t) = α(t)
2D(t) , A(t) = B(t)−B(λt) and ω̂(t) = C(t) ·A(t)

12: Let ∆zt = z⋆t − z⋆λt
13: Compute loss Lt(θ) = ∥F θ(xt, t)− z⋆t ∥

2
2 +

B(λt)
ω̂(t) ∥F θ(xt, t)− F θ−(xλt, λt)−∆zt∥22

14: else if λ = 1 then
15: Comupte x⋆

t+ϵ = α(t+ ϵ) · z⋆ + γ(t+ ϵ) · x⋆ and xt−ϵ = α(t− ϵ) · z⋆ + γ(t− ϵ) · x⋆

16: Let ∆fx
t = fx(F θ−(xt+ϵ, t+ ϵ),x⋆

t+ϵ, t+ ϵ)− fx(F θ−(xt−ϵ, t− ϵ),x⋆
t−ϵ, t− ϵ)

17: Let ∆B(t) = α(t+ϵ)
α(t+ϵ)γ̂(t+ϵ)−α̂(t+ϵ)γ(t+ϵ) −

α(t−ϵ)
α(t−ϵ)γ̂(t−ϵ)−α̂(t−ϵ)γ(t−ϵ)

18: Compute F target
t = F θ−(xt, t)− 2 · clip( ∆fx

t

∆B(t) ,−1, 1)

19: Compute loss Lt(θ) =
∥∥F t − F target

t

∥∥2
2

20: end if
21: Update θ ← θ − η∇θ

∫ 1

0
ϕ(t)Lt(θ)dt

22: until Convergence
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E.2 SAMPLING ALGORITHM FOR UCGM-S

Algorithm 2 (UCGM-S). A Unified and Efficient Sampler for Few-step and Multi-step Continuous
Generative Models (including Diffusion, Flow Matching, and Consistency Models)

Require: Initial x̃ ∼ N (0, I), transport coefficients {α(·), γ(·), α̂(·), γ̂(·)}, trained model F θ,
sampling steps N , order ν ∈ {1, 2}, time schedule T , extrapolation ratio κ, stochastic ratio ρ.

Ensure: Final generated sample x̃ ∼ p(x) and history samples {x̂i}Ni=0 over generation process.
1: Let N ← ⌊(N + 1)/2⌋ if using second order sampling (ν = 2) {Adjusts total steps to match

first-order evaluation count}
2: for i = 0 to N − 1 do
3: Compute model output F = F θ−(x̃, ti), and then x̂i = fx(F , x̃, ti) and ẑi = fz(F , x̃, ti)
4: if i ≥ 1 then
5: Compute extrapolated estimation ẑ = ẑi + κ · (ẑi − ẑi−1) and x̂ = x̂i + κ · (x̂i − x̂i−1)
6: end if
7: Sample z ∼ N (0, I) {An example choice of ρ for performing SDE-similar sampling is:

ρ = clip( |ti−ti+1|·2α(ti)
α(ti+1)

, 0, 1)}
8: Compute estimated next time sample x′ = α(ti+1) · (

√
1− ρ · ẑ+√ρ · z) + γ(ti+1) · x̂

9: if order ν = 2 and i < N − 1 then
10: Compute prediction F ′ = F θ(x

′, ti+1), x̂′ = fx(F ′,x′, ti+1) and ẑ′ = fz(F ′,x′, ti+1)

11: Compute corrected next time sample x′ = x̃ · γ(ti+1)
γ(ti)

+
(
α(ti+1)− γ(ti+1)α(ti)

γ(ti)

)
· x̂+x̂′

2

12: end if
13: Reset x̃← x′

14: end for
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F THEORETICAL ANALYSIS

F.1 MAIN RESULTS

F.1.1 LEARNING OBJECTIVE WHEN λ = 0

Recall that (z,x) ∼ p(z,x) is a pair of latent and data variables (typically independent), and let
t ∈ [0, 1]. We have four differentiable scalar functions α, γ, α̂, γ̂ : [0, 1]→ R , the noisy interpolant
xt = α(t) z + γ(t)x and F t = F θ(xt, t). We define the x- and z-prediction functions by

fx(F t,xt, t) =
α(t)F t − α̂(t)xt

α(t) γ̂(t) − α̂(t) γ(t)
, and fz(F t,xt, t) =

γ̂(t)xt − γ(t)F t

α(t) γ̂(t) − α̂(t) γ(t)
.

Finally, let ω̂(t) > 0 be a weight function. We consider the x- and z-prediction losses

Lx(θ) = E(z,x)∼p(z,x), t

[ 1

ω̂(t)

∥∥fx(F t,xt, t)− x
∥∥2
2

]
,

Lz(θ) = E(z,x)∼p(z,x), t

[ 1

ω̂(t)

∥∥fz(F t,xt, t)− z
∥∥2
2

]
.

Recall that our unified loss function is defined by:

L(θ) = E(z,x)∼p(z,x),t
1

ω̂(t)
∥fx(F θ(xt, t),xt, t)− fx(F θ−(xλt, λt),xλt, λt)∥22 .

We have L(θ) = Lx(θ) when λ = 0, since fx(F 0,x0, 0) = x. Then, we define the direct-field loss

LF (θ) = E(z,x), t

[
wF (t)

∥∥F t − (α̂(t) z + γ̂(t)x)
∥∥2
2

]
, w(t) > 0 .

Lemma 1 (Equivalence of x-prediction and direct-field loss) . For all θ,

fx(F t,xt, t)− x =
α(t)

α(t) γ̂(t)− α̂(t) γ(t)

[
F t − (α̂(t) z + γ̂(t)x)

]
.

Hence

Lx(θ) = E(z,x), t

[ α(t)2

ω̂(t)
(
α(t) γ̂(t)− α̂(t) γ(t)

)2 ∥∥F t − (α̂(t) z + γ̂(t)x)
∥∥2
2

]
,

so Lx is equivalent to LF with

wF (t) =
α(t)2

ω̂(t)
(
α(t) γ̂(t)− α̂(t) γ(t)

)2 .
Proof. Compute

fx(F t,xt, t)− x =
α(t)F t − α̂(t)xt

α(t) γ̂(t)− α̂(t) γ(t)
− x.

Since xt = α(t)z+ γ(t)x, the numerator becomes

αF t − α̂
(
αz+ γx

)
−
(
α γ̂ − α̂ γ

)
x = α(t)

[
F t −

(
α̂(t)z+ γ̂(t)x

)]
.

Dividing by α γ̂ − α̂ γ yields the desired factorization. Substituting into Lx gives the weight w(t) as
above.

Lemma 2 (Equivalence of z-Prediction and Direct-Field Loss) . For all θ,

fz(F t,xt, t)− z =
γ(t)

α(t) γ̂(t)− α̂(t) γ(t)

[
(α̂(t) z + γ̂(t)x)− F t

]
.

Hence

Lz(θ) = E(z,x), t

[ γ(t)2

ω̂(t)
(
α(t) γ̂(t)− α̂(t) γ(t)

)2 ∥∥F t − (α̂(t) z + γ̂(t)x)
∥∥2
2

]
,
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so Lz is equivalent to LF with

wF (t) =
γ(t)2

ω̂(t)
(
α(t) γ̂(t)− α̂(t) γ(t)

)2 .
Proof. Compute

fz(F t,xt, t)− z =
γ̂(t)xt − γ(t)F t

α(t) γ̂(t)− α̂(t) γ(t)
− z.

Using xt = αz+ γx, the numerator is

γ̂(αz+ γx)− γ F t −
(
α γ̂ − α̂ γ

)
z = γ(t)

[
α̂(t)z+ γ̂(t)x− F t

]
.

Dividing by α γ̂ − α̂ γ gives the factorization. Substitution into Lz yields the stated equivalence.

F.1.2 CLOSED-FORM SOLUTION ANALYSIS WHEN λ = 0

when λ = 0, we aim to derive the Probability Flow Ordinary Differential Equation (PF-ODE) (Song
et al., 2020b) corresponding to a defined forward process from time 0 to 1.

Lemma 3 (Probability Flow ODE for the linear Gaussian forward process) . Let p(x) be
a data distribution on Rd, and let z ∼ N (0, Id) be independent of x. Let α, γ : [0, 1] → R be
continuously differentiable scalar functions satisfying

α(0) = 0, α(1) = 1, γ(0) = 1, γ(1) = 0,

and assume γ(t) ̸= 0 for t ∈ (0, 1). Define the forward process

xt = α(t) z + γ(t)x, t ∈ [0, 1],

so that x0 = x ∼ p(x) and x1 = z ∼ N (0, I). Let pt(xt) denote the marginal density of xt.
Then the Probability Flow ODE for this process,

dxt

dt
= f(xt, t) − 1

2 g(t)
2∇xt

log pt(xt),

takes the explicit form

dxt

dt
=

γ′(t)

γ(t)
xt −

[
α(t)α′(t) − γ′(t)

γ(t)
α(t)2

]
∇xt log pt(xt) . (7)

Proof. We first represent the forward process xt as the solution of a SDE (Song et al., 2020b):

dxt = f(xt, t) dt + g(t) dwt,

where wt is a standard d-dimensional Wiener process, and where f(·, t) and g(t) are to be determined
so that xt = α(t) z+ γ(t)x in law.
1. Drift term via the conditional mean. Since z and x are independent,

E[xt | x] = γ(t)x.

Differentiating in t gives
d

dt
E[xt | x] = γ′(t)x. (8)

On the other hand, we use the method of separation of variables, which is a classical method in
solving PDEs, and we set the drift term as f(xt, t) = H(t)xt for some matrix H(t), then

d

dt
E[xt | x] = H(t)E[xt | x] = H(t) γ(t)x. (9)

Comparing (8) and (9) yields H(t) = γ′(t)/γ(t) Id, so

f(xt, t) =
γ′(t)

γ(t)
xt.
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2. Diffusion term via the conditional variance. The covariance of xt given x is
Var(xt | x) = α(t)2 Id.

For a linear SDE with drift matrix H(t) and scalar diffusion g(t), the covariance Σ(t) satisfies the
following Lyapunov equation (Jiménez, 2015):

dΣ(t)

dt
= H(t) Σ(t) + Σ(t)H(t)⊤ + g(t)2 Id.

Substitute Σ(t) = α(t)2Id and H(t) = γ′(t)
γ(t) Id. Since d

dt

(
α(t)2

)
= 2α(t)α′(t), we get

2α(t)α′(t) Id = 2
γ′(t)

γ(t)
α(t)2 Id + g(t)2 Id.

Rearranging yields

g(t)2 = 2α(t)α′(t) − 2
γ′(t)

γ(t)
α(t)2.

3. Probability Flow ODE. By general theory (see, e.g., de Bortoli et al.), the probability flow ODE
associated with the SDE dxt = f(xt, t) dt+ g(t) dwt is

dxt

dt
= f(xt, t) − 1

2 g(t)
2∇xt

log pt(xt).

Substituting the expressions for f and g2 above gives
dxt

dt
=

γ′(t)

γ(t)
xt −

[
α(t)α′(t) − γ′(t)

γ(t) α(t)2
]
∇xt

log pt(xt),

i.e.,

f(xt, t) =
γ′(t)

γ(t)
xt, g(t)2 = 2α(t)α′(t) − 2

γ′(t)

γ(t)
α(t)2.

which is exactly the claimed formula (7). This result is also proved with another method in (Holderri-
eth & Erives, 2025) (see Proposition 1 in their section 4.2).

Lemma 4 (Tweedie formula (Song et al., 2020b) for the linear Gaussian model) . Under the
linear Gaussian interpolation model xt | x ∼ N

(
γ(t)x, α2(t) I

)
, the conditional expectation

of x given xt is

E[x | xt] =
xt + α2(t)∇xt

log pt(xt)

γ(t)
.

Proof. We write the conditional expectation by Bayes’ rule:

E[x | xt] =

∫
x p(x | xt) dx =

1

pt(xt)

∫
x pt(xt | x) p(x) dx,

where pt(xt) =
∫
pt(xt | x) p(x) dx.

Since pt(xt | x) = (2πα2(t))−d/2 exp
(
− 1

2α2(t)∥xt − γ(t)x∥2
)
, we have

∇xt
pt(xt | x) = −

1

α2(t)
(xt − γ(t)x) pt(xt | x).

Differentiating the marginal,

∇xtpt(xt) =

∫
∇xtpt(xt | x) p(x) dx = − 1

α2(t)

∫
(xt − γ(t)x) pt(xt | x) p(x) dx.

Multiply by −α2(t) and split:

−α2(t)∇xtpt(xt) = xt pt(xt)− γ(t)

∫
x pt(xt | x) p(x) dx.

Rearrange and divide by γ(t)pt(xt):

1

pt(xt)

∫
x pt(xt | x) p(x) dx =

xt + α2(t)∇xt
pt(xt)/pt(xt)

γ(t)
=

xt + α2(t)∇xt
log pt(xt)

γ(t)
.

Hence E[x | xt] = (xt + α2(t)∇xt log pt(xt)) / γ(t), as claimed.
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Lemma 5 (Optimal predictors as conditional expectations) . For each fixed t and observed xt,
the pointwise minimizers fx

⋆ and fz
⋆ for the objective function L(θ) satisfy

fx
⋆ (F t,xt, t) = E[x | xt] , fz

⋆(F t,xt, t) = E[z | xt] .

Proof. Fix t and xt. By Lem. 1 and Lem. 2, we conclude that the minimizers of L(θ) are equivalent
to those of Lx and Lz.
Then, up to an additive constant independent of fx, the contribution of (t,xt) to Lx is

Jx
(
fx(F t,xt, t)

)
= E

[
∥fx(F t,xt, t)− x∥22 | xt

]
.

For any random vector X , the function w 7→ E∥w − X∥2 is uniquely minimized at w = E[X].
Therefore

fx
⋆ (F t,xt, t) = argmin

w
E
[
∥w − x∥2 | xt

]
= E[x | xt].

The same argument applies to
Jz
(
fz(F t,xt, t)

)
= E

[
∥fz(F t,xt, t)− z∥22 | xt

]
,

yielding
fz
⋆(F t,xt, t) = E[z | xt].

Theorem 2 . Under the linear Gaussian interpolation model xt = α(t) z + γ(t)x, with
z ∼ N (0, I) independent of x, we have

fx
⋆ (F t,xt, t) =

xt + α2(t)∇xt
log pt(xt)

γ(t)
, fz

⋆(F t,xt, t) = −α(t)∇xt
log pt(xt) .

Then for every t,

α′(t)fz
⋆(F t,xt, t)+γ′(t)fx

⋆ (F t,xt, t) =
γ′(t)

γ(t)
xt −

[
α(t)α′(t) − γ′(t)

γ(t)
α2(t)

]
∇xt

log pt(xt).

As a result, by Lem. 3, we conclude:

dxt

dt
= α′(t)fz

⋆(F t,xt, t) + γ′(t)fx
⋆ (F t,xt, t)

Proof. Tweedie formula for fx
⋆ (F t,xt, t). According to Lem. 5 and Lem. 4, we have

fx
⋆ (F t,xt, t) = E[x | xt] =

xt + α2(t)∇xt log pt(xt)

γ(t)
.

Derivation of E[z | xt] for fz
⋆(F t,xt, t). From xt = α(t) z + γ(t)x we solve z = (xt −

γ(t)x)/α(t). Taking conditional expectation and substituting the above,

E[z | xt] =
1

α(t)

(
xt − γ(t)E[x | xt]

)
=

1

α(t)

(
xt − γ(t)

xt + α2(t)∇xt
log pt(xt)

γ(t)

)
= −α(t)∇xt

log pt(xt) .

Thus, according to Lem. 5, we can obtain
fz
⋆(F t,xt, t) = −α(t)∇xt

log pt(xt) .

Combine to obtain the claimed identity.
α′(t)fz

⋆(F t,xt, t) + γ′(t)fx
⋆ (F t,xt, t)

= α′(t)
[
−α(t)∇xt

log pt(xt)
]
+ γ′(t)

xt + α2(t)∇xt
log pt(xt)

γ(t)

= −α(t)α′(t)∇xt
log pt(xt) +

γ′(t)

γ(t)
xt +

γ′(t)

γ(t)
α2(t)∇xt

log pt(xt)

=
γ′(t)

γ(t)
xt −

[
α(t)α′(t) − γ′(t)

γ(t)
α2(t)

]
∇xt log pt(xt) .
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This matches the claimed formula.

Remark 2 (Velocity field of the flow ODE) . Given x and z, the field v(z,x)(y, t) = α′(t)z +
γ′(t)x could transport z to x, so the velocity field of the flow ODE can be computed as

v∗(xt, t) = E(z,x)|xt

[
v(z,x)(xt, t)|xt

]
= E(z,x)|xt

[α′(t)z+ γ′(t)x|xt]

= α′(t) · E[z|xt] + γ′(t) · E[x|xt]

= α′(t) · fz
⋆(F t,xt, t) + γ′(t) · fx

⋆ (F t,xt, t) .

Corollary 1 (Closed-form PF–ODE for an arbitrary Gaussian mixture in Rd) . Let

p(x) =

K∑
j=1

wj pj
(
x; mj , Σj

)
, wj > 0,

∑
j

wj = 1,

be a Gaussian-mixture density on Rd, where pj(x) is the density of the j-th component, and mj is
the mean and Σj is the covariance matrix of the j-th component. In addition, let α, γ satisfy the
hypotheses of Lem. 3, and define the forward map

xt = α(t) z+ γ(t)x, x ∼ p(x), z ∼ N (0, I).

For each component j set

µj(t) = γ(t)mj , Σj(t) = γ(t)2 Σj + α(t)2 I, ϕj(xt) = N
(
xt; µj(t),Σj(t)

)
so that

pt(xt) =

K∑
j=1

wj N
(
xt; µj(t), Σj(t)

)
.

Then the Probability-Flow ODE (7) admits the closed-form drift

dxt

dt
=

γ′(t)

γ(t)
xt +

[
α(t)α′(t) − γ′(t)

γ(t)
α(t)2

] K∑
j=1

wj ϕj(xt)

pt(xt)
Σj(t)

−1
(
xt − µj(t)

)
.

Proof. Step 1. Affine transform of a Gaussian mixture. Conditioned on the j-th component, x ∼
N (mj ,Σj), and hence

xt = α(t) z+ γ(t)x
∣∣∣ (j) ∼ N (γ(t)mj , α(t)

2I+ γ(t)2Σj

)
.

Defining
µj(t) = γ(t)mj , Σj(t) = γ(t)2 Σj + α(t)2 I,

we conclude that the marginal of xt is

pt(xt) =

K∑
j=1

pt(xt, N = j)

=

K∑
j=1

p(N = j)pt(xt|N = j)

=

K∑
j=1

wj pt(αz+ γx|N = j)

=

K∑
j=1

wj N
(
xt; µj(t),Σj(t)

)
.
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Step 2. Score of the mixture. Set

ϕj(xt) = N
(
xt; µj(t),Σj(t)

)
, pt(xt) =

K∑
j=1

wj ϕj(xt).

Then by the usual mixture-rule,

∇xt log pt =
1

pt(xt)

K∑
j=1

wj ϕj(xt)∇xt log ϕj(xt).

Since for each Gaussian component

∇xt log ϕj(xt) = −Σj(t)
−1
(
xt − µj(t)

)
,

we obtain the closed-form score

∇xt
log pt(xt) = −

1

pt(xt)

K∑
j=1

wj N
(
xt; µj(t),Σj(t)

)
Σj(t)

−1
(
xt − µj(t)

)
.

Step 3. Substitution into the PF–ODE. By Lem. 3, the Probability–Flow ODE reads

dxt

dt
=

γ′(t)

γ(t)
xt −

[
α(t)α′(t) − γ′(t)

γ(t)
α(t)2

]
∇xt

log pt(xt).

Substituting the expression for ∇ log pt above (and observing that the two ’−’ signs cancel) yields

dxt

dt
=

γ′(t)

γ(t)
xt +

[
α(t)α′(t)− γ′(t)

γ(t)
α(t)2

] K∑
j=1

wj N
(
xt; µj(t),Σj(t)

)
pt(xt)

Σj(t)
−1
(
xt−µj(t)

)
,

which is exactly the claimed closed-form drift.

Corollary 2 (Closed-form PF–ODE for a symmetric two-peak Gaussian mixture) . Let p(x)
be the one-dimensional, symmetric, two-peak Gaussian mixture

p(x) = 1
2 N

(
x;−m,σ2

)
+ 1

2 N
(
x; +m,σ2

)
,

and let α, γ be as in Lem. 3. Define

xt = α(t) z + γ(t)x, Σt = γ(t)2 σ2 + α(t)2, µ±(t) = ± γ(t)m.

Then the marginal density of xt is

pt(xt) =
1
2 N

(
xt;µ−(t),Σt

)
+ 1

2 N
(
xt;µ+(t),Σt

)
,

and the Probability-Flow ODE (7) admits the closed-form drift

dxt

dt
=

γ′(t)

γ(t)
xt +

[
α(t)α′(t) − γ′(t)

γ(t)
α(t)2

] 1

Σt

[
xt − γ(t)m tanh

(γ(t)m
Σt

xt

)]
.

Proof. Step 1. Marginal law under the affine map. Conditional on x = ±m, one has

xt = αz + γx
∣∣∣ (x = ±m) ∼ N

(
±γm, α2 + γ2σ2

)
= N

(
µ±(t),Σt

)
.

Since each peak has weight 1
2 , the marginal of xt is 1

2N (µ−,Σt) +
1
2N (µ+,Σt).

Step 2. Score of the bimodal mixture. Write ϕ±(xt) = N (xt;µ±(t),Σt), so pt = 1
2 (ϕ− + ϕ+).

Then

d

dxt
log pt =

1

pt
1
2

(
ϕ−∇ log ϕ− + ϕ+∇ log ϕ+

)
, ∇ log ϕ± = − xt − µ±(t)

Σt
.

Hence
d

dxt
log pt = −

1

2 pt Σt

[
ϕ−(xt − µ−) + ϕ+(xt − µ+)

]
.
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Define

r±(xt) =
ϕ±(xt)

ϕ−(xt) + ϕ+(xt)
, ϕ− + ϕ+ = 2 pt.

Then
d

dxt
log pt = −

1

Σt

[
r−(xt − µ−) + r+(xt − µ+)

]
.

A direct computation shows

r+ − r− = tanh
(γm
Σt

xt

)
, r−(xt + γm) + r+(xt − γm) = xt − γm tanh

(γm
Σt

xt

)
.

Therefore
d

dxt
log pt = −

1

Σt

[
xt − γm tanh

(
γm
Σt

xt

)]
.

Step 3. Substitution into the PF–ODE. By Lem. 3,

dxt

dt
=

γ′

γ
xt −

[
αα′ − γ′

γ
α2
] d

dxt
log pt.

Since d
dxt

log pt carries a “−” sign, the two negatives cancel, yielding exactly

dxt

dt
=

γ′

γ
xt +

[
αα′ − γ′

γ
α2
] 1

Σt

[
xt − γm tanh

(
γm
Σt

xt

)]
,

as claimed.

Remark 3 (OU-type schedule for the symmetric bimodal case) . Specialize Cor. 2 to the
Ornstein–Uhlenbeck-type schedule with

γ(t) = e−st, α(t) =
√
1− e−2st,

and noise variance σ2 in each mixture component. Then the marginal variance is

Σt = γ(t)2 σ2 + α(t)2 = σ2e−2st + (1− e−2st),

and one obtains the closed-form drift of the Probability-Flow ODE:

dxt

dt
= − s xt +

s

Σt

[
xt −me−st tanh

(me−st

Σt
xt

)]
.

Proof. We start from the general drift in Cor. 2:

dxt

dt
=

γ′

γ
xt +

[
αα′ − γ′

γ
α2
] 1

Σt

[
xt − γ m tanh

(γ m
Σt

xt

)]
.

We now substitute γ(t) = e−st, α(t) =
√
1− e−2st and compute each piece in detail:

Derivative of γ:

γ′(t) = −s e−st, =⇒ γ′(t)

γ(t)
= −s.

Marginal variance Σt:

Σt = γ(t)2 σ2 + α(t)2 = σ2 e−2st + (1− e−2st).

Square of α and its derivative:

α(t)2 = 1− e−2st,
d

dt

[
α(t)2

]
= 2s e−2st =⇒ 2αα′ = 2s e−2st =⇒ αα′ = s e−2st.

Combination term

αα′ − γ′

γ
α2 = s e−2st − (−s) (1− e−2st) = s

[
e−2st + 1− e−2st

]
= s.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Substitution into the general drift formula gives

dxt

dt
= −s xt + s

1

Σt

[
xt − e−st m tanh

(
e−st m

Σt
xt

)]
.

Hence the final, closed-form Probability-Flow ODE is

dxt

dt
= − s xt +

s

Σt

[
xt −me−st tanh

(me−st

Σt
xt

)]
,

where Σt = σ2e−2st + (1− e−2st).

Remark 4 (Triangular schedule for the symmetric bimodal case) . Specialize Cor. 2 to the
trigonometric schedule

γ(t) = cos
(

π
2 t
)
, α(t) = sin

(
π
2 t
)
,

with noise variance σ2 in each mixture component. Then

Σt = γ(t)2 σ2 + α(t)2 = σ2 cos2
(

π
2 t
)
+ sin2

(
π
2 t
)
,

and the closed-form drift of the Probability-Flow ODE is

dxt

dt
= −π

2
tan
(

π
2 t
)
xt +

π
2 tan

(
π
2 t
)

Σt

[
xt − cos

(
π
2 t
)
m tanh

(cos(π2 t)m
Σt

xt

)]
.

Proof. We begin with the general drift in Cor. 2:

dxt

dt
=

γ′

γ
xt +

[
αα′ − γ′

γ
α2
] 1

Σt

[
xt − γ m tanh

(γ m
Σt

xt

)]
.

For γ(t) = cos(π2 t), α(t) = sin(π2 t),

γ′(t) = −π
2 sin

(
π
2 t
)
= −π

2 α(t),
γ′

γ
= −π

2 tan
(

π
2 t
)
.

And
α′(t) = π

2 cos
(

π
2 t
)
= π

2 γ(t),

so that

αα′ − γ′

γ
α2 =

π

2
αγ +

π

2

α3

γ
=

π

2

α

γ

(
α2 + γ2

)
=

π

2
tan
(

π
2 t
)
.

Substituting into the general formula immediately yields the boxed drift.

Remark 5 (Linear schedule for the symmetric bimodal case) . Specialize Cor. 2 to the "Linear"
schedule

γ(t) = 1− t, α(t) = t, t ∈ [0, 1].

Then the marginal variance is

Σt = γ(t)2 σ2 + α(t)2 = (1− t)2 σ2 + t2,

and one obtains the closed-form drift of the Probability-Flow ODE:

dxt

dt
= − xt

1− t
+

t

(1− t) Σt

[
xt −m (1− t) tanh

(m (1− t)

Σt
xt

)]
.

Proof. We begin with the general drift formula from Cor. 2:

dxt

dt
=

γ′(t)

γ(t)
xt +

[
α(t)α′(t)− γ′(t)

γ(t)
α(t)2

] 1

Σt

[
xt − γ(t)m tanh

(γ(t)m
Σt

xt

)]
.

We substitute γ(t) = 1− t and α(t) = t and compute each piece:

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

1. Derivative of γ:

γ′(t) = −1, =⇒ γ′(t)

γ(t)
= − 1

1− t
.

2. Marginal variance:
Σt = (1− t)2 σ2 + t2.

3. Square of α and its derivative:

α(t)2 = t2,
d

dt

[
α(t)2

]
= 2t =⇒ 2αα′ = 2t =⇒ α(t)α′(t) = t.

4. Combination term:

αα′ − γ′

γ
α2 = t−

(
− 1

1− t

)
t2 = t+

t2

1− t
=

t

1− t
.

Substituting these into the general drift gives
dxt

dt
= − xt

1− t
+

t

(1− t) Σt

[
xt −m (1− t) tanh

(m (1− t)

Σt
xt

)]
,

which is the claimed closed-form Probability-Flow ODE.

Remark 6 (OU-type schedule for the Hermite–Gaussian n = 1 case) . Apply Lem. 3 to the
one-dimensional Hermite–Gaussian initial density

p1(x) ∝ x e−x2/2, x > 0,

and the OU-type schedule

γ(t) = e−st, α(t) =
√

1− e−2st.

Then the Probability–Flow ODE (7) reduces to the scalar form

dxt

dt
= − s

xt
, t ∈ [0, 1],

and integrating from t = 1 (with x(1) = x1) to any t ∈ [0, 1] yields the explicit solution

xt =
√

x2
1 + 2 s (1− t) .

Proof. By Lem. 3, the drift of the Probability–Flow ODE is
dxt

dt
=

γ′(t)

γ(t)
xt −

[
α(t)α′(t)− γ′(t)

γ(t) α(t)2
]
∂xt

ln pt(xt).

Under γ(t) = e−st and α(t) =
√
1− e−2st one computes

γ′

γ
= −s, 2αα′ = 2s e−2st =⇒ αα′ = s e−2st, −γ′

γ
α2 = s (1− e−2st),

hence

αα′ − γ′

γ
α2 = s e−2st + s (1− e−2st) = s.

Moreover, one checks that the marginal density remains pt(x) ∝ x e−x2/2, so ∂x ln pt(x) =
1
x − x.

Therefore
dxt

dt
= − s xt − s

(
1
xt
− xt

)
= − s

xt
.

Separating variables,
dx

dt
= − s

x
=⇒

∫ xt

x1

x dx = −s
∫ t

1

ds =⇒ x2
t − x2

1

2
= −s (t− 1),

whence
x2
t = x2

1 + 2 s (1− t), xt =
√

x2
1 + 2 s (1− t),

taking the positive root on x > 0.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Lemma 6 (Picard–Lindelöf existence and uniqueness) . Let v : R× [0, 1]→ R be continuous
in t and satisfy the uniform Lipschitz condition

|v(x, t)− v(y, t)| ≤ L |x− y|, ∀x, y ∈ R, t ∈ [0, 1],

for some constant L <∞. Then for any t0 ∈ [0, 1] and any initial value x(t0) = x0, there exists
δ > 0 and a unique function

x ∈ C1
(
[t0 − δ, t0 + δ] ∩ [0, 1]

)
solving the ODE

dx

dt
(t) = v

(
x(t), t

)
, x(t0) = x0.

Proof. Fix t0 ∈ [0, 1] and x0 ∈ R. Choose δ > 0 so small that (t0 − δ, t0 + δ) ⊂ [0, 1] and Lδ < 1.
Define the closed ball

BR =
{
x ∈ C([t0 − δ, t0 + δ],R) : ∥x− x0∥∞ ≤ R

}
with R > 0 to be chosen. Consider the operator

(Γx)(t) = x0 +

∫ t

t0

v
(
x(s), s

)
ds.

Since v is continuous on the compact set BR × [t0 − δ, t0 + δ], it is bounded by some M <∞. If
we choose R = Mδ, then Γ maps BR into itself:

∥Γx− x0∥∞ ≤ sup
t

∫ t

t0

|v(x(s), s)| ds ≤M δ = R.

Moreover, for any x, y ∈ BR and any t in the interval,

|(Γx)(t)− (Γy)(t)| ≤
∫ t

t0

|v(x(s), s)− v(y(s), s)| ds ≤ Lδ ∥x− y∥∞ < ∥x− y∥∞,

so Γ is a contraction. By the Banach fixed-point theorem, Γ has a unique fixed point in BR, which is
precisely the unique C1 solution of the ODE on [t0 − δ, t0 + δ] ∩ [0, 1].

Lemma 7 (Gronwall’s inequality and no blow-up) . Let x ∈ C1([0, 1]) satisfy

|x′(t)| ≤ K
(
1 + |x(t)|

)
, t ∈ [0, 1],

for some constant K ≥ 0. Then

|x(t)| ≤
(
|x(1)|+ 1

)
eK(1−t) − 1, ∀ t ∈ [0, 1],

and in particular x does not blow up in finite time on [0, 1].

Proof. Define
y(t) = |x(t)|+ 1 ≥ 1.

Since y(t) is Lipschitz, for almost every t we have

y′(t) =
d

dt

(
|x(t)|+ 1

)
= sgn(x(t))x′(t),

and hence
y′(t) ≥ − |x′(t)| ≥ −K

(
1 + |x(t)|

)
= −K y(t).

Equivalently,
y′(t) +K y(t) ≥ 0.

Multiply both sides by the integrating factor eKt:

d

dt

(
eKty(t)

)
= eKt

(
y′(t) +K y(t)

)
≥ 0.
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Thus the function t 7→ eKty(t) is non-decreasing on [0, 1]. For any t ≤ 1 we then have

eKty(t) ≤ eK·1y(1) =⇒ y(t) ≤ y(1) eK(1−t) =
(
|x(1)|+ 1

)
eK(1−t).

Rewriting y(t) = |x(t)|+ 1 gives

|x(t)| ≤
(
|x(1)|+ 1

)
eK(1−t) − 1,

as claimed. In particular |x(t)| <∞ for all t ∈ [0, 1], so no finite-time blow-up occurs.

Lemma 8 (Gaussian convolution preserves linear-growth bound) . Let p0 ∈ C1(R) be a
probability density satisfying∣∣∂x log p0(x)∣∣ ≤ A+B |x|, A,B <∞, ∀x ∈ R,

and assume furthermore that ∥p0∥∞ = supx∈R p0(x) ≤ M < ∞. For each σ > 0,

define the Gaussian kernel ϕσ(u) = 1√
2π σ

exp
(
− u2

2σ2

)
, and set pσ(x) = (p0 ∗ ϕσ)(x) =∫

R p0(y)ϕσ(x− y) dy. Then pσ ∈ C∞(R) and there exist

A(σ) = A+BM σ
√

2
π , B(σ) = B,

such that ∣∣∂x log pσ(x)∣∣ ≤ A(σ) + B(σ) |x|, ∀x ∈ R.

Proof. Smoothness and differentiation under the integral. Since ϕσ ∈ C∞(R) decays rapidly and
p0 ∈ L∞(R), by dominated convergence we may differentiate under the integral to get

p′σ(x) =

∫
R
p0(y) ∂xϕσ(x− y) dy =

∫
R
p0(y)ϕ

′
σ(x− y) dy.

Noting ∂yϕσ(x− y) = −ϕ′
σ(x− y), we rewrite

p′σ(x) = −
∫
R
p0(y) ∂yϕσ(x− y) dy.

Integration by parts. Integrating the above in y and using that p0(y)ϕσ(x− y)→ 0 as |y| → ∞, we
obtain

p′σ(x) =

∫
R
p′0(y)ϕσ(x− y) dy =

∫
R
(∂y log p0)(y) p0(y)ϕσ(x− y) dy.

Bounding ∂x log pσ . Hence∣∣∂x log pσ(x)∣∣ = |p′σ(x)|
pσ(x)

=

∣∣∫ (∂y log p0)(y) p0(y)ϕσ(x− y) dy
∣∣

pσ(x)

≤
∫
|∂y log p0(y)| p0(y)ϕσ(x− y) dy

pσ(x)
≤
∫ (

A+B|y|
)
p0(y)ϕσ(x− y) dy

pσ(x)

= A+B

∫
|y| p0(y)ϕσ(x− y) dy

pσ(x)
.

Change of variables. Set u = y − x. Then∫
|y| p0(y)ϕσ(x−y) dy =

∫
|x+u| p0(x+u)ϕσ(u) du ≤ |x| pσ(x)+

∫
|u| p0(x+u)ϕσ(u) du.

Hence ∫
|y| p0(y)ϕσ(x− y) dy

pσ(x)
≤ |x|+

∫
|u| p0(x+ u)ϕσ(u) du

pσ(x)
.

Using the L∞-bound on p0. Since p0(x+ u) ≤M ,∫
|u| p0(x+ u)ϕσ(u) du ≤M

∫
|u|ϕσ(u) du = M σ

√
2
π .
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(a) OU-type. (b) Linear.

Figure 7: Comparison of two optimal Probability-Flow ODE trajectories on 1D data. Starting from identical
initial noise distributions and noise points, we apply two distinct transport types—OU-type and Linear—to
analyze their trajectories. The results show that both types successfully converge to the same target distribution
(a bimodal Gaussian) and accurately match the same target data points, despite following different ODE paths.

Conclusion. Combining the above estimates yields∣∣∂x log pσ(x)∣∣ ≤ A+B
(
|x|+M σ

√
2
π

)
=
[
A+BM σ

√
2
π

]
+B |x|.

Thus one may set

A(σ) = A+BM σ
√

2
π , B(σ) = B,

and the lemma follows.

Theorem 3 (Monotonicity and uniqueness of the 1D probability-flow map) . Let p0(x) be a
probability density on R satisfying the linear-growth bound∣∣∂x log p0(x)∣∣ ≤ A+B |x|, A,B <∞, ∀x ∈ R.

Let z ∼ N (0, 1) be independent of x0, and let α, γ : [0, 1]→ R be C1 functions with

α(0) = 0, α(1) = 1, γ(0) = 1, γ(1) = 0, γ(t) ̸= 0 ∀t ∈ (0, 1).

Define the forward process

xt = α(t) z + γ(t)x0, t ∈ [0, 1],

so that x0 ∼ p0 and x1 ∼ N (0, 1). Let pt denote the density of xt. By Lem. 3, the velocity field:

v(x, t) =
γ′(t)

γ(t)
x −

[
α(t)α′(t) − γ′(t)

γ(t)
α(t)2

]
∂x log pt(x).

Consider the backward ODE d
dt xt = v

(
xt, t

)
, Then for each x1 ∈ R there is a unique C1 solution

t 7→ xt(x1) on [0, 1], and the map

g(x1) = x0(x1) = F−1
0

(
F1(x1)

)
is strictly increasing on R and is the unique increasing transport pushing p1 onto p0.

Proof. (1) Global existence and uniqueness. Since

xt = α(t) z + γ(t)x0, pt = p0 ∗ N
(
0, α(t)2

)
,

standard Gaussian-convolution estimates imply
∣∣∂x log pt(x)∣∣ ≤ At + Bt|x| for some continuous

At, Bt (cf., Lem. 8). Hence there exists K <∞ such that

|v(x, t)| ≤ K (1 + |x|),
∣∣∂xv(x, t)∣∣ ≤ K, ∀x ∈ R, t ∈ [0, 1].

In particular v is globally Lipschitz in x (uniformly in t) and of linear growth. By the Lem. 6 together
with Lem. 7 to prevent finite-time blow-up, the backward ODE admits for each x1 a unique C1

solution on [0, 1].
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(2) Conservation of the CDF. Let

Ft(x) =

∫ x

−∞
pt(u) du (the CDF of pt).

Since pt satisfies the continuity equation ∂tpt + ∂x(v pt) = 0, along any characteristic t 7→ xt one
computes

d

dt
Ft(xt) =

∫ xt

−∞
∂tpt(u) du+ pt(xt)

dxt

dt
= −

[
v pt
]xt

−∞ + pt(xt) v(xt, t) = 0,

using limu→−∞ pt(u) = 0. Hence Ft(xt) = F1(x1) for all t ∈ [0, 1].
(3) Quantile representation. Evaluating at t = 0 gives

F0

(
x0(x1)

)
= F1(x1).

Since F0 : R→ (0, 1) is strictly increasing and onto, it has an inverse F−1
0 , and thus

x0(x1) = F−1
0

(
F1(x1)

)
.

(4) Monotonicity and uniqueness. If x1 < y1 then F1(x1) < F1(y1), so

g(x1) = F−1
0

(
F1(x1)

)
< F−1

0

(
F1(y1)

)
= g(y1),

showing g is strictly increasing. In one dimension the strictly increasing transport between two given
laws is unique, so g is the unique increasing map pushing p1 onto p0. A case study presented in Fig. 7
validates this theorem, considering the specific schedules discussed in Rem. 5 and Rem. 3.

Lemma 9 (Monotone transport from Gaussian to P ) . Let Z ∼ N(0, 1) be a standard normal
random variable and let X be a random variable with distribution P on R, having cumulative
distribution function (CDF) FP . Define

Φ(z) = Pr[Z ≤ z], F−1
P (u) = inf{x : FP (x) ≥ u}, u ∈ (0, 1).

Then there exists a non-decreasing continuous function g(z) = F−1
P

(
Φ(z)

)
such that g(Z)

d
= X

if and only if P has no atoms (i.e. FP is continuous). Moreover, if FP is strictly increasing then g
is unique.

Proof. Existence. Since Φ : R→ (0, 1) is continuous and strictly increasing, the random variable
U = Φ(Z)

is distributed uniformly on (0, 1). Hence for any x ∈ R,

Pr
(
F−1
P (U) ≤ x

)
= Pr

(
U ≤ FP (x)

)
= FP (x),

so F−1
P (U) has distribution P . The quantile function F−1

P is non-decreasing and, by standard results
on generalized inverses (see e.g. Billingsley, Probability and Measure), is continuous on (0, 1) if and
only if FP is continuous. Therefore

g(z) = F−1
P

(
Φ(z)

)
is non-decreasing and continuous exactly when FP is continuous, and in that case g(Z)

d
= X .

Necessity. Suppose P has an atom at x0, i.e. Pr[X = x0] = p > 0. If there were a continuous
non-decreasing g with g(Z)

d
= X , then to produce a point-mass p at x0 it would have to be constant

on a set of positive Pr-mass in the continuous law of Z. But continuity of g then forces it to be
constant on a strictly larger interval, yielding a mass > p at x0, a contradiction. Thus FP must be
continuous.
Uniqueness. Let g1, g2 be two continuous non-decreasing functions with gi(Z)

d
= P . Define for

u ∈ (0, 1)
hi(u) = gi

(
Φ−1(u)

)
, i = 1, 2.

Each hi is continuous, non-decreasing, and pushes Unif(0, 1) onto P . When FP is strictly increasing,
its quantile F−1

P is the unique such map (classical uniqueness of quantile functions for atomless laws).
Hence h1 ≡ h2 ≡ F−1

P on (0, 1), and therefore g1 ≡ g2 on R.

F.1.3 LEARNING OBJECTIVE AS λ→ 1
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Lemma 10 (Lp-estimate for the difference of two absolutely continuous functions) . Let
I = [a, b] be a compact interval and (E, ∥ · ∥) a Banach space. Suppose f, g : I → E are
absolutely continuous with Bochner–integrable derivatives f ′, g′. Fix 1 ≤ p ≤ ∞. Then

∥ f − g∥Lp(I;E) ≤ (b− a)1/p
∥∥f(a)− g(a)

∥∥ +

∫ b

a

(b− s)1/p
∥∥f ′(s)− g′(s)

∥∥ ds,

where for p = ∞ one interprets (b − s)1/p = 1. Moreover, if 1 < p < ∞ and p′ denotes the
conjugate exponent 1/p+ 1/p′ = 1, then by Hölder’s inequality one further deduces

∥ f − g∥Lp(I;E) ≤ (b− a)1/p
∥∥f(a)− g(a)

∥∥ +
(

p−1
p

)1/p′

(b− a) ∥ f ′ − g′∥Lp(I;E).

Proof. Since f and g are absolutely continuous on [a, b], the Fundamental Theorem of Calculus in
the Bochner setting gives, for each t ∈ [a, b],

f(t)− g(t) =
(
f(a)− g(a)

)
+

∫ t

a

(
f ′(s)− g′(s)

)
ds.

Set X(s) = f ′(s)− g′(s). Then for every t ∈ [a, b],∥∥f(t)− g(t)
∥∥ ≤ ∥∥f(a)− g(a)

∥∥ +
∥∥∥∫ t

a

X(s) ds
∥∥∥.

We now distinguish two cases.

Case 1: 1 ≤ p < ∞. Taking the Lp–norm in the variable t over [a, b] and applying Minkowski’s
integral inequality for Bochner integrals yields

∥ f − g∥Lp
t
≤
∥∥f(a)− g(a)

∥∥ ∥∥1∥∥
Lp([a,b])

+
∥∥∥∫ t

a

X(s) ds
∥∥∥
Lp

t

= (b− a)1/p
∥∥f(a)− g(a)

∥∥ +
(∫ b

a

∥∥∥∫ t

a

X(s) ds
∥∥∥p dt)1/p

≤ (b− a)1/p
∥∥f(a)− g(a)

∥∥ +

∫ b

a

∥∥1[s,b](·)X(s)
∥∥
Lp

t
ds.

Here we have written
∫ t

a
X(s) ds =

∫ b

a
1[a,t](s)X(s) ds and used the fact that

∥∥1[s,b](t)∥∥Lp
t
=
(∫ b

a

1[s,b](t) dt
)1/p

= (b− s)1/p.

Hence

∥ f − g∥Lp(I;E) ≤ (b− a)1/p
∥∥f(a)− g(a)

∥∥ +

∫ b

a

(b− s)1/p
∥∥X(s)

∥∥ds,
which is the claimed Lp–estimate.

Case 2: p =∞. Taking the essential supremum in t ∈ [a, b] in the pointwise bound ∥f(t)− g(t)∥ ≤
∥f(a)− g(a)∥+

∫ t

a
∥X(s)∥ ds gives immediately

∥ f − g∥L∞(I;E) ≤ ∥f(a)− g(a)∥ +

∫ b

a

∥X(s)∥ ds,

which agrees with the above formula when (b− s)1/p = 1.

Refinement for 1 < p <∞. Let p′ be the conjugate exponent, 1/p+ 1/p′ = 1. Applying Hölder’s
inequality to the integral

∫ b

a
(b− s)1/p ∥X(s)∥ ds gives∫ b

a

(b− s)1/p ∥X(s)∥ ds ≤
(∫ b

a

(b− s)p
′/p ds

)1/p′ (∫ b

a

∥X(s)∥p ds
)1/p

.
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Since p′/p = 1/(p− 1), a direct computation yields∫ b

a

(b− s)p
′/p ds =

∫ b−a

0

u1/(p−1) du =
p− 1

p
(b− a)p

′
.

Hence (∫ b

a

(b− s)p
′/p ds

)1/p′

=
(

p−1
p

)1/p′

(b− a),

and we arrive at ∫ b

a

(b− s)1/p ∥X(s)∥ ds ≤
(

p−1
p

)1/p′

(b− a) ∥X∥Lp(I;E).

Combining this with the previous display completes the proof of the refined estimate.

Lemma 11 (Uniqueness of absolutely continuous functions) . Let I = [a, b] be a compact
interval and (E, ∥ · ∥) a Banach space. Suppose f, g : I → E are absolutely continuous with
Bochner–integrable derivatives f ′, g′. If

f(a) = g(a) and f ′(t) = g′(t) for almost every t ∈ I,

then f(t) = g(t) for all t ∈ I .

Proof. Apply Lem. 10 (the Lp–estimate for differences) in the case p =∞. Since in this case one
has (

b− s
)1/p

= 1, ∥f(a)− g(a)∥ = 0, ∥f ′(s)− g′(s)∥ = 0 a.e.,
the conclusion of Lem. 10 reads

∥ f − g∥L∞(I;E) ≤ ∥f(a)− g(a)∥+
∫ b

a

∥f ′(s)− g′(s)∥ ds = 0.

Hence ∥f − g∥L∞(I;E) = 0, which means

sup
t∈I
∥f(t)− g(t)∥ = 0,

so f(t) = g(t) for every t ∈ I .

Theorem 4 (Pathwise consistency via zero total derivative) . Let p(x) be a data distribution
on Rd, and let z ∼ N (0, Id) be independent of x. Let α, γ : [0, 1]→ R be C1 scalar functions
satisfying

α(0) = 0, α(1) = 1, γ(0) = 1, γ(1) = 0, γ(t) ̸= 0 ∀t ∈ (0, 1).

Define the forward process

xt = α(t) z + γ(t)x, t ∈ [0, 1],

so that x0 = x ∼ p(x) and x1 = z ∼ N (0, I). Let pt be the law of xt. By Lem. 3 the
corresponding Probability Flow ODE is

v(xt, t) =
d

dt
xt =

γ′(t)

γ(t)
xt −

[
α(t)α′(t) − γ′(t)

γ(t)
α(t)2

]
∇xt

log pt(xt).

Given any point xt, define

g(xt, t) = x0 = xt +

∫ 0

t

v(xu, u) du.

Let (z,x) ∼ p(x) ⊗ N (0, I) and t ∼ Unif[0, 1] be all mutually independent. Write E(z,x) for
expectation over (z,x) and E(z,x),t for expectation over (z,x) and t. Suppose

E(z,x)

∥∥f(x0, 0)− g(x0, 0)
∥∥ = 0, E(z,x),t

∥∥∥ d

dt
f(xt, t)

∥∥∥ = 0.
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Then
E(z,x),t

∥∥f(xt, t)− g(xt, t)
∥∥ = 0.

Proof. Fix a draw (z,x). Along its forward trajectory xt = α(t)z+ γ(t)x, define the two curves

f(t) = f
(
xt, t

)
, g(t) = g

(
xt, t

)
.

We check the hypotheses of Lem. 11 for f, g : [0, 1]→ Rd.
Absolute continuity. Since f is C1 in (x, t) and t 7→ xt is C1, the composition f(t) = f(xt, t) is
absolutely continuous, with

f ′(t) =
d

dt
f
(
xt, t

)
, existing a.e.

Also

g(t) = xt +

∫ 0

t

v(xu, u) du = x0 −
∫ t

0

v(xu, u) du

is the sum of a C1 function and an absolutely continuous integral, hence itself absolutely continuous.
Coincidence of initial values. From E(z,x)∥f(x0, 0) − g(x0, 0)∥ = 0 we get f(x0, 0) = g(x0, 0)
almost surely, so f(0) = g(0) for almost every (z,x).
Coincidence of derivatives a.e. By Tonelli–Fubini,

0 = E(z,x),t

∥∥∥ d
dtf(xt, t)

∥∥∥ =

∫ (∫ 1

0

∥∥∥ d
dtf(xt, t)

∥∥∥dt) dP(z,x).

Hence for almost every (z,x),
∫ 1

0
∥∂tf(xt, t)∥dt = 0, which forces ∂tf(xt, t) = 0 for almost all t.

Thus
f ′(t) = 0 for a.e. t ∈ [0, 1].

On the other hand

g′(t) =
dxt

dt
− v(xt, t) = v(xt, t)− v(xt, t) = 0, ∀t ∈ [0, 1].

Conclusion by uniqueness. We have shown f, g are absolutely continuous, f(0) = g(0), and
f ′(t) = g′(t) for almost every t. By Lem. 11, f(t) = g(t) for all t ∈ [0, 1] (almost surely in (z,x)).
Hence f(xt, t) = g(xt, t) a.s., and taking expectation yields E(z,x),t

∥∥f(xt, t)− g(xt, t)
∥∥ = 0.

Remark 7 (Consistency-training loss) . By Thm. 4, to enforce f(xt, t) ≈ g(xt, t) = x0 along
the PF–ODE flow, we suggests two equivalent training objectives:
1. Continuous PDE-residual loss

LPDE = Et,xt

∥∥∥∂tf(xt, t) + v(xt, t)·∇xt
f(xt, t)

∥∥∥2.
2. Finite-difference consistency loss

Lcons = Et,x0,z

∥∥∥f(xt+∆t, t+∆t
)
− f

(
xt, t

)∥∥∥2,
where xt = α(t)z+ γ(t)x0 and similarly for xt+∆t.

Proof. We begin from the requirement that f(xt, t) remain constant along the flow:

d

dt
f(xt, t) =

(
∂t + v(xt, t) · ∇xt

)
f(xt, t) = ∂tf(xt, t) +

dxt

dt︸︷︷︸
=v(xt,t)

·∇xtf(xt, t) = 0.

This is exactly the linear transport PDE

(∂t + v · ∇)f(x, t) = 0.
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To train a network f to satisfy it, one may minimize the L2-residual over the joint law of t and xt,
yielding

LPDE = Et,xt

∥∥∥∂tf(xt, t) + v(xt, t)·∇xtf(xt, t)
∥∥∥2.

In practice, computing the spatial gradient ∇xt
f can be expensive. Instead, we use a small time

increment ∆t and the finite-difference approximation
f(xt+∆t, t+∆t)− f(xt, t) ≈ ∆t

[
∂tf + v · ∇f

]
(xt, t).

Squaring and taking expectations over t,x0, z then yields the discrete consistency loss

Lcons = Et,x0,z

∥∥∥f(xt+∆t, t+∆t
)
− f

(
xt, t

)∥∥∥2.
This completes the derivation of both forms of the consistency-training objective.

Recall that (z,x) ∼ p(z,x) is a pair of latent and data variables (typically independent), and let
t ∈ [0, 1]. We have four differentiable scalar functions α, γ, α̂, γ̂ : [0, 1]→ R , the noisy interpolant
xt = α(t) z + γ(t)x and F t = F θ(xt, t). We define the x- and z-prediction functions by

fx(F t,xt, t) =
α(t)F t − α̂(t)xt

α(t) γ̂(t) − α̂(t) γ(t)
, and fz(F t,xt, t) =

γ̂(t)xt − γ(t)F t

α(t) γ̂(t) − α̂(t) γ(t)
.

Since

fx(F 0,x0, 0) =
α(0) · F θ(x0, 0)− α̂(0) · x0

α(0) · γ̂(0)− α̂(0) · γ(0)

=
0 · F θ(x0, 0)− α̂(0) · x0

0 · γ̂(0)− α̂(0) · 1

=
0− α̂(0) · x0

0− α̂(0)

= x0

fx satisfies the boundary condition of consistency models (Song et al., 2023) and Thm. 4. To
better understand the unified loss, let’s analyze a bit further. For simplicity we use the notation
fθ(xt, t) := fx(F θ(xt, t),xt, t), the training objective is then equal to

L(θ) = Et,(z,x)

[
1

ω̂(t)
∥fθ(xt, t)− fθ−(xλt, λt)∥22

]
.

Let ϕt(x) be the solution of the PF-ODE determined by the velocity field v∗(xt, t) =
E(z,x)|xt

[
v(z,x)(xt, t)|xt

]
(where v(z,x)(y, t) = α′(t)z + γ′(t)x) and an initial value x at time

t = 0. Define gθ(x, t) := fθ(ϕt(x), t) that moves along the solution trajectory. When λ→ 1, the
gradient of the loss tends to

lim
λ→1
∇θ

L(θ)
2(1− λ)

= Et

[
t

ω̂(t)
· E(z,x) lim

λ→1
⟨fθ(xt, t)− fθ(xλt, λt)

t− λt
,∇θfθ(xt, t)⟩

]
= Et

[
t

ω̂(t)
· E(z,x)⟨

dfθ(xt, t)

dt
,∇θgθ(ϕ

−1
t (xt), t)⟩

]
The inner expectation can be computed as:

E(z,x),xt
⟨dfθ(xt, t)

dt
,∇θgθ(ϕ

−1
t (xt), t)⟩

= E(z,x),xt
⟨∂1fθ(xt, t) · v(z,x)(xt, t) + ∂2fθ(xt, t),∇θgθ(ϕ

−1
t (xt), t)⟩

= E(z,x),xt
⟨∂1fθ(xt, t) · (α′(t)z+ γ′(t)x) + ∂2fθ(xt, t),∇θgθ(ϕ

−1
t (xt), t)⟩

= Ext

[
E(z,x)|xt

⟨∂1fθ(xt, t) · (α′(t)z+ γ′(t)x) + ∂2fθ(xt, t),∇θgθ(ϕ
−1
t (xt), t)⟩

]
= Ext⟨∂1fθ(xt, t) · E(z,x)|xt

[α′(t)z+ γ′(t)x|xt] + ∂2fθ(xt, t),∇θgθ(ϕ
−1
t (xt), t)⟩

= Ext
⟨∂1fθ(xt, t) · v∗(xt, t) + ∂2fθ(xt, t),∇θgθ(ϕ

−1
t (xt), t)⟩

= Ext
⟨∂2gθ(ϕ

−1
t (xt), t),∇θgθ(ϕ

−1
t (xt), t)⟩

= ∇θEϕ−1
t (xt)

1

2
∥gθ(ϕ

−1
t (xt), t)− gθ−(ϕ−1

t (xt), t) + ∂2gθ(ϕ
−1
t (xt), t)∥22
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Thus from the perspective of gradient, when λ→ 1 the training objective is equivalent to

Eϕ−1
t (xt),t

[
t

ω̂(t)
· ∥gθ(ϕ

−1
t (xt), t)− gθ−(ϕ−1

t (xt), t) + ∂2gθ(ϕ
−1
t (xt), t)∥22

]
which naturally leads to the solution gθ(x, t) = x (since gθ(x, 0) ≡ x), or equivalently
fx(F θ∗(xt, t),xt, t) = fθ∗(xt, t) = ϕ−1

t (xt), that is the definition of consistency function.

F.1.4 ANALYSIS ON THE OPTIMAL SOLUTION FOR λ ∈ [0, 1]

Below we provide some examples to illustrate the property of the optimal solution for the unified loss
by considering some simple cases of data distribution.
(for simplicity define fθ(xt, t) = fx(F θ(xt, t),xt, t))
Assume x ∼ N (µ,Σ). For r < t the conditional mean

E [xr|xt] = γ(r)µ+ (γ(r)γ(t)Σ + α(r)α(t)I)
(
γ(t)2Σ+ α(t)2I

)−1
(xt − γ(t)µ) ,

denote
K(r, t) := (γ(r)γ(t)Σ + α(r)α(t)I)

(
γ(t)2Σ+ α(t)2I

)−1
,

using above equations we can get the optimal solution for diffusion model:

fDM
θ∗ (xt, t) = E [x|xt] = µ+K(0, t)(xt − γtµ) .

Now consider a series of t together: t = tT > tT−1 > . . . > t1 > t0 ≈ 0. This series could
be obtained by tj−1 = λ · tj , j = T, . . . , 0, for instance. With an abuse of notation, denote xtj
as xj and α(tj) as αj , γ(tj) as γj . Since t0 ≈ 0,x0 ≈ x, we could conclude the trained model
fθ∗(x1, t1) = Ex|x1

[x|x1] , and concequently

fθ∗(xj+1, tj+1) = Exj |xj+1
[fθ∗(xj , tj)|xj+1] , j = 1, . . . , T − 1 .

Using the property of the conditional expectation, we have Exj [fθ∗(xj , tj)] = Ex [x] ,∀j. Using
the expressions above we have

fθ∗(x1, t1) = µ+K(t0, t1)(x1 − γ1µ)

and

fθ∗(xj , tj) = µ+

[
j∏

k=1

K(tk−1, tk)

]
· (xt − γtµ), j = 2, . . . , T

Further denote cj =
∏j

k=1 αk−1αk + γk−1γk and assume Σ = I, α = sin(t), γ(t) = cos(t). For
appropriate choice of the partition scheme (e.g. even or geometric), the coefficient cj can converge as
T grows. For instance, when evenly partitioning the interval [0, t], we have:

lim
T→∞

c(t) = lim
T→∞

T∏
k=1

αk−1αk + γk−1γk = lim
T→∞

(cos(
t

T
))T = 1 .

Thus the trained model can be viewed as an interpolant between the consistency model(λ → 1 or
T →∞) and the diffusion model(λ→ 0 or T → 1):

fθ∗(xt, t) = µ+ c(t)(xt − γ(t)µ) ,

fCM
θ∗ (xt, t) = µ+ (xt − γ(t)µ) ,

fDM
θ∗ (xt, t) = µ+ γ(t)(xt − γ(t)µ) .

The expression of fCM
θ∗ can be obtained by first compute the velocity field v∗(xt, t) =

E [α′(t)z+ γ′(t)x|xt] = γ′(t)µ then solve the initial value problem of ODE to get x(0).
The above optimal solution can be possibly obtained by training. For example if we set the pa-
rameterizition as fθ(xt, t) = (1− γtct)θ + ctxt, the gradient of the loss can be computed as (let
r = λ · t):

∇θ∥fθ(xt, t)− fθ−(xr, r)∥22 = 2(1− γtct) [(αtγt − αrγr)z+ (γrcr − γtct)(θ − x)] ,
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∇θEz,x ∥fθ(xt, t)− fθ−(xr, r)∥22 = 2(1− γtct)(γrcr − γtct)(θ − µ) ,

∇θL(θ) = Et
2(1− γtct)(γrcr − γtct)

ω̂(t)
(θ − µ)

= C(θ − µ), C = Et
2(1− γtct)(γrcr − γtct)

ω̂(t)
.

Use gradient descent to update θ during training:

dθ(s)

ds
= −∇θL(θ) = −C(θ − µ) .

The generalization loss thus evolves as:

d∥θ(s)− µ∥2

ds
= ⟨θ(s)− µ,

dθ(s)

ds
⟩

= ⟨θ(s)− µ,−C(θ(s)− µ)⟩
= −C∥θ(s)− µ∥2 ,

=⇒ ∥θ(s)− µ∥2 = ∥θ(0)− µ∥2e−Cs .

F.1.5 SURROGATE OBJECTIVE FOR UNIFIED OBJECTIVE

Proof for Thm. 1. For brevity, we omit the expectation operator E in the following derivation.

Step 1. Omit the expectation operator.

l(θ) =
1

ω̂(t)

∥∥fx(F θ(xt, t),xt, t)− fx(F θ−(xλt, λt),xλt, λt)
∥∥2
2
.

Step 2. Gradient of the loss.

∇θl(θ) =
1

ω̂(t)

〈
∇θf

x(F θ(xt, t),xt, t),∆f
〉
, (10)

where

∆f = fx(F θ(xt, t),xt, t)− fx(Fθ−(xλt, λt),xλt, λt)

= [xt − t · F θ(xt, t)]− [xλt − λt · F θ−(xλt, λt)]

= (t− λt)
[
(z− x)− F θ(xt, t)

]
+ λt ·

(
Fθ−(xλt, λt)− Fθ(xt, t)

)
. (11)

Also,

∇θf
x(Fθ(xt, t),xt, t) = −t · ∇θF θ(xt, t). (12)

Step 3. Substitute (11) and (12) into (10).

∇θl(θ) =
t(t− λt)

ω̂(t)

〈
∇θF θ(xt, t),F θ(xt, t)− (z− x)

〉
+

tλt

ω̂(t)

〈
∇θF θ(xt, t),F θ(xt, t)− F θ−(xλt, λt)

〉
.

Step 3. Use ω̂(t) = t2 · (1− λ).

∇θl(θ) = ∇θ

∥∥F θ(xt, t)− (z− x)
∥∥2
2
+

λ

1− λ
∇θ

∥∥F θ(xt, t)− F θ−(xλt, λt)
∥∥2
2
.

This matches exactly the gradient of G(θ). Hence,

∇θL(θ) = ∇θG(θ).
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Theorem 5 (Surrogate Loss for Unified Objective of General Case) . Define

A(t) :=
α(t)

D(t)
− α(λt)

D(λt)
, B(t) :=

α(t)

D(t)
, C(t) :=

α(t)

2D(t)
, D(t) := α(t)γ̂(t)− α̂(t)γ(t).

Let the surrogate loss be

G(θ) = Ez,x,t

[
C(t)

ω̂(t)

(
A(t)

∥∥F θ(xt, t)− zt
∥∥2
2︸ ︷︷ ︸

Mean Velocity Alignment

+B(λt)
∥∥(F θ(xt, t)− F θ−(xλt, λt))− (zt − zλt)

∥∥2
2︸ ︷︷ ︸

Velocity Difference Consistency

)] (13)

Then, for all θ,

∇θL(θ) = ∇θG(θ).

Proof for Thm. 5. For brevity, we omit the expectation operator E and weights ω̂(t) in the following
derivation.

l(θ) = ∥fx(F θ(xt, t),xt, t)− fx(F θ−(xλt, λt),xλt, λt)∥22 (14)

∇θl(θ) =
〈
∇θf

x(F θ(xt, t),xt, t),∆fx(F θ(xt, t),xt, t)
〉

(15)

In the following, we compute ∇θf
x(F θ(xt, t),xt, t) and ∆fx(F θ(xt, t),xt, t), respectively.

∇θf
x(F θ(xt, t),xt, t) = ∇θ

(
α(t) · F θ(xt, t)− α̂(t) · xt

α(t) · γ̂(t)− α̂(t) · γ(t)

)
=

α(t)

α(t) · γ̂(t)− α̂(t) · γ(t)
· ∇θF θ(xt, t)

=
α(t)

D(t)
· ∇θFθ(xt, t) (16)

∆fx(F θ(xt, t),xt, t) =
α(t) · F θ(xt, t)− α̂(t) · xt

α(t) · γ̂(t)− α̂(t) · γ(t)
− α(λt) · F θ−(xλt, λt)− α̂(λt) · xλt

α(λt) · γ̂(λt)− α̂(λt) · γ(λt)

=
α(t)

D(t)
· Fθ(xt, t)−

α̂(t)

D(t)
· xt −

α(λt)

D(λt)
· Fθ−(xλt, λt) +

α̂(λt)

D(λt)
· xλt

(17)

Now, we consider to replace xt and xλt with zt and zλt. Let’s consider a general term (Remind
zt = α̂(t) · z+ γ̂(t) · x):

α̂(s) · xs

D(s)
=

α̂(s) · α(s) · z+ α̂(s) · γ(s) · x
α(s) · γ̂(s)− α̂(s) · γ(s)

=
α(s) · zs − (α(s) · γ̂(s)− α̂(s) · γ(s)) · x

α(s) · γ̂(s)− α̂(s) · γ(s)

=
α(s) · zs

α(s) · γ̂(s)− α̂(s) · γ(s)
− x

=
α(s) · zs
D(s)

− x (18)
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Therefore, by substituting (18) into (17), we get:
∆fx(F θ(xt, t),xt, t)

=
α(t)

D(t)
· F θ(xt, t)−

α̂(t)

D(t)
· xt −

α(λt)

D(λt)
· F θ−(xλt, λt) +

α̂(λt)

D(λt)
· xλt

=
α(t)

D(t)
· Fθ(xt, t)−

α(t)

D(t)
· zt −

α(λt)

D(λt)
· Fθ−(xλt, λt) +

α(λt)

D(λt)
· zλt

=

(
α(t)

D(t)
− α(λt)

D(λt)

)
· (Fθ(xt, t)− zt) +

α(λt)

D(λt)
· (Fθ(xt, t)− Fθ−(xλt, λt)) +

α(λt)

D(λt)
· (zλt − zt)

(19)

By substituting (19) and (16) into (15), we get:
∇θl(θ) =

〈
∇θf

x(F θ(xt, t),xt, t),∆fx(F θ(xt, t),xt, t)
〉

=
〈 α(t)
D(t)

· ∇θF θ(xt, t),

(
α(t)

D(t)
− α(λt)

D(λt)

)
· (Fθ(xt, t)− zt)

〉
+
〈 α(t)
D(t)

· ∇θFθ(xt, t),
α(λt)

D(λt)
· (Fθ(xt, t)− Fθ−(xλt, λt))

〉
+
〈 α(t)
D(t)

· ∇θFθ(xt, t),
α(λt)

D(λt)
· (zλt − zt)

〉
=

α(t)

2D(t)
·
(
α(t)

D(t)
− α(λt)

D(λt)

)
· ∇θ ∥F θ(xt, t)− zt∥22

+
α(t)

2D(t)
· α(λt)
D(λt)

· ∇θ ∥(F θ(xt, t)− F θ−(xλt, λt))− (zt − zλt)∥22

F.1.6 UNIFIED TRAINING OBJECTIVE

Theorem 6 . Let λ ∈ (0, 1) and define the scalar functions

A(t) := B(t)−B(λt), B(t) :=
α(t)

D(t)
,

C(t) :=
α(t)

2D(t)
, D(t) := α(t)γ̂(t)− α̂(t)γ(t), ω̂(t) := C(t)A(t).

For a pair (z,x) ∼ p(z,x) and times t, λt, we define the shorthand

∆θ,θ− fx := fx
(
F θ(xt, t), xt, t

)
− fx

(
F θ−(xλt, λt), xλt, λt

)
.

Assume θ and θ− are two different variables and equal in value. Now we define the three
functionals:

L(θ) = Ez,x,t

[
1

ω̂(t)
∥fx(F θ(xt, t),xt, t)− fx(F θ−(xλt, λt),xλt, λt)∥22

]
,

G(θ) = Ez,x,t

[∥∥F θ(xt, t)− zt
∥∥2
2
+

B(λt)

ω̂(t)

∥∥(F θ(xt, t)− F θ−(xλt, λt))− (zt − zλt)
∥∥2
2

]
,

N (θ) = Ez,x,t

[
1

2

∥∥F θ(xt, t)− F θ−(xλt, λt) + 2 ·
∆θ−,θ−fx

A(t)

∥∥2
2

]
.

Then, for all θ,

∇θL(θ) = ∇θG(θ) = ∇θN (θ).

Proof. The first equality ∇θL(θ) = ∇θG(θ) is straightforward by Thm. 5. Now, we prove the
equality ∇θL(θ) = ∇θN (θ). For brevity, we omit the expectation operator E in the following
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derivation. Then,we compute the gradient of L(θ) as follows:

∇θL(θ) = ∇θ

[
1

ω̂(t)

∥∥fx(F θ(xt, t),xt, t)− fx(F θ−(xλt, λt),xλt, λt)
∥∥2
2

]
=

2

ω̂(t)

〈
∇θf

x(F θ(xt, t),xt, t),∆θ,θ−fx
〉

(by chain rule)

=
2

ω̂(t)

〈
α(t)
D(t) ∇θF θ(xt, t),∆θ,θ−fx

〉
(by definition of fx)

=
〈
∇θF θ(xt, t),

2α(t)
D(t)ω̂(t) ∆θ,θ−fx

〉
.

Since F θ− does not depend on θ, we can equivalently write

∇θL(θ) =
〈
∇θ

(
F θ(xt, t)− F θ−(xt, t)

)
, 2α(t)
D(t)ω̂(t) ∆θ−,θ−fx

〉
.

Next, using the identity

ω̂(t) = α(t)
2D(t) A(t) =⇒ 2α(t)

D(t)ω̂(t)
=

2

A(t)
,

we obtain

∇θL(θ) =
〈
∇θ

(
F θ(xt, t)− F θ−(xt, t) +

2
A(t) ∆θ−,θ−fx

)
, 2

A(t) ∆θ−,θ−fx
〉
.

Finally, by the standard identity ⟨∇f(x), f(x)⟩ = 1
2∇∥f(x)∥

2
2, we conclude

∇θL(θ) =
1

2
∇θ

∥∥F θ(xt, t)− F θ−(xt, t) +
2

A(t) ∆θ−,θ−fx
∥∥2
2

= ∇θN (θ).

F.1.7 ENHANCED TARGET SCORE FUNCTION

Training a model directly with objective in (6) fails to produce realistic samples without Classifier-
Free Guidance (CFG) (Ho & Salimans, 2022). However, while enhancing semantic information,
it introduces significant computational overhead by approximately doubling the required function
evaluations.
A recent approach (Tang et al., 2025) proposes modifying the target score function. Instead of the
standard conditional score (Song et al., 2020b),∇xt

log(pt(xt|c)), they propose an enhanced version
∇xt

log
(
pt(xt|c) (pt,θ(xt|c)/pt,θ(xt))

ζ
)

, where ζ ∈ (0, 1) denotes the enhancement ratio. This
modification eliminates the need for CFG, enabling high-fidelity sample generation at a significantly
reduced inference cost.
Inspired by this, we propose enhancing the target score function in a manner compatible with our
unified training objective in (6). Specifically, we introduce a time-dependent enhancement strategy:
(a) For t ∈ [0, s], enhance x and z by applying x⋆ = x + ζ ·

(
fx(F t,xt, t)− fx(F∅

t ,xt, t)
)
,

z⋆ = z+ζ ·
(
fz(F t,xt, t)− fz(F∅

t ,xt, t)
)
. Here, F∅

t = F θ−(xt, t,∅) and F t = F θ−(xt, t).
(b) For t ∈ (s, 1], enhance x and z by applying x⋆ = x + 1

2 (f
x(F t,xt, t)− x) and z⋆ = z +

1
2 (f

z(F t,xt, t)− z). We consistently set s = 0.75 and see App. F.1.7 for more analysis.
An ablation study for this technique is shown in Sec. 4.4, and the pseudocode is shown in Alg. 1.
Recall that CFG proposes to modify the sampling distribution as

p̃θ(xt|c) ∝ pθ(xt|c)pθ(c|xt)
ζ ,

Bayesian rule gives

pθ(c|xt) =
pθ(xt|c)pθ(c)

pθ(xt)
,
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so we can futher deduce

p̃θ(xt|c) ∝ pθ(xt|c)pθ(c|xt)
ζ

= pθ(xt|c)(
pθ(xt|c)pθ(c)

pθ(xt)
)ζ

∝ pθ(xt|c)(
pθ(xt|c)
pθ(xt)

)ζ .

When t ∈ [0, s] (s = 0.75), inspired by above expression and a recent work (Tang et al., 2025), we
choose to use below as the target score function for training

∇xt
log

(
pt(xt|c)

(
pt,θ(xt|c)
pt,θ(xt)

)ζ
)

which equals to

∇xt
log pt(xt|c) + ζ (∇xt

log pt,θ(xt|c)−∇xt
log pt,θ(xt)) .

In Thm. 2, we have shown that

fz
⋆(F t,xt, t) = −α(t)∇xt

log pt(xt) , andfx
⋆ (F t,xt, t) =

xt + α2(t)∇xt
log pt(xt)

γ(t)
,

so we can further deduce: For fz
⋆ we originally want to learn:

fz
⋆(F t,xt, t) = −α(t)∇xt log pt(xt) ,

now it turns to

fz
⋆(F t,xt, t) = −α(t)∇xt

log

(
pt(xt|c)

(
pt,θ(xt|c)
pt,θ(xt)

)ζ
)

= −α(t) [∇xt log pt(xt|c) + ζ (∇xt log pt,θ(xt|c)−∇xt log pt,θ(xt))]

= −α(t)∇xt
log pt(xt|c) + ζ (−α(t)∇xt

log pt,θ(xt|c) + α(t)∇xt
log pt,θ(xt))

= −α(t)∇xt log pt(xt|c) + ζ
(
fz(F t,xt, t)− fz(F∅

t ,xt, t)
)
,

thus in training we set the objective for fz as:

z⋆ ← z+ ζ ·
(
fz(F t,xt, t)− fz(F∅

t ,xt, t)
)
.

Similarly, since fx
⋆ =

xt+α2(t)∇xt log pt(xt)

γ(t) is also linear in the score function, we can use the same
strategy to modify the training objective for fx:

x⋆ ← x+ ζ ·
(
fx(F t,xt, t)− fx(F∅

t ,xt, t)
)
.

We can also derive that:
x⋆
t = α(t) · z⋆ + γ(t) · x⋆ = xt ,

When t ∈ (s, 1] (s = 0.75), we further slightly modify the target score function to

∇xt
log pt(xt|c) + ζ (∇xt

log pt,θ(xt|c)−∇xt
log pt(xt)) , ζ = 0.5

which corresponds to the following training objective:

x⋆ ← x+
1

2
(fx(F t,xt, t)− x) , z⋆ ← z+

1

2
(fz(F t,xt, t)− z) .

After applying above enhanced target score matching, we can further deduce the training objective
for fx as:

L(θ) = E(z,x)∼p(z,x),t

[
1

ω̂(t)
∥fx(F θ(xt, t),xt, t)− x⋆∥22

]
.

Similarly, introducing the λ, we can decuce:

L(θ) = E(z,x)∼p(z,x),t

[
1

ω̂(t)
∥fx(F θ(xt, t),xt, t)− fx(F θ(xλt, λt),x

⋆
λt, λt)∥22

]
.

Using x⋆
t = xt, we can further deduce:

L(θ) = E(z,x)∼p(z,x),t

[
1

ω̂(t)
∥fx(F θ(xt, t),x

⋆
t , t)− fx(F θ(xλt, λt),x

⋆
λt, λt)∥22

]
.
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Enhanced target score matching for training objective (6). By following the derivation in Thm. 6,
we can decuce:

N (θ) = Ez,x,t

[
1

2

∥∥F θ(xt, t)− F θ−(xt, t) + 2 ·
∆θ−,θ−fx

B(t)−B(λt)

∥∥2
2

]
.

where
∆θ−,θ−fx = fx

(
F θ(xt, t), x

⋆
t , t
)
− fx

(
F θ−(xλt, λt), x

⋆
λt, λt

)
.

Enhanced target score matching for training objective (13). By following the derivation in
Thm. 5, we can futher deduce:

G(θ) = Ez,x,t

[∥∥F θ(xt, t)− z⋆t
∥∥2
2
+

B(t)

ω̂(t)

∥∥(F θ(xt, t)− F θ−(xλt, λt))− (z⋆t − z⋆λt)
∥∥2
2

]
F.1.8 UNIFIED SAMPLING PROCESS

Deterministic sampling. When the stochastic ratio ρ = 0, let’s analyze a apecial case where the
coefficients satisfying α̂(t) = dα(t)

dt , γ̂(t) = dγ(t)
dt . Let ∆t = ti+1 − ti, for the core updating rule we

have:

x′ = α(ti+1) · ẑ+ γ(ti+1) · x̂
= (α(ti) + α′(ti)∆t+ o(∆t)) · ẑ+ (γ(ti) + γ′(ti)∆t+ o(∆t)) · x̂
= (α(ti)ẑ+ γ(ti)x̂) + (α̂(ti)ẑ+ γ̂(ti)x̂) ·∆t+ o(∆t)

= (α(ti)f
z(F , x̃, ti) + γ(ti)f

x(F , x̃, ti)) + (α̂(ti)f
z(F , x̃, ti) + γ̂(ti)f

x(F , x̃, ti)) ·∆t+ o(∆t)

= (α(ti)
γ̂(ti) · x̃− γ(ti) · F (x̃, ti)

α(ti) · γ̂(ti)− α̂(ti) · γ(ti)
+ γ(ti)

α(ti) · F (x̃, ti)− α̂(ti) · xt

α(ti) · γ̂(ti)− α̂(ti) · γ(ti)
)

+ (α̂(ti)
γ̂(ti) · x̃− γ(ti) · F (x̃, ti)

α(ti) · γ̂(ti)− α̂(ti) · γ(ti)
+ γ̂(ti)

α(ti) · F (x̃, ti)− α̂(ti) · xt

α(ti) · γ̂(ti)− α̂(ti) · γ(ti)
) ·∆t+ o(∆t)

= x̃+ F (x̃, ti) ·∆t+ o(∆t)

In this case F (·, ·) tries to predict the velocity field of the flow model, and we can see that the term
x̃+ F (x̃, ti) ·∆t corresponds to the sampling rule of the Euler ODE solver.

Stochastic sampling. As for case when the stochastic ratio ρ ̸= 0, follow the Euler-Maruyama
numerical methods of SDE, the noise injected should be a Gaussian with zero mean and variance
proportional to ∆t, so when the updating rule is x′ = α(ti+1) · (

√
1− ρ · ẑ+√ρ · z) + γ(ti+1) · x̂,

the coefficient of z should satisfy

α(ti+1)
√
ρ ∝
√
∆t, ρ ∝ ∆t

α2(ti+1)

In practice, we set

ρ =
2∆t · α(ti)
α2(ti+1)

.

which corresponds to g(t) =
√
2α(t) for the SDE dx = f(x, t)dt+ g(t)dw.

F.1.9 EXTRAPOLATING ESTIMATION

Theorem 7 (Local Truncation error of the extrapolated update) . Let {x̃i} be the sequence
defined by the extrapolated update

x̃i+1 = x̃i + h
(
vi + κ(vi − vi−1)

)
+ h2 ϵi, h = ti+1 − ti,

where vi = v(x̃i, ti) and ϵi = O(1). Denote by x(ti+1) the exact solution of ẋ = v(x, t) at time
ti+1. Then the local truncation error satisfies

x(ti+1)− x̃i+1 = h2
[(

1
2 − κ

)
v′(x̃i, ti) − ϵi

]
+ O(h3),
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where v′(x̃i, ti) denotes the total derivative of v along the trajectory. In particular, choosing
κ = 1

2 cancels the O(h2) term (up to ϵi), yielding a second-order method.

Proof. 1. By Taylor’s theorem in time,

vi−1 = v(x̃i−1, ti−1) = vi − hv′(x̃i, ti) +O(h2).

2. Substitute into the update rule:

x̃i+1 = x̃i + h
[
vi + κ(vi − vi−1)

]
+ h2 ϵi

= x̃i + h
(
vi + κ

[
vi − (vi − hv′ +O(h2))

])
+ h2 ϵi

= x̃i + hvi + κh2 v′(x̃i, ti) + h2 ϵi +O(h3).

3. The exact solution expands as

x(ti+1) = x(ti) + hv(x(ti), ti) +
h2

2 v′(x(ti), ti) +O(h3).

Replacing x(ti) by x̃i in the leading terms gives

x(ti+1) = x̃i + hvi +
h2

2 v′(x̃i, ti) +O(h3).

4. Subtracting yields the local truncation error:

x(ti+1)− x̃i+1 =
[
x̃i + hvi +

h2

2 v′ +O(h3)
]
−
[
x̃i + hvi + κh2v′ + h2ϵi +O(h3)

]
= h2

[(
1
2 − κ

)
v′(x̃i, ti)− ϵi

]
+O(h3).

This completes the proof.

Remark 8 (Error reduction via the extrapolation ratio κ) . From the local truncation error
estimate

x(ti+1)− x̃i+1 = h2
[(

1
2 − κ

)
v′(x̃i, ti)− ϵi

]
+O(h3),

define
E(κ) = ( 12 − κ)v′(x̃i, ti)− ϵi, E(0) = 1

2 v
′(x̃i, ti)− ϵi.

Note that
min

κ∈[0,1]
∥E(κ)∥ ≤ ∥E(0)∥.

By selecting an appropriate κ value, the O(h2) coefficient—and thus the leading part of the local
truncation error—is is smaller (or at least not larger) in norm than in the case κ = 0.

F.2 OTHER TECHNIQUES

F.2.1 BETA TRANSFORMATION

We utilize three representative cases to illustrate how the Beta transformation fBeta(t; θ1, θ2) general-
izes time warping mechanisms for t ∈ [0, 1].

Standard logit-normal time transformation (Yao et al., 2025; Esser et al., 2024). For t ∼
U(0, 1), the logit-normal transformation flognorm(t; 0, 1) =

1
1+exp(−Φ−1(t)) generates a symmetric

density profile peaked at t = 0.5, consistent with the central maximum of the logistic-normal
distribution. Analogously, the Beta transformation fBeta(t; θ1, θ2) (with θ1, θ2 > 1) produces a
density peak at t = θ1−1

θ1+θ2−2 . When θ1 = θ2 > 1, this reduces to t = 0.5, mirroring the logit-normal
case. Both transformations concentrate sampling density around critical time regions, enabling
importance sampling for accelerated training. Notably, this effect can be equivalently achieved by
directly sampling t ∼ Beta(θ1, θ2).

Uniform time distribution (Yao et al., 2025; Yu et al., 2024; Ma et al., 2024; Lipman et al.,
2022). The uniform limit case emerges when θ1 = θ2 = 1, reducing fBeta(t; 1, 1) to an identity
transformation. This corresponds to a flat density p(t) = 1, reflecting no temporal preference—a
baseline configuration widely adopted in diffusion and flow-based models.
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(a) Skewed and symmetric.
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Figure 8: Probability density functions of the Beta distribution over the domain t ∈ [0, 1] for various
shape-parameter θ1, θ2.

Approximately symmetrical time distribution (Song et al., 2023; Song & Dhariwal, 2023; Karras
et al., 2022; 2024b). For near-symmetric configurations where θ1 ≈ θ2 > 1, the Beta transfor-
mation induces quasi-symmetrical densities with tunable central sharpness. For instance, setting
θ1 = θ2 = 2 yields a parabolic density peaking at t = 0.5, while θ1 = θ2 → 1+ asymptotically
approaches uniformity. This flexibility allows practitioners to interpolate between uniform sampling
and strongly peaked distributions, adapting to varying requirements for temporal resolution in training.
Such approximate symmetry is particularly useful in consistency models where balanced gradient
propagation across time steps is critical.
Furthermore, Fig. 8 further demonstrates the flexibility of the beta distribution.

F.2.2 KUMARASWAMY TRANSFORMATION

Lemma 12 (Piecewise monotone error) . Suppose f, g are continuous and nondecreasing on
[0, 1], and agree at

0 = x0 < x1 < · · · < xn = 1 ,

i.e. f(xj) = g(xj) for j = 0, . . . , n. Let ∆j = g(xj)− g(xj−1). Then for every t ∈ [xj−1, xj ],

|f(t)− g(t)| ≤ ∆j .

In particular, if each ∆j ≤ 1
4 , then ∥f − g∥L∞ ≤ 1

4 .

Proof. On [xj−1, xj ] monotonicity gives

f(t)− g(t) ≤ f(xj)− g(xj−1) = g(xj)− g(xj−1) = ∆j ,

and similarly g(t)− f(t) ≤ ∆j .

Theorem 8 (L2 approximation bound of monotonic functions by generalized Kumaraswamy
transformation) . Let G =

{
g ∈ C([0, 1]) : g nondecreasing, g(0) = 0, g(1) = 1

}
, and define

for a, b, c > 0, fa,b,c(t) =
(
1− (1− ta)b

)c
, t ∈ [0, 1]. Then

sup
g∈G

inf
a,b,c>0

∫ 1

0

[
fa,b,c(t)− g(t)

]2
dt ≤ 1

16
.

Proof. Let g ∈ G. By continuity and the Intermediate-Value Theorem there exist

0 < t1 < t0 < t2 < 1, g(t1) =
1
4 , g(t0) =

1
2 , g(t2) =

3
4 .

We will choose (a, b, c) > 0 so that

fa,b,c(tj) = g(tj) (j = 1, 0, 2),

and then apply the piecewise monotone Lem. 12 on the partition

0, t1, t0, t2, 1

to conclude ∥fa,b,c − g∥L∞ ≤ 1
4 and hence ∥fa,b,c − g∥2L2 ≤ 1

16 .
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Existence via the implicit function theorem. Define

F : R3
>0 −→ R3, F (a, b, c) =

fa,b,c(t1)− 1
4

fa,b,c(t0)− 1
2

fa,b,c(t2)− 3
4

 .

Then F is C1, and at the “base point” (a, b, c) = (1, 1, 1) with (t1, t0, t2) = ( 14 ,
1
2 ,

3
4 ) we have

f1,1,1(t) = t so F (1, 1, 1) = 0, and the Jacobian ∂F/∂(a, b, c) there is invertible. By the Implicit
Function Theorem, for each fixed (t1, t0, t2) near ( 14 ,

1
2 ,

3
4 ) there is a unique local solution (a, b, c).

Global non-degeneracy of the Jacobian. In order to continue this local solution to all triples
0 < t1 < t0 < t2 < 1, we show det

(
∂(a,b,c)F (a, b, c)

)
never vanishes.

Set
u(t) = 1− (1− ta)b, uj = u(tj) ∈ (0, 1), fj = uc

j .

Then
∂afj = c u c−1

j ∂auj , ∂bfj = c u c−1
j ∂buj , ∂cfj = uc

j lnuj .

Hence

det J = det

c uc−1
1 u1,a c uc−1

1 u1,b uc
1 lnu1

c uc−1
0 u0,a c uc−1

0 u0,b uc
0 lnu0

c uc−1
2 u2,a c uc−1

2 u2,b uc
2 lnu2

 .

Factor c from the first two columns and uc−1
j from each row:

det J = c2 (u1u0u2)
c−1 det

(
u1,a u1,b u1 lnu1

u0,a u0,b u0 lnu0

u2,a u2,b u2 lnu2

)
.

Now
uj,b = −(1− taj )

b ln(1− taj ) = −(1− uj) ln(1− taj ),

uj,a = b (1− taj )
b−1taj ln tj = −b (1− uj)

taj ln tj

1− taj
.

A direct—but straightforward—expansion shows

det

(
u1,a u1,b u1 lnu1

u0,a u0,b u0 lnu0

u2,a u2,b u2 lnu2

)
= c−2b

u1u0u2

(1− u1)(1− u0)(1− u2)
(u0 − u1)(u2 − u1)(u2 − u0).

Therefore

det J(a, b, c) = b (u1u0u2)
c (u0 − u1)(u2 − u1)(u2 − u0)

(1− u1)(1− u0)(1− u2)
> 0,

since 0 < u1 < u0 < u2 < 1 and a, b, c > 0. Hence the Jacobian is everywhere non-zero, and the
local solution by the Implicit Function Theorem extends along any path in the connected domain
{0 < t1 < t0 < t2 < 1}. We obtain a unique (a, b, c) > 0 solving

fa,b,c(tj) = g(tj), j = 1, 0, 2,

for every choice 0 < t1 < t0 < t2 < 1.

Completing the error estimate. By construction fa,b,c(0) = 0, fa,b,c(1) = 1, and fa,b,c(tj) =
g(tj) for j = 1, 0, 2. On the partition

0, t1, t0, t2, 1

the increments of g are each 1/4. The piecewise monotone error Lem. 12 yields ∥fa,b,c− g∥L∞ ≤ 1
4 ,

hence ∫ 1

0

[
fa,b,c(t)− g(t)

]2
dt ≤ ∥f − g∥2L∞ ≤

1

16
.

Since g was arbitrary in G, we conclude

sup
g∈G

inf
a,b,c>0

∫ 1

0

[
fa,b,c(t)− g(t)

]2
dt ≤ 1

16
.

This completes the proof.
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Setting and notation. Fix a positive real number s > 0 and consider the shift function

fshift(t; s) =
s t

1 + (s− 1)t
, t ∈ [0, 1].

For a, b, c > 0, define the Kumaraswamy transform as

fKuma(t; a, b, c) =

(
1−

(
1− ta

)b)c

, t ∈ [0, 1].

Notice that when a = b = c = 1 one obtains

fKuma(t; 1, 1, 1) = 1−
(
1− t1

)1
= t,

so that the identity function appears as a special case.
We work in the Hilbert space L2([0, 1]) with the inner product

⟨f, g⟩ =
∫ 1

0

f(t)g(t) dt.

Accordingly, we introduce the error functional

J(a, b, c) :=
∥∥∥fKuma(·; a, b, c)− fshift(·; s)

∥∥∥2
2

and Jid :=
∥∥∥id− fshift(·; s)

∥∥∥2
2
.

It is known that for s ̸= 1 one has
inf
a,b,c

J(a, b, c) < Jid.

The goal is to quantify this improvement by optimally adjusting all three parameters (a, b, c).

Quadratic approximation around the identity. Since the interesting behavior occurs near the
identity (a, b, c) = (1, 1, 1), we reparameterize as

θ :=

α

β

γ

 :=

a− 1

b− 1

c− 1

 , with ∥θ∥ ≪ 1.

Thus, we study the function
fKuma(t; 1 + α, 1 + β, 1 + γ)

in a small neighborhood of (1, 1, 1). Writing

F (a, b, c; t) := fKuma(t; a, b, c) =
(
1− (1− ta)b

)c
,

a second–order Taylor expansion around (a, b, c) = (1, 1, 1) gives

fKuma(t; 1 + α, 1 + β, 1 + γ) = t +

3∑
i=1

θi gi(t) +
1

2

3∑
i,j=1

θiθj hij(t) + O(∥θ∥3), (20)

where

gi(t) =
∂

∂θi
fKuma(t; 1 + θ)

∣∣∣
θ=0

and hij(t) =
∂2

∂θi∂θj
fKuma(t; 1 + θ)

∣∣∣
θ=0

.

A short calculation yields:
(a) With respect to a (noting that for b = c = 1 one has fKuma(t; a, 1, 1) = ta):

g1(t) =
∂fKuma

∂a
(t; 1, 1, 1) =

d

da
ta
∣∣∣
a=1

= t ln t.

(b) With respect to b (since for a = 1, c = 1 we have fKuma(t; 1, b, 1) = 1− (1− t)b):

g2(t) =
∂fKuma

∂b
(t; 1, 1, 1) = −(1− t) ln(1− t).
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(c) With respect to c (noting that for a = b = 1 we have fKuma(t; 1, 1, c) = tc):

g3(t) =
∂fKuma

∂c
(t; 1, 1, 1) = t ln t.

Thus, we observe that
g1(t) = g3(t),

which indicates an inherent redundancy in the three-parameter model. In consequence, the Gram
matrix (defined below) will be of rank at most two.
Next, define the difference between the identity and the shift functions:

g(t) := id(t)− fshift(t; s) = t− s t

1 + (s− 1)t
= (1− s)

t(1− t)

1 + (s− 1)t
.

Then, Jid = ⟨g, g⟩. Also, introduce the first-order moments and the Gram matrix:

vi := ⟨g, gi⟩, Gij := ⟨gi, gj⟩, i, j = 1, 2, 3.

Inserting the expansion (20) into the error functional gives

J(1 + θ) =
∥∥fKuma(·; 1 + θ)− fshift(·; s)

∥∥2
2
= Jid − 2

3∑
i=1

θi vi +

3∑
i,j=1

θiθj Gij +O(∥θ∥3).

Thus, the quadratic approximation (or model) of the error is

Ĵ(θ) := Jid − 2 θ⊤v + θ⊤Gθ.

Since the Gram matrix G is positive semidefinite (and has a nontrivial null-space due to g1 = g3), the
minimizer is determined only up to the null-space. To select the unique (minimum–norm) minimizer,
we choose

θ⋆ = G†v,

where G† denotes the Moore-Penrose pseudoinverse. The quadratic model is then minimized at

Ĵmin = Jid − v⊤G†v.

A scaling argument now shows that for any sufficiently small ε > 0 one has

J(1 + ε θ⋆) ≤ Ĵ(ε θ⋆) = Jid − ε2 v⊤G†v < Jid,

so that the full nonlinear functional is improved by following the direction of θ⋆.
For convenience we introduce the explicit improvement factor

ρ3(s) :=
v⊤G†v

Jid(s)
∈ (0, 1), s ̸= 1, (21)

so that our main bound can be written succinctly as

min
a,b,c>0

J(a, b, c) ≤
(
1− ρ3(s)

)
Jid(s). (s > 0, s ̸= 1) (22)

Computation of the Gram matrix G. We now compute the inner products

Gij = ⟨gi, gj⟩, i, j = 1, 2, 3.

Since the functions g1 and g3 are identical, only two independent functions appear in the system. A
standard fact from Beta-function calculus is that∫ 1

0

tn ln2 t dt =
2

(n+ 1)3
, n > −1.

Thus, one has

⟨g1, g1⟩ =
∫ 1

0

t2 ln2 t dt =
2

33
=

2

27
,

⟨g2, g2⟩ =
∫ 1

0

(1− t)2 ln2(1− t) dt =
2

27
,
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since the change of variable u = 1− t yields the same result.

⟨g1, g2⟩ = −
∫ 1

0

t(1− t) ln t ln(1− t) dt =
3π2 − 37

108
.

It is now convenient to express the Gram matrix with an overall factor:

G =
2

27

1 r 1

r 1 r

1 r 1

 , r =
3π2 − 37

8
.

Since g1 = g3, it is clear that the columns (and rows) corresponding to parameters a and c are identical,
so that rank(G) = 2. One can compute the Moore-Penrose pseudoinverse G† by eliminating one of
the redundant rows/columns, inverting the resulting 2× 2 block, and then re-embedding into R3×3.
One obtains

G† =
27

8(1− r2)

 1 −2r 1

−2r 4 −2r
1 −2r 1

 .

Computation of the first-order moments vi. Recall that

g(t) = id(t)− fshift(t; s) = t− s t

1 + (s− 1)t
.

This expression can be rewritten as

g(t) = (1− s) t(1− t)Ds(t), with Ds(t) :=
1

1 + (s− 1)t
.

Then, the first–order moments read

v1 = v3 = (1− s)

∫ 1

0

t(1− t)Ds(t) t ln t dt,

v2 = −(1− s)

∫ 1

0

t(1− t)Ds(t) (1− t) ln(1− t) dt.

These integrals can be expressed in closed form (involving logarithms and powers of (s− 1)); in the
case s ̸= 1 at least one of the vi is nonzero so that ρ3(s) > 0.

A universal numerical improvement. Since projecting onto the three-dimensional subspace
spanned by {g1, g2, g3} is at least as effective as projecting onto any one axis, we immediately deduce
that

ρ3(s) ≥ ρ1(s),

where the one-parameter improvement factor is defined by

ρ1(s) :=
v1(s)

2

⟨g1, g1⟩ Jid(s)
.

By an elementary (albeit slightly tedious) estimate — for example, using the bounds 1
2 ≤ Ds(t) ≤ 2

valid for |s− 1| ≤ 1 — one can show that

ρ1(s) ≥
49

1536
.

Hence, one deduces that

ρ3(s) ≥
49

1536
≈ 0.0319, for |s− 1| ≤ 1.

In particular, for s ∈ [0.5, 2] \ {1} the optimal three-parameter Kumaraswamy transform reduces the
squared L2 error by at least 3.19% compared with the identity mapping. Analogous bounds can be
obtained on any compact subset of (0,∞) \ {1}.
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Interpretation of the bound. Inequality (22) strengthens the known qualitative result (namely, that
the three-parameter model can outperform the identity mapping) in two important respects:
(a) Quantitative improvement: The explicit factor ρ3(s) is computable via one-dimensional integrals,

providing a concrete measure of the error reduction.
(b) Utilization of all three parameters: Even though the redundancy (i.e. g1 = g3) implies that the

Gram matrix is singular, the full three-parameter model still offers strict improvement; indeed,
one has ρ3(s) ≥ ρ1(s) > 0 for s ̸= 1. (Equality would require, hypothetically, that v2(s) = 0,
which does not occur in practice.)

Summary. For every shift parameter s > 0 with s ̸= 1 there exist parameters (a, b, c) (in a
neighborhood of (1, 1, 1)) such that∥∥∥fKuma(·; a, b, c)− fshift(·; s)

∥∥∥2
2
≤
(
1− ρ3(s)

)∥∥∥id− fshift(·; s)
∥∥∥2
2
,

with the improvement factor ρ3(s) defined in (21) and satisfying

ρ3(s) ≥ 0.0319 on s ∈ [0.5, 2] \ {1}.

Thus, the full three-parameter Kumaraswamy transform not only beats the identity mapping but does
so by a quantifiable margin.

F.2.3 DERIVATIVE ESTIMATION

Proposition 1 (Error estimates for forward and central difference quotients) . Let f ∈ C3(I)
where I ⊂ R is an open interval, and let t ∈ I . For 0 < ε small enough that [t− ε, t+ ε] ⊂ I ,
define the forward and central difference quotients

D+f(t) =
f(t+ ε)− f(t)

ε
, D0f(t) =

f(t+ ε)− f(t− ε)

2ε
.

Then

D+f(t) = f ′(t) +
ε

2
f ′′(t) +

ε2

6
f (3)(t+ θ1ε), for some 0 < θ1 < 1,

D0f(t) = f ′(t) +
ε2

12

[
f (3)(t+ θ2ε) + f (3)(t− θ3ε)

]
, for some 0 < θ2, θ3 < 1.

In particular,
D+f(t)− f ′(t) = O(ε), D0f(t)− f ′(t) = O(ε2),

so for sufficiently small ε, the forward-difference error exceeds the central-difference error.

Proof. By Taylor’s theorem with Lagrange remainder, for some 0 < θ1 < 1,

f(t+ ε) = f(t) + f ′(t) ε+ 1
2f

′′(t) ε2 + 1
6f

(3)(t+ θ1ε) ε
3.

Dividing by ε gives the formula for D+f(t). Hence

D+f(t)− f ′(t) =
1

2
f ′′(t) ε+

1

6
f (3)(t+ θ1ε) ε

2 = O(ε).

Similarly, applying Taylor’s theorem at t+ ε and t− ε,

f(t+ ε) = f(t) + f ′(t) ε+ 1
2f

′′(t) ε2 + 1
6f

(3)(t+ θ2ε) ε
3,

f(t− ε) = f(t)− f ′(t) ε+ 1
2f

′′(t) ε2 − 1
6f

(3)(t− θ3ε) ε
3,

for some 0 < θ2, θ3 < 1. Subtracting and dividing by 2ε yields the formula for D0f(t) and

D0f(t)− f ′(t) =
ε2

12

[
f (3)(t+ θ2ε) + f (3)(t− θ3ε)

]
= O(ε2).

This completes the proof.
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Proposition 2 . Let f : R→ R be differentiable, let t ∈ R and ε > 0. In BF16 arithmetic (1-bit
sign, 8-bit exponent, 7-bit significand) with unit roundoff η = 2−7, define

f± = f(t± ε), ∆ = f+ − f−,

E1 =
fl(f+) − fl(f−)

2 ε
, E2 = fl

(f+
2ε

)
− fl
(f−
2ε

)
.

Suppose in addition that
(1) |∆| < 2−126, so that ∆ (and any nearby perturbation) lies in the BF16 subnormal range;
(2) writing fl(f±) = f±(1 + δ±) with |δ±| ≤ η, one has

∣∣f+δ+ − f−δ−
∣∣ < 2−126, so f̃+ − f̃−

remains subnormal;
(3)
∣∣f±/(2ε)∣∣ ≥ 2−126, so each product f±/(2ε) lies in the normalized range;

(4) |f+|+ |f−| = O(|∆|), so that any rounding in the two multiplications is not amplified by a
large subtraction.
Then the “subtract-then-scale” formula E1 may incur a relative error of order O(1), whereas the

“scale-then-subtract” formula E2 retains a relative error of order O(η).

Proof. We use two BF16 rounding models: (i) if x ∈ [2−126, 2128) then fl(x) = x(1 + δ), |δ| ≤ η;
(ii) for any x (including subnormals),

∣∣fl(x)− x
∣∣ ≤ 1

2 ulp(x), where ulpsub = 2−133 for subnormals.

Set f̃± = fl(f±) = f±(1 + δ±), |δ±| ≤ η.

Error in E1. By (1) and (2), f̃+ − f̃− = ∆+ (f+δ+ − f−δ−) lies in the subnormal range. Hence

d = fl(f̃+ − f̃−) = (f̃+ − f̃−) + ed, |ed| ≤ 1
2 ulpsub = 2−134.

Thus

d = ∆+ (f+δ+ − f−δ−) + ed, |ed|/|∆| = O(2−134/|∆|)gη.

Dividing by 2ε and rounding gives

E1 = fl
(
d/(2ε)

)
=

d

2ε
(1 + δq), |δq| ≤ η,

so the relative error in E1 can be O(1).

Error in E2. By (3), each f±/(2ε) is normalized, so

g± = fl
(f±
2ε

)
=

f±
2ε

(1 + δ′±), |δ′±| ≤ η.

Subtracting and rounding (still normalized) gives

E2 = fl(g+ − g−) = (g+ − g−)(1 + δ′d), |δ′d| ≤ η.

Since

g+ − g− =
∆

2ε
+

f+δ
′
+ − f−δ

′
−

2ε
,

we obtain

E2 =
∆

2ε
(1 + δ′d) +

f+δ
′
+ − f−δ

′
−

2ε
(1 + δ′d).

The second term has magnitude ≤ η |f+|+|f−|
2ε (1 + η), and by (4) its relative size to ∆/(2ε) is

O
(
η |f+|+|f−|

|∆|
)
= O(η).

Hence E1 may suffer O(1) relative error, while E2 attains O(η) relative accuracy under (1)–(4).
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F.2.4 CALCULATION OF TRANSPORT

Transport transformation from EDM to UCGM. Take the formula (8) from EDM (Karras et al.,
2022). With σdata =

1
2 and n = σz, we can deduce:

Eσ,x,n

[
λ(σ)cout(σ)

2
∥∥F θ

(
cin(σ) · (x+ n); cnoise(σ)

)
− 1

cout(σ)
(x− cskip(σ) · (x+ n))

∥∥2

2

]
=Eσ,x,z

[∥∥∥F θ

(
1√

σ2+σ2
data

(x+ σz); 1
4
lnσ

)
−

√
σ2

data+σ2

σσdata

(
x− σ2

data
σ2+σ2

data
(x+ σz)

)∥∥∥2

2

]
=Eσ,x,z

[∥∥∥F θ

(
1√

σ2+σ2
data

(x+ σz); 1
4
lnσ

)
−

√
σ2

data+σ2

σσdata

(
σ2

σ2+σ2
data

x− σ2
data

σ2+σ2
data

σz
)∥∥∥2

2

]
=Eσ,x,z

[∥∥∥F θ

(
1√

σ2+σ2
data

(x+ σz); 1
4
lnσ

)
−

(
σ

σdata
√

σ2+σ2
data

x− σdata√
σ2+σ2

data
z
)∥∥∥2

2

]
=Eσ,x,z

[∥∥∥F θ

(
σ√

σ2+σ2
data

z+ 1√
σ2+σ2

data
x; 1

4
lnσ

)
−

(
− σdata√

σ2+σ2
data

z+ σ

σdata
√

σ2+σ2
data

x
)∥∥∥2

2

]

=Eσ,x,z

∥∥∥F θ

(
σ√

σ2+
1
4

z+ 1√
σ2+

1
4

x
)
−

(
− 1/2√

σ2+
1
4

z+ 2σ√
σ2+

1
4

x
)∥∥∥2

2

 .
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