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ABSTRACT

Advancements in deep learning are often associated with increasing model sizes.
Training and deploying large models require sophisticated hardware and incur
significantly higher costs. Thus, model compression is a widely explored approach
to solving the problem. However, SOTA techniques fall short in one or more
desirable aspects of compression - for instance, pruning does not reduce memory
for training, quantization can only provide up to 32x compression, HashedNet
is cache-inefficient, etc. This paper proposes a model-agnostic, cache-friendly,
and hardware-aware model compression approach: Random Operation Access
Specific Tile (ROAST) hashing. ROAST collapses the parameters by clubbing them
through a lightweight mapping. While clubbing these parameters, ROAST utilizes
cache hierarchies by aligning the memory access pattern with the parameter access
pattern. ROAST is up to ∼25× faster to train and ∼50× faster to infer than the
popular parameter sharing method HashedNet. Additionally, ROAST introduces
global weight sharing, which is empirically and theoretically superior to local
weight sharing in HashedNet, and can be of independent interest. With ROAST, we
can efficiently train and deploy the model using a much smaller memory footprint
(∼ 10− 100× lesser) in text and image classification tasks.

1 INTRODUCTION

Models across different domains, including Natural Language Processing (NLP), Computer Vision
(CV), and Information Retrieval (IR), are exploding in size. State-of-the-art (SOTA) results in
these domains are being obtained at a disproportionate increase in model sizes, questioning the
sustainability of deep learning (Thompson et al., 2021). For instance, SOTA architectures for vision
include VGG (Simonyan & Zisserman, 2014) (150M params, 0.6GB) and ViT (Dosovitskiy et al.,
2020) (up to 304M params, 1.2GB). Additionally, SOTA NLP models range from BERT (Devlin et al.,
2018) (340M params, 1.36GB) to GShard (Lepikhin et al., 2020) (600B params, 2.4TB). Similarly,
industrial-scale recommendation models such as DLRM (Naumov et al., 2019; Mudigere et al., 2021)
can have up to 10s of trillions of parameters (50TB).

Large models, such as the above, come with various challenges. They need high-end distributed
hardware for training and deployment, incurring higher costs. Additionally, the required model-
parallel setup has higher inference and training-iteration latency for these models. Model compression
is a research direction that aims to resolve these issues by reducing the memory footprint of the model.
Compression of the order of 100× can eliminate the need for model-parallel setup for many SOTA
models like GPT(Radford et al., 2019), Gshard(Lepikhin et al., 2020), DLRM (Naumov et al., 2019)
which now can fit on a single GPU. Furthermore, compressing large models to small sizes come with
immediate latency benefits. For example, Desai et al. (2022) showed that by compressing the DLRM
model 1000× and using 1 GPU instead of 8 GPUs, we could get 3× faster inference at a lower cost.
Also, in the case of CPU inference, a smaller model is efficient. For example, (Diamos et al., 2016)
showed that if a single RNN layer can fit in registers, it leads to 146× faster inference.

Thus, the ML community has heavily invested in model compression. A variety of model compression
paradigms now exist in literature like pruning (Han et al., 2016b), quantisation (Han et al., 2016b),
knowledge distillation (Buciluǎ et al., 2006), parameter-sharing (Chen et al., 2015; Desai et al.,
2022), and low rank decomposition (Hrinchuk et al., 2020; Yin et al., 2021). Table 1 compares these
approaches on three considerations (1) if the model memory is reduced for training. (2) if the memory
size can be controlled independently of the model, and (3) if the approach considers the underlying
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Table 1: Various compression techniques on three aspects (1) Memory reduction during training (
apart from inference) (2) arbitrary control over memory (3) Hardware awareness / cache-efficiency *
Some versions of pruning that are tuned to the underlying hardware and are cache-efficient

Training memory
reduction

Arbitrary control
on memory Cache efficient

Pruning No No No*
Low-rank decomposition Yes No Yes

Low-precision Yes No Yes
Quantization aware training (QAT) No No N.A

Parameter sharing - HashedNet Yes Yes No
Knowledge Distillation No No N.A

ROAST (ours) Yes Yes Yes

memory hierarchies and is cache-efficient. We want the techniques to fare positively in these three
aspects. However, techniques like pruning, QAT, and knowledge distillation require us to use the
memory of the original model while training and only reduce inference time memory. Additionally,
there are limits to compression obtained by quantization and pruning depending on which component
we are compressing. For example, we cannot prune an embedding table (N × d) more than d× as we
do not want any embedding vector to have all zeros. HashedNet provides memory reduction during
training and arbitrary control over memory. However, the look-ups in HashedNet are randomly and
independently distributed across the total memory. This makes HashedNet cache-inefficient.

This paper presents Random Operation Access Specific Tile (ROAST) hashing, a parameter-sharing
approach that provides cache-efficiency and arbitrary control over memory during training as well
as inference. ROAST does not change the model’s functional form and can be applied to all
computational modules of a model, such as MLP layers, attention blocks, convolution layers, and
embedding tables. ROAST is hardware aware: it proposes a tile-based hashing scheme tuned to the
memory access pattern of the algorithmic implementation of the operation being performed. ROAST
uses this hash function to recover blocks of the model from a single array of parameters - ROAST
array. ROAST is superior to HashedNet due to two factors (1) Unlike HashedNet, ROAST proposes
global weight-sharing where parameters are shared across the different computational modules. As
we shall see, global weight-sharing is empirically and theoretically superior to local weight-sharing
and might be of independent interest. (2) ROAST uses block-based hashing, which is theoretically
superior to count-sketch hashing used in HashedNet. (Desai et al., 2022)

We show that with ROAST, we can train a BERT-2-2 ( 2 layers, 2 attention heads) model on the largest
available text-classification datasets (amazon-polarity, yelp-polarity) using 100× lesser memory
without loss of quality. In cases where the model is overly parameterized, like using BERT-12-12 in
the text classification task above, we can still obtain similar compression of 100×. Thus it is a good
alternative to neural architecture search. The results extend to CV datasets as well. Specifically, we
can train a ResNet-9 model with 10× lesser memory for the CIFAR10 dataset. Importantly, we show
that ROAST, due to its hardware-aware nature, is significantly faster than HashedNet: ROAST is up
to ∼ 25× faster to train and ∼ 50× faster to infer than HashedNet for large matrix multiplications.
Our current implementation of ROAST matrix multiplication is about 1.34× slower than full matrix
multiplication in pytorch. This is a testament to how optimized CUBLAS libraries are. We believe,
with enough investigation, we can make ROAST-MM comparably efficient to pytorch-MM as well.

Limitations of ROAST: One of the goals of model compression, apart from reducing memory usage,
is to reduce computational workload for deployment. ROAST, currently, is not devised to decrease
computation; it only decreases the memory footprint of a model. Reducing computation with a small
memory is left for future work. However, it should be noted that reducing the memory footprint can
significantly reduce computation latency and power consumption. As shown in (Han et al., 2016a),
accessing memory from RAM is 6400× costlier than 32bit INT ADD and 128× more expensive
than on-chip SRAM access in terms of energy consumption. Additionally, RAM access generally
is ∼100× slower than a floating-point operation. So, this model compression with ROAST, in our
opinion, is an important step for efficient training and inference.

2 RELATED WORK

This section briefly reviews the rich history of model compression paradigms. Model compression
can be generally classified into two categories: (1) Compressing a learned model and (2) Learning a
compressed model. ROAST lies in the second category.
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Compressing learned models: 1) Pruning: Pruning (Zhu & Gupta, 2017) is a technique to remove
parts of a large model, including weights, blocks, and layers, to make the model lighter. Pruning
can be performed as a one-time operation or gradually interspersed with training. 2) Quantization:
Quantization can involve reducing the precision of the parameters of a model. Mixed precision models
are sometimes used where different precision is used with different weights. KMeans quantization is
another type of quantization, where models’ weights are clustered using KMeans, and each cluster’s
centroid is used for all cluster weights. Model compression, in this case, is achieved by reducing
the number of distinct weights. 3) Knowledge distillation: Knowledge distillation (Buciluǎ et al.,
2006) is widely applied in model compression with a focus on distilled architectures. Knowledge
distillation involves training a teacher model (large original model); then, a student model is trained
using the logits of the teacher model. Empirically, the student model trained under this paradigm
generalizes better than the student model trained standalone. Many variations exist on this basic idea
of knowledge distillation.

While these techniques have successfully reduced memory for inference, one of the drawbacks of
this line of compression is that the memory usage while training the model is not reduced. ROAST,
however, provides a solution that reduces the model’s memory during training and inference.

Learning compressed models 1) Low-rank decomposition: In this method, matrices in the model
are decomposed into a product of two low-rank matrices, thus saving memory per matrix. A gener-
alization of low-rank decomposition to tensors is called tensor-train decomposition 2) Parameter
sharing: Parameter sharing approaches such as HashedNet (Chen et al., 2015) are generally used for
matrix compression. These approaches randomly share weights among different parameters, reducing
the model’s memory usage.

This line of research provides model reduction even during training. However, Low-rank decompo-
sition does not offer arbitrary control over memory footprint, and HashedNets are inefficient due
to heavy cache-trashing caused by non-local lookups. Conversely, ROAST is a model-agnostic
parameter-sharing approach that can arbitrarily reduce the model size without affecting the functional
form while keeping the model recovery efficient.

3 BACKGROUND

HashedNet: Compressing MLP matrices Previous work (Chen et al., 2015) introduced a weight
sharing method to compress weight matrices of MLP models. They map each matrix parameter
to a shared parameter array using a random hash function xxhash (Collet, 2016). In the forward
pass, this mapping is used to recover a weight matrix and perform matrix multiplication for each
MLP layer. In the backward pass, the gradients of each weight matrix are mapped to the shared
compressed array and aggregated using the sum operation. It should also be noted that each MLP
layer uses an independent array of parameters. One of the main concerns with HashedNet is that
memory accesses on the compressed array are non-coalesced. Thus, fetching a compressed matrix
via HashedNet requires significantly more memory read transactions than fetching an uncompressed
matrix for which memory accesses can coalesce. Our evaluation shows that uncoalesced memory
accesses lead to high latency, especially for large matrices.

Random Block Offset Embedding Array (ROBE) for embedding compression In ROBE (Desai
et al., 2022), the embedding table is generated using an array of parameters. The embedding of a
token is obtained by drawing chunks of the embedding from the ROBE array. The locations of the
chunks are decided randomly via light-weight universal hash functions. Authors of ROBE showed
that ROBE hashing is theoretically superior to feature hashing used in HashedNet. Also, the use of
chunks causes memory accesses to coalesce, making embedding lookup efficient.

ROAST proposes a component agnostic, global parameter sharing approach that tunes the hashing
function to match memory accesses of algorithmic implementation of operation over available
hardware, thus giving a superior parameter sharing scheme.

4 RANDOM OPERATION ACCESS SPECIFIC TILE (ROAST) HASHING

LetM be the compressed memory from which parameters will be used, f be the model or the function
that we want to run usingM, and W be the recovered weights used in f . f can be considered as a
composition of operations {Oi(Xi,Wi)}. By operation, we mean the smaller functions that, when
composed together, give us the model f . Here Xi is the input to the operation, and Wi is the weights
(i.e., learnable parameters) that Oi uses. Generally, Wis are distinct and do not share parameters.
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Figure 1: Generic model compression with operation-specific blocking for BERT as an example :
(left) Shows how 2D tiles are mapped toM in case of MM operation. (right) Shows how 1D tiles
are mapped toM in case of L operation. λ is the module-specific GMS scaling factor

Random Operation Access Specific Tile (ROAST) hashing is a way to perform efficient model-
agnostic parameter sharing-based compression. The following distinct aspects of ROAST set it apart
from previous parameter sharing-based methods. (1) ROAST is a generic technique applicable to
all computational modules. (2) ROAST proposes to tune its mapping from Wi toM in a way that
coalesces memory accesses according to how memory is accessed during the operation. This makes
ROAST efficient and up to 45× faster than competing approaches like HashedNet. (3) ROAST
proposes Global Memory Sharing (GMS) as opposed to Local Memory Sharing (LMS) used in
HashedNet. We show GMS to be theoretically and empirically superior to LMS in Section 5 and 6.

4.1 ROAST OPERATIONS IN DEEP LEARNING

Any model f can be considered as a composition of smaller functions {Oi(Xi,Wi)}. There are
multiple ways to perform this decomposition depending upon what we consider a valid (or small
enough) operation. In ROAST, we consider three types of operations: (1) L(l,W ), lookup that
accessesM and recovers lth element of W , say w. By element, we mean some particular part of
W that is identifiable by an integer. An example with embedding tables is given in figure 1. (2)
MM(X,W ), matrix multiplication that multiplies X with W and returns the result, and (3) N(X),
various operations that only act on the input but do not interact withM. In ROAST, in order to limit
the memory usage, we make sure that L is used only on a small w and MM is performed without
recovering the entire matrix. We find that most deep learning models, if not all, can be written as
a composition of operations N, MM and L, where L is only applied on small parameters. Let us
discuss how ROAST implements L and MM operations in the following paragraphs.

Lookup (L(l,W )) We recover a parameter weight w of any shape in a row-major format. Thus, we
can consider w = W (l) to be a 1D vector without loss of generality. ROAST recovers w fromM in
a blocked fashion. Consider w to be composed of chunks of size Z. Each chunk c is located inM
using a universal hash function h1 and is recovered from the location h1(c) inM. Let C(i) give the
chunk number of index i and O(i) give the offset of i in this chunk.

w[i] = λM[h1(C(i)) +O(i)] h1 : N→ {0, ..., |M| − Z} (1)
The recovered W has λ as a scaling factor discussed in section 4.2. The hash function hashes to
a range {0, ..., |M| − Z} to avoid overflows while reading the memory. For example, Figure 1
(right) illustrates the embedding lookup using L with chunk size of 2. ROAST uses L to implement
computational modules such as embeddings, bias vectors, and so on. We generalize the embedding
lookup kernel from ROBE (Desai et al., 2022) to implement our L kernel.

Matrix multiplication (MM(Xi,Wi)) 2D matrix multiplication is one of the most widely used
operations in deep learning. We implement our ROAST-MM kernel with parameter sharing performed
in a way that the algorithm for matrix multiplication accesses coalesced pieces ofM. An efficient
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implementation of matrix multiplication on GPU follows a block multiplication algorithm to use
the on-chip shared memory efficiently. While computing C = A × B, A, B and C are divided in
tiles of size Z0 × Z1, Z1 × Z2 and Z0 × Z2 respectively. Thus, we divide our 2D weight matrix
into tiles of size Z1 × Z2. The tile, (x, y), where x and y are the coordinates of the tile, is located in
M in a row-major format via a universal hash function h2(x, y). Let C1(i, j) and C2(i, j) give the
x-coordinate and y-coordinate of the tile to which i, j belongs. Similarly, let O1(i, j) and O2(i, j)
give the x-offset and y-offset of a location (i, j) on the tile. Then, we use the following mapping for
ROAST-MM,

W [i, j] = λM[h2(C1(i, j), C2(i, j)) + Z2O1(i, j) +O2(i, j)]

h2 : N2 → {0, ..., |M| − Z1Z2}
Again, λ is the scaling factor discussed in section 4.2. The hash function hashes to a range
{0, ..., |M| − Z1Z2} to avoid overflows while reading the chunk. Figure 1 (left) illustrates ROAST-
MM with a chunk size of 2× 2. The above mapping is used whenever a 2D tile is accessed in the
matrix multiplication algorithm. The pseudo code for ROAST-MM is shown in algorithm 1. We talk
about implementation of this kernel and its evaluation in the later part of the paper. ROAST uses
ROAST-MM kernel to implement computational modules such as MLP layers, attention blocks, etc.
Each module invoking ROAST kernels uses independent hash functions.

Algorithm 1 ROAST-MM(I ×H ×O)

Require: X ∈ RI×H ,M, λ, h : N2 → {0, ..., |M| − Z1Z2}
Ensure: output = MM(X,M[h(:, :)])

value← TILE(Z0, Z2) ▷ Allocate a 2D tile of size Z0 × Z2 to accumulate results
for i ∈ {0, 1, ..., ⌈I/Z0⌉ − 1} do

for j ∈ {0, 1, ..., ⌈O/Z2⌉ − 1} do
value[:, :]← 0
for k ∈ {0, 1, ..., ⌈H/Z1⌉ − 1} do

value← value+MM(X[i : i+ Z0, k : k + Z1],M(h(k : k + Z1, j : j + Z2)))
▷ Access to the weight tile passes through the hash function

end for
output[i : i+ Z0, j : j + Z2]← λ ∗ value

end for
end for

Apart from scaling each recovered parameter with module-specifc λ, we can also multiply it with
another independent hash function g : Nk → {±1} (k=1 or k=2).

4.2 GLOBAL MEMORY SHARING (GMS)

HashedNet uses local memory sharing (LMS), which states that each layer will have independent
compressed memory. In contrast, ROAST proposes global memory sharing (GMS), wherein we
share memory across modules. However, modules cannot directly use the parameters stored inM
as each module’s weights requires initialization and optimization at different scales. For instance,
in the Xavier’s initialization (Glorot & Bengio, 2010), weights are initialized with distribution
Uniform(−1/

√
n, 1/

√
n) where n is size of the input to the module. In GMS, we must ensure

that each module gets weights at the required scale. To achieve this, we first initialize the entire
ROAST parameter array with values from the distribution Uniform(−1/C, 1/C) for some constant
C. Then, for each module, we scale the weights retrieved from the ROAST array by a factor of
λ = C/

√
n.

One can understand the benefit of GMS over LMS in terms of the number of distinct functions in
f that can be expressed using a fixedM. Consider a family of functions with n parameters. GMS
can potentially express |M|n functions across different random mappings. In LMS, let separate
parameters be of sizes n1, n2, ..nk and each of them is mapped into memoriesM1,M2, ...,Mk.
Thus, n =

∑
i ni and |M| =

∑
i |Mi|. Then LMS can only express |M1|n1 |M2|n2 ....|Mk|nk

different functions. Thus expressivity of LMS is strictly less than that of GMS and can be orders of
magnitude less depending on exact values of ni and |Mi|. We also show that GMS is superior to
LMS in terms of dimensionality reduction (feature hashing) in Section 5.
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Figure 2: Local memory sharing : each module compresses its parameters separately. In Global
memory sharing, all parameters from accross the modules share the same memory

4.3 FORWARD AND BACKWARD PASSES

Recall that in ROAST, operations are of three types L,MM and N. The forward pass proceeds by
applying each operation in sequence. If an operation is of type N, we directly apply its function on
the input. For L and MM operations, outputs are computed according to the procedure described in
Section 4.1.

The gradient of the loss w.r.t a weight wi inM is the λ-scaled aggregation of gradients of loss w.r.t
all the parameters that map to this weight. For simplicity of notation, consider θ as the complete
parameter, λ(j) as the scaling factor we use for the module that θj belongs to, and h be the mapping
from θ toM. See Appendix B.1 for more details.

∇wif(w) =
∑

j,h(j)=i

λ(j) ∗ ∇θjf(θ) (2)

4.4 IMPLEMENTATION OF ROAST-MM

The high-performance community has heavily investigated the fast implementation of the General
Matrix Multiplication (GEMM) kernel, a fundamental operation in many computational workloads,
including deep learning. Optimized implementations of GEMM kernels are available in vendor
libraries such as cuBLAS (NVIDIA Corporation, 2022a) and CUTLASS (NVIDIA Corporation,
2022b). Unfortunately, these implementations do not support custom tile loading operations, which
is the key of ROAST-MM. To implement ROAST-MM to a reasonable level of efficiency, we used
Triton (Tillet et al., 2019): an intermediate language for tiled neural network computations. Triton
abstracts out the shared memory management to make it helpful in customizing tiled operations with
high efficiency.

In our implementation of ROAST-MM, the optimal size of coalesced tiles is a parameter that depends
on the shape of the weight matrix. Therefore, different tile sizes can lead to different parallelism,
occupancy, and shared memory efficiency, resulting in different execution times. We autotune this
parameter to obtain the best performance for particular matrix shapes. We propose two strategies for
autotuning each ROAST-MM layer - (1) Optimize the inference workload by autotuning the forward
kernel and sharing the tile size with the backward kernels. (2) Optimize the training workload by
autotuning the forward and backward kernels together. Extensive evaluation of this kernel is presented
in appendix C.2.

5 FEATURE HASHING QUALITY: GLOBAL MEMORY SHARING ADVANTAGE
OVER LOCAL MEMORY SHARING

We can consider model compression as dimensionality reduction of a parameter vector (a one
dimensional vector of all parameters in a model) of size n into a vector of size |M| = m. Quality
of inner-product preservation is used as a metric to measure the quality of dimensionality reduction.
In terms of dimensionality reduction, ROAST uses ROBE hashing, which shows that chunk based
hashing is theoretically better than hashing individual elements. In this section, we compare ROAST’s
GMS proposal against HashedNet’s LMS using a chunck size of one. Consider two parameter
vectors x, y ∈ Rn, we are interested in how the inner product of parameter vectors are preserved
under hashing. Let x = [x1, x2, ..., xk] and y = [y1, y2, ..., yk] be composed of k vectors of sizes
n1, n2, ...nk where [] denotes concatentation. In LMS, let each piece map to memory of size fim
where

∑
i fi = 1. The estimated inner product with GMS is

⟨̂x, y⟩G,m =

m∑
j=1

(
n∑

i=1

I(h(i)=j)g(i)x[i]

n∑
i=1

I(h(i)=j)g(i)y[i]

)
(3)

6



Under review as a conference paper at ICLR 2023

Table 2: Experimental settings: The datasets and models used in experiments.

Domain Task Dataset #Samples Model Model size
NLP text-classification amazon-polarity 3.6M/0.4M BERT-2-2 37.43M
NLP text-classification yelp-polarity 560K/38K BERT-2-2 37.43M
CV image-classification cifar10 50K/10K ResNet 6.5M

The estimated inner product with LMS can be written as

⟨̂x, y⟩L,m,f⃗ =

k∑
l=1

flm∑
j=1

 nl∑
i=1

I(h(i)=j)g(i)xl[i]

nl∑
j=1

I(h(i)=j)g(i)yl[i]

 =

k∑
l=1

⟨̂xl, yl⟩G,(flm)

(4)

Theorem 1 Let x, y ∈ Rn and be composed of k vectors x = [x1, x2, ..., xk] and y = [y1, y2, ..., yk].
Then the inner product estimation of global and local weight sharing are unbiased.

E(⟨̂x, y⟩G,m) = ⟨x, y⟩ E(⟨̂x, y⟩L,m,f⃗ ) = ⟨x, y⟩ (5)
The variance for inner product estimation can be written as,

VG(⟨̂x, y⟩) =
∑
i

fiVi +
1

m

 ∑
i,j,i ̸=j

(||xi||2||yj ||2) + ⟨xi, yi⟩⟨xj , yj⟩

 (6)

VL( ˆ⟨x, y⟩) =
∑
i

Vi (7)

where

Vl =
1

fl

1

m

∑
i ̸=j

a2i b
2
j +

∑
i ̸=j

aibiajbj

 , where xl = (a1, a2..., anl
) and yl = (b1, b2..., bnl

) (8)

where VL is local memory sharing variance and VG is global memory sharing variance.

Intuition: The two terms in VG can be understood as follows: The first term is the local variance with
individual terms reduced by a factor of fi. This is because each piece of the vector is being distributed
in a memory that is 1/fi× larger. However, in GMS, there is a possibility of more collisions across
pieces. This leads to the second term in VG. Note that, for a given x, y and a finite value for m, VG

is always bounded. At the same time, VL is unbounded due to 0 < fi < 1 in the denominator. So
if the number of pieces increases or particular fi grows smaller, VL increases. While we cannot
prove that VG is strictly less than VL, we can investigate the equation under some assumptions on
the data. Practically, each piece of the parameter vector is a computational block like a matrix for
multiplication or embedding table lookup. These blocks are initialized at a scale proportional to the
square root of their size. So the norms of these vectors are similar. Let us assume the norm of each
piece to be

√
α. Also, let us assume that over random data distributions over x and y, all the inner

products to be β in expectation. Then,

VG ≈
k2

m
(α2 + β2) VL ≈

1

m
(α2 + β2)(

1

f1
+

1

f2
+ ...+

1

fk
) ≥ 1

m
(α2 + β2)k2

1

(
∑

fi)
= VG

(9)
Thus, VL is greater than VG, and it can be much greater depending on the exact values of fi. The
proof of the theorem and other details are presented in Appendix B.2

6 EXPERIMENTAL EVALUATION

Setup: In this section, we evaluate the ROAST compression approach on two types of tasks. The
details of the tasks, datasets and models used are mentioned in table 2. . For image-classification
tasks, we choose the cifar-10 dataset and the leader for the DawnBenchmark (Coleman et al., 2017)
- a ResNet-9 model1 for cifar-10. The target accuracy for this benchmark is 94% and hence we
perform hyper-parameter tuning to get a test accuracy of ≥ 94%. We stop the tuning once we

1https://github.com/apple/ml-cifar-10-faster
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Table 3: Text classification task. (above) ROAST shows up to 100× compression without loss of
quality on BERT-2-2 model. (below) Even in case of overparameterized model of BERT-12-12,
ROAST is able to maintain the quality similar compression.

Text-classification Acc
Model size amazon-polarity yelp-polarity

BERT-2-2 37.4M 93.4 90.8
BERT-1-1 30.3M 92.01 90.2

ROAST-10x (BERT-2-2) 3.7M 94.6 91.1
ROAST-100x (BERT-2-2) 393K 93.8 91.0
BERT-12-12 (BERT-base) 108M 93.5 90.8
ROAST-10x (BERT-base) 10.1M 94.64 90.9

ROAST-100x (BERT-base) 1.1M 93.9 90.8

Table 4: Image classification task: (above)We see that ResNet-9 model can be trained in 10× smaller
memory. (below). Pruning gives 100× post-training compression but requires complete memory
for training. We can prune ROAST-10x model, which uses 10× lesser memory, further 10× to give
100× post-training model

Image-classification Acc (target: 94%)
Model Size cifar-10

ResNet-9 6.5M 94.2
ROAST-5x 1.2M 94.58
ROAST-10x 650K 94.15
PRUNE-10x 650K (6.5M) 95.59
PRUNE-100x 65K (6.5M) 94.8

PRUNE-1000x 6.5K (6.5M) 93.34
ROAST-10x- PRUNE-10x 65K (650K) 94.06

reach this accuracy and hence the results for CIFAR-10 should be compared w.r.t whether it crosses
94.0%. For NLP tasks, we use two largest available text-classification datasets on huggingface
(HuggingFace, 2022). For the model, we use BERT-x-y (x:number of layers, y:number of attention
heads) architecture with classification head. On both NLP datasets, using models larger than BERT-2-
2 lead to similar test accuracy and hence we choose BERT-2-2 as the base model. The other hyper
parameters for NLP tasks are { batch 64 for amazon-polarity and 32 for yelp-polarity, learning rate
2e-5, AdamW optimizer, Linear scheduler}

Roast for compression As we can see in tables 3 and 4 , with ROAST, we can achieve similar quality
of model in much smaller space. Specifically, for text-classification, we see that we can train and
deploy the BERT-2-2 model in 100× lesser space. Similarly, we can train and deploy ResNet model
in 10× lesser space for same target test accuracy. Thus, ROAST is an effective method for training
and deploying models on memory-constrained systems.

Managing excess parameters It is clear from table 3, that BERT-base architecture is highly over
parameterized for the tasks under consideration. However, even in this case, ROAST can be used to
control the memory footprint while maintaining the functional form of the larger model.

Pruning and ROAST We perform unstructured iterative-magnitude pruning (Han et al., 2016b) on
ResNet model and find that pruning gives upto 100× compression. However note that pruning requires
us to train the model using memory required to store the original model. However, compression
with ROAST means using lesser memory even for training. Additionally, pruning can be used in
conjunction with ROAST to obtain smaller models using smaller memory. In table 4, we see that we
can prune 90% of weights in 10× compressed ROAST array and still achieve the same quality.

Local vs. Global memory sharing In the figure 3, we show that the quality of the model while using
global memory sharing is, indeed, better than local memory sharing. This supports our theoretical
observation about these memory sharing schemes.

Efficiency of ROAST operators as compared to HashedNet Table 7 shows the inference perfor-
mance of a simple model using ROAST-MM for matrix multiplication on compressed memory. Our
model linearly transforms the input vector and computes its norm. We optimized the ROAST-MM
kernel for this experiment using the inference-optimal strategy. We make the following observations
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Table 5: Inference times of different square weight matrices using an input batch of 512. For ROAST,
the tile parameters of each matrix multiplication are autotuned. The measurements were taken using
TF32 on a NVIDIA A100 GPU (48GB). We used PyTorch’s matmul function (MM) for the full
uncompressed matrix multiplication. ■:bad ■: good

Inference time (ms)
Weight matrix dimensions (Dim × Dim)

Model M size ↓ 512 1024 2048 4096 8096 10240 20480 Average
Full size→ 1MB 4MB 16MB 64MB 128MB 420MB 1.6GB

PyTorch-MM 0.10 0.11 0.12 0.22 0.69 1.18 3.91 0.91
4MB 0.31 0.34 0.63 2.02 6.20 9.67 35.22 7.77

32MB 0.31 0.41 0.86 3.64 13.66 22.11 92.40 19.06
64MB 0.31 0.46 1.09 6.47 31.21 42.45 178.07 37.15
128MB 0.31 0.60 1.62 9.10 34.62 56.03 229.31 47.37
256MB 0.32 0.62 1.82 10.25 38.28 62.67 256.22 52.88

HashedNet

512MB 0.33 0.68 2.05 10.59 40.55 65.74 272.23 56.03
4MB 0.28 0.30 0.27 0.48 0.99 1.36 4.83 1.22

32MB 0.28 0.29 0.27 0.44 1.01 1.38 4.88 1.22
64MB 0.28 0.29 0.27 0.44 1.00 1.40 4.93 1.23
128MB 0.30 0.27 0.27 0.45 1.01 1.39 4.91 1.23
256MB 0.30 0.27 0.27 0.44 1.01 1.40 4.90 1.23

ROAST

512MB 0.30 0.30 0.27 0.45 1.02 1.39 4.95 1.24

(a) GMS vs. LMS (amazon-polarity) (b) GMS vs. LMS (yelp-polarity)

Figure 3: Effect of local and global memory sharing with compression of BERT-12-12 model for
text-classification tasks. In yelp, rolling mean of 5 measurements is taken to reduce noise in plots

from Table 7: (1) ROAST-MM outperforms HashedNet kernel consistently across the different multi-
plication workloads. On an average over different workloads, ROAST-MM is up to 45× faster than
HashedNet. (2) ROAST-MM is 1.34× slower than PyTorch-MM. This is expected as Pytorch-MM
uses extremely optimized libraries for matrix multiplication and ROAST-MM implementation is
comparatively under-optimized. It is still interesting to note that ROAST-MM’s performance better
in terms of scaling efficiency than PyTorch-MM with the increase in workload. As the workload
increases 1600× (from 512×512 to 20480×20480), PyTorch-MM takes 39× time, HashedNet
takes 106× time whereas ROAST-MM only takes around 16× time. We present more detailed
measurements across different optimizers for training-optimal strategy in the appending C.2

7 CONCLUSION

Traditionally model compression has focused on memory reduction during inference. However, model
memory during training is also an important consideration. While some of the existing methods such
as HashedNet and Low-rank factorisation provide model reduction during training, these methods
either do not provide cache-efficient model recovery or have implicit cap on memory reduction.
ROAST overcomes these obstacles and provides a cache-efficient, arbitrary control over the memory
footprint of model during training and inference. ROAST, essentially provides a practical parameter
sharing method. ROAST is theoretically better than HashedNet in terms of dimensionality reduction
due to block based hashing and global memory sharing. We empirically validate the efficiency
advantage of ROAST over HashedNet and that we can achieve high compression with ROAST.
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A ADDITIONAL DATA FOR REVIEWERS - PARTS OF WHICH WILL GO IN MAIN
PAPER IN FINAL VERSION

A.1 EXTENDED TABLE 3 WITH EPOCH INFORMATION AND MORE BASELINES

Table 6: Table 3 extended version

Text-classification Acc

Model size amazon-polarity Epochs
to reach the acc yelp-polarity Epochs

to reach the acc Comment

BERT-2-2 37.4M 93.4 5.6 90.8 5.4
BERT-1-1 30.3M 92.01 7.02 90.2 2.8

ROAST-10x-GMS (BERT-2-2) 3.7M 94.6 7.3 90.8 2.8
ROAST-100x-GMS (BERT-2-2) 393K 93.8 7.2 90.8 7.03

PRUNE-10x (BERT-2-2) 3.74M 93.5 9.02 89.65 9 full-9-1 schedule
PRUNE-100x(BERT-2-2) 374K 91.36 9.8 89 9.8 full-9-1 schedule
PRUNE-10x(BERT-2-2) 3.74M 93.24 8.94 89.8 7 full-1-9-schedule
PRUNE-100x(BERT-2-2) 370K 90.73 9.15 87.7 9.82 full-1-9-schedule

BERT-12-12 108M 93.51 6.95 90.8 4.7
BERT-12-12-10x-LMS 10.1M 93.49 4.84 90.9 4.69
BERT-12-12-10x-GMS 10.1M 94.64 4.85 91.1 4.97
BERT-12-12-100x-LMS 10.1M 92.9 4.87 90.7 9.03
BERT-12-12-100x-GMS 10.1M 93.9 9.39 91.0 6.83

Text-classification convergence for a specific target accuracy
Model size amazon-polarity yelp-polarity Comment

target epochs target epochs
BERT-12-12 108M 93.4 5 90.8 4.7

BERT-12-12-10x-LMS 10.1M 93.4 3.77 90.9 4.69
BERT-12-12-10x-GMS 10.1M 93.4 1.97 90.9 3.4
BERT-12-12-100x-LMS 10.1M 92.9 4.78 90.7 9.09
BERT-12-12-100x-GMS 10.1M 92.9 3.09 90.7 3.74

We add a lot of information and new results to the table. Specifically,

• We add the GMS and LMS results to the table separately. So that readers can get an idea of
each of the method on the task.

• We add unstructured pruning (best pruning quality wise) resutls for NLP tasks as well. The
pruning results are obtained in the following manner. With the full-9-1 schedule, we start
from the fully trained model, perform iterative pruning during next 9 epochs and then tune
the final pruned model for 1 more epoch. Whereas in the full-1-9 schedule, we again start
from the fully trained model, perform pruning in the next 1 epoch and then tune the model
further for 9 epochs. We note the best achieved accuracy with the final model structure and
the epoch at which this accuracy is reached.

• For each result, we note the number of epoch when the best accuracy was reached.

• We append an additional small table which notes the number of epochs required to reach a
target accuracy to compare the convergence of different models.

We make the following observations.

• GMS reaches better accuracy than LMS for the same amount of compression for both the
datasets. Additionally, GMS reaches the same target accuracy faster than the LMS.

• The ROAST approach is more effective than pruning approaches in NLP tasks of text-
classification for architectures like BERT.

• It is interesting that GMS-10× converges faster than original model on both datasets. We
leave investigating this as future work.

A.2 GMS VS LMS FOR YELP

As can be seen from the two plots in figure4, it is clear the GMS performs superior to LMS in both
the compression settings.
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(a) GMS vs. LMS 100× Yelp (b) GMS vs. LMS 10× Yelp

Figure 4: Separate plots for 10× and 100× ROAST for Yelp dataset for better visibility. Also, rolling
mean of 5 measurements was used to reduce noise in the plots

B THEORY

ROAST is a generalized model compression which performs operation specific system-friendly
lookup and global memory sharing. This raises some interesting theoretical questions

B.1 BACKWARD PASS FOR MODEL SHARING WEIGHTS ACROSS DIFFERENT COMPONENTS

A general function sharing a weight, say x across different components can be written as , f(x, g(x))
The interpretation is that x was used in g(.) and then again used ahead in f. (In case of MLP, we can
think of x being used in multiple layers)

Let f(g1, g2) where both g1 and g2 are functions of x.

∂f(g1, g2)

∂x
=

∂f(g1, g2)

∂g1
∗ ∂g1

∂x
+

∂f(g1, g2)

∂g2
∗ ∂g2

∂x
(10)

g1 = x and g2 = g(x)

∂f(g1, g2)

∂x
=

∂f(x, g(y))

∂x
|y=x +

∂f(y, g(x))

∂g(x)
∗ ∂g(x)

∂x
|y=x (11)

∂f(g1, g2)

∂x
=

∂f(x, g(y))

∂x
|y=x +

∂f(y, g(x))

∂x
|y=x (12)

Renaming,
∂f(x, g(x))

∂x
=

∂f(z, g(y))

∂z
|y=x,z=x +

∂f(z, g(y))

∂y
|y=x,z=x (13)

Thus, we can essentially consider each place where x appears as new variables and then gradient
w.r.t x is just summation of partial derivatives of the function w.r.t these new variables. Thus, it is
easy to implement this in the backward pass. In order to make sure that the memory utilization in
backward pass is not of the order of the recovered model size, we do not use the auto-differentiation
of tensorflow/pytorch. We implement our own backward pass and it can be found in the code.

B.2 GLOBAL FEATURE HASHING VS LOCAL FEATURE HASHING.

We can consider model compression techniques as dimensionality reduction of the parameter vector
(a one dimensional vector of all parameters in a model) of size n into a vector of size |M| = m.
Quality of inner-product preservation is used as a metric to measure the quality of dimensionality
reduction. In terms of dimensionality reduction, ROAST uses ROBE hashing Desai et al. (2022),
which showed that chunk based hashing is theoretically better than hashing individual elements. In
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this section, we analyse GMS proposal of ROAST against LMS of HashedNet. For the purpose of
this comparison we assume a chunk size of 1. Consider two parameter vectors x, y ∈ Rn. We are
interested in how inner product between these parameter vectors are preserved under hashing. Let
x = [x1x2...xk] and y = [y1y2...yk] be composed of k pieces of sizes n1, n2, ...nk. In LMS, let each
piece be mapped into memory of size fim where

∑
i fi = 1.

The estimators of inner product in the GMS case can be written as ,

⟨̂x, y⟩G,m =

m∑
j=1

(

n∑
i=1

I(h(i)=j)g(i)x[i])(

n∑
i=1

I(h(i)=j)g(i)y[i]) (14)

The estimate of inner product with LMS can be written as,

⟨̂x, y⟩L,m,f⃗ =

k∑
l=1

flm∑
j=1

(

nl∑
i=1

I(h(i)=j)g(i)xl[i])(

nl∑
j=1

I(h(i)=j)g(i)yl[i]) =

k∑
l=1

⟨̂xl, yl⟩G,(fim)

(15)
Note that

⟨̂x, y⟩L,m,f⃗ =

k∑
l=1

⟨̂xl, yl⟩G,(flm) (16)

The GMS estimator is the standard feature hashing estimator and the LMS is essentially sum of GMS
estimators for each of the piece. as E[g(i)] = 0, it is easy to check by linearity of expectations that
Expectation The suffix L refers to local hashing and G refers to global hashing.

EG = E(⟨̂x, y⟩G,m) = ⟨x, y⟩ (17)

EL = E(⟨̂x, y⟩L,m,f⃗ ) = ⟨x, y⟩ (18)

Let us now look at the variance. Let us follow the following notation,

• VG = V(⟨̂x, y⟩G,m). GMS variance of entire vectors

• VL = V(⟨̂x, y⟩L,m,f⃗ ). LMS variance of entire vectors

• Vl = V(⟨̂xl, yl⟩G,flm
). variance of each piece

we can write Vl as follows. The following equation is easy to derive and it can be found the lemma 2
of Weinberger et al. (2009)

Vl =
1

fl

1

m
(
∑
i ̸=j

a2i b
2
j +

∑
i ̸=j

aibiajbj) where xl = (a1, a2...anl
) and yl = (b1, b2...bnl

) (19)

As, each of the piece is independently hashed in LSM, we can see

VL =

k∑
l=1

Vl (20)

Let us now look at VG. Again, using lemma 2 from Weinberger et al. (2009)

VG =
1

m
(
∑
i̸=j

x2
i y

2
j +

∑
i̸=j

xiyixjyj) (21)

The expression can be split into terms that belong to same pieces and those across pieces

VG =
1

m

k∑
l=1

(
∑

i̸=j∈piece-l

x2
i y

2
j +

∑
i ̸=j∈piece-l

xiyixjyj)

+
1

m

k∑
l1=1

k∑
l2=1,l1 ̸=l2

(
∑

i∈piece-l1,j∈pieces-l2

(x2
i y

2
j ) +

∑
i∈piece-l1,j∈pieces-l2

xiyixjyj))
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VG =

k∑
l=1

flVl +
1

m

l∑
l1=1

l∑
l2=1,l1 ̸=l2

||xl1||22||yl2||22 + ⟨xl1, yl2⟩⟨xl2, yl2⟩ (22)

Observation 1: In VL we can see that there are terms with 1
fl

which makes it unbounded. It makes
sense as if number of pieces increase a lot a lot of compressions will not work for example if number
of peices > |M|. Also, it will affect VL a lot when some fl is very small which can often be the
case. For example, generally embedding tables in DLRM model are much larger than that of matrix
multiplciation modules (MLP) . which can make f ≈ 0.001 for MLP components.

Observation 2: Practically we can assume each piece, no matter the size of the vector, to be of same
norm. The reason lies in initialization. According to Xavier’s initialization the weights of a particular
node are initialized with norm 1. So for now lets assume a more practical case of all norms being
equal to

√
α. Also, in order to make the comparisons we need to consider some average case over the

data. So let us assume that under independent randomized data assumption, the expected value of all
inner products are β. With this , in expectation over randomized data, we have

VG =
∑

flVl +
k(k − 1)

m
(α2 + β2) (23)

Now note that,

Vl =
1

fl

1

m
(
∑
i ̸=j

a2i b
2
j +

∑
i ̸=j

aibiajbj) where xl = (a1, a2...anl
) and yl = (b1, b2...bnl

) (24)

(dropping the subscript "l" below)

Vl =
1

fl

1

m
((||x||22||y||22 + ⟨x, y⟩2)− 2

∑
i

x2
i y

2
i ) (25)

Vl =
1

fl

1

m
((α2 + β2)− 2

∑
i

x2
i y

2
i ) (26)

Note that for each negative term, there are nl positive terms. To simplify we disregard this term in
the equation above. This is an approximation which is practical and only made to get a sense of VL

and VG relation.

VL − VG =
∑

Vl −
∑

flVl −
k(k − 1)

m
(α2 + β2)

VL − VG =
∑
l

1

m
(
1

fl
− 1)((α2 + β2))− k(k − 1)

m
(α2 + β2)

VL − VG =
∑
l

1

m
(
1

fl
− 1)((α2 + β2)− k(k − 1)

m
(α2 + β2)

VL − VG ≥
k(k − 1)

m
((α2 + β2)− k(k − 1)

m
(α2 + β2)

VL − VG ≥ 0

Note that we ignored a term which reduces the VL a bit, Let the error be ϵ

VL − VG ≥ −ϵ (27)
The above equation shows even for the best case, VG might be slightly more than VL. However for
general case where harmonic mean is much worse than arithmetic mean, VL will be much larger
depending on exact fl s
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Table 7: Inference times of different square weight matrices using an input batch of 512. For ROAST,
the tile parameters of each matrix multiplication are autotuned. The measurements were taken using
TF32 on a NVIDIA A100 GPU (48GB). We used PyTorch’s matmul function (MM) for the full
uncompressed matrix multiplication. ■:bad ■: good

Inference time (ms)
Weight matrix dimensions (Dim × Dim)

Model M size ↓ 512 1024 2048 4096 8096 10240 20480 Average
Full size→ 1MB 4MB 16MB 64MB 128MB 420MB 1.6GB

PyTorch-MM 0.10 0.11 0.12 0.22 0.69 1.18 3.91 0.91
4MB 0.31 0.34 0.63 2.02 6.20 9.67 35.22 7.77

32MB 0.31 0.41 0.86 3.64 13.66 22.11 92.40 19.06
64MB 0.31 0.46 1.09 6.47 31.21 42.45 178.07 37.15
128MB 0.31 0.60 1.62 9.10 34.62 56.03 229.31 47.37
256MB 0.32 0.62 1.82 10.25 38.28 62.67 256.22 52.88

HashedNet

512MB 0.33 0.68 2.05 10.59 40.55 65.74 272.23 56.03
4MB 0.28 0.30 0.27 0.48 0.99 1.36 4.83 1.22

32MB 0.28 0.29 0.27 0.44 1.01 1.38 4.88 1.22
64MB 0.28 0.29 0.27 0.44 1.00 1.40 4.93 1.23
128MB 0.30 0.27 0.27 0.45 1.01 1.39 4.91 1.23
256MB 0.30 0.27 0.27 0.44 1.01 1.40 4.90 1.23

ROAST

512MB 0.30 0.30 0.27 0.45 1.02 1.39 4.95 1.24

C ROAST-MM LATENCY MEASUREMENTS

C.1 INFERENCE OPTIMIZATION

C.2 TRAINING OPTIMIZATION

See tables 8, 9, 10, 11

forward(ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)

Memory
(mb) 512 1024 2048 4096 8096 10240 20480 Average

Full
(uncompressed) 0.16 0.12 0.12 0.24 0.66 0.91 3.03 0.75

4 0.37 0.35 0.65 2.04 6.23 9.62 35.64 7.84
32 0.39 0.42 0.90 3.67 13.73 22.06 92.83 19.14
64 0.33 0.47 1.11 6.45 25.78 42.51 178.20 36.41

128 0.28 0.56 1.61 9.07 34.21 56.07 229.34 47.31
256 0.20 0.54 1.72 9.95 38.17 62.47 258.11 53.02

HashedNet

512 0.14 0.50 1.88 10.37 40.40 65.43 272.19 55.84
4 0.30 0.31 0.31 0.50 1.43 2.01 7.54 1.77
32 0.30 0.33 0.35 0.55 1.44 2.09 7.59 1.81
64 0.29 0.31 0.33 0.56 1.45 2.08 7.80 1.83

128 0.25 0.27 0.28 0.54 1.41 2.09 7.84 1.81
256 0.16 0.18 0.19 0.46 1.33 2.02 7.82 1.74

ROAST

512 0.21 0.06 0.13 0.41 1.29 1.97 4.98 1.29

Table 8: Inference (forward pass time) for different shapes of square weight matrix with input batch of
512. The tile-parameters of multiplication are optimized for each function over "forward + backward"
pass .The measurements are taken with tf32 on A100 (48GB)

D VARIANCE IN QUALITY OVER DIFFERENT RUNS

The figure 5 shows three runs of ROASTed BERT and BERT models
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backward(ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)

Memory
(mb) 512 1024 2048 4096 8096 10240 20480 Average

Full
(uncompressed) 0.35 0.22 0.24 0.48 1.35 2.01 7.65 1.76

4 0.65 0.53 0.95 2.60 8.51 13.21 56.59 11.86
32 0.68 0.69 1.80 6.36 24.13 38.95 160.54 33.31
64 0.74 1.06 2.81 10.78 41.35 67.02 271.86 56.52

128 0.91 1.34 3.40 12.41 51.00 81.25 337.31 69.66
256 1.29 1.84 4.02 14.57 58.03 91.18 376.83 78.25

HashedNet

512 2.08 2.62 4.90 16.24 62.45 98.46 391.46 82.60
4 0.54 0.54 0.60 1.20 2.54 3.72 13.99 3.30
32 0.57 0.61 0.69 1.06 2.71 4.04 15.07 3.54
64 0.64 0.73 0.77 1.17 2.82 4.18 15.50 3.69

128 0.79 0.81 0.89 1.38 3.17 4.73 18.30 4.30
256 1.19 1.17 1.27 1.77 3.56 5.17 18.33 4.64

ROAST

512 2.11 1.92 2.12 2.53 4.33 5.98 22.71 5.96

Table 9: Backward pass for different shapes of square weight matrix with input batch of 512. The
tile-parameters of multiplication are optimized for each function over "forward + backward" pass
.The measurements are taken with tf32 on A100 (48GB)

(a) yelp - original (b) yelp - ROAST100x

(c) ag_news - original (d) ag_news - ROAST100x

Figure 5: Three runs of original and ROAST-100x runs
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update weights (optim.step())(ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)

optim Model msize 512 1024 2048 4096 8096 10240 20480 Average
adagrad Full 0.14 0.11 0.15 0.60 2.16 3.41 13.45 2.86

4 0.14 0.11 0.11 0.11 0.11 0.12 0.54 0.18
32 0.35 0.33 0.33 0.33 0.33 0.34 0.36 0.34
64 0.61 0.61 0.61 0.61 0.61 0.62 0.61 0.61

128 1.15 1.14 1.14 1.14 1.15 1.19 1.18 1.15
256 2.22 2.21 2.21 2.21 2.22 2.26 3.87 2.46

HashedNet

512 4.36 4.36 4.35 4.35 4.37 4.40 4.47 4.38
4 0.11 0.11 0.11 0.11 0.12 0.11 0.11 0.11

32 0.33 0.34 0.34 0.33 0.33 0.33 0.33 0.33
64 0.60 0.61 0.61 0.60 0.61 0.61 0.61 0.61

128 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14
256 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21

ROAST

512 4.38 4.35 4.36 4.35 4.35 4.36 4.35 4.36
Full 0.15 0.15 0.23 1.06 3.89 6.18 24.47 5.16

4 0.15 0.23 0.16 0.16 0.16 0.16 0.16 0.17
32 0.57 0.57 0.57 0.57 0.57 0.57 0.59 0.57
64 1.06 1.06 1.06 1.06 1.06 1.06 1.16 1.08

128 2.03 2.05 2.04 2.04 2.05 2.04 2.23 2.07
256 3.98 3.99 3.98 3.99 4.00 4.00 4.22 4.02

HashedNet

512 7.89 7.89 7.89 7.89 7.91 7.90 8.13 7.93
4 0.15 0.23 0.15 0.16 0.16 0.15 0.16 0.17

32 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
64 1.07 1.06 1.06 1.06 1.06 1.07 1.06 1.06

128 2.05 2.03 2.04 2.04 2.03 2.04 2.04 2.04
256 4.01 3.98 3.99 3.99 3.99 3.99 3.99 3.99

adam

ROAST

512 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89
Full 0.08 0.07 0.08 0.20 0.62 0.97 3.92 0.85

4 0.08 0.07 0.08 0.07 0.07 0.08 0.08 0.08
32 0.12 0.12 0.12 0.12 0.12 0.12 0.17 0.13
64 0.19 0.20 0.20 0.20 0.20 0.21 0.31 0.22

128 0.35 0.34 0.34 0.35 0.35 0.37 0.48 0.37
256 0.64 0.64 0.64 0.64 0.65 0.67 0.83 0.67

HashedNet

512 1.23 1.23 1.23 1.23 1.25 1.24 1.25 1.24
4 0.07 0.07 0.07 0.08 0.07 0.07 0.23 0.10

32 0.12 0.12 0.13 0.12 0.12 0.12 0.12 0.12
64 0.22 0.19 0.20 0.19 0.19 0.20 0.29 0.21

128 0.34 0.35 0.34 0.34 0.34 0.35 0.40 0.35
256 0.64 0.65 0.64 0.64 0.64 0.65 0.64 0.64

sgd

ROAST

512 1.27 1.23 1.23 1.23 1.28 1.23 1.62 1.30

Table 10: Weight update operation (optimizer.step()) for different shapes of square weight matrix
with input batch of 512. The tile-parameters of multiplication are optimized for each function over
"forward + backward" pass .The measurements are taken with tf32 on A100 (48GB)
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total = fwd + bkwd + optimize (ms)
(optimized for forward + backward)
dim (Matrix dimension = dim x dim)

optim Model msize 512 1024 2048 4096 8096 10240 20480 Average
adagrad Full 0.65 0.46 0.51 1.32 4.17 6.33 24.13 5.37

4 1.16 0.99 1.71 4.74 14.86 22.95 92.78 19.88
32 1.43 1.44 3.03 10.37 38.19 61.35 253.72 52.79
64 1.68 2.14 4.53 17.83 67.74 110.15 450.66 93.53

128 2.34 3.04 6.15 22.62 86.36 138.51 567.83 118.12
256 3.71 4.59 7.95 26.73 98.42 155.92 638.80 133.73

HashedNet

512 6.58 7.47 11.13 30.96 107.21 168.30 668.12 142.83
4 0.95 0.95 1.02 1.81 4.09 5.84 21.64 5.19

32 1.21 1.27 1.38 1.94 4.49 6.46 23.00 5.68
64 1.54 1.64 1.70 2.34 4.87 6.86 23.90 6.12

128 2.18 2.22 2.31 3.06 5.72 7.97 27.28 7.25
256 3.57 3.56 3.67 4.43 7.10 9.40 28.35 8.58

ROAST

512 6.70 6.32 6.62 7.29 9.97 12.31 32.04 11.61
Full 0.50 0.48 0.60 1.78 5.89 9.11 35.01 7.62

4 1.00 1.56 1.76 4.81 14.94 23.07 86.76 19.13
32 1.43 1.78 3.29 10.60 38.45 61.64 253.20 52.91
64 2.03 2.63 4.97 18.35 68.28 110.63 450.86 93.96

128 3.18 4.27 7.02 23.54 87.47 139.30 568.72 119.07
256 5.45 6.30 9.71 28.66 100.19 157.55 633.80 134.52

HashedNet

512 10.08 10.94 14.64 34.56 110.71 171.67 672.24 146.41
4 1.00 1.27 1.05 1.86 4.06 5.89 21.71 5.26

32 1.45 1.56 1.52 2.21 4.72 6.69 23.28 5.92
64 2.13 2.02 2.18 2.80 5.34 7.39 24.35 6.60

128 3.26 3.11 3.23 3.95 6.62 8.85 28.22 8.18
256 5.82 5.33 5.45 6.21 8.97 11.15 30.19 10.45

adam

ROAST

512 9.82 9.87 10.14 10.90 13.52 15.82 35.59 15.09
Full 0.44 0.43 0.46 0.90 2.62 3.90 14.68 3.35

4 1.25 0.95 1.70 4.72 14.76 22.96 86.70 19.01
32 0.99 1.23 2.86 10.17 38.10 61.16 252.99 52.50
64 1.16 1.84 4.11 17.51 67.28 109.78 450.34 93.15

128 1.59 2.24 5.28 21.84 85.46 137.54 566.88 117.26
256 2.21 3.00 6.35 25.19 96.91 154.43 630.75 131.26

HashedNet

512 3.42 4.28 8.06 27.91 104.03 164.94 665.29 139.70
4 0.92 0.92 0.98 1.79 3.94 5.82 22.39 5.25

32 0.95 1.00 1.17 1.75 4.28 6.25 22.77 5.45
64 1.62 1.15 1.26 1.92 4.45 6.45 24.01 5.84

128 1.38 1.44 1.52 2.26 4.90 7.25 27.18 6.56
256 2.04 2.10 2.14 2.85 5.53 7.91 26.98 7.08

sgd

ROAST

512 3.56 3.20 3.36 4.18 7.10 9.17 31.20 8.82

Table 11: Total training step time for different shapes of square weight matrix with input batch of 512.
The tile-parameters of multiplication are optimized for each function over "forward + backward" pass
.The measurements are taken with tf32 on A100 (48GB)

19


	Introduction
	Related Work
	Background
	Random Operation Access Specific Tile (ROAST) hashing
	ROAST operations in deep learning
	Global memory sharing (GMS)
	Forward and backward passes
	Implementation of ROAST-MM

	Feature hashing quality: global memory sharing advantage over local memory sharing
	Experimental evaluation
	Conclusion
	Additional Data for Reviewers - parts of which will go in main paper in final version
	Extended table 3 with epoch information and more baselines
	GMS vs LMS for Yelp

	Theory
	Backward pass for model sharing weights across different components
	Global feature hashing vs local feature hashing.

	ROAST-MM latency measurements
	Inference optimization
	Training optimization

	Variance in quality over different runs

