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Abstract

Frontier models today are either trained centrally and available behind paid API’s,
or trained centrally and opensourced. There appears to be the possibility of a third
approach; Protocol Learning, where models are sharded across nodes and trained
within an elastic pool of independently controlled compute consisting of multiple
participants. This setting comes with significant technical challenges, however if
instantiated would significantly alter the landscape of frontier model risk due to both
novel the governance structures introduced and potentially unprecedented scale.
To date, there has been no analysis of either the feasibility of such an approach
or the risks such an approach would introduce. We summarize the prior art and
conclude Protocol Learning may be significantly more feasible than researchers are
currently aware. As decentralization circumvents centralized governance efforts,
we extensively discuss the risks associated and argue that Protocol Learning reduces
rather than increases frontier risk.

1 Introduction

Fundamental modelling advances [39] combined with unprecedented scale have resulted in models
able to perform routine knowledge work to a level beyond the standard human [1, 6, 8]. Current trends
give every indication that increasing scale will continue to increase model performance [15, 28]. Calls
for pauses to this line of research have, to date, been entirely unsuccessful [11]. While continued
increase in model capability seems likely, it is not clear at which point such models gain the ability to
solve certain tasks [33, 40], or if they will at all. Consequently, despite widespread understanding
of the misalignment and misuse risks such models pose, because the front of tasks being solved has
clear economic utility there is an ongoing race to train larger models at larger and larger scale. This is
occurring at enormous cost, with a corresponding expectation of enormous value capture.

A prevailing view is opensource models will provide a counterbalance to the emerging frontier
model oligopoly. This ignores the huge cost of training such models. Releasing the output of a
process that requires hundreds of millions to billions of dollars of cost for free, without constraints, is
unsustainable and will not continue. There is hence clear motivation for decentralized training as it
would reduce the opensource movements dependency on centralized training runs.

2 Decentralized, Centralized and Volunteer Network Computational
Capacity

The scale of centrally controlled compute capacity is perhaps underappreciated; it is enormous today
and growing rapidly. Precise figures are not publicly disclosed however as a single public datapoint,
Meta has announced plans to purchase 350k H100s by year end 2024 [38] - on the order of 350
exaFLOPS at theoretical peak load using TF32 datatype with sparsity feature [27].
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In contrast, the maximum compute capacity achieved by volunteer networks was a temporary peak of
1.2 full-precision exaFLOPS by the Folding at Home Project [20] in March 2020. Over 2 million
devices (1.4M of which were CPU’s) were present in the swarm, triggered by a surge of interest in
projects simulating theoretically druggable protein targets from SARS-CoV-2. In short; volunteer
network capacity peaked at two orders of magnitude below a single centralized actors compute
purchases in a single year.

Compared to volunteer networks and centralized clusters, incentivized decentralized swarms, such as
those assembled for Proof-of-Work (PoW) mining in the Bitcoin [25] and Ethereum [42] protocols
have achieved orders of magnitude larger capacity than any centralized cluster. We measure productive
capacity here in terms of Watts rather than FLOPS in order to make meaningful comparisons (PoW
mining does not involve any floating point operations). 350k H100’s running continually at peak
power draws 0.24 GW (1 GW is the average energy consumption rate of a one-million inhabitant
industrial city). In contrast; Bitcoin PoW mining consumption is estimated at 150± 50 TWh in 2022
[24], or 17.12 GW on average and approximately 0.5% of total worldwide energy consumption. While
these figures are approximate the core fact remains striking; given certain incentives, pooled compute
two orders of magnitude larger than the already enormous largest pools of centrally controlled
compute can, and has, been assembled under a single protocol.

3 Feasibility of Protocol Learning

A common objection to large-scale decentralized training over the internet is that it is infeasible
given the node-node communication speeds are orders of magnitude slower than those required for
frontier model training in centralized clusters. Recent work has challenged this view and proposed
approaches to low-bandwidth training with only minor overhead. The majority of early results are in
the Distributed Data Parallel (DDP) setting [21], with full model replicas per node. Here, rather than
communicating in a specific topology synchronously, nodes are allowed to drift, and communicate
with neighbors via gossip protocols [3, 5] or similar. Convergence guarantees can still be obtained in
this setting [22, 23] even with the communication graph altering during training [19, 35].

Decentralized training with heterogeneous devices and low bandwidth connections has also been
demonstrated, but constrained to small models. Moshpit-SGD [31] introduces an approach that
is both communication efficient and scales well with heterogeneous compute and communication
bandwidth. Diskin et al. [9] perform a real run, over 200 MB/s interconnects, using devices with
a range of capabilities on a dynamic swarm to train a 72.5M parameter ALBERT-xlarge variant.
Ryabinin et al. [32] practically demonstrating the training of a 1B parameter LLM on T4 GPU’s
with 500 MB/s interconnects, achieving roughly 20% throughput overhead to centralized training,
maintaining very high accelerator utilization, and also possessing basic fault tolerance. This is
achieved with redundancy within each pipeline stage, dynamic routing between each stage, and the
assumption of good actors. Learning@Home [30] propose the Decentralized MoE architecture and
an asynchronous training scheme in order to achieve communication efficiency over heterogeneous
nodes. Such an approach can theoretically scale to very large parameter sizes but has not been
practically demonstrated beyond 257M, and while node failures are handled, byzantine nodes are not.

As noted in Sec. 2, decentralized training has the ability to assemble several orders of magnitude
larger compute capacity than any centralized actor and consequently the ability to train models orders
of magnitude larger than any today. It is our view that in order to achieve this scale (i.e. for the system
to obtain the underlying compute and data required to train state of the art models), decentralized
training must be directly incentivized. We term decentralized training, when combined with explicit
incentives, Protocol Learning. There are many approaches to incentivization, however fractional
ownership allocated proportional to the training contribution is appealing as it both directly aligns
incentives and results in a self-contained system. As there is real cost to contributing (the cost of
compute), trainers will not contribute to models that are not high expected utility (or if they do, it
will be with the understanding they will make no return). This in turn creates market forces that
push contributors towards development of the highest utility models for the lowest cost, not only in
algorithm and learning design but also in hardware setup and location (due to energy prices, operating
costs, etc.). However, such an approach also introduces novel risks.

2



4 Decentralized Frontier Risk

As noted in Sec. 2, incentivized protocols have the ability to assemble several orders of magnitude
larger compute capacity than any centralized actor. It is our view that there are a range of approaches
able to combine incentivization with the rapidly advancing progress in decentralized training, to
facilitate training runs larger than current frontier models. This would result in a new class of models,
which would alter the landscape of fronteir risk.

Standard (Centralized) Frontier Risk assumes a single actor trains, owns and distributes the model,
and focuses on two main themes separated along an axis of base model capability; misalignment
[17], and misuse [7]. Common misuse risk categories include; cybersecurity [4], persuasion [12]
and chemical and biological threats [37], and are feasible with models today or are predicted to be
feasible in the short term future. Misalignment risks largely revolve around more capable models,
that have achieved some level of autonomy [41]. While there is a large emerging body of work on
frontier risk to date no analysis of Decentralized Frontier Risk (DFR) has been carried out. DFR
specially focuses on frontier models trained in a decentralized manner with decentralized governance.
Implicit in this definition is that incentives are present; we argue in Sec. 2 incentives are required to
reach the scale possible to train a frontier model in the decentralized setting. We discuss only portions
of the AI risk landscape that are altered by decentralized models, and note many of the problems
raised in the safety literature remain applicable to decentralized models.

4.1 Concentration of Power at the Organization Level

Frontier model value is becoming increasingly apparent. Such models are likely to form a base
dependency for a large potion of software due to their improved generality and capability over all
previous systems. Consider, for example, the ‘AI tutor’ scenario, where frontier models are adopted
within most levels of education to assist students learning. This is already occurring [43] and appears
to be a major short term application. While clearly beneficial over a textbook for queries such as
‘can you explain integration by parts?’ due to ability to be interactive, contextual and personalized,
such systems would directly mold the worldview of students when answering questions such as ‘how
does an oligopoly form? Are oligopolies a bad thing?’. Differently to traditional learning where
worldviews are shaped by various competing sources, opinions and individuals, if AI tutors become
ubiquitous, and are powered by a small number of base models, worldviews would largely be shaped
by a single source. Furthermore, in the current scenario, the design of this source would not be public
(see Sec. 4.3).

4.2 Concentration of Power at the State Level, Geopolitical Risk and Rates of Progress

Polarization of capability will also occur at the state level. As models continue to grow and costs
increase, it will not be possible for smaller developed nations to train their own frontier models (see
Sec. 2), and as a consequence they will be relegated to model consumers, with only soft influence on
their design and behaviour. This is a problem for such countries because ubiquitous frontier model
use will likely have direct cultural impact. In the centralized case the only path to model ownership
for such countries is for training costs to decrease and scaling to no longer result in meaningful
model improvements. In contrast decentralized training potentially allows such governments, and
the citizens of such governments to contribute their compute to various base models and participate
directly in partial ownership and design decisions, without the need for massive capital outlay and
infrastructure buildup required for standalone model development.

Consider also the impact of regulation when ability to train is highly skewed at the state level but use
is not. Significant efforts are underway to regulate the capabilities made available in both centralized
[10] and opensource [13] FM development. As FM development is currently centered solely within
the largest countries, the governments and regulatory bodies of those countries supersede the control
of the organizations creating the models, and hence can implement such regulation. This is perhaps
reasonable [26] for the country in which the model was developed, however for model users in other
countries (which will be the majority of users), such governance was not chosen.
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4.3 Lack of Transparency and Poisoned Model Risk

In the current scenario, training recipes, data mixes, architectures and other design decisions are
closely guarded trade secrets and are not released to model users. Users are able to evaluate the
immediate obvious utility of the model but have no grantees around fine-grained behaviour in specific
scenarios. It is likely then for use to accrue to the most broadly accurate and useful model, even if
this model contains unacceptable or dangerous behaviour in specific areas injected either maliciously
via model poisoning techniques [16], or are emergent and undetected. In the decentralized scenario,
model design is public, the data mix is know, algorithms are known and any alterations are known,
allowing informed analysis and use and removing this entire risk category.

4.4 The No Off Problem

We view this as the core risk introduced by Protocol Learning. The existential threat/rouge AI risk
[14] scenario may seem speculative however it has received serious recent concern and study [2, 34].
In a centralized scenario, servers can be unpowered and datacenters can be isolated at the direction
of a small number of individuals. In a decentralized scenario, as long as some portion of the swarm
sufficient to support the model size remains online, the underlying model continues to operate. In a
scenario where the model has achieved a level of performance able to influence human actors (note
this does not require self-awareness or agency) and either alignment techniques have failed, trainers
have specifically designed it to do so, or for some other reason, the model can continue to attract
compute into the swarm. Consequently it is significantly more difficult to stop an unaligned AGI in
this scenario; all participants must agree to pull compute from the network within a short time-frame.

Particular to Protocol Models is that this problem is exacerbated by any incentive structure where
returns are tied to model performance; such a model will almost certainly be perceived to have high
utility and hence, swarm participants will expect to receive large returns when contributing to training.
All participants must then pass up on expected returns in order to stop model operation. Not only
must existing trainers pull their contribution from the swarm, but new participants must also not join
and take up the positive return that would be expected from contributing to a high utility model.

The magnitude of this problem is dependent of the form of work verification implemented within the
protocol supporting incentivized decentralized training. If game-theoretic verification is implemented
the no-off problem is reduced; if a large run is deemed by external actors to be dangerous, it would
be possible to spend large amounts to derail the training run by repeatedly joining the run and
contributing bad gradients. Such model derailment attacks would cost the attacker significantly (more
than the cost incurred by legitimate trainers) and would gain them no economic utility other than
preventing the run; however in some situations this could be seen as rational. However if exact work
verification is developed with low overhead, such attacks no longer become possible and there are
almost no ways for external actors to stop or pause a model running within the swarm aside from
disrupting the run at the physical layer. We hence view the no-off problem as the most significant –
albeit long term – risk of Protocol learning.[18, 29, 36].

If the game-theoretic verification is implemented the no-off problem is reduced; if a large run is
deemed by external actors to be dangerous, it would be possible to spend large amounts to derail the
training run by repeatedly joining the run and contributing bad gradients. Such model derailment
attacks would cost the attacker significantly (more than the cost incurred by legitimate trainers) and
would gain them no economic utility other than preventing the run; however in some situations this
could be seen as rational. However if exact work verification is developed with low overhead, such
attacks no longer become possible and there are almost no ways for external actors to stop or pause a
model running within the swarm aside from disrupting the run at the physical layer.

5 Conclusion

Many of the required components for Protocol Learning have already been produced, but remain to
be assembled within a single system and demonstrated at frontier model scale. When combined with
explicit incentives, there is a realistic path towards training orders of magnitude larger models than
exist today. Such systems would introduce novel risk categories and alter the overall risk landscape
of frontier model development significantly. We argue such systems reduce Frontier Risk, and more
fairly democratize Frontier Model access.
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