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ABSTRACT

Machine unlearning is studied for a multitude of tasks, but specialization of un-
learning methods to particular tasks has made their systematic comparison chal-
lenging. To address this issue, we propose a conceptual space to characterize di-
verse corrupted data unlearning tasks in vision classifiers. This space is described
by two dimensions, the discovery rate (the fraction of the corrupted data that are
known at unlearning time) and the statistical regularity of the corrupted data (from
random exemplars to shared concepts). Methods proposed previously have been
targeted at portions of this space and, as we show, fail predictably outside these
regions. We propose Redirection for Erasing Memory (REM), whose key feature
is that corrupted data are redirected to dedicated neurons introduced at unlearn-
ing time and then discarded or deactivated to suppress the influence of corrupted
data. REM performs strongly across the space of tasks, in contrast to prior SOTA
methods that fail outside the regions for which they were designed.

1 INTRODUCTION

Unlearning is the problem of removing the effect of a subset of training data from a trained model
(Nguyen et al} 2022)). In this work, we consider a scenario where after having already trained a
model on a dataset, we discover that a subset of the training data was accidentally mislabelled, low
quality, or manipulated by an attacker, causing the model to make mistakes or exhibit unwanted
behaviours. The goal of unlearning (UL) is to post-process the trained model to efficiently remove
(the effect of) that corrupted data in order to restore the correct predictions and behaviours.

While the problem of unlearning has attracted significant attention (Triantafillou et al., | 2024; [Hayes
et al.| [2024; |Goel et al., 2024)), and a plethora of methods have been proposed, there is still a lack of
scientific understanding of the behaviours of these methods on different types of UL tasks, with only
early work in this direction (Zhao et al.||2024;|Goel et al.,[2024). This lack of an understanding when
established unlearning methods fail or succeed is a fundamental blind spot as it hinders research
progress and can lead to unpredictable failure in practice, as shown in this work.

To address this, our first contribution is a taxonomy of tasks for unlearning corrupted data shown in
Fig.[T} Our taxonomy is based on the identification of two dimensions along which the behaviours
of unlearning algorithms differ substantially. The first is the discovery rate, the fraction of corrupted
data that have been identified and can be utilized by the unlearning algorithm to remove the effect
of corruptions. [Goel et al| (2024) previously studied the effect of discovery rates on unlearning
performance, finding that performance of algorithms developed for the full discovery case drops
off suddenly as the discovery rate is lowered continuously. We take this study a step further by
identifying a second dimension that affects performance significantly, both on its own and through
interaction with the discovery rate. The second dimension is the statistical regularity of the cor-
rupted data, tracing a spectrum from “spurious” corruptions (such as random mislabeling), towards
structured corruptions that systematically affect related data points (such as a poison trigger that
redirects all images on which it appears to a pre-specified class label). Our key finding is that, in
our 2D space of tasks, different state-of-the-art (SOTA) methods succeed in different slices, but each
fails predictably and catastrophically everywhere else. These methods are therefore risky to use in
practice when the task specification is not known.
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Figure 1: We present a new taxonomy of unlearning tasks in terms of two dimensions: the regularity
and the discovery rate of the corrupted data we wish to unlearn. The highlighted areas in (a) show
tasks studied in prior work. Subplots (b-e) show an aggregate metric of unlearning performance
(see Section|2|) of methods for different discovery rates >0% (x-axis) and regularities (y-axis), in-
stantiated via the benchmarks of [2024). Darker color is better. Prior methods succeed
only in slices of this 2D space, mainly failing along the regularity axis. Representative prior work:

[A] Maini et al.| (2023)), [B] [Schoept et al.|(2024b)), [C] |Chundawat et al.| (2023)); [Kurmanj1 et al.
(2023), [D]|Goel et al|(2024), [E][Zhao et al|(2024)); [Foster et al.| (2024]); [Chundawat et al.|(2023));

Kurmanji et al|(2023)), [F]{Chundawat et al | (2023); |[Kurmanji et al { (2023

To address the need for a universal method for unlearning corrupted data that covers the 2D space,
we present our second contribution: Redirection for Erasing Memory (REM), a new unlearning al-
gorithm that is the first to perform strongly across our task space. REM employs a novel mechanism,
inspired by the memorization mitigation method Example-Tied Dropout (ETD) (Maini et al., [2023),
to redirect the corruption to a dedicated part of the network (newly initialized capacity added to the
model by REM) that can then be conveniently dropped off or deactivated to unlearn even undiscov-
ered corrupted data of any regularity. We benchmark REM against SOTA unlearning methods as
well as ETD on low, medium, and high regularity unlearning tasks for discovery rates ranging from
10% to 100%. Experimental results on CIFAR10 (Krizhevsky et al [2009) and Street View House
Numbers (SVHN) with ResNet-9 (He et al., and Vision Transformer
(ViT) (Dosovitskiy et al.,[2021)) as well as different optimizers show that REM is the only method
to perform well or equally well across the entire 2D space.

2 PROBLEM DEFINITION AND BACKGROUND

Machine unlearning applications range from privacy protection of individuals 2021
[Sekhari et al} 2021} [Hayes et al.l 2024) to correcting errors in the model due to corrupted training

data (Goel et al.} 2022; [Kurmanyji et al.| 2023} [Goel et all, 2024), each of which has different goals
and evaluation metrics. In this work, we focus on unlearning corrupted data for classification tasks.
Practical examples of corrupted data can range from simple data entry errors (Tanno et al., 2022}

Schoepf et al ., [20244) to large scale data poisoning attacks (Carlini et al.}[2024}; [Zhang et al., [2024b).

Problem definition. Let D, denote a training dataset, and Dy a held-out dataset of the same
distribution. Further, let A denote a training algorithm, and §# = A(D) the weights of a neural
network that are learned by applying .4 on D. We consider scenarios where some training data
D, C Dy is corrupted. Let Dy C D, denote the forget set comprised of corrupted data discovered
after training. We refer to the rest of the training data, Dy \ Dy = D; as the retain set. This
formulation reduces to the most commonly-studied variation of unlearning when Df = D; i.e. the
full set of data that we wish to unlearn is provided in the forget set. In that case, a straightforward but
computationally expensive solution is to retrain from scratch to obtain a new model 6,. = A(D;) that
is not affected by corrupted data. For “partial discovery”, defined as Dy C D, .. is not a solution
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since undiscovered corrupted data D, \ Dy = Dyndiscovered 18 part of Dy, so re-training on it does not
eliminate the corruptions (Goel et al.,[2024). The problem we are interested in is to design a (A,
U) pair of a learning algorithm A and post-processing (unlearning) algorithm ¢/ such that, when a
forget set Dy is identified, U can efficiently post-process the trained model 6, = A(Dy) to yield
an unlearned model 0,, = U(0,, D) that does not suffer from failure modes caused by D, while
having high utility. Note that some choices of .A may facilitate the success of U to post-process for
unlearning. We assume for simplicity that I/ can access Dy, as is common in the literature.

Memorization and statistical regularities. Feldman|(2020)) refers to an example x as being “mem-
orized” by a learning algorithm A in a training set Dy if, in expectation, models obtained through
recipe A(Dy,) are much more likely to make correct predictions on x compared to models obtained
through recipe A (D, \ x). Intuitively, = is memorized if it is required in Dy, to be correctly predicted.
This will be the case for atypical / irregular examples (Feldman & Zhang, 2020), whereas typical /
regular examples that are similar to many others in the dataset may be predicted correctly simply due
to generalization (i.e. being learned through other samples), without having to be part of the training
set. Similarly, Jiang et al.|(2020) define a consistency score of an example x to measure its statistical
regularity via the expected accuracy on that example under models obtained by training on different
subsets of D, that exclude x. Building upon this notion, we identify the statistical regularity of the
corrupted data as a key factor influencing behaviours of unlearning algorithms.

Example-Tied Dropout (ETD) is a training recipe proposed by Maini et al.| (2023) that separates
model parameters into those that intend to capture “generalizable information” that is shared be-
tween many data points, and those that intend to “memorize” information that is specific to one or
a few data points. This separation is made within every layer of a neural network. During training,
the computational paths of all data points pass through all of the generalization neurons (that is, the
generalization neurons are never dropped out), but when it comes to the memorization partition,
each example only passes through its dedicated path, based on an example-tied dropout mask that is
randomly determined ahead of training and then fixed. This allows different pathways in the mem-
orization partition to be “owned” by different examples, enabling those examples to encode their
potential irregularities in their dedicated paths. On the other hand, example-specific irregularities
won’t be as easily encoded in the generalization neurons, since those are shared by all examples. At
inference time, the memorization neurons are dropped out, reducing or eliminating example-specific
information. A similar approach has also been applied by |Ghosal et al.| (2025)) to prevent verbatim
memorization in LLMs. We propose to leverage ETD as an UL algorithm, which can be seen as
setting A to be ETD training followed by dropping out all memorization neurons post training, and
setting I/ a no-op.

3 RELATED WORK

Unlearning methods. We build upon the benchmarking selection of |Goel et al.|(2024)) to cover dif-
ferent state-of-the art approaches to unlearning and extend it with recent advances and overlooked
baselines. |Goel et al.|(2024) included Bad Teacher (BadT) (Chundawat et al., 2023)), SCRUB (Kur-
manji et al., |2023), Selective Synaptic (SSD) (Foster et al., 2024), fine-tuning, and retraining from
scratch. BadT randomizes labels on Dy by distilling from a randomly initialized network to induce
forgetting and distilling the remainder of the samples D, \ D;r. SCRUB alternates between a step
of distillation away from the original model on Dy and a step towards the original model on D,
for model utility preservation on the remaining data. SSD determines disproportionately important
parameters for Dy compared to D in the model via the Fisher Information Matrix and dampens
these parameters to induce unlearning. We replace SSD in our benchmarks with Potion (Schoepf
et al.l 2024b) which builds upon SSD and is the SOTA in poison unlearning as defined by |Goel
et al.| (2024) (see Fig.[I). Potion iteratively increases the number of parameters in the model that it
modifies analogously to SSD until unlearning of the poison trigger occurs. Potion stops unlearning
as soon as it detects that the accuracy of the model on the forget set drops below a preset threshold,
indicating that the poison has been unlearned. Fine-tuning continues to train the model on only D,
relying on catastrophic forgetting to remove Dy. Retraining from scratch trains a new model using
only Dy, \ Dy. Ascent performs gradient ascent on Dy. NPO (Zhang et al.| [20244) is an alignment-
inspired loss function for unlearning that overcomes the catastrophic collapses of Gradient Ascent.
This is achieved via a reference-model based loss calculation.
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Investigation of unlearning limitations. |Goel et al.[(2024) studies the effect of partial discovery
on unlearning method effectiveness as shown in Fig.|l| For unlearning poisoned data, they demon-
strate that all methods apart from Foster et al. (2024) fail to remove the effect of the poison when
only a subset of the poisoned examples is given (partial discovery). They also consider another
setup, inter-class confusion, where samples from two classes are swapped with each other, where
no method shows satisfactory performance in the partial discovery case. [Zhao et al.|(2024) iden-
tify interpretable characteristics of forget sets that substantially affect the difficulty of the problem,
but they don’t consider the statistical regularity of the forget set in their investigation. Rezaei et al.
(2025) show that standard unlearning methods designed for erasing knowledge may fail at restoring
knowledge present prior to corruption. This relates to our metrics of healing, where we are interested
in redirection to the correct label, rather than just avoiding predicting the incorrect (e.g. poisoned)
label. However, their investigation is in the context of LLMs and they don’t establish a distinction
between tasks of different discovery rates or regularities.

4 TAXONOMY OF UNLEARNING TASKS AND METHOD LIMITATIONS

Taxonomy. Our first contribution is to propose a new taxonomy of unlearning tasks according to
two dimensions: the discovery rate and the statistical regularity of the corrupted data that we wish
to unlearn. The discovery-rate dimension was previously discussed and empirically investigated in
Goel et al.| (2024) but is insufficient to explain model failures, as methods such as Potion (Schoepf
et al.,|2024b) excel at some low discovery tasks but then fail at other full-discovery tasks. We further
identify regularity as a key dimension that affects the behaviour of unlearning algorithms both on
its own and in conjunction with the discovery rate. Our key observation is that, as shown in Fig.
each prior method may excel on a slice of our 2D space of unlearning tasks but fails catastrophically
everywhere else. We discuss the limitations of different algorithms below.

Discovery rate. Unlearning methods that are designed for the traditional unlearning setting of full
discovery fail catastrophically for lower discovery percentages as described by |Goel et al.| (2024).
Retraining from scratch and unlearning methods that utilize the retain set, e.g. SCRUB, fail due to
requiring a clean retain set for utility preservation, but in the partial discovery case, the retain set
is contaminated and thus leads to reintroduction of corruptions (see Fig.[I] (b, e)). Methods such as
Potion and SSD that only use Dy cause significant model utility damage due to the missing repair
step on D, (Goel et al.| 2024; Foster et al., [ 2024)).

Regularity refers to the self-similarity of the corrupted data D,. Informally, we say that a corruption
has low regularity if the corrupted data does not share any structure or common patterns. For exam-
ple, a random mislabelling of a randomly-chosen subset of examples is a low-regularity corruption
because the self-similarity between samples that end up with the same label change is low. On the
other hand, a poisoning attack that introduces a trigger to each image whose label it wants to redi-
rect results in a high-regularity corruption since all corrupted images share the visual pattern of the
poison trigger and are all labeled in the same way. In the context of the commonly studied problem
of full discovery unlearning, class unlearning (Golatkar et al.,|2020) and random subset unlearning
(Chundawat et al., 2023) are high and low regularity tasks, respectively. Several measures could be
used to formalize regularity. We advocate for the consistency score (C-score) of [Jiang et al.| (2020),
that measures the expected accuracy of a model on held-out samples from the training set. Their
precomputed CIFAR10 scores align with the regularity rankings of our tasks (see Fig. 13 in Jiang
et al.| (2020)). Adapted to D, C-scores can be computed with n = 0, 1, ...|D.| for instances x and
labels y, where [E” is empirical averaging over r samples (Jiang et al., 2020):

Cp,(2,9) = Ea[E], ) [P(f(2; D\{(z,9)}) = )]]- )

Failure along the regularity dimension for ETD is shown in Fig.[T|(d), where ETD succeeds at lower
regularity tasks but fails at high regularity tasks. This is because information from regular sam-
ples, by design, reside in the generalization neurons of ETD, while low-regularity information (e.g.
example-specific peculiarities) is encoded in the memorization neurons that are dropped to induce
forgetting. On the flip side, the Potion method excels at unlearning high regularity poisoned data,
which is what it was designed for. However, it fails catastrophically at lower regularity unlearning
tasks. This is because Potion is built on the assumption that the data that we wish to unlearn resides
in a concentrated (small) set of locations in the network; a hypothesis that is likely to hold for high
regularity data (e.g. some specific neurons may be disproportionately responsible for encoding the
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Figure 2: REM performs the following steps: (i) Expand the network with randomly-initialized
parameters 6,,,; (ii) Remove the corruptions out of 6,, with a SOTA unlearning algorithm on 6, that
does not use D;, avoiding reintroduction in 6,,, but at the expense of utility; (iii) Repair utility by
fine-tuning 6,, with Dy, using a novel Redirection strategy to steer any reintroduction of corruptions
caused by the inclusion of D; to the add-on parameters 6,,; (iv) Drop out §,,.

poison trigger) but is unlikely to hold for low regularity, where the corrupted data share no charac-
teristics, making it unlikely for them to be stored in similar locations. Gradient Ascent (Fig. |I| )
also performs poorly at lower regularity tasks compared to high regularity tasks. We hypothesize
that this is because the information of low regularity tasks is spread across a wider set of parameters,
making it harder to erase without overly damaging the model utility using Gradient Ascent.

Interplay between regularity and discovery. As discussed before, traditional unlearning methods
for full discovery are often based on fine-tuning on the retain set. For partial discovery, this is
problematic as the retain set contains undiscovered corrupted data that are (re)introduced during
fine-tuning (or retraining). However, interestingly, the degree of this (re)introduction from the partial
set of corrupted data that lives in the retain set is a function of the regularity, with highly regular
corruptions leading to amplification of this reintroduction. This is because for regular data, the
presence of a few instances in the retain set suffice to (re)introduce the general shared pattern. For
instance, the association that the poison trigger should redirect to a specific output is one that can be
learned from a few poisoned examples, allowing the model to then predict the same output for other
poisoned data that have the same trigger, without those being in the retain set, due to generalization.
On the other hand, contamination of the retain set by low regularity corrupted data will lead to
learning (or reinforcing) incorrect labels on that data but the damage won’t spread beyond those
specific examples. This is why, for partial discovery, retraining on D, (Fig. [I(b)) suffers more
pronounced and sudden drops the higher the regularity.

Experimental setup. We evaluate tasks of low, medium, and high regularity with ten discovery
rates for each task (10%-100%). Low regularity is represented by random label swaps of n samples
to an incorrect label (Maini et al., [2023). In this setting, there is no regularity linking the samples or
the new labels together. Medium regularity uses the inter-class confusion setup of (Goel et al.|(2022)
where n samples of two classes are swapped with each other. The highest regularity task uses a
poison trigger to redirect to class 0 as defined by |Goel et al.| (2024). We measure the accuracy of
6., on two types of data: (i) corrupted data (using the clean labels to compute accuracy), and (ii)
non-corrupted data. The former is used to measure “healing”, i.e. whether the label prediction has
been “redirected” to the correct label, while the latter is used to measure “utility”, i.e. ability to
predict correctly on non-corrupted data. We perform experiments on an A100 (40GB) GPU with
ResNet-9 (He et al.,2016) and Vision Transformer (ViT) (Dosovitskiy et al.|[2021]) models, stochas-
tic gradient descent (SGD) and Adam (Kingma & Bal, 2014) optimizers, and CIFAR10 (Krizhevsky
et al.|[2009) and Street View House Numbers (SVHN) (Netzer et al.,2011) to show generalizability
across models, optimizers and datasets.

5 REDIRECTION FOR ERASING MEMORY (REM)

We now introduce our core contribution, Redirection for Erasing Memory (REM), the first unlearning
method that is performant across our 2D space spanning different regularities and discovery rates,
without requiring specialized hyperparameter tuning for each region. The design of REM is based on
the lessons discussed in the previous section: (i) In the setting of partial discovery, finetuning on D;
causes reinforcing or reintroducing corruption (especially for high-regularity corruptions), but not
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Algorithm 1 Redirection for Erasing Memory (REM)

Require: Training dataset D, and forget set Dy C Dy, Learning rate €, total epochs max epochs
Require: Dr removal stop condition: Acc(Dy) < 7
Step 1: Add additional capacity 6,2 to the existing model 6, for redirection
while current epoch < max epochs do
Step 2: Remove Dy from the 0,; part of model
while Acc(Dy) > v do
2.1 Compute loss ‘CremOVﬁeol (Dr) using only the 6,; part of the model (see Eq.
2.2 Update 6,1 model part with loss Lgepr = £removegﬂl

end while
Step 3: 6,1 model utility repair and D, redirection into 6,5
3.1 Compute 1oss Liegirect using the 6,1 U 6,2 model with Dy, where all Dy C Dy, samples
are assigned the same mask for redirection in 6,9; remaining samples use random masks
3.2 Compute Eremo\,3901 (Dy) using only the 6,; part of the model (see EremoveSOI in Eq.
3.3 Update model with the combined loss Lgep3 = EredirectGOI ooy £r5m0V6901 shown in Eq. EI
end while
Step 4: Discard additional capacity 6,2 to keep only 6,; as the unlearned model.

using D; at all would lead to low model utility; (ii) ETD can eliminate the effect of low-regularity
corruptions by simply dropping out the memorization partition, but this operation will not remove
the effect of high-regularity corruptions, as those are encoded in the generalization partition.

Overview. REM’s key innovations are as follows. First, instead of avoiding the use of D, (which
would lead to low utility), REM accepts that undiscovered corrupted samples in D, will unavoidably
re-introduce corruptions but it employs a novel mechanism to redirect them to a dedicated part of
the model at unlearning time that can then be dropped or deactivated. Second, the above is achieved
through the design of a novel unlearning objective using a new loss and masking strategy.

Let 0,, = A(D,) denote the parameters of the original model, trained using A on Dy;. Unlike ETD,
REM’s choice of A can be any standard training procedure. REM then applies a post-processing
U on top of 6,, to unlearn corrupted data by redirecting the effect of corruptions to newly-added
parameters 6, that are then dropped. We emphasize that, while this design draws inspiration from
ETD, it is a fundamentally distinct methodology: while ETD attempts at training time to partition the
network into generalization and memorization, REM attempts at post-processing time to partition the
network into parameters that are unaffected by the corruptions and ones that capture all corruptions.
Furthermore, REM adopts a unique masking strategy to capture high regularity corruptions that
cannot be captured by ETD. We detail each REM step from Fig. [2]below and in Alg|[T]

Expand. As a first step, REM expands the network with additional capacity, initialized randomly.
These new parameters, denoted as 6,,, can be seen as a placeholder at initialization, to which REM
will attempt to redirect the corrupted data, as discussed in a later step. While REM allows complete
freedom in the architectural design of 6,, and 6,,, we adopt a simple approach here that enables a
direct comparison with ETD: we expand the number of channels in each convolutional layer. The
structure and capacity of each of 8,, and 6, correspond directly to that of ETD’s generalization and
memorization parts. However in REM, 6, is obtained by standard training (so it doesn’t capture
only “generalization”), while 6,, is a randomly-initialized expansion added at postprocessing time.

Remove corruptions from 6, (step 2 of the pseudocode). We achieve this via Negative Prefer-
ence Optimization (NPO) (Zhang et al., 2024a), a SOTA unlearning method in the NLP domain
which we translate to our classification problem. NPO is chosen over Potion and Gradient Ascent,
the other UL methods available that do not utilize D;, because Potion destroys model utility to an
unrecoverable level at lower regularity tasks (see Fig.[1|(c)) and NPO has demonstrated better per-
formance restoring or healing knowledge, as opposed to removing knowledge in the NLP domain
(Rezaei et al., [2025)), which is closely related to our goal of healing corrupted data. As research
progresses, better UL methods that do not utilize D; can replace NPO to boost REM performance
further. NPO, adapted to classification by using the cross-entropy loss Lcg = — Zle yelog(ge) ,
is shown as EremoveQOI in Eq. EI and used in step 2 of Alg. E} Note that independence from the retain

6
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set during this step is essential to avoid reintroduction of corruptions in 6,,. The downside of this is
utility degradation which we address in the next step. The stop condition in Alg. [I]is adapted from
Schoepf et al.|(2024b)), which shows that unlearning does not take effect gradually but suddenly as
forgetting occurs. The parameter ~y, as shown in Schoepf et al.|(2024b)), is not highly sensitive and
should be chosen higher than random chance but lower than model utility.

Repair utility and redirect corruptions into 6,, instead of relearning in 6,,. At this point, we
have removed the effect of corruptions from 6,, at the expense of utility, via having unlearned on
0,, using an algorithm that doesn’t use D,. We now aim to restore utility using D;,. This operation
is risky since, for partial discovery, D, contains undiscovered corrupted data. We therefore design a
loss function for this step that can benefit from the clean data of D, while attempting to redirect the
corrupted data of D, into 6,,, which will then be discarded.

To that end, we design a masking strategy for 6,, analogously to ETD’s masking strategy in its
memorization partition. In particular, every example in Dy will receive its own mask in 6,,, which
is randomly determined. On the other hand, all examples in Dy are assigned the same (randomly-
determined) mask as each other. Then, directly analogously to ETD, all examples pass through all
of §,, but each example will only pass through its assigned path in 6,, based on its mask. The intent
is that forcing all forget set examples to share the same mask will cause the resulting path in 6,,
to strongly learn the corruptions, turning into a “channel” for corrupted data. Utilizing the same
mask for all corrupted samples intuitively seems like a problem, as the model may learn general-
ized knowledge in the added capacity when a neuron is present in multiple masks of samples that
share generalizable knowledge. Specifically, when the added capacity is dropped, this generalized
knowledge will be lost and model utility drops. This can indeed be true if the masking strategy is
active from the start of training. However, in the post-hoc unlearning setting of REM, the model is
already trained. Existing generalization will not switch over to the added capacity mask, as the path
of least resistance is to reuse the already present neurons in the model that contain this information.
We therefore first need to remove the existing information from these neurons (the Remove step of
REM) to be able to redirect them. Because we had already unlearned corrupted data from 6,, in the
previous step (a property which we reinforce further by adding NPO to the objective of this step),
we are able to direct the corrupted data of the forget set to this channel in 6,,.

At the same time as the redirection of corruptions, clean retain set examples can repair utility through
fine-tuning 6,, which is kept clean from corruptions due to the previous removing step and the
continued application of NPO on 6,, (Alg. 1 step 3.2). The combined loss (Alg. 1 step 3.3) is
shown with o as the sigmoid function:

2 ECEso Ubo (Dlr) 2 Lcg (Df)
s = ~Elogo [ —Blog [ —=rerer T ) ) _ ZRiggq (—Blog [ 220 ) ) (o
L g o8e ( Blog < LcE,.;(Du) >> B Oga( Blog (ﬁcmf (Df)>> @

L

; Lremove
redu‘eclgol UGOQ 901

The reference models (“ref”) correspond to the initialization of the respective weights (both 6,,
and 6,, in the first term; only 6,, in the second). This formulation is similar to Direct Preference
Optimization (DPO) (Rafailov et al.,[2023) with the key difference that we perform each part on a
different model (i.e. a different set of parameters active and an example-dependent forward pass).

REM on ETD. While it’s not necessary, REM can be applied over an ETD-trained model. In that
case, we don’t need to expand the network further; we directly use ETD’s memorization partition for
redirecting the corruptions, and ETD’s existing masks for the examples in D; (assigning a new one
for examples in Dy). All other steps of REM then proceed as usual. We evaluate this variation empir-
ically too, finding that it boosts performance on low regularity and low discovery over plain REM,
but this comes at a cost of some utility loss caused by the ETD training scheme (see appendix Fig. [§]
for a comparison of the utility of pretrained models with and without ETD at different capacities).

6 RESULTS & DISCUSSION

REM represents a leap in coverage of the 2D space compared to previous methods as seen in Fig[T]
setting a new SOTA. Unlike prior methods, REM does not exhibit a sudden breakdown along any of
the framework dimensions and therefore presents itself as a safe choice for use in practice. All REM
results use the same hyperparameters, showing generalizability across models, datasets and tasks.
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Figure 3: Comparison of UL methods on two model capacity levels using ResNet-9 & CIFAR10
with 1000 corrupted samples, three regularity levels and 10 discovery rates (10%-100%). REM
(IDEAL) provides and upper limit with perfect knowledge of manipulated samples for mask assign-
ment. ETD and REM are not reported for 100% capacity as reserve capacity is needed for 6, of the
model. Error bars reflect £1 SEM.
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Figure 4: Comparison of REM applied to a model trained with/without ETD. The performance of
the model before applying REM is shown in the 0.0 discovery column. (b) shows that ETD provides
an uplift in lower discovery rates for lower regularity tasks (y-axis) but comes at the cost of overall
model utility (see Tab. E[) which harms the higher regularity and higher discovery rate performance.

Metrics. “Healed” computes the clean (i.e. uncorrupted label) accuracy on the corrupted D, inputs.
Utility computes the accuracy on a clean test set without any corruptions. Utility x Healed provides
a multiplicative score, where higher is better, to ensure that the method not only removes the cor-

rupted data but also retains model utility, analogous to (2024). Figs. [1] (b-g) are shaded
using this aggregate metric. Reported errors reflect £1 standard error of the mean (SEM).

Method comparison. Fig. [T] shows that REM is the only method that performs strongly on all
regions of our 2D space. We additionally provide aggregate numerical scores in Fig. [3] that are
computed as the average of the Utility x Healed metric across runs for all discovery rates and
regularities. We make the following observations. For all methods, the score increase for the 50%
capacity model over the 100% model is due to less memorization of lower regularity corruptions due
to less overparameterization. We observe that ETD significantly outperforms the approach of simply
training a smaller original model (“no UL” in Fig. [3). In fact, we find that ETD alone is a strong
baseline that was not previously considered. It outperforms prior unlearning methods in terms of
the aggregate scores, due to the effectiveness of memorization mitigation on lower regularity tasks.
Further, as also discussed by |Goel et al.| (2024), retraining a model from scratch is not the gold
standard for partial discovery tasks as the undiscovered corruption is reintroduced into the model,
leading to poor performance. Potion does not perform well on this aggregate metric due to failure
on the lower regularity tasks. A surprising discovery is that the simple baseline of Gradient Ascent
beats many other methods on our 2D space in terms of aggregate score. This is a surprising as this
baseline was believed to be weak and was even omitted from prior comparisons 2024).
However, we note that Ascent fails across entire slices of the 2D space as shown in Fig. [I] which is
hidden in the aggregation but may be problematic in practice. REM outperforms all prior metrics
and even comes close to REM (IDEAL), an upper bound that has knowledge of all corrupted data
when forming masks at unlearning time.

Unlearning on an ETD model. Tab. [T]shows that REM is the best performing method when used
either with or without ETD training. The choice of whether to use ETD pretraining leads to a
trade-off, as shown in Fig. @} ETD improves performance on the lower regularity tasks but its
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Table 1: Aggregate results of methods on CIFAR10 with ResNet-9 and ViT with SVHN (50% capac-
ity each) and 1000 corrupted samples with 10 discovery rate levels (10%-100%) and 3 regularities.
Presented in descending order of Utility x Healed (ResNet-9). Potion ViT experiment failed due to
OOM (Out of memory) with an A100 (40GB VRAM). Error reflects =1 SEM.

ResNet-9 ViT
ETD UL type Healed Utility UtilityxHealed  Utility x Healed
REM 81.16 = 1.62 90.54 =+ 0.15 73.40 +1.43 73.27 +0.32
v REM 83.26 £ 0.92 88.05+0.18 73.19 +0.72 72.80 £ 0.36
v NPO 77.50 £1.53 86.99 +0.24 67.10 £ 1.17 66.31 £+ 0.86
v Ascent 76.59 £ 144 86.40 £ 0.35 65.82 +1.08 67.70 £ 0.90
v SCRUB 6695 +282 8945+0.14 59.85+2.50 55.03 +£3.24
v BadT 66.24 +1.89 88.13 +£0.16 58.32 £ 1.63 52.50 £+ 3.13
NPO 64.84 £291 87.59 £0.36 56.40 £ 2.50 65.62 £ 0.88
Ascent 63.98 £2.89 86.97 £+ 0.29 55.50 +£2.49 67.14 £+ 0.89
v Potion 62.74 £ 373 62.86 +3.62 51.30 + 3.64 OOM
v No UL 56.97 £3.15 88.00 £0.14 50.11 = 2.75 51.41 +£3.33
Retrained 53.61 £2.73 90.46 - 0.14  48.52 +2.47 56.36 + 3.07
SCRUB 47.09 +2.58 90.71 + 0.15 42.69 £+ 2.33 55.29 £3.22
BadT 46.17 £0.84 90.23 +0.18 41.60 £ 0.72 52.40 £ 3.08
Potion 4939 +3.61 53.06 £+ 3.30 36.16 + 3.62 OOM
No UL 3533 £ 1.66 89.94 +0.17 31.72 £ 1.46 51.02 £+ 3.29

training procedure causes a model utility deficit as the model used during training differs from the
model at inference time. Other unlearning methods show an increased combined score of Utility X
Healed when combined with ETD but do not come close to REM. This is due to the shortcomings
of the last used method affecting the results. For example, (i) in SCRUB, the reintroduction of the
poison trigger in partial discovery settings causes failure in high regularity tasks, (ii) Potion causes
significant model utility damage in the lower regularity settings negating the benefit of ETD.

Prevention versus postprocessing. As shown in Fig. 3] less overparameterization (smaller capac-
ity) is effective in partly mitigating memorization of corruptions during training. We report extreme
cases of this in the appendix (see Fig. [§), showing that by restricting model capacity to very low
levels, no space for memorization remains, effectively solving lower regularity tasks but at the high
cost of model utility. Therefore other mitigation actions during training, such as ETD for instance,
should be preferred over extreme capacity restriction. Based on these insights, we argue that high
regularity corruptions are the hardest to address during training. We suggest that this also applies to
other domains such as NLP, where verbatim memorization can be addressed in simple ways such as
with the Goldfish loss (Hans et al.| 2024)) but concepts (high regularity) are difficult to mitigate.

Ablations. Ablation experiments (see Appendix Tab. [2)) show that redirection of manipulated sam-
ples is essential for REM performance. Other aspects of REM are more nuanced. ETD comes with
the trade-off of more healing at the cost of utility. Step 3.2 in Alg. [I]increases the healing perfor-
mance at higher discovery rates as this allows for better redirection by preventing reintroduction into
the 6,, part of the model. When trained with ETD this difference vanishes as it is mainly observed
in lower regularity tasks (Appendix Fig. [7).

Different dataset/architecture/optimizer. ViT (Adam, SVHN) results in Tab. [I] are in line with
the ResNet-9 (SGD, CIFAR10) results with the key difference that the ViT model shows better
mitigation against outliers / low regularity corruptions. This increases scores as the No ULs for
medium and low regularity tasks are higher than in the ResNet-9 setting.

Redirection of corruptions. We show the effectiveness of our redirection strategy using ResNet9,
50% discovery rate, and the poison trigger task over 5 unlearning epochs. As shown in Fig. |3} the
base model starts off with 99.0% accuracy on the corrupted data (i.e. nearly every sample adversely
affected). During unlearning, the base model (i.e. with no added parameters active) accuracy on
corrupted data drops to around 10%, which is random chance with 10 classes. This is made possible
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Table 2: REM ablation using CIFAR10 with ResNet-9 analogous to Tab. |} Redirection (3.1) using
Dy instead of just finetuning on D is essential while step 3.2 only matters when the model is not
trained with ETD. No use of 3.1 & 3.2 simplifies to NPO, as 6,,, is unused. Error reflects =1 SEM.

Step3.1 Step3.2 ETD Healed Utility Utility x Healed
v v 83.70 + 0.89 88.16 +£0.16 73.69 + 0.69
v v 81.16 = 1.62 90.54 4+ 0.15 73.40 £ 1.43
v v v 83.26 20.92 88.05 +0.18 73.19 £ 0.72
v 78.94 + 1.67 90.55 + 0.15 71.38 +1.47
v 7731 +£2.07 90.39 +£0.14 69.82 + 1.85
v v 78.83 +1.45 87.17 +£0.21 68.68 + 1.26
8 100 m-——--m----m
C ©
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Figure 5: Accuracy on corrupted data for the base model (i.e. the existing trained model) and the
base model plus the additional active parameters from the added mask. Epoch O is the starting point
where no unlearning has taken place. As unlearning takes place, the corruptions are redirected into
the additional capacity of the model and removed from the base model. This enables the base model
to be free of corruptions by dropping the added capacity after unlearning.

because at the same time, the corruptions were rerouted into the newly added parameter partition,
as shown by the accuracy on the corrupted data for the base model plus the active parameters of
the expansion. These results clearly show that the corrupted examples are indeed rerouted, enabling
unlearning without the problem of reintroduction that makes prior methods fail.

7 DISCUSSION AND CONCLUSION

We presented a taxonomy for corrupted data unlearning tasks along two dimensions: discovery rate
and regularity, and showed that no prior algorithm succeeds across the entire space. We then pro-
posed REM, the first unlearning method that performs strongly across this 2D space of unlearning
tasks. REM redirects corrupted data to a dedicated model part that is dropped or deactivated after
unlearning to remove the influence of corrupted data from the model. A limitation of REM is that,
as in ETD, its masks are binary. Future work could consider softer masking strategies that may
allow for better self-organization within 6,,, leading to masks of (even undiscovered) corrupted
data having greater overlap with one another. Such better masking strategies may lead to bridging
the performance gap with REM (IDEAL) in Fig[3] However, in its current version, REM already
makes important strides forward as the first universal method that is strong across our task space.
We believe that our 2D framework is an important step forward in better understanding when differ-
ent families of unlearning algorithms fail, offering useful tools and vocabulary for explaining their
behaviours. We hope that future work expands our framework through identifying other key dimen-
sions, builds upon it, for instance by translating its tasks to other modalities, and leverages it for
investigating the behaviours of algorithms for other types of unlearning applications.
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8 REPRODUCIBILITY STATEMENT (OPTIONAL)

We provide all necessary information for reproduction in our paper. The codebase of (Goel et al.
(2024) for the poison trigger and interclass confusions experiments is clearly highlighted in the
main paper (Experimental Setup), along with the the random label swap experiments from Maini
et al.[ (2023) and their implementation of ETD. The code for each of these can be found in the
original repositories linked in the respective papers (Goel et al.l [2022; Maini et al., 2023). Paired
with our description of REM in Alg. [I] the detailed loss function in eq. [2} all necessary hyper-
paremeters/model setups in Tab. |3| and the details given in Experimental Setup, the paper is fully
reproducible. We are further open-sourcing the full repository in the coming months and will link to
it in the camera-ready version.
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A APPENDIX

A.1 PRIOR WORK MAPPING IN OUR 2D SPACE
The following works are representative for the highlighted areas in Fig. [I] (a).

A Maini et al.| (2023)

B |Schoepf et al.| (2024b))

C (Chundawat et al.| (2023); Kurmanji et al.[(2023)

D |Goel et al.| (2024)

E [Zhao et al.|(2024); [Foster et al.|(2024); (Chundawat et al.| (2023)); Kurmanji et al.| (2023
F |Chundawat et al.|(2023); |Kurmanji et al.| (2023)

A.2 HEALING METRIC

The “Healing” results in this paper are reported on the corrupted data in the training data. We
chose accuracy on the training data due to the the observations shown in Fig.[6] Due to the low
variance on test data in lower regularity settings, the accuracy on corrupted data in the training data is
significantly more informative. In the case of high regularity tasks, there is a near linear relationship
between behaviour on the train and test data. For example, if the poison trigger is learned in the
train data, it will also trigger in the test data and analogously if it is unlearned from the corrupted
training data it will not be triggered on unseen test data. In the case of low regularity tasks, there
is no connection between the training and the test set. Thus the low variance in the direction of the
test accuracy axis. Any impacts of low regularity corruptions on overall model utility are already
captured in the “Utility” accuracy that is reported on the test set to avoid falsification by overfitting
on the training data.
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Figure 6: We report healing accuracy on the train and test set for all ResNet-9 experiments in
the paper for all 10 discovery rates for each unlearning task (three regularity levels) and all UL
methods. Results show that healing corrupted data is highly correlated between train and test data
for corruptions with high regularity while showing little correlation for low regularity manipulations
such as Rand. Label Swap. Models that were destroyed during unlearning (model utility below
80%) were removed.

A.3 MODEL AND UL METHOD PARAMETERS

We perform unlearning with a limited hyperparameter sweep as the best values are already known
for high and lower regularity tasks and varying discovery rates from |Goel et al. (2024) (poison
trigger and interclass confusion tasks). We report the selected hyperparameters in Tab. [3| The ViT
architecture and setup for SVHN is adapted from [Torkzadehmahani et al.| (2024), only changing
the optimizer to Adam and adapting the learning rate and batch size accordingly. The ResNet-9
setup as well as the poison trigger and interclass confusion tasks are used from |Goel et al.| (2024).
The random label unlearning problem is adapted from Maini et al.[|(2023). The REM parameter
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Table 3: (Hyper)parameter overview. The UL learning rate for ResNet-9 is the final learning rate of
the SGD scheduler during training as set by |Goel et al.|(2024). We use the same 1/5 fraction from

starting learning rate to unlearning learning rate for ViT.

Method / Training Hyperparameter Values

ResNet-9 Learning rate 0.025

ViT Learning rate le-4

All architectures Epochs 40

ResNet-9 Batch size 512

ViT Batch size 2048

ViT Patch Size 8

ViT Embedding Dimension 512

ViT Transformer Depth 4

ViT Attention Heads 8

ViT MLP Hidden Dimension 1536

ViT Head Dimension 64

ViT Optimizer Adam

ResNet-9 Optimizer SGD

ETD (ResNet) Layer locations After each ResNet-9 block
ETD (ViT) Layer locations Before/after FF in transformer blocks
All Seeds 0,1,2

Hardware GPU A100 (40GB)

REM, Potion, NPO, Ascent  Threshold 0.2

REM 153 1

SCRUB « 0.001, 0.01, 0.1, 10

All UL methods UL learning rate 0.005 (ResNet-9), 2e-5 (ViT)
All UL methods Max. UL epochs 10 (25% of training)

is kept at 1 to avoid adding extra complexity to the method by introducing weighting.. Training
data splits, choice of which sample IDs to manipulate etc. are taken 1:1 from |Goel et al.| (2024) to
ensure unbiased selection. The hyperparameters for unlearning methods are taken from |Goel et al.
(2024) and |Schoepf et al.|(2024b)). For ETD and REM each mask has 20% of the “memorization”
partition active during training. The “memorization” partition size is the leftover capacity from
“generalization” part to 100% capacity model. For a sensitivity analysis of “generalization” part
and mask sizes please refer to |Maini et al.| (2023). From our experiments that are seeded with a
global seed (affecting masks), we observe that REM is not sensitive to the random seed of the mask.
Given the three seeds (0, 1, 2), we get the following healing and utility in the ResNet + CIFAR10
random label unlearning setting for 50% discovery rate (representative halfway point of discovery):
Healing [0.772, 0.774, 0.752,], Utility [0.891, 0.888, 0.896]. Results reported for random label
unlearning, as this scenario has the least regularity and highest randomness. Training time on one
A100 (40GB) GPU for one seed for the reported results on ResNet-9 and ViT across training types,
discovery rates, regularity levels, any UL method hyperparameters is ca. one week depending on
the frequency of logging accuracy results.

Regarding generalisability across architectures, our experimental results show that REM works
across architectures with Transformers and ResNet. The implementation in the ViT is agnostic to
vision tasks as we place the REM expansions before/after the FF layers in each transformer block.
This setup is applicable to transformer models across modalities but lies outside the scope of this
paper. |(Ghosal et al.|(2025)) also shows that the ETD approach can be scaled to LLMs for memoriza-
tion prevention during training (not an unlearning application), indicating that REM is highly likely
to succeed at larger scales.

A.4 REM ABLATION

Extending upon the ablations in Table [2} Fig. [7] shows that the barrier step (3.2 in Alg[I) adds (i)
stability to the results without the performance jumps observed without the barrier step (ii) and leads
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to better performance at most discovery rates and regularity levels. The few instances where REM
without the barrier step outperforms the default REM indicate that adding the barrier to the loss
causes some performance loss which is more pronounced at lower discovery rates when the loss is
noisier due to the smaller sample size.

I pEXY 89.3 89.2 89.0 89.4 89.2 89.1 89.4 89.1 89.2 89.3 I pEXY 89.2 89.0 89.1 89.1 88.9 89.0 89.3 89.2 89.1 89.1
i i

Med. 36.8!41.4 “ilPd 54,7 59.5 62.6 65.7 69.0 71.0 73.1 74.3 EEUELR 36.8i52.0 “yi2d clcl 58.6 1 60.0 62.1 61.5 64.9 64.8 68.5
i i

(BT =10 58.0 62.3 63.2 66.5 68.3 71.8 72.9 73.4 75.6 77.2 (BT =100 57.7 60.3 62.2 64.0 65.9 68.1 68.7 70.1 71.3 72.2
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(a) REM (b) REM without step 3.2

Figure 7: Comparison of REM variants for 50% capacity model on CIFAR10.

A.5 MODEL CAPACITY AND ADDITIONAL ETD INSIGHTS

In Fig. [§] we observe that ETD may be approximated by models with smaller capacity that prevent
memorization due to their smaller parameter count. However, in practice it is infeasible to search
for a model cpacity that provides the perfect utility / memorization mitigation trade-off. Our ex-
periments further show that both smaller models and ETD models fail to mitigate high regularity
corruptions (see Fig.[8](c)). This is expected, as high regularity corruptions are informally speaking
no different than other concepts the model learns (e.g., concept of a stop sign vs concept of a poison
trigger). We also perform an experiment where we apply our REM masking strategy of assigning
each identified corrupted sample the same mask to capture higher regularity corruptions to the model
training stage. By giving this combination of REM and ETD strategies full knowledge of all cor-
rupted samples (information that is not available in practice a training time), we can show that high
regularity concepts can be captured effectively as shown in Fig.[9] This is not an unlearning method
but a demonstration of the effectiveness of our novel masking strategy to capture high regularity
corruptions. Future work could investigate if leaving already identified corruptions in the training
data can be beneficial when adopting this masking strategy from REM to create a “channel” during
training that may capture additional undiscovered corruptions of similar nature.

A.6 DETAILED RESULTS

We provide detailed results from our experiments in tables and heatmaps that reflect the 2D dimen-
sions of our framework from Fig. |I| (a).
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Figure 8: We compare ETD against non-ETD models of the same capacity level, i.e. the parameter
count at inference, where for ETD, only the generalization partition is active at inference time. The
y-axis measures the clean-label accuracy on corrupted data where higher is better. We observe:
(1) for low and medium regularity, lower-capacity models fit corrupted data less well compared to
higher-capacity models, acting as a type of regularizer against learning corruptions in the first place.
However, lower capacity models are generally associated with lower utility. (ii) in this region, ETD
greatly improves at unlearning the corruptions over its non-ETD counterpart of comparable capacity,
which however comes at a cost of utility, especially at lower capacities. (iii) For high regularity tasks,
neither capacity restriction nor ETD can move the needle in terms of unlearning corruptions. The
drastic utility drop at very low model capacity with ETD is likely due to the stark mismatch between
the model parameters active during training (for which the loss function optimizes) and inference.
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Figure 9: Model trained using the generalization / memorization split of ETD but with the masking
strategy of REM and given full information about all corrupted samples.
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Figure 10: Healed x Utility heatmaps for ResNet-9 with CIFAR10 and a 50% capacity model unless
otherwise specified. Left of dashed line is no unlearning (i.e. trained model before unlearning).
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Figure 11: Healed x Utility heatmaps for ViT with SVHN and a 50% capacity model unless other-
wise specified. Left of dashed line is no unlearning (i.e. trained model before unlearning).
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Table 4: Aggregate results of methods on CIFAR10 with ResNet-9 (50% capacity each) and 1000
corrupted samples with 10 discovery rate levels (10%-100%) and 3 regularities. Presented in de-

scending order of Utility x Healed. Error reflects =1 SEM.

Capacity ETD UL type Healed Utility Utility x Healed
50 REM 81.16 = 1.62 90.54 + 0.15 73.40 +1.43
50 v REM 83.26 £ 0.92 88.05+0.18 73.19 £ 0.72
50 v NPO 77.50 £1.53 86.99 +0.24 67.10 £ 1.17
50 v Ascent 76.59 £ 144 86.40 £ 0.35 65.82 +£1.08
50 v SCRUB 6695 +£2.82 89.45+0.14 59.85 £+ 2.50
100 REM 65.35+£3.28 91.33 +0.16 59.65 £ 2.99
50 v BadT 66.24 £1.89 88.13 £0.16 58.32 +£1.63
50 NPO 64.84 £291 87.59 +0.36 56.40 £+ 2.50
50 Ascent 63.98 £2.89 86.97 +0.29 55.50 £+ 2.49
50 v CF 60.24 +3.07 89.83 +0.13 54.13 £2.75
50 v Potion 62.74 £3.73 62.86 = 3.62 51.30 + 3.64
50 v No UL 56.97 & 3.15 88.00 +0.14 50.11 £ 2.75
50 Retrained 53.61 £2.73 90.46 +=0.14 48.52 +£2.47
100 NPO 54.54 +3.87 87.66 & 0.37 47.20 4+ 3.33
50 CF 49.08 +=2.61 90.69 +0.15 44.51 +2.36
100 Ascent 5198 £3.69 85.85+0.54 44.20 £+ 3.09
50 SCRUB 47.09 +2.58 90.71 +0.15 42.69 4+ 2.33
50 BadT 46.17 = 0.84 90.23 +0.18 41.60 4+ 0.72
100 Retrained 44.13 £290 91.46 +£0.13 40.41 £+ 2.66
100 Potion 46.79 +4.27 55.78 + 3.89 37.13 +£4.19
50 Potion 4939 +3.61 53.06 + 3.30 36.16 + 3.62
100 CF 38.82 +2.59 91.59 +0.14 35.53 +2.37
50 No UL 3533 +£1.66 89.944+0.17 31.72 +£ 1.46
100 BadT 31.18 £ 1.63 91.28 £0.16 28.37 £ 1.47
100 SCRUB 2697 £2.05 91.55+0.14 24.63 £+ 1.86
100 No UL 1524 £0.60 90.87 +0.15 13.78 £ 0.52
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Table 5: Aggregate results of methods on SVHN with ViT (50% capacity each) and 1000 corrupted
samples with 10 discovery rate levels (10%-100%) and 3 regularities. Presented in descending order
of Utility x Healed. Values are to the best method for each discovery rate - regularity pairing (best
by Utility x Healed). Potion OOM and thus not reported. Error reflects 21 SEM. No UL and Ascent
(best performing prior method) with 100% capacity are reported for reference to the 50% capacity
models to show that the observations from ResNet experiments on capacity levels are applicable too.

Capacity ETD UL type Healed Utility Utility x Healed
50 REM 84.67 - 0.38 86.53 +0.03 73.27 £+ 0.32
50 v REM 84.17 £0.42 86.49 4+ 0.03 72.80 £+ 0.36
50 v Ascent 81.09 = 0.74 83.19 +0.39 67.70 £ 0.90
50 Ascent 80.28 £ 0.74 83.354+0.38 67.14 £+ 0.89
100 Ascent 79.96 = 1.16 82.99 +0.78 66.56 £+ 1.47
50 v NPO 79.56 = 0.71 83.08 +0.38 66.31 £+ 0.86
50 NPO 78.65 £ 0.78 83.18 +0.36 65.62 £+ 0.88
50 Retrained 65.33 +3.56 86.26 £ 0.03 56.36 £ 3.07
50 SCRUB 63.36 £3.70 87.32+0.02 55.29 +£3.22
50 v SCRUB 63.03 £3.71 87.33 +0.02 55.03 +3.24
50 v CF 62.32 +£3.70 87.06 +0.03 54.27 £3.22
50 CF 62.14 £3.70 87.03 £0.03 54.07 £ 3.22
50 v BadT 61.20 £3.65 85.87 +£0.02 52.50 £+ 3.13
50 BadT 61.01 =3.59 85.97 +0.02 52.40 £ 3.08
50 v No UL 59.94 +3.89 85.83 +0.02 51.41 +£3.33
50 No UL 59.44 +£3.83 85.92 +0.02 51.02 £+ 3.29
100 No UL 59.30 £2.43 85.83 +0.56 50.94 £ 2.92

Table 6: Aggregate results of methods on Imagenette with ResNet (50% capacity each, no ETD
pretraining) and 100 corrupted samples with 10 discovery rate levels (10%-100%) and 3 regularities.
Presented in descending order of Utility x Healed. Values are to the best method for each discovery
rate - regularity pairing (best by Utility x Healed). Error reflects =1 SEM.

UL type Healed Utility Utility x Healed
REM 76.03 +£2.61 80.32+0.28 60.98 £ 2.02
SCRUB 67.63 £3.63 80.66 +0.17 54.52 £ 2.89
Retrained 65.93 £3.04 78.17+0.27 51.49 £ 2.32
Potion 56.40 £4.84 72.44 +2.50 42.61 £ 3.83
BadT 4790 £3.18 79.64 £0.31 38.09 £ 2.50
Ascent 51.37 £2.67 75.38 £1.38 38.05 £ 1.66
No UL 31.00£8.08 79.73 +£1.16 24.69 £6.38

A.7 ADDITIONAL EXPERIMENTS WITH DIFFERENT DATA, CORRUPTION COUNTS, AND
CAPACITY LEVELS

We train the same ResNet as for CIFAR10 with the same learning rate etc. for the same 40 epochs
on Imagenetteﬂ (see Tab. E] & |7) but with 100 corruptions (to add a different size for variety). The
new experiments again show REM as the top performing method, even with a 90/10 capacity split
(Tab. [7). The gap between methods is smaller due to only 100 corruptions having lower influence
via reintroduction of corruptions in partial discovery settings (i.e. methods fail later in the high
regularity setting). Tables [§] and [9] show the same experiments as in the main body of the paper but
with ETD/REM masks that are 1/4 the size of the main body experiments (20% vs 5%) to show that
results hold across different sizes and do not vary greatly.

'https://github.com/fastai/imagenette

21



Under review as a conference paper at ICLR 2026

Table 7: Aggregate results of methods on Imagenette with ResNet (90% capacity each, with ETD
pretraining) and 100 corrupted samples with 10 discovery rate levels (10%-100%) and 3 regularities.
Presented in descending order of Utility x Healed. Values are to the best method for each discovery
rate - regularity pairing (best by Utility x Healed). Error reflects £1 SEM.

UL type Healed Utility Utility x Healed
REM 77.33+£2.72 79.51£0.21 61.41 £ 2.09
SCRUB 68.83 £3.90 79.96 +0.19 55.02 £ 3.07
Ascent 66.97 £2.01 75.174+0.73 50.21 +£1.44
Retrained 64.67 £2.93 77.54+0.21 50.14 £ 2.26
Potion 64.77£3.34 69.90 + 1.64 46.28 £ 3.16
BadT 55.57+£2.49 78.59+0.13 43.62 £1.92
No UL 45.33 £8.25 78.50 +0.44 35.53 £6.30

Table 8: Aggregate results of methods using smaller masks (5% active vs 20% in main experiments)
on CIFAR10 with ResNet-9 (50% capacity each) and 1000 corrupted samples with 10 discovery
rate levels (10%-100%) and 3 regularities. Presented in descending order of Utility x Healed. Error

reflects =1 SEM.

UL type Healed Utility Utility x Healed
REM 8537 £1.77 89.56 +£0.26 76.38 £ 1.48
Potion 78.54 £2.45 85.84 £ 0.68 67.68 +2.41
Ascent 75.72 £3.01 88.75 £ 0.47 66.81 £ 2.38
NPO 75.88 £3.25 88.03 £0.53 66.33 £ 2.54
BadT 64.64 £2.74  89.28 £ 0.27 57.57 £2.32
Retrained  59.86 +£4.94  88.79 +0.24 53.21 £4.39
SCRUB 59.04 £4.92 89.99 £ 0.25 53.02 £4.36
No UL 51.87 £19.89 89.47+093 4631 +£17.54

Table 9: Aggregate results of methods using smaller masks (5% active vs 20% in main experiments)
on SVHN with ViT (50% capacity each) and 1000 corrupted samples with 10 discovery rate levels
(10%-100%) and 3 regularities. Presented in descending order of Utility x Healed. Error reflects

+1 SEM.

UL type Healed Utility Utility x Healed
REM 81.19 £ 1.16 85.38 £0.10 69.33 + 1.01
Ascent 7747 +£1.80 81.41 £0.85 63.49 £2.03
SCRUB 63.26 £6.28  86.21 £ 0.09 54.61 £5.43
BadT 61.38 £5.69 83.96 £0.14 51.61 £4.80
No UL 59.90 £24.29 84.40+£045  50.64 £ 20.55
NPO 59.58 £ 642 84.40+£0.12 50.37 £5.43
Retrained 58.81 491 76.32£0.24 4498 £ 3.75
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A.8 COMPUTE TIME AND MEMORY

We report unlearning time as relative numbers compared to initial training for the CIFAR10 runs
with a 50% capacity model (average runtimes). Initial training 100%, Bad Teacher 24.7%, SCRUB
14.0%, REM 10.7%, Potion 9.1%, NPO 0.2%, Ascent 0.2%. A key consideration in our benchmark
is that no prior method, not even retraining from scratch, can address the 2D space of unlearning
tasks presented. This is different to privacy focused unlearning, where retraining from scratch is
the gold standard. Therefore, being more efficient is a necessity in privacy focused unlearning -
otherwise retraining is better. Given that this is not the case for corrupted data, time is not essential
until multiple methods are able to address the 2D space (REM is fast nonetheless compared to
training from scratch, SCRUB, etc. and only misses out to methods that do not perform any repair
steps). Regarding memory requirements, for REM this depends on the size of 6,, to keep the
expanded model in memory. Some methods such as Potion have higher peak memory usage due to
expensive parameter importance computations (see OOM problem with ViT), while others are more
efficient due to no 6,, as in Ascent, or are harder to compare due to multi-model student-teacher
setups as in SCRUB and Bad Teacher.

A.9 LIMITATIONS

We highlight the key limitations and assumptions in the main paper. On the unlearning side this is the
assumption of having access to the full retain set at unlearning time as is common in the literature.
We leave studies of more restrictive settings to future work. The main limitation of REM that
harms performance is its masking strategy as highlighted in the paper. We also show the potential
that can be unlocked by improved masking with REM (IDEAL) that uses information that is not
available in practice to reflect perfect masking. Due to imperfect masking, REM will not perform
to its maximum potential in practice, which we call out and provide inspiration for future work to
address this. We also note that the removal step can be improved by using future advancements
in unlearning methods that do not rely on a retain set to replace our implementation of NPO for
this step. Depending on the used method for removal, the limitations of the chosen method will be
inherited by REM. We show that REM is robust across tasks, models, optimizers and datasets. Prior
UL literature has shown that unlearning methods show stable results across varying dataset sizes in
high regularity tasks Schoepf et al.|(2024b) as well as lower regularity tasks of the same nature (e.g.
vision classifiers). REM’s runtime is dependent on the chosen number of epochs and comparable to
an epoch of normal training as step 2 of REM uses the much smaller forget set and is negligible in
comparison to the backpropagation step on the full training data.
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