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Abstract—Large Language Models (LLMs) have rapidly
evolved from text-based systems to multimodal platforms, sig-
nificantly impacting various sectors including healthcare. This
comprehensive review explores the progression of LLMs to
Multimodal Large Language Models (MLLMs) and their growing
influence in medical practice. We examine the current landscape
of MLLMs in healthcare, analyzing their applications across
clinical decision support, medical imaging, patient engagement,
and research. The review highlights the unique capabilities
of MLLMs in integrating diverse data types, such as text,
images, and audio, to provide more comprehensive insights into
patient health. We also address the challenges facing MLLM
implementation, including data limitations, technical hurdles,
and ethical considerations. By identifying key research gaps, this
paper aims to guide future investigations in areas such as dataset
development, modality alignment methods, and the establishment
of ethical guidelines. As MLLMs continue to shape the future
of healthcare, understanding their potential and limitations is
crucial for their responsible and effective integration into medical
practice.

Index Terms—Multimodal Large Language Models (MLLMs),
Medical Imaging, Clinical Decision Support, Patient Engagement,
Data Integration

I. INTRODUCTION

The landscape of healthcare is constantly evolving, driven

by an unprecedented explosion of data. Electronic health

records, medical imaging, genomic sequencing, and wearable

sensors generate an overwhelming amount of information,

exceeding human capacity for efficient analysis and inter-

pretation [1]. This phenomenon presents both an opportunity

and a challenge: ingesting this information can revolutionize

healthcare, but doing so requires innovative tools capable

of processing and synthesizing these diverse data streams.

Artificial intelligence (AI) has emerged as a powerful force in

addressing this challenge, with large language models (LLMs)

at the forefront of this revolution.

Initially, LLMs focused primarily on text-based tasks,

demonstrating remarkable proficiency in understanding and

generating human-like language [2]. However, the inherent

multimodality of medicine, where clinical decisions often rely

on the synthesis of information from diverse sources such

as images, text, and genomics, necessitates more versatile

models [3]. This need has given rise to Multimodal Large

Language Models (MLLMs), a new generation of LLMs

capable of processing and integrating information from various

modalities. These advanced models potentially unlock a new

era of precision medicine and personalized healthcare, offering

a more comprehensive approach to medical data analysis and

decision-making.

A key strength of MLLMs is their ability to bridge the

gap between unstructured and structured data, a particularly

valuable feature in healthcare where information is often

fragmented across different formats. For example, the REALM

framework leverages LLMs to encode clinical notes and in-

tegrates them with time-series EHR data, enhancing clinical

predictions by incorporating external knowledge from knowl-

edge graphs [4]. In a similar vein, the MedDr model [5]

employs a diagnosis-guided bootstrapping strategy to build

vision-language datasets, showcasing superior performance
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across various medical tasks through a retrieval-augmented

diagnosis approach. These advancements underscore the po-

tential of MLLMs to enhance data interoperability and extract

meaningful insights from diverse sources, potentially revo-

lutionizing how healthcare professionals access and utilize

patient information.

MLLMs show great potential for transforming healthcare

by enabling a more comprehensive understanding of patient

health, potentially leading to improved diagnostics, personal-

ized treatment plans, and enhanced patient engagement [6].

For instance, these models could analyze a patient’s medical

history, imaging scans, and genetic data to provide more

accurate diagnoses and predict disease risks, facilitating early

intervention and tailored treatment strategies. In the field of

medical imaging, the integration of LLMs has demonstrated

significant progress. Research has shown the effectiveness of

visual language models (VLMs), a subset of MLLMs, in ana-

lyzing various biomedical images, including brain MRIs, blood

cell images, and chest X-rays [7]. A notable example is the

LlaVA-Rad model, a lightweight and open-source multimodal

system that has achieved state-of-the-art results on standard

radiology tasks. This model has surpassed larger counterparts

in both performance and accessibility, making it particularly

suitable for real-world clinical applications [6].

MLLMs could also enhance communication between pa-

tients and healthcare providers through interactive chatbots and

virtual assistants, potentially improving patient engagement

and healthcare accessibility [8]. The creation of chatbots

like MedAide, which utilize optimized tiny-LLMs on edge

devices, demonstrates the capacity of MLLMs to provide

medical assistance in resource-limited settings and remote

areas, addressing challenges in healthcare access [9]. However,

developing reliable and trustworthy medical chatbots requires

addressing critical issues such as accuracy, privacy protection,

and bias mitigation to meet the high standards required for

patient care and safety.

Our review aims to offer an overview of the current state

of MLLMs in medicine and healthcare. We will not only

examine their architecture, capabilities, and limitations, but

also explore potential applications across various medical

domains. We will critically assess the challenges and research

gaps impeding the widespread adoption of MLLMs in clinical

settings, including data limitations, technical difficulties, and

ethical considerations [10]. For example, the evaluation of

LLMs in healthcare often relies on benchmarks that are usually

unfit for real-world diagnostic frameworks and are likely

vulnerable to data leakage [11], which indicates the need

for standardized evaluation frameworks and comprehensive

datasets that accurately reflect the clinical practice. By analyz-

ing the current research landscape and identifying key areas for

further development, this review seeks to guide the responsible

and effective integration of MLLMs into healthcare. Our

goal is to contribute to a brighter future where AI assists

clinicians and enhances patient care, while addressing the

unique challenges and requirements within the field. In order

to provide a clear overview of the various applications and

components of MLLMs in medicine, we present a taxonomy

Fig 1. This simplified taxonomy categorizes the key aspects

of MLLMs in healthcare and medicine.

II. THE RISE OF MULTIMODAL LARGE LANGUAGE

MODELS IN MEDICINE

A. LLMs and Their Evolution: From Text to Multimodal

Understanding

Large language models (LLMs) represent a significant ad-

vancement in artificial intelligence, demonstrating remarkable

capabilities in comprehending and generating human-like text.

Architecturally, they often rely on the Transformer network

[36], a powerful neural network structure that excels at cap-

turing long-range dependencies and contextual relationships

within text. LLMs are initially trained on massive text corpora,

a process known as pre-training, to develop a generalized

understanding of language structure and patterns. This pre-

training phase allows them to learn a wide range of linguistic

features and relationships, making them adaptable to various

downstream tasks.

LLMs can be fine-tuned on smaller, task-specific datasets

to further refine their performance in specific domains. For

example, ClinicalT5 [37] demonstrates how a general-purpose

LLM (T5) can be adapted for clinical text by fine-tuning it on

the MIMIC-III dataset. This adaptation to the medical domain

is crucial for addressing the unique challenges of medical

language, including its specialized vocabulary and complex

semantic relationships [38].

Despite impressive capabilities, LLMs may face many limi-

tations. One notable issue is ”hallucination”, where the model

generates plausible but incorrect or nonsensical information,

as highlighted in the study by Ziaei and Schmidgall [39].

Hallucination can be particularly problematic in healthcare,

where accuracy and reliability are the top priorities [28], [40].

Additionally, biases present in the training data can propagate

to the model’s outputs, leading to unfair or discriminatory

outcomes, as discussed in the paper by Reddy [41]. Addressing

these biases requires careful data curation and model develop-

ment strategies [42].

Integrating LLMs with other modalities, such as images

and videos, results in MLLMs. MLLMs like GPT-4V [43],

[44] and Gemini [45], [46] process and generate both text

and visual information, which opens up new possibilities for

medical applications. For example, MLLMs can be used to

generate captions for medical images [47], answer visual ques-

tions about medical images [48], and even assist in medical

report generation [49]. On the other hand, MLLMs are still in

their early stages, and these models often face challenges in

terms of accuracy, reliability, and ethical considerations [50].

Further research is needed to fully explore the potential of

MLLMs and address these challenges to enable their safe and

effective deployment in clinical practice.



LLMs and MLLMs

in Medicine

Applications in

Medicine

Clinical Decision Support

Diagnosis and treatment

recommendations [1], [12]

Prognostic prediction and

risk stratification [13]

Medical Imaging

Integration of visual and

textual data [14]

Report generation and

VQA [15], [16]

Patient Engagement and

Communication

Chatbots & virtual assistants [9]

Personalized health

recommendations [17]

Patient education [18]

Technical Aspects

Modality Alignment

Methods

Multimodal Converters:

Images to text [19]

Multimodal Perceivers:

Vision transformers [15]

Tools Assistance: Knowledge

graphs [20], [21]

Data-Driven Methods: Using

large datasets [22], [23]

Knowledge Integration
Format unification [24], [25]

Graph-based methods [26], [27]

Challenges and

Limitations

Data Scarcity and Quality
Limited large-scale

multimodal datasets [22]

Biases in training data [28]

Ethical and Regulatory

Considerations
Privacy & data security [29]

Bias and fairness in

clinical outcomes [10], [13], [30]

Model Interpretability and

Explainability
Trust and transparency in

clinical decisions [3]

Overcoming the

”black box” nature [31]

Future Directions

Data Augmentation and

Multilingual Support
Development of large

multilingual datasets [32]

Privacy-preserving

data sharing [33]

Advancements in

Modality Alignment

Methods for cross-modality

data representation [34]

Ethics and Compliance Regulatory frameworks specific

to MLLMs [35]

Key Research

Gaps

Dataset standardization

Ethical guidelines for

multimodal AI systems

Improvements in modality

alignment and generalization

Fig. 1. Simplified Taxonomy of MLLMs in Medicine



B. Multimodality in Medicine: Embracing the Rich Variety of

Data

Medicine is inherently multimodal, as it involves many

types of information beyond just written text. For example,

when a patient comes in with a possible lung infection, their

case might include several kinds of data: written information

like their medical history and symptoms noted by doctors,

images from chest X-rays, sound recordings of their breathing,

and even genetic information to assess their personal risk.

Combining these different types of information is important

for getting a complete picture of a patient’s health and more

accurate and personalized medical care [51]. This is where

multimodal models shine, because they are designed to process

and integrate various types of data.

We have seen a surge in developing MLLMs capable of

processing and integrating diverse medical data types [52]. The

study by Tian et al. [53] exemplifies this trend, showcasing

a Med-MLLM model that handles both visual and textual

data for improved clinical decision-making, particularly in rare

diseases and pandemics. MLLMs could revolutionize various

medical practices. For instance, in radiology, MLLMs are

being explored for generating comprehensive reports [54],

assisting in diagnosis by analyzing both images and clinical

notes [4], and facilitating visual search and querying within

patient imaging history [55].

MLLMs for more specialized medical tasks has also gained

momentum. SkinGPT-4 is a system designed for dermato-

logical diagnosis using both images and clinical data, which

offers autonomous image evaluation and treatment recommen-

dations [16]. Developing robust and reliable MLLMs requires

overcoming many challenges. Large, diverse, and unbiased

medical datasets across multiple modalities are crucial [48].

Accuracy, interpretability, explainability, interoperability, and

ethics are important to be discussed before integrating into

existing clinical workflows [35].

C. Modality Alignment Methods: Bridging the Semantic Gap

Integrating different data types into LLMs is challenging,

mainly because of differences in how each type represents

information. Aligning these modalities is essential for LLMs

to process and reason over multimodal data. Researchers are

currently exploring several methods for addressing this issue,

which can be grouped into four main categories.

• Multimodal Converters: These methods transform data

from different modalities into a unified representation that

LLMs can understand. For example, images might be

converted into textual descriptions or embeddings before

being fed into the LLM. This approach is seen in models

like X-LLM [19], which treats modalities as foreign lan-

guages and converts them to text, or LIFTED [56], which

transforms modalities into natural language descriptions

for improved clinical trial outcome prediction.

• Multimodal Perceivers: These methods directly enhance

the LLMs’ perception of multimodal data. A vision

encoder can be integrated into the LLM architecture to

enable it to directly process and understand images and

texts. Med-Flamingo [15] incorporates a vision trans-

former for medical image understanding. Similar ap-

proaches can be seen in models like SkinGPT-4 [16],

which combines a vision transformer with a LLM for

dermatological diagnosis, and MedVersa [34], which uses

a LLM as a learnable orchestrator to process both visual

and linguistic information to interpret medical images.

• Tools Assistance: These methods uses external tools for

multimodalities. A knowledge graph can link concepts

across modalities and provide additional context for the

LLM. The study by Gao et al. [20] uses the Unified

Medical Language System (UMLS) knowledge to en-

hance diagnosis generation. A similar approach is used

in BioLORD-2023 [21], which integrates LLMs with

knowledge graphs to improve performance in semantic

textual similarity, biomedical concept representation, and

named entity linking.

• Data-Driven Methods: These methods rely on large-

scale multimodal datasets to train LLMs directly on

multimodal tasks and often involves developing new

architectures and training strategies so the modals can

learn from different modalities simultaneously. Models

like BiomedGPT [23] are trained on those diverse mul-

timodal datasets. The recent open-source frameworks

like Hippocrates [22] further facilitates this approach

by providing access to training datasets, codebases, and

evaluation protocols, encouraging further collaborative

efforts.

Each method has its own strengths and weaknesses. Mul-

timodal converters are relatively simple but may lead to in-

formation loss during conversion [57]. Multimodal perceivers

can potentially capture richer relationships between modalities,

but requires more complex architectures and training. Tools

assistance uses existing knowledge bases and resources but

may not be comprehensive or up-to-date. Data-driven methods

can achieve high performance but require large and diverse

datasets.

III. APPLICATIONS OF MLLMS IN MEDICINE

A. A. Clinical Decision Support

While MLLMs integrate diverse data modalities, offering

a more comprehensive view of patient health and the ability

to detect complex patterns for improved diagnosis, treatment

personalization, and risk assessment [58], their development

is still in the early stages. As a result, LLMs continue

to dominate the field due to their maturity and established

performance. This section introduces both LLMs and MLLMs,

while emphasizing the promise of multimodal models.

Diagnosis and Treatment Recommendations: NYUTron

is an LLM trained on clinical notes, for predicting patient

outcomes with high accuracy [1]. PMC-LLaMA is a perfor-

mant LLM for medical Q&A [59]–[61]. Almanac is an LLM

augmented with retrieval capabilities from curated medical

resources and has significant improvements in factuality, com-

pleteness, user preference, and safety for clinical decision-

making [12]. Med-PaLM 2 is a specialized LLM for medicine,



showcased superior performance on medical question an-

swering and treatment recommendation tasks, significantly

outperforming GPT-3.5 [2]. Med-PaLM M is a MLLM achiev-

ing competitive performance on medical question answering,

radiology report generation, etc. [62].

Prognostic Prediction and Risk Stratification: Beyond

diagnosis, LLMs have also shown promise in prognostic

prediction and risk stratification. Researchers have tried to use

LLMs for prognostic prediction in immunotherapy, achieving

encouraging results in improving accuracy and facilitating

early disease detection [13]. Studies have demonstrated the

potential of LLMs and MLLMs to predict outcomes like

mortality, length of stay, and readmission using structured

EHR data, outperforming traditional machine learning models

in few-shot settings. [26], [63] The Health-LLM, a LLM

framework that has vision capability in the future integrating

health reports and medical knowledge into LLMs, has also

been proposed for enhanced disease prediction and personal-

ized health management, showcasing its superior performance

over existing systems [64].

Despite the potentials, LLM and MLLMs face limitations

in clinical decision support. Explainability and interpretabil-

ity remain challenging, as their complex decision-making

processes often lack transparency, hindering clinician trust

and understanding [65]. Another concern is the potential

for bias and unfairness due to inherent biases in MLLM

training data, which can exacerbate healthcare disparities [66].

Extensive real-world validation in diverse clinical settings is

crucial to ensure the effectiveness and safety of MLLMs

before widespread adoption, addressing potential risks and

unexpected outcomes [35].

Several real-world case studies have demonstrated the po-

tential of LLMs in clinical decision support. One study showed

that an LLM optimized for diagnostic reasoning improved clin-

icians’ differential diagnosis accuracy on challenging medical

cases [67]. Another study found that an LLM could accurately

classify patient acuity levels in the emergency department,

comparable to human physicians [31].

The performance of LLMs in clinical decision support

is often evaluated using traditional metrics like accuracy,

precision, recall, F1 score, and AUC [68]. Evaluating their

effectiveness in this context requires moving beyond accu-

racy and considering additional factors like interpretability,

fairness, impact on clinical workflows, and user trust [69].

The development of standardized evaluation frameworks and

benchmarks, such as CLUE and BenchHealth, is crucial for

assessing the clinical performance and real-world applicability

of LLMs [70]–[72].

B. Medical Imaging

MLLMs are rapidly transforming medical imaging by of-

fering potential for significant improvements in diagnosis,

treatment planning, and patient care. These models, capable of

processing and interpreting both textual and visual data, allow

for a more comprehensive understanding of patient conditions.

The MISS framework, proposed by Chen et al., treats med-

ical Visual Question Answering (VQA) as a generative task,

achieving excellent results with fewer multimodal datasets

and demonstrating the advantages of generative models in

practical applications [14]. A key strength of MLLMs lies

in their ability to analyze medical images in conjunction

with textual information such as radiology reports, clinical

notes, and patient history. This integration of multimodal data

allows for a more holistic and nuanced understanding of a

patient’s condition. Yildirim et al. demonstrate the value of

this approach in radiology, arguing that integrating multimodal

data can lead to a more comprehensive patient assessment

[55]. MLLMs can automate the generation of radiology re-

ports, potentially improving efficiency and accuracy while

reducing radiologists’ workload [54]. MLLMs also facilitate

visual question answering, enabling clinicians to interact with

medical images by asking specific questions and receiving

relevant information from the model [73].

Despite advantages, several limitations hinder the adoption

of MLLMs in medical imaging. One major challenge is the

reliance on high-quality, labeled data. Chen et al. address

this issue in their work on the MISS framework, proposing

solutions for leveraging limited datasets [14]. Interpreting

complex medical images may requires specialized knowledge

that current MLLMs do not fully possess. Mehandru et al.

stress the need for high-fidelity simulations to accurately

assess LLM performance in these complex scenarios [73].

Ethics about fairness in image interpretation is also crucial,

as these models can perpetuate existing healthcare disparities

if not carefully designed and evaluated. Yildirim et al. discuss

these considerations in detail, focusing on design requirements

for ethical AI use in radiology [55].

C. Patient Engagement and Communication

MLLMs has changed patient engagement and communica-

tion in healthcare. By integrating visual and textual modalities,

MLLMs can create more personalized and interactive expe-

riences, enhance patient education, facilitate communication,

and provide tailored health recommendations.

Chatbots and Virtual Assistants: One of the most promis-

ing applications of MLLMs in patient engagement is chatbots

and virtual assistants. Traditional chatbots often rely on rule-

based systems or simple ML models, with limited ability to

understand complex queries and provide nuanced responses.

MLLMs, however, can understand both text and images to

create more natural and engaging conversations and result in

improved patient experiences [26], [74], [75].

Personalized Health Recommendations: MLLMs can also

be used to generate personalized health recommendations by

analyzing patient data and medical knowledge. By integrating

information from electronic health records, medical literature,

and even patient-provided images, MLLMs provide tailored

advice on lifestyle changes, medication adherence, etc [17].

Patient Education: Educating patients improves health

outcomes, but traditional methods often rely on static materials

that may be difficult to understand or hard to be tailored



towards individual needs. MLLMs generates personalized ed-

ucational materials that are interactive, engaging, and easy to

comprehend. The MedSumm framework, for example, utilizes

LLMs and VLMs to generate detailed summaries of Hindi-

English code-mixed medical queries, integrating visual aids

to improve comprehension and support personalized medical

care [18].

D. Research and Development

MLLMs are offering promising solutions for literature re-

view, drug discovery, clinical trial matching, and knowledge

extraction. They have accelerated discoveries and enhanced

knowledge extraction.

Literature Review and Knowledge Extraction: MLLMs

are proving invaluable for navigating and synthesizing the

vast and ever-growing body of biomedical literature. For

instance, BioLORD-2023 integrates LLMs with knowledge

graphs to achieve state-of-the-art performance in semantic

textual similarity, concept representation, and named entity

linking, enabling researchers to extract meaningful insights

from complex medical texts [76], [77]. Similarly, MedMT5

tries to overcome language barriers in medical research by

offering a robust, open-source, multilingual model for the

medical domain, allowing for broader access to knowledge

across different languages [32].

Drug Discovery: While still in the early stages, MLLMs in

drug discovery holds potential [78]. These models can analyze

complex biological data, such as protein structures and drug

interactions, to identify potential drug targets and accelerate

the drug development process. By integrating information from

various modalities, MLLMs can facilitate a more holistic

understanding of disease mechanisms and drug interactions,

potentially leading to the discovery of novel therapeutics and

personalized medicine approaches.

Clinical Trial Matching: MLLMs can significantly im-

prove the efficiency and accuracy of matching patients to

suitable clinical trials. These models can analyze patient data,

including medical history, genetic information, and imaging

data, to identify potential eligibility criteria and match patients

with ongoing trials. The ability of MLLMs to process and

understand multimodal data can enhance the identification of

eligible patients, leading to more effective recruitment and

potentially faster clinical trial completion.

E. Administrative Tasks

Administrative tasks in healthcare is immense, which con-

sumes significant time and resources that could be allocated

to improve patient care. MLLMs offer transformative solu-

tions by automating many of these tasks, which streamlines

processes and improves the overall efficiency. MLLMs can

handle tasks in documentation, billing, scheduling, etc. with

remarkable speed and accuracy.

Automation of Documentation: MLLMs are transforming

clinical documentation by automating tasks such as generating

radiology reports [49] and transcribing medical conversations

[79]. This automation can free up clinicians’ time, allowing

them to focus on patient care rather than paperwork. For

example, one study explored the use of LLMs to simplify radi-

ological reports for improved patient comprehension, finding

that LLMs can effectively create more accessible reports while

acknowledging the need for careful validation to mitigate

potential inaccuracies [80].

Billing and Scheduling: The application of MLLMs in

billing and scheduling processes can significantly improve

efficiency and reduce errors. These models can analyze pa-

tient data, insurance information, and scheduling constraints

to automate appointment scheduling, generate billing codes,

and process insurance claims. By streamlining these tasks,

MLLMs can reduce administrative burdens on healthcare staff

and improve patient satisfaction by reducing wait times and

simplifying billing processes.

IV. RESEARCH GAPS AND UNANSWERED QUESTIONS

A. Data Limitations and Needs

While the potential of MLLMs in healthcare is significant,

their development and evaluation are hindered by limitations in

data resources. As highlighted by [62], medicine is inherently

multimodal, with data spanning text, imaging, genomics, and

more. Yet, current research faces several key challenges related

to data:

Scarcity of Large-Scale, Multimodal Datasets: Existing

biomedical datasets are often limited in size and scope,

particularly those incorporating multiple modalities. Some

researchers mitigates the lack of datasets with locally-aligned

phrase grounding annotations for complex semantic modeling

[81], while other researchers often propose new dataset when

releasing new models [82]. The lack of large-scale datasets

and their restricted size and scope is a major bottleneck for

training robust and generalizable MLLMs for diverse medical

tasks, especially when considering the need for datasets that

reflect real-world clinical scenarios [64], [73].

Lack of Diversity and Representation: Existing datasets

often lack diversity in terms of patient demographics, medical

conditions, and healthcare settings. This issue is particularly

relevant when considering the potential biases introduced [83].

Chen et al. emphasizes the challenges of few-shot learning in

predicting rare disease areas due to limited data [13]. The

lack of representation results in biased models that perform

poorly on underrepresented populations or specific medical

conditions. The reliance on single-language data, primarily

English, is also a major concern [32], [84], [85]. It is difficult

to access large amounts of domain-specific pre-training data

for multiple languages, which makes it difficult to resolve

linguistic bias [32].

Challenges in Data Acquisition and Annotation: Obtain-

ing high-quality, annotated multimodal data in healthcare is

complex and resource-intensive. [86] notes that medical image

annotation is costly and time-consuming, while [87] points to

the lack of LLMs trained on medical records. This challenge

is complicated by the need for expert annotations [61], [88].

The scarcity of medical image-text pairs for pre-training,

due to privacy and cost issues, is another major issue [14].



Additionally, ensuring data privacy and obtaining informed

consent are critical ethical considerations that require careful

attention, particularly when dealing with sensitive medical

information [35].

B. Interdisciplinary Collaboration and Knowledge Integration

1) Fostering Effective Interdisciplinary Collaboration: The

development of clinically relevant and useful MultiModal

Large Language Models (MLLMs) requires bridging the gap

between computer science and medicine. This interdisciplinary

challenge calls for collaboration among medical professionals,

data scientists, ethicists, and policymakers [65], [89], [90].

Such collaboration is essential to foster a shared understanding

of both the technical capabilities of LLMs and the specific

needs and constraints of the healthcare domain.

As LLMs become more integrated into healthcare work-

flows, it is crucial to define the roles and responsibilities

of various stakeholders [91]. [10] stresses the importance of

incentivizing users, developers, providers, and regulators to

prepare for the transformative role of LLMs in evidence-based

sectors. This preparation includes establishing clear guidelines

for accountability and oversight to ensure the safe and ethical

use of these powerful tools in healthcare settings.

Clinicians’ expertise is vital in guiding the development

and evaluation of MLLMs to ensure they address real-world

clinical needs [67], [92] illustrates how integrating an LLM

optimized for diagnostic reasoning into a clinical workflow can

improve diagnostic accuracy and comprehensiveness. How-

ever, further research is needed to explore effective methods

for incorporating clinicians’ feedback and domain expertise

throughout the model development process. This ongoing col-

laboration between healthcare professionals and AI developers

is key to creating MLLMs that can truly enhance patient care

and clinical decision-making [56], [93]–[95].

C. Enhancing Knowledge Integration

Beyond textual data, integrating domain-specific knowledge

from sources like medical ontologies, knowledge graphs, and

clinical guidelines is essential for the effectiveness of Large

Language Models (LLMs) in complex medical tasks [81].

A Significant challenge in deploying LLMs for healthcare

is addressing the issues of hallucinations and bias. LLMs

can generate factually incorrect information and perpetuate

biases present in their training data, which is particularly

concerning in medical contexts. To tackle this problem, [96]

introduces Med-HALT, a benchmark and dataset specifically

designed to evaluate and mitigate hallucinations in medical

LLMs. This tool emphasizes the critical need to address

these issues for safer healthcare applications. Additionally,

[97] underscores the importance of incorporating diverse real-

world data and domain-specific knowledge to reduce factual

inaccuracies and improve the model’s grounding in real-world

clinical scenarios.

The development of multilingual models represents another

crucial area for advancement in medical LLMs. Most LLMs

are trained primarily on English data, which limits their

accessibility and applicability in diverse linguistic contexts.

The potential of bilingual fine-tuned LLMs, such as Taiyi,

can achieve superior performance on biomedical NLP tasks

compared to general LLMs [98]. However, more research is

needed to develop effective methods for creating and evaluat-

ing multilingual medical LLMs that can cater to the needs of

diverse patient populations [84], [99].

D. Ethical and Regulatory Framework

The potential of MLLMs in healthcare is clear, but their

deployment in real-world clinical settings presents significant

ethical and regulatory challenges that demand careful consid-

eration and further research.

A key issue is the lack of clear guidelines and regulations

specifically tailored for the development, deployment, and

evaluation of LLMs in healthcare [87], [89]. Existing frame-

works for medical AI may not fully address the unique ethical

and legal implications of LLMs, especially in the context of

multimodality. This gap in comprehensive guidance creates

uncertainty for developers, clinicians, and regulators, which

could impede responsible innovation and safe implementation.

Bias, fairness, and transparency are critical concerns in

the use of LLMs in healthcare. Several studies highlight the

potential for bias due to imbalances in training data [10], [13],

[30]. This can result in unfair or inaccurate outcomes, partic-

ularly for underrepresented or marginalized populations. The

lack of transparency in LLM and MLLM training processes

and decision-making mechanisms also raises concerns about

accountability and trust [89]. Future research should focus on

developing robust methods for identifying, quantifying, and

mitigating biases, as well as ensuring transparency in their

development and deployment.

Patient privacy and data security are important when using

LLMs in healthcare, as they involve processing sensitive

patient information. Integrating multiple data modalities in

MLLMs adds complexity to data management and raises ad-

ditional privacy concerns [3]. Developing secure data storage,

de-identification techniques, and access control mechanisms

are crucial areas for future research. These challenges are

particularly evident in specific medical fields, such as dentistry,

where the use of LLMs requires robust safeguards to protect

patient data [33], [100], [101].

Additional research is needed to define the optimal balance

between human oversight and LLM autonomy, and establish-

ing robust governance structures for LLMs in healthcare is

essential to ensure accountability and public trust. A frame-

work for evaluating LLMs in healthcare, including a gover-

nance layer to ensure accountability and public confidence,

has been proposed [41]. Clear guidelines and standards are

needed for data governance, model development, performance

evaluation, bias mitigation, and transparency. A collaborative

approach involving developers, clinicians, ethicists, regulators,

and patients is vital for establishing trust and promoting the

responsible use of LLMs in healthcare [102].



E. Technical Advancements Required

Realizing MLLMs’ potential requires overcoming signifi-

cant technical challenges. Existing research highlights several

key areas where advancements are urgently needed.

Advancing Modality Alignment Methods

Current modality alignment methods, which aim to bridge

the semantic gap between different data types like text and

images, often struggle to capture the complex relationships

and nuances present in medical data. This limitation hinders

the ability of MLLMs to integrate information effectively

and generate accurate and coherent outputs [7], [103]. Novel

approaches are needed to create more robust and nuanced

alignment methods that can capture the complex interdepen-

dencies between different modalities, ensuring a more holistic

understanding of medical data.

Unveiling the “Black Box”

The ”black box” nature of large language models, where

their internal workings and decision-making processes remain

opaque, is a significant challenge for their deployment in high-

stakes medical decisions. Clinicians need to understand the

rationale behind AI-generated outputs to trust and validate

their recommendations. The lack of transparency and inter-

pretability in current LLMs hinders the ability to identify

potential biases, errors, or inconsistencies in their reasoning.

Further research to understand how LLMs make decisions,

particularly in the context of assessing clinical acuity is needed

[31]. Developing methods to make LLMs more transparent and

interpretable is crucial for ensuring their safe and responsible

use in medical applications [104], [105].

Enhancing Generalization and Robustness

Achieving reliable generalization and robustness across di-

verse medical contexts, patient populations, and languages is

crucial for the real-world deployment of MLLMs. Current

models often struggle to generalize beyond their training data,

which leads to inaccuracies and biases when applied to new

populations or scenarios. The study by Zhang et al. demon-

strates that while LLMs can effectively analyze data from

specific medical specialties, their performance often decreases

when applied to other areas [73]. Additional efforts should

focus on developing methods to enhance the generalization ca-

pabilities of MLLMs, ensuring that they perform consistently

and reliably across different medical contexts, diverse patient

populations, and various languages.

Developing Efficient and Scalable Models

The large size and computational demands of MLLMs

pose a significant barrier to their deployment in resource-

constrained settings. Training and deploying these models

require substantial computational power, which can be pro-

hibitively expensive [106], [107]. Developing efficient and

scalable models that operates on less powerful devices or with

reduced computational resources is crucial for making these

technologies more accessible and equitable in healthcare.

V. FUTURE DIRECTIONS AND CONCLUSION

This review has emphasized the potential of LLMs and

MLLMs to revolutionize medicine and healthcare. While

showing early promise in areas like patient-trial matching

[108], generating radiology reports [109], and assisting with

clinical diagnostics [62], LLMs are still in their early stages.

Significant research gaps remain and must be addressed to

unlock their full potential and ensure safe, responsible, and

equitable integration into clinical practice.

A. Data Augmentation and Access

Data Augmentation and Access: The scarcity of large-

scale, high-quality, and diverse multimodal datasets is a major

bottleneck [106]. This is especially true for languages other

than English [32]. Future research shall focus on:

Dataset Creation and Curation: Developing large, well-

annotated datasets encompassing diverse medical specialties,

patient populations, and languages is crucial [85]. This in-

cludes incorporating visual data like medical images, alongside

text from EHRs, clinical notes, and medical literature [110].

Datasets should represent real-world scenarios and address

issues like imbalanced data [38]. The OmniMedVQA bench-

mark provides a good example of a comprehensive dataset that

addresses some of these challenges [48].

Privacy-Preserving Data Sharing: Investigating innovative

methods like federated learning [33] to enable collaborative

data sharing and model training while preserving patient

privacy.

Standardization and Interoperability: Developing stan-

dardized data formats and categories to facilitate data integra-

tion and interoperability across different healthcare systems

and institutions. This is crucial for training models that can

generalize well to new settings [111].

B. Advanced Modality Alignment

A key area for future research is developing more so-

phisticated methods for aligning different modalities. Future

research could focus on developing novel architectures and

training strategies that can better capture the complex relation-

ships between different modalities, leading to more accurate

and robust predictions [112].

C. Interpretability and Explainability

A critical area for future research is enhancing the in-

terpretability and explainability of MLLMs. This lack of

transparency in current LLMs MLLMs can hinder trust and

adoption in clinical settings. Traditional evaluation methods

for MLLMs are usually insufficient for clinical settings, as they

don’t adequately assess their impact on real-world workflows

[73]. Future research should focus on developing methods to

make MLLM decision-making processes more transparent and

understandable, such as generating human-readable explana-

tions for their predictions or visualizing the processes that

contribute to their decisions.

D. Robust Evaluation Frameworks

Robust and standardized evaluation frameworks becomes

increasingly critical as MLLMs become increasingly sophis-

ticated. Current evaluation methods often rely on limited



datasets and metrics to non-clinical tasks, restricting the poten-

tial to capture the full range of capabilities and biases [113].

To ensure the safe and effective of clinical MLLMs, future

effort should spend on developing additional standardized

benchmarks with closer clinical relevance.

E. Ethics and Compliance

The ethical implications of MLLMs in healthcare cannot

be overstated. Its training data contain sensitive patient in-

formation, raising concerns about privacy and data security

[29]. Biased training data can lead to discriminatory outcomes,

potentially exacerbating existing health disparities. Therefore,

clear regulatory frameworks and guidelines are necessary to

govern the development, deployment, and use of MLLMs in

clinical settings [35]. Addressing these ethical and compliance

challenges will be beneficial to establish trust and ensure the

responsible use of MLLMs in healthcare.
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