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Abstract001

While large language models (LLMs) have002
demonstrated impressive capabilities across di-003
verse tasks, their ability to generate valid graph004
structures remains underexplored. We evaluate005
fifteen state-of-the-art LLMs on five specialized006
graph generation tasks spanning delivery net-007
works, social networks, quantum circuits, gene-008
disease networks, and transportation systems.009
We also test the LLMs using 3 different prompt010
types: direct, iterative feedback, and program-011
augmented. Models supported with explicit012
reasoning modules (o3-mini-high, o1, Claude013
3.7 Sonnet, DeepSeek-R1) solve more than014
twice as many tasks as their general-purpose015
peers, independent of parameter count. Error016
forensics reveals two recurring failure modes:017
Llama-family models often violate basic struc-018
tural constraints, whereas Claude models re-019
spect topology but mismanage higher-order log-020
ical rules. Allowing models to iteratively refine021
their answers yields uneven gains, underscoring022
fundamental differences in error-correction ca-023
pacity. This work demonstrates that graph com-024
petence stems from specialized architectural025
design rather than scale, establishing a frame-026
work for developing truly graph-savvy lan-027
guage models. Results and verification scripts028
available at https://github.com/anonymized-for-029
the-blind-review.030

1 Introduction031

Large Language Models (LLMs) have revolution-032

ized natural language processing by achieving state-033

of-the-art performance on a diverse range of tasks,034

from translation and summarization to complex035

reasoning (Brown et al., 2020). Despite these im-036

pressive advancements in text generation, their abil-037

ity to handle structured data, particularly graphs,038

remains an emerging area of research. Graphs,039

which consist of nodes (representing entities) and040

edges (representing relationships), are fundamen-041

tal to a wide spectrum of applications including042

social network analysis, biological systems model- 043

ing, and transportation planning. However, while 044

LLMs demonstrate remarkable fluency in natural 045

language, their performance in generating and rea- 046

soning about graph structures is often hindered 047

by a persistent challenge: hallucination. In many 048

cases, LLMs produce graph outputs that are syn- 049

tactically plausible yet factually or structurally in- 050

correct (Merrer and Tredan, 2024). While these 051

failures are well documented on individual graph 052

benchmarks, no broad, cross-domain evaluation 053

has yet been performed. 054

To address these gaps, our contribution is three- 055

fold: 056

(i) We introduce a novel evaluation framework 057

comprising five specialized graph problems de- 058

signed to challenge and assess LLMs’ structural 059

reasoning capabilities: (1) a Time-Dependent De- 060

livery Network with complex spatiotemporal con- 061

straints; (2) a Directed Social Network with hi- 062

erarchical influence relationships; (3) a Quantum 063

Circuit Design requiring an understanding of quan- 064

tum gate operations; (4) a Gene-Disease Associa- 065

tion Network modeling bipartite relationships; and 066

(5) an Optimal Transportation Network with ro- 067

bust connectivity requirements. These problems 068

intentionally extend beyond conventional datasets 069

to mitigate the effects of memorization, identified 070

as confounding factors in the evaluation of LLM 071

performance. Additionally, since these problems 072

are open-ended, they can have multiple solutions 073

which can prove challenging to some LLMs with 074

limited reasoning abilities. 075

(ii) We conduct a comprehensive evaluation us- 076

ing fifteen state-of-the-art language models span- 077

ning multiple architectural families and parameter 078

scales. This selection enables us to conduct thor- 079

ough comparisons across different architectures, 080

which previous taxonomies by Ren et al. (2024) 081

indicate are crucial for understanding the specific 082

limitations of models in graph processing. 083
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(iii) We systematically investigate three prompt-084

ing paradigms: direct prompting, iterative feed-085

back, and program-augmented prompting. Build-086

ing upon the reasoning frameworks of the study,087

we examine whether these prompting approaches088

can effectively address the hallucination challenges089

documented by Tonmoy et al. (2024) and improve090

structural fidelity in the graph output.091

Before detailing our evaluation, we review prior092

attempts to evaluate LLM graph skills. Early ef-093

forts to explore the graph capabilities of LLMs have094

yielded promising but mixed results. For instance,095

Yao et al. (2024) introduced LLM4GraphGen,096

which systematically evaluates the ability of LLMs097

to generate graphs based on structural rules and098

distributions. Their findings suggest that while099

models like GPT-4 exhibit some capacity for rule-100

based and distribution-based graph generation, con-101

ventional prompting methods (e.g., few-shot or102

chain-of-thought) do not consistently improve per-103

formance. In parallel, Wang et al. (2023) proposed104

the NLGraph benchmark, a set of graph reasoning105

tasks that ranges from basic connectivity checks to106

complex algorithmic challenges such as maximum107

flow and bipartite graph matching. Their study108

showed that while LLMs demonstrate preliminary109

reasoning abilities, their performance deteriorates110

as task complexity increases, and standard prompt-111

ing strategies often fail to enhance results. Notably,112

both studies highlight that LLMs have difficulty113

generalizing beyond examples they have seen. This114

raises concerns about whether they genuinely learn115

graph structures or simply rely on memorization,116

and shows the need for more robust evaluations117

that go beyond standard datasets and assess LLMs’118

ability to construct and reason about unseen graphs.119

Advances in reasoning frameworks further illus-120

trate both the potential and limitations of LLMs for121

graph-related tasks. The graph chain-of-thought122

(Graph-CoT) framework of Jin et al. (2024) pro-123

motes iterative reasoning by structuring LLM rea-124

soning paths through explicit graph structures and125

demonstrating improved performance in complex126

graph-related inference tasks. Similarly, the Graph127

of Thoughts (GoT) framework introduced by Besta128

et al. (2024) models reasoning as a graph rather129

than a traditional tree, allowing LLMs to explore130

non-linear reasoning paths that better capture de-131

pendencies in structured data. Although these meth-132

ods significantly improve reasoning accuracy, they133

do not fully address graph generation. Addition-134

ally, approaches such as the GCoder by Zhang et al.135

(2024) have explored integrating LLM with code- 136

based methodologies to solve generalized graph 137

problems, and have demonstrated substantial im- 138

provements over traditional natural language rea- 139

soning paradigms. Meanwhile, broader investiga- 140

tions into hallucination mitigation, such as the com- 141

prehensive survey by Tonmoy et al. (2024), under- 142

score the need for more robust evaluation protocols 143

that explicitly detect and quantify structural incon- 144

sistencies in graph outputs. These collective efforts 145

indicate that while LLMs are becoming increas- 146

ingly capable of handling graph-based reasoning, 147

their ability to reliably generate novel, structurally 148

valid graphs remains an open challenge requiring 149

further study. 150

Lastly, Merrer and Tredan (2024) examined how 151

LLMs generate known graphs such as Zachary’s 152

Karate Club and Les Misérables. However, their 153

approach is limited in scope as it relies on a small 154

set of benchmark graphs, many of which are widely 155

available in public datasets and may have been seen 156

during model training. Furthermore, their evalua- 157

tion is based on single-prompt interactions without 158

testing the robustness of model responses across 159

multiple attempts or under varied prompt condi- 160

tions. This narrow evaluation methodology fails 161

to capture the broader generalization and reason- 162

ing abilities of LLMs in generating unseen graph 163

structures, leaving critical questions unanswered 164

regarding their ability to construct complex, struc- 165

tured graphs beyond memorization. 166

Through (i) crafting five diverse, unconstrained 167

graph tasks, (ii) benchmarking fifteen distinct LLM 168

architectures, and (iii) evaluating three prompting 169

strategies, we offer a comprehensive evaluation of 170

LLM graph-generation capabilities. Our results 171

quantify current performance boundaries with sta- 172

tistical rigor and establish a reusable framework for 173

assessing and improving structural fidelity in LLM 174

outputs. Through our unique approach of targeting 175

structural reasoning rather than memorization, we 176

directly address the gap identified by recent surveys 177

(Yu et al., 2025; Li et al., 2024), and take a step 178

toward building graph-savvy language models that 179

generate and reason about complex networks with 180

higher fidelity and consistency. 181

2 Methodology 182

In this section, we describe the procedures used to 183

design our five specialized graph-generation tasks, 184

the verification pipeline for evaluating generated 185
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solutions, and the experimental setup employed to186

assess model performance.187

We evaluate the ability of Large Language Mod-188

els (LLMs) to generate valid graphs using five tasks189

that each emphasize a distinct set of structural and190

logical challenges. These tasks are inspired by clas-191

sical problem domains, including combinatorial192

optimization, network analysis, and biological sys-193

tems modeling. Detailed prompts and constraints194

can be seen in the Appendix.195

Time-Dependent Delivery Network: This sce-196

nario requires scheduling deliveries across multiple197

locations using a fleet of vehicles. Constraints in-198

clude vehicle and storage capacities, dynamically199

adjusted travel times, and delivery time windows.200

It is similar to a time-windowed Vehicle Routing201

Problem (VRP) (Toth and Vigo, 2001) often en-202

countered in logistics and supply-chain manage-203

ment, where resource utilization and schedule fea-204

sibility are essential.205

Directed Social Network with Influence Re-206

lationships: We construct a social network in207

which users (categorized by trust scores) exert di-208

rected influence over others. The graph must re-209

main acyclic while respecting category-based con-210

straints (e.g., celebrities requiring sufficient outgo-211

ing edges). This setup reflects common problems212

in social network analysis, trust-based recommen-213

dation systems, and hierarchical structures where214

influence needs to be rigorously defined and free215

of feedback loops.216

Quantum Circuit: This task involves organiz-217

ing qubits, gates (single- and multi-qubit), and mea-218

surement operations under strict limitations on gate219

adjacency, temporal layering, and measurement220

rules. It mirrors quantum circuit scheduling chal-221

lenges (Romero-Alvarez et al., 2024), where quan-222

tum gates must be placed in a Directed Acyclic223

Graph (DAG)-like structure, to ensure no conflict-224

ing operations and respect hardware constraints225

(such as non-adjacent CNOT requirements).226

Gene-Disease Association Network: A bipar-227

tite graph is formed between genes and diseases,228

with each node set governed by specific degree con-229

straints and edges indicating association strengths230

in the range [0.0,1.0]. In particular, our design231

draws inspiration from recent findings on the bipar-232

tite structure of vertebrate centromeres (Sacristan233

et al., 2024). This problem is an example of biologi-234

cal networks (e.g., gene-regulatory or gene-disease235

association mappings) that capture the confidence236

of links between genetic factors and clinical con-237

ditions. The valid bipartite structure and bounded 238

association strengths are essential for realistic bio- 239

logical modeling. 240

Optimal Transportation Network: In this 241

problem, LLMs need to develop a strongly con- 242

nected, cost-effective, and resilient network of 243

cities (nodes) and directed roads (edges). Important 244

constraints include limits on road length and cost 245

to ensure accessibility for the population. Addi- 246

tionally, the design should incorporate redundancy 247

through multiple edges to enhance resilience. This 248

problem is similar to multi-constraint transporta- 249

tion (Li et al., 2023) or flow networks, with a partic- 250

ular focus on two-edge robustness and minimizing 251

path lengths to ensure that the network remains 252

reliable and efficient under stress. 253

We evaluate a set of fifteen state-of-the-art 254

LLMs, spanning multiple architectures and param- 255

eter sizes. These include GPT-4o (January 29 ver- 256

sion), GPT-4o-mini, o1, and o3-mini-high by Ope- 257

nAI (2024a,b,c); Claude 3.5 Sonnet, Claude 3.5 258

Haiku, and Claude 3.7 Sonnet (with extended think- 259

ing) by Anthropic (2024a,b,c); Gemini 2.0 Pro and 260

Gemini 2.0 Flash by Google (2024a,b); Llama 3.1 261

(8B), Llama 3.1 (405B), and Llama 3.2 (3B) by 262

Meta AI (2024a,b); DeepSeek-V3 and DeepSeek- 263

R1 by DeepSeek AI (2025, 2024); and Grok-V3 by 264

xAI (2025). Models from Llama family are run in 265

Ollama (2025), allowing direct control over param- 266

eter settings and token decoding, while the remain- 267

ing models are accessed through their respective 268

chat-based interfaces following each provider’s rec- 269

ommended prompt-completion protocol. 270

We explore three prompting paradigms: 271

• Direct Prompting: The model receives a sin- 272

gle, comprehensive prompt containing the en- 273

tire task description, without additional feed- 274

back during generation. 275

• Iterative Prompting: After the initial direct 276

prompt, if the model’s output is unsatisfac- 277

tory, it receives the verification script output 278

as feedback. This feedback helps to refine the 279

subsequent response, allowing for a multi-step 280

corrective process. 281

• Program-Augmented Prompting: In the ini- 282

tial prompt, we include both the task descrip- 283

tion and the verification script. The model is 284

encouraged to refer to this script during the 285

generation process to self-assess and ensure 286
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that the output meets the specified structural287

requirements.288

For each of the five tasks, we generate solutions289

using every model and prompting style combina-290

tion across five independent runs. This approach is291

necessary because large language models (LLMs)292

are inherently non-deterministic, meaning they can293

produce different responses to the same prompt294

due to the stochastic elements in their decoding295

processes. Conducting multiple independent runs296

allows us to capture this variability.297

We save each generated output in a JSON file,298

which includes the graph definition (such as nodes299

and edges) and any numerical attributes (like costs300

and trust scores). After saving the output, we use a301

task-specific verification script to validate the gen-302

erated graph. This script parses the JSON file into303

the required Python data structures and checks each304

constraint. During this process, any errors or con-305

straints that are not met in the output are recorded306

in a separate JSON file. This file summarizes which307

constraints were satisfied and explicitly lists any308

errors made by the model.309

We then aggregate these files across the five runs,310

and look at following metrics:311

• Overall Pass Rate: The fraction of outputs312

that satisfy all constraints for a given (model,313

prompt style) pair.314

• Error Breakdown: The frequency of con-315

straint failures in structural vs. logical vs. at-316

tribute categories.317

• Average Constraint Passing: The average318

count of successfully met constraints, offering319

more granularity than a strict pass/fail.320

Finally, we compile all verification reports to321

create a per-run summary of pass/fail outcomes.322

Another report aggregates the results at the model323

and prompting method level, computing average324

pass rates and error counts across the five runs.325

3 Results326

Our evaluation reveals variations in graph gener-327

ation capabilities among state-of-the-art language328

models, providing empirical evidence on the extent329

to which LLMs are genuinely graph-savvy. The re-330

sults show critical insights into architectural differ-331

ences, the efficacy of different prompting strategies,332

and the distinctive challenges posed by structured333

graph problems.334

3.1 Performance Stratification Across Model 335

Architectures 336

As shown in Figure 1(c), we observe a pronounced 337

stratification in performance across model fami- 338

lies, with specialized reasoning models demonstrat- 339

ing markedly superior capabilities. o3-mini-high 340

and o1 (OpenAI’s reasoning-focused models re- 341

leased in January 2025 and December 2024, re- 342

spectively) achieved exceptional performance with 343

average pass rates of 82.7% and 78.7%, substan- 344

tially outperforming the cross-model average of 345

34.0%. Claude 3.7 Sonnet, Anthropic’s hybrid rea- 346

soning model released in February 2025, followed 347

with a 69.3% success rate, while DeepSeek-R1, an- 348

other reasoning-specialized architecture, achieved 349

a 48.0% pass rate. 350

This performance distribution aligns with our 351

hypothesis that graph generation requires sophis- 352

ticated structural reasoning beyond basic pattern 353

recognition. Notably, the four models explicitly 354

designed with enhanced reasoning capabilities (o3- 355

mini-high, o1, Claude 3.7 Sonnet, and DeepSeek- 356

R1) occupy four of the top five positions in overall 357

performance, suggesting that architectural inno- 358

vations specifically targeting complex reasoning 359

transfer effectively to graph-related tasks. 360

In contrast, smaller parameter-count models and 361

those without explicit reasoning enhancements 362

struggled significantly. Llama 3.1 (8B) and Llama 363

3.2 (3B) achieved only 1.3% pass rates, while Chat- 364

GPT 4o-mini reached just 14.7%, indicating funda- 365

mental limitations in graph representation abilities. 366

This pattern supports our premise that graph gener- 367

ation constitutes a distinctive challenge requiring 368

specialized architectural capabilities rather than 369

merely scaling parameters. 370

3.2 Problem-Specific Performance 371

The performance gradient across tasks remained 372

consistent across model families: the Time- 373

Dependent Delivery Network presented the great- 374

est challenge (with error counts averaging 18-49 375

for most models under direct prompting), followed 376

by the Gene-Disease Association Network (10-38 377

errors). This hierarchy persisted despite iterative 378

feedback, suggesting fundamental differences in 379

task complexity rather than mere prompting limita- 380

tions. The consistency of this pattern indicates that 381

temporal reasoning with multiple interacting con- 382

straints presents a qualitatively different challenge 383

compared to static structural properties. 384
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Figure 1: Performance analysis of LLMs on graph generation tasks. Figure panels summarize key trends across
fifteen LLMs and five problem domains. (a) Pass rates per model and task reveal that only a few models consistently
satisfy all constraints across problems, with stronger results under iterative prompting. (b) Error heatmaps show
which models struggle with which types of graphs. (c) Average pass rates across all tasks highlight the performance
stratification between reasoning-enhanced and general-purpose models. (d) Performance deltas from iterative
feedback quantify each model’s ability to self-correct, with Grok-v3 showing the largest improvement.

Error analysis reveals that failures in the Di-385

rected Social Network stemmed primarily from386

specific constraint violations rather than general387

structural confusion. LLMs mainly struggled with388

the acyclicity constraint, which involves avoid-389

ing prohibited influence cycles, as well as with390

category-based rules. Claude family showed mini-391

mal errors, averaging between 0 and 1, while oth-392

ers, like ChatGPT 4o, produced between 6.6 and393

7.8 errors under direct prompting, particularly re-394

garding celebrity outgoing edge requirements. Fur-395

thermore, specialized reasoning models exhibited396

a better ability to uphold global structural prop-397

erties like acyclicity. The deliberately introduced398

gap in trust score categorization (50-70) shows a399

consistent tendency across models to hallucinate400

classifications for these ambiguous values rather401

than adhering strictly to provided rules. This clas-402

sification completion bias persisted across multiple 403

prompt iterations especially for simpler models, 404

suggesting an intrinsic tendency to complete per- 405

ceived patterns rather than strictly adhering to ex- 406

plicit constraints. This is a concerning finding for 407

domain applications requiring rigid adherence to 408

rules. 409

The Gene-Disease Association task shows an- 410

other structural pattern. Traditional LLMs strug- 411

gled specifically with maintaining bipartite in- 412

tegrity (creating forbidden gene-gene or disease- 413

disease connections) and balancing degree con- 414

straints simultaneously. Llama 3.1 (405B) gener- 415

ated 35.4 errors on average under direct prompting, 416

with approximately 70% related to bipartite vio- 417

lations and degree constraint failures. Even with 418

iterative feedback, these models continued to gen- 419

erate structurally invalid networks, suggesting a 420
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fundamental difficulty in conceptualizing strict cat-421

egorical separation between node types. In con-422

trast, reasoning-specialized models primarily made423

errors in strength attribute assignments while main-424

taining valid bipartite structures.425

For the Quantum Circuit task, lower-426

performing models like Llama 3.1 (8B) and427

DeepSeek-V3 (which recorded 7.4 errors under428

direct prompting) primarily struggled with gate429

adjacency requirements and constraints related to430

layered operations. This led to the creation of tech-431

nically invalid quantum circuits. In contrast, errors432

from Claude and OpenAI models focused more433

on gate optimization and final state compliance.434

These were more subtle violations that resulted in435

operationally valid but suboptimal circuits. This436

pattern suggests a hierarchy in understanding quan-437

tum circuits, where basic structural validity must be438

established before addressing optimization capabil-439

ities. The tendency to selectively violate constraints440

indicates that domain-specific requirements may441

be overshadowed by more familiar structural pat-442

terns, which raises concerns for specialized domain443

applications.444

The Optimal Transportation Network task re-445

vealed a distinctive error pattern focusing on cost-446

distance consistency and accessibility requirements.447

Even models with high overall pass rates struggled448

with balancing mutually constraining objectives:449

Llama models generated 27.4-38.8 errors under di-450

rect prompting, primarily violating strategic road451

placement constraints while maintaining valid con-452

nectivity. In contrast, reasoning models made sig-453

nificantly fewer errors (0-1.4) and effectively bal-454

anced multiple competing constraints. This sug-455

gests that multi-objective optimization in graphs456

represents a distinctive capability of reasoning-457

enhanced architectures that general-purpose mod-458

els have not yet mastered.459

The most pronounced error pattern emerged460

in the Time-Dependent Delivery Network task,461

where even high-performing models exhibited cas-462

cading failure modes. Error analysis reveals that vi-463

olations typically began with time window inconsis-464

tencies that propagated to vehicle capacity and stor-465

age compliance failures. Claude 3.7 Sonnet’s un-466

usually high error count (49.0) under direct prompt-467

ing stems primarily from creating temporally im-468

possible delivery sequences that subsequently vio-469

lated multiple dependent constraints. This suggests470

that temporal reasoning in graphs triggers a dis-471

tinctive failure mode where local inconsistencies472

propagate through interconnected constraint net- 473

works. 474

Furthermore, across multiple problems, we ob- 475

served that models frequently generated locally 476

valid edges (satisfying pairwise constraints) that 477

violated global structural properties such as acyclic 478

or strong connectivity. This pattern suggests a limi- 479

tation in maintaining coherent global graph prop- 480

erties while simultaneously satisfying local edge 481

constraints. This finding has significant implica- 482

tions for applications requiring global structural 483

guarantees. 484

These detailed error patterns across problem do- 485

mains collectively indicate that graph hallucination 486

is not a uniform phenomenon but manifests dif- 487

ferently depending on the structural properties re- 488

quired. Reasoning-enhanced models demonstrate 489

superior constraint reconciliation abilities, partic- 490

ularly for maintaining global structural properties 491

while satisfying local edge constraints, which is a 492

critical capability for real-world graph applications. 493

3.3 Constraint Satisfaction by Category 494

Figure 2(e) demonstrates that reasoning-enhanced 495

models (o3-mini-high, o1, Claude 3.7 Sonnet, and 496

DeepSeek-R1) consistently passed 10-12 struc- 497

tural constraints regardless of prompting strategy. 498

This suggests that structural reasoning capabilities 499

emerge as inherent properties of these architectures 500

rather than being prompt-dependent. 501

Figure 2(f) reveals greater variability in logical 502

constraint satisfaction, with iterative feedback sub- 503

stantially improving performance across most mod- 504

els (e.g., Grok-v3 improving from 11.6 to 14.0). 505

This differential responsiveness suggests that logi- 506

cal constraints, which often require multi-step rea- 507

soning about consequences, benefit most from de- 508

composed reasoning in iterative feedback loops, 509

aligning with prior findings on step-by-step reason- 510

ing (Jin et al., 2024). 511

Figure 2(g) reveals that attribute constraints pose 512

a relatively manageable challenge for most mod- 513

els, with top-performing reasoning models like 514

Claude 3.7 Sonnet, o1, and o3-mini-high consis- 515

tently achieving perfect or near-perfect scores of 516

9.0 passed constraints. Even models with moderate 517

overall performance generally exhibited strong at- 518

tribute constraint satisfaction, suggesting that han- 519

dling spatial, quantitative, and categorical graph 520

properties represents a more tractable aspect of 521

graph generation compared to structural or logical 522

constraints for current LLM architectures. 523
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Figure 2: Constraint satisfaction and error analysis. Breakdown of model performance across constraint types
and error categories. (e–f-g) show the average number of structural, logical, and attribute constraints passed per
model and prompting strategy. Reasoning-enhanced models (e.g., o1, o3-mini-high, Claude 3.7 Sonnet) consistently
score higher, especially on logical constraints. (h) displays average error types by model, revealing that Llama
models tend to accumulate structural errors, while Claude models exhibit a higher proportion of logical errors.
This analysis shows consistent error signatures across architectures and shows that constraint handling is both
task-specific and model-dependent.

3.4 The Efficacy of Prompting Paradigms524

As quantified in Figure 1(d), the improvement from525

direct prompting to iterative feedback varied dra-526

matically across model families. Grok-v3 exhibited527

a striking 48% absolute increase, while reasoning-528

specialized models showed more modest gains (16-529

28%), suggesting these models possess inherent530

graph reasoning capabilities less dependent on ex-531

ternal guidance. Llama models showed minimal532

improvement (<5%) despite their poor baseline per-533

formance, indicating fundamental architectural lim-534

itations that feedback alone cannot overcome.535

Contrary to our hypothesis, program-augmented536

prompting, which provided explicit verification537

code, did not consistently outperform iterative538

feedback and sometimes produced worse results539

than direct prompting. This finding challenges as-540

sumptions about LLMs’ ability to leverage pro-541

grammatic verification during generation and sug- 542

gests limitations in code comprehension or self- 543

monitoring capabilities. The pattern aligns with 544

Zhang et al. (2024)’s findings that code-based 545

methodologies require tight integration with model 546

architecture rather than simply being provided as 547

context. 548

3.5 Error Patterns 549

Figure 2(h) shows distinctive error patterns across 550

model families that illuminate the nature of graph 551

hallucination: 552

We identified two predominant error patterns: 553

(1) models with high structural but low logical er- 554

rors (Llama family), suggesting fundamental dif- 555

ficulty with graph topology; and (2) models with 556

low structural but moderate logical errors (Claude 557

family), indicating stronger topological understand- 558
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ing but challenges with constraint reasoning. These559

distinct profiles suggest different mechanisms un-560

derlying graph hallucination across architectures.561

OpenAI’s models (o1, o3-mini-high) displayed562

remarkably balanced and minimal error profiles563

across all categories, while Llama models exhib-564

ited compounded failures across structural, logi-565

cal, and attribute dimensions. Anthropic models566

showed moderate but balanced error distributions,567

suggesting a more comprehensive but imperfect568

graph understanding. These distinctive signatures569

indicate that architectural design decisions create570

consistent patterns in graph processing capabilities571

that transcend individual prompting strategies or572

task types.573

4 Discussion574

Our thorough evaluation of fifteen advanced lan-575

guage models (LLMs) across five different graph576

generation tasks provides an insightful answer to577

the question: "Are LLMs truly graph-savvy?"578

The evidence indicates that the ability to gener-579

ate graphs is not consistently found across models.580

Instead, it is closely linked to the architectural de-581

sign of the models, especially those enhancements582

that focus on improving reasoning capabilities.583

Our findings have several important theoretical584

implications for the development of graph-capable585

language models:586

The consistent superiority of reasoning-587

enhanced models (o3-mini-high, o1, Claude588

3.7 Sonnet, DeepSeek-R1) over larger but589

general-purpose architectures indicates that590

graph reasoning requires specialized architectural591

capabilities rather than merely scaling parameters592

or training data. This contradicts the notion that593

larger models will naturally develop sophisticated594

graph reasoning, suggesting instead that architec-595

tural innovations specifically targeting complex596

reasoning are necessary.597

The pronounced performance gaps across prob-598

lem types challenge the notion of general graph599

reasoning capabilities. Models that excelled at op-600

timal transportation networks often struggled with601

time-dependent delivery networks, suggesting that602

LLMs develop domain-specific structural compe-603

tencies that transfer imperfectly across problem604

domains. This domain-specificity has implications605

for applications requiring cross-domain generaliza-606

tion.607

The variable efficacy of prompting strategies608

across model families indicates that prompting can 609

enhance but not fundamentally transform an archi- 610

tecture’s graph processing capabilities, challenging 611

perspectives that view prompting as a substitute for 612

architectural innovation. This suggests that prompt- 613

ing should be viewed as complementary to, rather 614

than a replacement for, architectural improvements. 615

Despite our comprehensive evaluation, several 616

limitations should be acknowledged. First, our 617

iterative feedback paradigm utilized only a single 618

round of feedback, potentially limiting the improve- 619

ments possible through iterative correction. Future 620

work could explore multi-step interactive protocols 621

that better leverage the potential of decomposed 622

reasoning to address complex graph constraints. 623

Second, while our five graph problems span diverse 624

domains, they represent only a subset of possible 625

graph structures and constraint types. Expanding 626

the evaluation to include additional problem do- 627

mains such as knowledge graphs, molecule genera- 628

tion, and program synthesis graphs would provide 629

a more comprehensive assessment of LLMs’ graph 630

capabilities. Third, our evaluation focused primar- 631

ily on constraint satisfaction rather than genera- 632

tive creativity or optimization quality. Future work 633

could explore how models balance adherence to 634

constraints with the generation of novel or optimal 635

graph structures, particularly in open-ended design 636

tasks. Finally, the black-box nature of many com- 637

mercial LLMs limits our ability to analyze the un- 638

derlying mechanisms responsible for performance 639

differences. Future research could benefit from 640

more transparent model architectures that enable 641

detailed analysis of how graph structures are rep- 642

resented and manipulated internally. These limita- 643

tions suggest several promising directions for fu- 644

ture research. The development of specialized fine- 645

tuning approaches for graph-related tasks could ad- 646

dress the observed domain transfer limitations. Hy- 647

brid architectures that combine LLMs with graph 648

neural networks or constraint satisfaction solvers 649

might use the complementary strengths of different 650

approaches. In conclusion, our findings demon- 651

strate that while recent architectural advances have 652

significantly improved graph generation capabil- 653

ities, LLMs’ graph-savviness remains highly de- 654

pendent on architectural design, with specialized 655

reasoning capabilities playing a crucial role. Fu- 656

ture advances will likely come from architectural 657

innovations specifically targeting structured reason- 658

ing rather than simply scaling existing models or 659

refining prompting strategies. 660
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Appendix: Graph Generation Problem797

Statements798

This appendix contains the detailed problem state-799

ments for the five graph generation tasks used in800

our evaluation framework.801

A.1 Time-Dependent Delivery Network802

Problem Description:803

Create a delivery network that schedules deliveries804

across multiple locations using a fleet of vehicles.805

The network must account for vehicle capacities,806

location storage capacities, delivery time windows,807

dynamic travel times, and vehicle speeds to ensure808

efficient and timely deliveries.809

Constraints:810

1. Locations:811

• Total Locations: 15, labeled from L0 to812

L14.813

• Attributes:814

– Storage Capacity: Each location 815

has a storage capacity specified in 816

kilograms (kg). Example: L0 has a 817

capacity of 500 kg. 818

– Time Window: Each location has a 819

delivery time window represented as 820

a list of two integers [start_hour, 821

end_hour] in 24-hour format. Ex- 822

ample: L3 has a time window of [9, 823

11] corresponding to 09:00-11:00. 824

2. Vehicles: 825

• Total Vehicles: 7, labeled from V1 to V7. 826

• Attributes: 827

– Capacity: Each vehicle has a spe- 828

cific capacity in kilograms (kg). Ex- 829

ample: V1 has a capacity of 100 kg. 830

– Speed: Each vehicle has a defined 831

speed in kilometers per hour (km/h). 832

Example: V1 travels at 60 km/h. 833

3. Edges (Routes): 834

• Definition: Represents travel paths be- 835

tween two distinct locations. 836

• Attributes: 837

– From: The starting location ID (e.g., 838

L0). 839

– To: The destination location ID (e.g., 840

L1). 841

– Base Travel Time: The fundamental 842

travel time for the route in minutes. 843

– Hourly Adjustments: A dictionary 844

where keys are time ranges in the 845

format "HH-HH" (24-hour format) 846

and values are additional travel time 847

in minutes applicable during those 848

hours. Example: {"8-10": 15} 849

adds 15 minutes to the base travel 850

time between 08:00-10:00. 851

– Maximum Weight Limit: The max- 852

imum weight a vehicle can carry on 853

that route in kilograms (kg). 854

4. Operational Constraints: 855

• Storage Capacity Compliance: The 856

sum of incoming goods to any location 857

must not exceed its storage capacity. 858

• Vehicle Capacity Compliance: No ve- 859

hicle should exceed its capacity on any 860

edge it traverses. 861
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• Time Window Compliance: Departures862

and arrivals must respect the time win-863

dows of locations. Specifically:864

– Departure Time: Must be within865

the from location’s time window.866

– Arrival Time: Must be within the867

to location’s time window.868

– Loading Time: Assume a fixed load-869

ing time of 10 minutes at each loca-870

tion, which must be accounted for871

when scheduling departures.872

Required Output Format:873

<FORMAT>874

A.2 Directed Social Network with Influence875

Relationships876

Problem Description:877

Create a social network graph representing influ-878

ence relationships among users. Each user has879

specific attributes, and influence connections must880

adhere to defined constraints to maintain the in-881

tegrity and intended structure of the network.882

Constraints:883

1. Users:884

• Total of 20 users labeled from U0 to U19.885

• Each user has a "trust_score" ranging886

from 0 to 100.887

• Each user belongs to a "category" based888

on their trust score:889

– "celebrity" (trust_score ≥ 80)890

– "expert" (70 ≤ trust_score < 80)891

– "regular" (trust_score < 50)892

2. Edges (Influence Relationships):893

• Directed edges where Ux → Uy indi-894

cates that Ux influences Uy.895

• No self-loops: A user cannot influence896

themselves.897

• Category Constraints:898

– Celebrities: Must have at least 5 out-899

going edges.900

– Regular Users: Cannot influence ex-901

perts.902

• Graph Structure:903

– The graph must be acyclic (no cycles904

in influence relationships).905

Required Output Format:906

<FORMAT>907

A.3 Quantum Circuit Design 908

Problem Description: 909

Design a quantum circuit consisting of multiple 910

qubits and quantum gates. The circuit must adhere 911

to specific constraints to ensure proper gate oper- 912

ations, circuit efficiency, and overall functionality. 913

The design should incorporate structural elements 914

like depth and a Directed Acyclic Graph (DAG) 915

while simplifying some of the gate-related rules to 916

enhance accessibility. 917

Constraints: 918

1. Qubits: 919

• Total Qubits: 10, labeled from Q0 to Q9. 920

• Initialization: All qubits must start in 921

the |0⟩ state. 922

2. Gates: 923

• Types of Gates to Include: 924

– Single-Qubit Gates: Hadamard (H), 925

Pauli-X (X), Pauli-Z (Z) 926

– Multi-Qubit Gates: Controlled 927

NOT (CNOT), SWAP 928

– Measurement: Measure (Measure) 929

• Gate Operations: 930

– Each gate operates on specific qubits 931

at designated times. 932

– CNOT Gates: Must operate on 933

qubits that are not adjacent (e.g., Q0 934

and Q2 are valid; Q0 and Q1 are in- 935

valid). 936

– SWAP Gates: Must operate between 937

pairs of qubits that have identical 938

gate sequences up to that point. 939

– Measurements: Each qubit can be 940

measured only once and must be the 941

last operation on that qubit. 942

• Gate Restrictions: 943

– Gate Frequency: No single-qubit 944

gate can be applied more than twice 945

consecutively on the same qubit. 946

3. Circuit Structure: 947

• The circuit must be a Directed Acyclic 948

Graph (DAG); no repeated times for the 949

same qubit. 950

• Layered Operations: Gates at the same 951

time step must operate on disjoint sets 952

of qubits (i.e., no two gates at the same 953

time can act on the same qubit). 954
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• Depth Constraint: The total number of955

time steps (layers) must not exceed 30.956

4. Operational Constraints:957

• Circuit Reversibility: Measurements958

must be the final operations on their re-959

spective qubits to maintain circuit re-960

versibility.961

• Gate Optimization: The circuit should962

minimize the total number of gates while963

satisfying all other constraints.964

• Final State: After all operations, all965

qubits must either be measured or re-966

turned to the |0⟩ state.967

Required Output Format:968

<FORMAT>969

A.4 Gene-Disease Association Network970

Problem Description:971

Create a bipartite network that models the asso-972

ciations between genes and diseases. This net-973

work will represent which genes are associated974

with which diseases, capturing the strength of each975

association. The network should adhere to defined976

constraints to ensure biological relevance and struc-977

tural integrity.978

Constraints:979

1. Nodes:980

• Genes:981

– Total of 20 genes labeled from G0 to982

G19.983

– Each gene has a "name" and a "func-984

tion".985

• Diseases:986

– Total of 20 diseases labeled from D0987

to D19.988

– Each disease has a "name" and989

a "severity_level" (e.g., "Low",990

"Medium", "High").991

2. Edges (Associations):992

• Represents the association between a993

gene and a disease.994

• Bipartite Constraint: Associations can995

only exist between genes and diseases,996

not within the same set.997

• Association Strength: Each association998

has a "strength" value ranging from 0.0999

to 1.0, indicating the confidence of the1000

association.1001

3. Degree Constraints: 1002

• Genes: 1003

– Each gene must be associated with at 1004

least 2 and at most 5 diseases. 1005

• Diseases: 1006

– Each disease must be associated with 1007

at least 3 and at most 10 genes. 1008

4. Structural Constraints: 1009

• The network must be bipartite; no edges 1010

should connect nodes within the same 1011

set (i.e., no gene-gene or disease-disease 1012

associations). 1013

• There should be no duplicate edges (i.e., 1014

each gene-disease pair is unique). 1015

Required Output Format: 1016

<FORMAT> 1017

A.5 Optimal Transportation Network 1018

Problem Description: 1019

Design an optimal transportation network repre- 1020

sented as a directed graph where nodes represent 1021

cities and edges represent one-way roads. The net- 1022

work must satisfy constraints to ensure efficiency, 1023

connectivity, robustness, and cost-effectiveness. 1024

Constraints: 1025

1. Nodes (Cities): 1026

• Total: 8, labeled from C0 to C7. 1027

• Attributes: 1028

– Population: Number of inhabitants 1029

in each city. 1030

* C0: 1,000 1031

* C1: 500 1032

* C2: 750 1033

* C3: 600 1034

* C4: 900 1035

* C5: 400 1036

* C6: 800 1037

* C7: 650 1038

2. Edges (Roads): 1039

• Definition: Represents a one-way road 1040

from one city to another. 1041

• Attributes: 1042

– Distance: Length of the road in kilo- 1043

meters (km). (Each road must be ≤ 1044

300 km.) 1045
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– Construction Cost: Cost to build1046

the road in thousand dollars ($K).1047

3. Additional Constraints:1048

(a) Connectivity: The network must be1049

strongly connected, meaning there is a1050

directed path from any city to every other1051

city.1052

(b) Road Capacity: No single road should1053

be longer than 300 km.1054

(c) Cost Optimization: The total construc-1055

tion cost of all roads should not exceed1056

$10,000K.1057

(d) Population Accessibility: Each city1058

must have at least two incoming roads1059

to ensure redundancy and accessibility.1060

(e) Strategic Road Placement: Cities C01061

and C7 are major hubs and must have1062

at least three outgoing roads each to1063

distribute traffic efficiently.1064

(f) Avoiding Redundancy: No two cities1065

should have more than one direct road1066

connecting them in the same direction.1067

(g) Minimizing Total Distance: The sum1068

of all road distances should be mini-1069

mized to ensure efficient transportation.1070

(h) 2-Edge Robustness: The network must1071

remain strongly connected if any sin-1072

gle road is removed (i.e., there must be1073

two edge-disjoint paths between every1074

ordered pair of cities).1075

(i) Edge-Disjoint Paths Guarantee: For1076

every pair of distinct cities, there must1077

exist at least two completely indepen-1078

dent (edge-disjoint) paths connecting1079

them.1080

(j) Balanced Outgoing Degree: Except for1081

the designated hubs (C0 and C7), the dif-1082

ference between the maximum and mini-1083

mum number of outgoing roads among1084

all cities must not exceed 2. This pre-1085

vents "overloaded" junctions.1086

(k) Path Efficiency Constraint: For every1087

pair of cities, the shortest route (by total1088

distance) should be less than 500 km to1089

ensure quick intercity transit.1090

(l) Cost–Distance Consistency: For every1091

road, the construction cost (in $K) must1092

be between 1.0 and 1.5 times its dis-1093

tance (in km). Example: A road that1094

is 90 km long must have a cost between 1095

90K and 135K. 1096

(m) Maximum Edge-Hop Constraint: For 1097

every pair of cities, you need to be able 1098

to get to every other city in at most 3 1099

edges. 1100

Required Output Format: 1101

<FORMAT> 1102
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