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Abstract

Evaluating models on large benchmarks is very001
resource-intensive, especially during the pe-002
riod of rapid model evolution. Existing effi-003
cient evaluation methods estimate the perfor-004
mance of target models by testing them only005
on a small and static coreset of benchmark,006
which is derived from the publicly available007
evaluation results of source models. These008
methods rely on the assumption that target009
models have high prediction consistency with010
source models. However, we demonstrate011
that it doesn’t generalize well in practice. To012
alleviate the inconsistency issue, we present013
TAILOREDBENCH, a method that conducts014
customized evaluation tailored to each target015
model. Specifically, a Global-coreset is first016
constructed as a probe to identify the most con-017
sistent source models for each target model018
with an adaptive source model selection strat-019
egy. Afterwards, a scalable K-Medoids cluster-020
ing algorithm is proposed to extend the Global-021
coreset to a tailored Native-coreset for each022
target model. According to the predictions on023
Native-coresets, we obtain the performance of024
target models on the whole benchmark with a025
calibrated estimation strategy. Comprehensive026
experiments on 5 benchmarks across over 300027
models demonstrate that compared to best per-028
forming baselines, TAILOREDBENCH achieves029
an average reduction of 31.4% in MAE of ac-030
curacy estimates under the same inference bud-031
gets, showcasing strong effectiveness and gen-032
eralizability.033

1 Introduction034

Scaling up models in multiple dimensions has led035

to remarkable advancements in their capabilities036

(Touvron et al., 2023; Ouyang et al., 2022), which037

also presents significant challenges for efficiently038

assessing them. For instance, Liang et al. (2022)039

reports that evaluating a model with approximately040

10 billion parameters on the HELM leaderboard041

costs over $1,700 via APIs or more than 1,200042

GPU hours. Moreover, these costs scale by a factor 043

of X when exploring and comparing X different 044

training or inference configurations during the de- 045

velopment or deployment phase. 046

To achieve efficient evaluation, some studies 047

(Vivek et al., 2024; Polo et al., 2024) have explored 048

the following paradigm: step 1. constructing exam- 049

ple embeddings according to the predictions from 050

a set of source models (which are freely available 051

for popular leaderboards1,2,3); step 2. clustering 052

the benchmark and selecting the cluster centroids 053

to form a coreset (typically less than 100 exam- 054

ples); step 3. approximating the performance of 055

target models under evaluation based on their pre- 056

dictions on the coreset. (See detailed related works 057

in Appendix A.) Underlying this approach is the 058

assumption that performance patterns generalize: 059

if source models respond similarly to two exam- 060

ples a and b, then a target model’s performance on 061

a can be used to estimate its performance on b. 062

Nevertheless, we find that such generalizability 063

between source and target models does not nec- 064

essarily hold. Following ANCHORPOINT (Vivek 065

et al., 2024), we construct an embedding based 066

on the correctness (e.g., the probability of the cor- 067

rect option) of all source models for each example 068

and visualize them using t-SNE algorithm (Van der 069

Maaten and Hinton, 2008). In these embeddings 070

(Figure 1a), nearby examples elicit similar predic- 071

tions from the source models, allowing cluster cen- 072

troids (marked by stars) to serve as representative 073

points. Yet, when we adopt embeddings derived 074

from the correctness of target models instead (Fig- 075

ure 1b), the average distance between the example 076

and its centroid increases from 10.09 to 12.48, in- 077

dicating that the previously chosen centroids fail to 078

represent their respective clusters effectively. This 079

reveals a discrepancy in prediction behaviors be- 080

1https://huggingface.co/open-llm-leaderboard
2https://rank.opencompass.org.cn
3https://crfm.stanford.edu/helm
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Figure 1: The t-SNE visualization of the Hellaswag benchmark using embeddings derived from source (above) and
target (below) models’ predictions. The increased average distance between examples and their cluster centroids in
the target-based embedding indicates that the coreset (centroids) obtained from source-based embeddings no longer
effectively represents the entire benchmark for target models.

tween source and target models, which we term081

prediction consistency—the extent to which their082

predictions align on the same examples. When pre-083

diction consistency is low, source-model-derived084

coresets fail to generalize, resulting in inaccurate085

performance estimates for target models.086

To address the aforementioned issue, we pro-087

pose the TAILOREDBENCH method, which adap-088

tively constructs model-specific evaluation coreset089

in a global to native manner for accurate and effi-090

cient evaluation. Specifically, we first construct a091

static G-set (Global-coreset) based on the predic-092

tion results of all the source models. By applying093

an adaptive source model selection strategy, the094

predictions of target models on the G-set are used095

as a probe to select a native source model set for096

each target model that has stronger prediction con-097

sistency with them. Based on this posterior, we098

design a scalable K-Medoids clustering technique099

to expand the G-set into an N-set (Native-coreset)100

for each target model, according to the benchmark101

embeddings under the metric of corresponding na-102

tive source models. Finally, we approximate the103

overall performance of target models by employ-104

ing a calibrated estimation strategy based on their105

predictions on the N-set. 106

We conduct extensive experiments on five bench- 107

marks across more than 300 models, involving 108

tasks in the fields of natural language and multi- 109

modality. Compared to non-customized efficient 110

evaluation baselines, TAILOREDBENCH can more 111

accurately estimate the performance of models (at- 112

taining an average of 31.4% MAE degradation 113

improvement on accuracy) under the same small- 114

size inference budgets (generally 20~40 examples). 115

Our contributions are summarized as follows: 116

• We analyze that the existing efficient evalua- 117

tion methods overestimate the prediction con- 118

sistency across models, thus the source-model- 119

based static coreset may fail to assess the tar- 120

get models accurately. 121

• We propose the TAILOREDBENCH method to 122

conduct tailored evaluation on adaptively con- 123

structed N-set for each target model to attain 124

more accurate evaluation results. 125

• We conduct comprehensive experiments and 126

analyses on multiple settings to validate the 127

excellent effectiveness and strong generaliz- 128

ability of TAILOREDBENCH. 129
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Figure 2: Overview of TAILOREDBENCH.

2 TailoredBench Approach130

The TAILOREDBENCH approach centers on dy-131

namically selecting prediction-consistent source132

models and crafting an N-set that faithfully repre-133

sents the entire benchmark for each target model.134

Its formulation proceeds through four tightly in-135

tegrated steps: constructing a globally representa-136

tive G-set (§2.2), identifying native source models137

(§2.3) and developing N-set for each target model138

(§2.4), and finally estimating the target models’139

overall performance (§2.5).140

2.1 Task Set-Up141

Let D = {(xk, yk)}
|D|
k=1 denotes a benchmark,142

where xk is the input and yk is the correspond-143

ing ground truth output. We define the set of tar-144

get models under evaluation as T = {tm}|T |
m=1.145

Additionally, we denote the source model set as146

S = {sn}|S|n=1, for which we have access to their147

predictions across all examples in D. Following148

previous works, we ensure that T ∩ S = ∅. Our149

objective is to accurately estimate the performance150

Ptm of each target model tm ∈ T and determine151

the ranking relationships within T , while minimiz-152

ing the model inference cost.153

2.2 Constructing G-set 154

We first construct the G-set G, which is designed 155

as a probe for each target model to identify a set of 156

source models with the highest prediction consis- 157

tency. Consequently, it is intended to be a small yet 158

relatively representative subset of the benchmark, 159

ensuring its generalizability across target models. 160

Following prior works (Vivek et al., 2024), we 161

employ clustering based on the correctness of 162

source models to construct the G-set. Here, correct- 163

ness can be either the predictive probability of the 164

correct option (continuous value [0, 1]) or whether 165

the model answers the example correctly (discrete 166

binary value {0, 1}). 167

Leveraging the correctness scores csn,xk
of each 168

source model sn on the example xk, we embed the 169

benchmark D into DS = {ẋSk }
|D|
k=1 as follows: 170

ẋSk =


cs1,xk

cs2,xk

...
cs|S|,xk

 (1) 171

where ẋk represents the embedding of xk, with 172

the superscript S indicating that it is derived from 173

source models’ correctness. 174

Based on DS , we apply K-Medoids clustering 175

(Kaufman and Rousseeuw, 2009) to select the G- 176
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set with the objective function below:177

min
{G,Cg}

∑
xg∈G

∑
xk∈Cg\{xg}

Dis(ẋSg , ẋ
S
k ) (2)178

where xg is an example in the G-set G = {xg}|G|g=1,179

and Cg is the cluster for which xg is the centroid.180

Dis denotes the distance metric in clustering.181

To maximize the generalization capability of our182

method, the choice of distance metric is critical.183

Previous approaches (Vivek et al., 2024; Miller184

et al., 2021; Baek et al., 2022; Mehra et al., 2024)185

using correlation distance (Rodgers and Nicewan-186

der, 1988) to measure example consistency of-187

ten assume linear relationships in scoring patterns188

among models or examples. However, this assump-189

tion may not hold for discrete numerical embed-190

dings, leading to significant performance degra-191

dation. In contrast, element-wise distance ( e.g.,192

Manhattan distance) can effectively capture indi-193

vidual discrepancies in correctness vectors, thereby194

accommodating various correctness formats. We195

compare three types of distance in Table 2, demon-196

strating the superiority of element-wise metrics.197

By default, we adopt manhattan distance as Dis198

for our TAILOREDBENCH method.199

2.3 Adaptive Native Source Model Selection200

After constructing G-set G, we attain the prediction201

results of target models T on it, which we use as a202

probe to construct a Native Source Model Set Stm203

that exhibits the highest prediction consistency for204

each tm ∈ T .205

Specifically, we first embed all the source mod-206

els sn ∈ S and target models tm ∈ T based on207

their prediction correctness on G as follows:208

ṡGn =


csn,x1

csn,x2

...
csn,x|G|

 , ṫGm =


ctm,x1

ctm,x2

...
ctm,x|G|

 (3)209

Here, the superscript G indicates that each dimen-210

sion of the vector is derived from the model’s pre-211

diction correctness on the G-set. Leveraging these212

vectors, we compute the average prediction con-213

sistency d̄ among all the models (both source and214

target) on the G-set as follows:215

d̄ =
2

(|S|+ |T |)(|S|+ |T | − 1)

∑
i<j

dij ,

where dij = Dis
(
ϕ̇G
i , ϕ̇

G
j

) (4)216

In this context, i, j ∈ [1, |S| + |T |] and ϕ repre- 217

sents any model from S ∪ T . By computing d̄ 218

across all models, we establish a robust threshold 219

that reflects the model set’s similarity landscape, 220

enabling consistent and effective selection of native 221

source models for each target model. 222

On this basis, we determine n̄, the size of the 223

native source model set for target models, by calcu- 224

lating the average number of source models whose 225

prediction consistency with each target model ex- 226

ceeds the threshold d̄ as follows: 227

n̄ =

 1

|T |

|T |∑
m=1

|Stm |

 ,

where Stm =

{
sn ∈ S

∣∣∣∣ Dis (ṡGn, ṫGm)
< d̄

} (5) 228

For a target model tm, the top n̄ source models 229

exhibiting the highest prediction consistency are 230

selected to form its dynamic source model set Stm . 231

By standardizing the number of native source mod- 232

els across all target models, we ensure that each tar- 233

get model’s feature representation maintains con- 234

sistent dimensionality and informational richness 235

during subsequent clustering. 236

2.4 Developing N-set 237

Leveraging the selected native source models Stm , 238

we construct the most representative N-set Ntm for 239

each target model tm. To maximize the utilization 240

of the observed prediction results of target mod- 241

els on G, we propose a SCALABLE K-MEDOIDS 242

CLUSTERING algorithm to extend G into the N-set. 243

Initially, each example xk ∈ D is represented by 244

a feature vector ẋStm
k , which is based on the cor- 245

rectness of its native source models Stm . Then, our 246

SCALABLE K-MEDOIDS CLUSTERING algorithm 247

operates as follows: 248

Anchored Medoid Initialization: Fix the exam- 249

ples in G-set as initial medoids. If the desired N-set 250

size is |Ntm| and the G-set contains |G| examples, 251

we randomly select |Ntm | − |G| additional exam- 252

ples from D \ G to form the initial medoid set. 253

Cluster Assignment: Assign each example xk ∈ 254

D to the nearest medoid xµ to form the cluster Cµ: 255

xk ∈ Cµ,

where µ = argmin
µ

Dis
(
xStm
µ , x

Stm
k

) (6) 256
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Dynamic Medoid Refinement: For each cluster257

Cµ with a non-G-set medoid, update the medoid xµ258

by selecting the example within Cµ that minimizes259

the total distance to all other examples in Cµ:260

xµ = arg min
xi∈Cµ

∑
xj∈Cµ\{xi}

Dis
(
x
Stm
i , x

Stm
j

)
(7)261

Medoids corresponding to G-set remain fixed dur-262

ing this process.263

Convergence Verification: Repeat the Cluster264

Assignment and Dynamic Medoid Refinement265

steps until convergence is achieved, i.e., when266

medoids no longer change or a maximum num-267

ber of iterations is reached.268

By incorporating the G-set examples as fixed269

medoids, the clustering process ensures that these270

pivotal examples guide the formation of clusters271

and the selection of additional N-set examples.272

2.5 Calibrated Performance Estimation273

After establishing the N-set Ntm for a target model274

tm, for previous methods (Vivek et al., 2024; Polo275

et al., 2024), they may estimate the model’s overall276

performance by first evaluating it on these centroid277

examples and then weighting the results accord-278

ing to each centroid’s coverage of the benchmark.279

However, simply relying on medoids overlooks280

subtle variations in how individual examples within281

each cluster are predicted, potentially leading to282

less accurate global estimates.283

To address this, we leverage the prediction con-284

sistency between the target model tm and its native285

source models Stm to obtain the calibrated correct-286

ness estimates for the target model. For a given287

cluster with medoid x, consider any non-medoid288

example x′ in the same cluster. We compute a289

scaling factor based on the native source models’290

average correctness, which reflects how the predic-291

tion patterns at x′ relate to those at x:292

Scale(x′) =
c̄Stm ,x′ + 0.5

c̄Stm ,x + 0.5
(8)293

Here, c̄Stm ,x and c̄Stm ,x′ denote the average cor-294

rectness of Stm on the medoid x and the non-295

medoid x′, respectively. The addition of 0.5 en-296

sures numerical stability by preventing the denom-297

inator from becoming zero. Given that tm and Stm298

exhibit similar prediction consistencies, we assume299

this scaling factor can be applied to estimate the300

target model’s correctness on x′:301

ctm,x′ = (ctm,x + 0.5) · Scale(x′)− 0.5 (9)302

By integrating these inferred correctness values 303

across all examples in the benchmark D, we ob- 304

tain a more faithful global performance estimation 305

without re-evaluating the entire dataset: 306

Ptm =
1

|D|
∑
x′∈D

ctm,x′ (10) 307

3 Experiments 308

3.1 Experimental Setup 309

Benchmarks and Models We validate TAI- 310

LOREDBENCH on five diverse benchmarks span- 311

ning natural language and multimodal tasks. ARC 312

Challenge (Clark et al., 2018) consists of 1,172 sci- 313

entific reasoning questions, with predictions from 314

153 models. Hellaswag (Zellers et al., 2019) pro- 315

vides 6,000 commonsense inference examples (a 316

subset of its validation set) and outputs from 139 317

models. GSM8K (Cobbe et al., 2021) includes 318

1,319 math reasoning problems tested on 150 mod- 319

els. Winogrande (Sakaguchi et al., 2021) has 1,267 320

pronoun resolution examples with 150 models eval- 321

uated. POPE (Li et al., 2023) features 5,127 in- 322

stances for assessing multimodal hallucination, ac- 323

companied by results from 99 models. A complete 324

list of models used for each benchmark is provided 325

in Appendix C. We randomly split models into 326

source and target sets for each benchmark, ensur- 327

ing that their intersection is empty. 328

For ARC Challenge and Hellaswag, model cor- 329

rectness is represented by continuous probabili- 330

ties, while GSM8K, Winogrande, and POPE use 331

binary correctness {0, 1}. Predictions for ARC 332

Challenge, Hellaswag, GSM8K, and Winogrande 333

come from the Open LLM Leaderboard (Beech- 334

ing et al., 2023), and those for POPE are from the 335

OpenCompass Leaderboard (Contributors, 2023). 336

Baseline and Evaluation Metrics We compare 337

TAILOREDBENCH against three baselines: a Ran- 338

dom Sampling strategy that randomly selects a 339

subset of examples from the benchmark to esti- 340

mate model performance, serving as a basic refer- 341

ence point; the Anchor Points method (Vivek et al., 342

2024), which uses K-Medoids clustering on source- 343

model predictions to identify a fixed representative 344

coreset; and gp-IRT (Polo et al., 2024), which em- 345

ploys an Item Response Theory model trained on 346

the predictions of the source models to estimate 347

target models’ performance on the full benchmark. 348

In all cases, we use the same source models and 349

target models to ensure a fair comparison. 350
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Benchmarks Inference counts 20 25 30 35 40
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

ARC Challenge
BEST BASELINE 0.662 0.046 0.663 0.046 0.676 0.036 0.713 0.036 0.714 0.029
TAILOREDBENCH 0.711 0.031 0.737 0.029 0.756 0.028 0.766 0.027 0.773 0.027

Hellaswag
BEST BASELINE 0.860 0.060 0.880 0.053 0.877 0.043 0.897 0.038 0.898 0.032
TAILOREDBENCH 0.900 0.020 0.909 0.018 0.913 0.018 0.914 0.017 0.918 0.017

GSM8K
BEST BASELINE 0.811 0.055 0.828 0.047 0.839 0.041 0.847 0.038 0.858 0.034
TAILOREDBENCH 0.852 0.035 0.858 0.034 0.863 0.033 0.869 0.031 0.878 0.029

Winogrande
BEST BASELINE 0.472 0.041 0.487 0.038 0.514 0.038 0.521 0.036 0.518 0.034
TAILOREDBENCH 0.565 0.028 0.568 0.026 0.604 0.024 0.608 0.023 0.618 0.022

POPE
BEST BASELINE 0.488 0.038 0.510 0.037 0.518 0.034 0.547 0.033 0.556 0.031
TAILOREDBENCH 0.521 0.036 0.547 0.035 0.562 0.031 0.563 0.031 0.574 0.032

Table 1: Results on all benchmarks. For each setting, we take the best result from multiple baselines to compare
with TAILOREDBENCH. The detailed performance of each baseline under each setting is presented in Table 6.
Values in bold represent the best results.

We employ two metrics to assess these meth-351

ods. Kendall’s τ Correlation Coefficient evaluates352

the ordinal agreement between estimated and true353

model rankings, indicating how well the relative354

performance order is preserved. Mean Absolute355

Error (MAE) measures the average absolute de-356

viation between estimated and true performance357

scores, thereby capturing the precision of perfor-358

mance estimation for individual target models.359

3.2 Main Results360

TailoredBench: Effective Ranking and Estima-361

tion of Model Performances Tables 1 present362

a comprehensive comparison between our TAI-363

LOREDBENCH method and the best baseline ap-364

proaches for each metric across all benchmarks.365

Full results are available in Appendix B.1. In our366

experiments, we allocated 10 examples to the G-set367

and averaged the outcomes over 100 randomized368

trials to ensure statistical reliability. The inference369

count—defined as the number of examples in the370

N-set for our method—varied from 20 to 40.371

As demonstrated in the tables, our method con-372

sistently outperforms baseline approaches in both373

Kendall’s τ and MAE metrics across all inference374

counts and benchmarks featuring different correct-375

ness types. When the inference count increases,376

the performance of our method continues to im-377

prove, evidenced by a steady increase in Kendall’s378

τ and a continuous decrease in MAE. Notably,379

compared to best performing baselines, our ap-380

proach achieves nearly a 31.4% reduction in MAE.381

These results indicate that our method effectively382

estimates the relative performance among target383

models and provides more accurate estimations of384

their performance on the entire benchmark. Fur-385

thermore, compared to the static AnchorPoints 386

method, our approach significantly improves both 387

Kendall’s τ and MAE metrics, highlighting its ef- 388

fectiveness in adaptively selecting a more repre- 389

sentative N-set for each target model and thereby 390

improving estimation accuracy. We also calculate 391

the accuracy of our method in ranking the perfor- 392

mance between every pair of target models. The re- 393

sults show that the accuracy reached 96.0% on the 394

Hellaswag benchmark and 93.6% on the GSM8K 395

benchmark. In terms of robustness, Appendix B.6 396

demonstrates that our method exhibits significantly 397

lower variance compared to the baselines. 398

Moreover, across all benchmarks and inference 399

counts, we conduct a one-sided Z-test over 100 400

repeated experiments. Whenever our method out- 401

performed the baselines, the p-values remained 402

below 0.05, confirming a statistical advantage. 403

3.3 Ablation Studies 404

Element-Wise Distance Effectively Facilitates 405

Handling Various Data Forms Our method 406

uses element-wise Distance (specifically Manhat- 407

tan distance) to effectively handle both continu- 408

ous and discrete values. As shown in Table 2, 409

with 30 inference counts, element-wise Distances 410

outperform the correlation distance used by An- 411

chorPoints. This confirms its effectiveness in im- 412

proving our method’s performance. Detailed per- 413

dataset results are provided in Appendix B.5. 414

Calibrated Estimation Strategy Improves Per- 415

formance Estimation We compare TAILORED- 416

BENCH with and without calibration. As shown 417

in Table 3, with 30 inference counts, the cali- 418

brated variant achieves higher Kendall’s τ and 419

lower MAE, confirming that calibration enhances 420

6
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(a) The impact of the quantity of Native Source Models (with
prediction consistency kept the same).
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(b) The impact of prediction consistency between the Native
Source Model and Target Model (with quantity kept the same).

Figure 3: Investigating the impact of native source model quantity and prediction consistency with target model on
GSM8K using the controlled variable method.

Distance τ ↑ MAE ↓

CORRELATION 0.720 0.032
COSINE 0.736 0.028
MANHATTAN 0.740 0.027

Table 2: Average performance with different types of
distance across benchmarks.

the accuracy of performance estimation. Detailed421

per-dataset results are provided in Appendix B.2.422

3.4 Analyses423

Impact of Native Source Model Selection on424

Method Performance Here, we isolate the ef-425

fects of both the number of native source mod-426

els and their prediction consistency with the tar-427

get model by independently varying these factors,428

without applying our adaptive native source model429

selection mechanism.430

When native source models share a fixed level431

of prediction consistency with the target model, in-432

creasing their number enhances performance. To433

investigate this, we randomly select models desig-434

nated as native source models, from 20% to 100%.435

As shown in Figure 3a, performance improves as436

more native source models are included, since a437

larger set of models offers a greater chance of ob-438

taining a more robust embedding. See Appendix439

B.7 for results on more benchmarks.440

When the number of native source models is441

fixed, higher prediction consistency with the target442

model enhances performance. To examine this,443

we select a fixed number of native source models444

at various consistency levels relative to the target445

model (top 20%, 20~40%, up to 80~100%). As446

shown in Figure 3b (with the horizontal axis repre-447

Method Variants τ ↑ MAE ↓

NON-CALIBRATED 0.724 0.030
CALIBRATED 0.740 0.027

Table 3: Average performance with and without calibra-
tion across benchmarks.

senting the Consistency Percentile Range for these 448

intervals), Kendall’s τ decreases sharply as the con- 449

sistency percentile range expands. See Appendix 450

B.8 for additional benchmark results. 451

TailoredBench Method Adaptively Selects Op- 452

timal Native Source Model Sets Here, we an- 453

alyze the ability of our method to select the op- 454

timal native source model sets. Figure 4 shows 455

the performance of our method on the GSM8K 456

benchmark, where source models with the top-k 457

prediction consistency to the target model are se- 458

lected as Native source models. The results reveal 459

that Kendall’s τ coefficient initially increases and 460

then decreases as the number of native source mod- 461

els grows, while the MAE first decreases and then 462

increases. This trend aligns with our observations 463

in Figure 3. Specifically, when only a few native 464

source models are selected, their high consistency 465

with the target model is offset by the noise intro- 466

duced due to the small sample size, which reduces 467

clustering performance. Increasing the number 468

of native source models helps mitigate this issue 469

and improves performance until an optimal point 470

is reached. However, selecting too many native 471

source models incorporates models with lower pre- 472

diction consistency to the target model, which di- 473

minishes effectiveness. Our method addresses this 474

by adaptively selecting the near-optimal number of 475

native source models across all benchmarks. For 476
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Figure 4: Performance of TAILOREDBENCH with varying numbers of Native Source Models on GSM8K bench-
mark. The shaded area indicates the adaptively selected number of native source models and the corresponding
performance of our method.

example, as shown in Figure 4, our approach se-477

lects 40 native source models for each target model478

on the GSM8K benchmark, achieving near-optimal479

performance. Further experiments pertaining to480

this section are detailed in Appendix B.9.481

Additionally, we observe that target models pref-482

erentially select native source models from their483

own family, which can better capture the nuances484

and prediction patterns distinctive to their respec-485

tive model lineages and contribute to more accurate486

performance estimations. This intra-family selec-487

tion bias is explored in detail in Appendix B.3.488

10 Examples are Sufficient for the Probe We489

investigate how G-set size affects our method’s per-490

formance by fixing the N-set at 30 examples and491

varying the G-set from 5 to 25 examples across492

all benchmarks. As shown in Table 4, Kendall’s493

τ peaks and MAE reaches a minimum at a G-set494

size of 10. Smaller G-set fail to capture the predic-495

tion consistency between source and target models,496

limiting effective N-set selection. Conversely, a497

larger G-set reduces N-set representativeness by498

being dominated by G-set points, leading to dimin-499

ished performance. Detailed per-dataset results are500

provided in Appendix B.4.501

|G-set| τ ↑ MAE ↓

5 0.734 0.030
10 0.740 0.027
15 0.736 0.028
20 0.735 0.028
25 0.731 0.029

Table 4: Average performance with different G-set size
across benchmarks.

Performance with Larger Inference Count On502

the Hellaswag Benchmark. We further evalu-503

ate our method with larger inference counts on 504

the Hellaswag benchmark. As shown in Table 5, 505

as the inference counts increase from 50 to 150, 506

TAILOREDBENCH consistently achieves improve- 507

ments in model performance prediction and rank- 508

ing, maintaining a clear advantage over various 509

baseline methods. This demonstrates that TAI- 510

LOREDBENCH generalizes effectively to larger in- 511

ference budgets.

Inference
counts

50 100 150
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

RANDOM 0.887 0.053 0.920 0.038 0.935 0.030
ANCHOR
POINTS

0.915 0.046 0.931 0.040 0.940 0.040

GP-IRT 0.869 0.026 0.915 0.015 0.936 0.012
TAILORED

BENCH
0.923 0.016 0.934 0.014 0.943 0.012

Table 5: Performance of compared methods on the
Hellaswag benchmark with larger inference counts.

512

4 Conclusions 513

In this paper, we propose the TAILOREDBENCH 514

method, which mainly includes an adaptive source 515

model set selection strategy, a scalable K-Medoids 516

clustering algorithm and a calibrated performance 517

estimation strategy. Abandoning the one-size-fits- 518

all approach, we have customized the evaluation on 519

the constructed native coreset for each target model. 520

This approach enables a more accurate reconstruc- 521

tion and ranking of the model’s performance on the 522

entire benchmark with a small-size inference bud- 523

get. Comprehensive experiments show that TAI- 524

LOREDBENCH can achieve more accurate model 525

evaluation (an average of 31.4% estimation MAE 526

loss degradation) with few inference costs. 527
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Limitations528

A primary limitation of mainstream approaches in529

benchmark compression, including (Vivek et al.,530

2024; Polo et al., 2024), and our method, is their531

dependence on comprehensive evaluation results532

from existing models across all examples within a533

benchmark. As described above, these results are534

typically readily accessible through public leader-535

boards. However, obtaining initial model perfor-536

mance results is necessary for new or certain pri-537

vate benchmarks, which introduces additional in-538

ference overhead. Nonetheless, we maintain that539

this initial cost is justified, as it is offset by the540

significant resource savings achieved through nu-541

merous subsequent rapid evaluations facilitated by542

our method.543

Ethics Statement544

All of the datasets used in this study were publicly545

available, and no annotators were employed for our546

data collection. We confirm that the datasets we547

used did not contain any harmful content and was548

consistent with their intended use (research). We549

have cited the datasets and relevant works used in550

this study.551
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A Related Works715

Models Correlation in Predictive Consistency:716

Prior works (Taori et al., 2020; Miller et al., 2021;717

Awadalla et al., 2022) have demonstrated a cer-718

tain level of correlation between in-distribution719

(ID) and out-of-distribution (OOD) performances720

across diverse models and tasks. Building on this721

foundation, (Baek et al., 2022) and (Mehra et al.,722

2024) advance this relationship by showing the phe-723

nomenon that the agreement between two models724

on ID data is linearly correlated with their agree-725

ment on OOD data, where the accuracy holds the726

similar linear relationship, enabling accurate es-727

timation of model’s OOD accuracy based solely728

on ID data. Our work extends this phenomenon729

to address the challenge of benchmark compres-730

sion, enabling the selection of more representative731

subsets for benchmarks.732

Coreset Selection for Efficient Benchmarking:733

As LLMs proliferate and version updates acceler-734

ate, the cost of thoroughly evaluating each model735

across all benchmarks has become prohibitive,736

leading to methods that subsample the most repre-737

sentative subsets from each benchmark for more738

efficient evaluation. (Vivek et al., 2024) clusters739

examples directly using the confidence scores pro-740

vided by source models, leveraging these scores741

to select an optimal subset. Similarly, (Polo et al.,742

2024) employs an Item Response Theory (IRT)743

model, trained on the success matrix of each source744

model across various examples, to derive the latent745

representations of examples for clustering. (Pac-746

chiardi et al., 2024) introduces a generic assessor747

framework that predicts the performance of a new748

LLM on unseen instances using its results on a749

small reference set, achieving comparable accu-750

racy to full-scale evaluations. (Perlitz et al., 2023)751

proposes Flash-HELM, which dynamically adjusts752

the sizes of randomly selected subsets based on753

model ranking, where higher-ranked models are754

evaluated with greater precision. (Prabhu et al.,755

2024) proposes the Sort & Search (S&S) strat-756

egy, which leverages the difficulties of examples757

and dynamic programming to select the coreset.758

(Xu et al., 2024) synthesizes several methods and759

dynamically chooses the optimal subset selection760

method for each benchmark but requires many ex-761

amples to determine the best approach. Despite762

these advancements, these methods often strug-763

gle with substantial distribution shifts between the764

source and target models, caused by the discrep-765

ancy between their predictive consistency, poten- 766

tially causing significant distortion in estimating 767

the target model’s performance. Extending the 768

approach of (Vivek et al., 2024), our work allevi- 769

ates this issue by dynamically selecting a native 770

source model set with the highest prediction con- 771

sistency to the target model, ensuring the selection 772

of a tailored coreset for each target model that best 773

represents the benchmark. 774

Scaling Approaches for Model Performance 775

Estimations: Scaling law describes the relation- 776

ship between model properties (e.g., FLOPs used 777

during training, model parameter size) and model 778

capabilities. Recent works (Hu et al., 2023; Ruan 779

et al., 2024; Isik et al., 2024) have leveraged scal- 780

ing laws to predict model performance on vari- 781

ous downstream tasks, reducing the computational 782

cost of evaluating models on complex downstream 783

tasks. (Zhang et al., 2024) simplifies those ap- 784

proaches by utilizing the relationships between 785

model families and their collaborative overall per- 786

formance across tasks rather than fitting scaling 787

laws. The aforementioned methods typically rely 788

on overall model performance across several bench- 789

marks and specific design factors (e.g., model size 790

or training data properties) to either fit scaling 791

curves or investigate correlations between mod- 792

els on various tasks. In contrast, our approach 793

addresses a more general case by reducing the 794

evaluation cost for multiple models on a single 795

benchmark, offering a more efficient performance 796

estimation framework. 797

B More Experimental Results 798

B.1 Comprehensive Experimental Results 799

Across All Datasets 800

In Table 6, we present a comprehensive compari- 801

son of our approach against all baseline methods 802

across the full range of benchmark datasets. The 803

results indicate that our method consistently out- 804

performs every baseline under all considered in- 805

ference counts, thereby demonstrating the overall 806

effectiveness of our proposed approach. 807

B.2 Detailed Calibration Ablation Results 808

Table 7 presents the results of our ablation study, 809

comparing our TAILOREDBENCH method with 810

and without the calibrated performance estimation 811

process under 30 inference counts. The calibrated 812

version of our method generally achieves higher 813

Kendall’s τ scores and lower mean absolute errors 814
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Benchmarks Inference counts 20 25 30 35 40
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

ARC Challenge

RANDOM 0.626 0.078 0.659 0.065 0.676 0.067 0.694 0.062 0.712 0.057
ANCHORPOINTS 0.662 0.064 0.663 0.058 0.676 0.053 0.713 0.048 0.714 0.043
GP-IRT 0.589 0.046 0.620 0.046 0.662 0.036 0.681 0.036 0.695 0.029
TAILOREDBENCH 0.711 0.031 0.737 0.029 0.756 0.028 0.766 0.027 0.773 0.027

Hellaswag

RANDOM 0.811 0.083 0.836 0.077 0.850 0.066 0.863 0.060 0.871 0.058
ANCHORPOINTS 0.860 0.060 0.880 0.061 0.877 0.067 0.897 0.059 0.898 0.057
GP-IRT 0.724 0.062 0.776 0.053 0.810 0.043 0.827 0.038 0.849 0.032
TAILOREDBENCH 0.900 0.020 0.909 0.018 0.913 0.018 0.914 0.017 0.918 0.017

GSM8K

RANDOM 0.811 0.062 0.828 0.055 0.839 0.052 0.847 0.049 0.858 0.044
ANCHORPOINTS 0.786 0.087 0.791 0.079 0.796 0.073 0.800 0.071 0.799 0.071
GP-IRT 0.787 0.055 0.807 0.047 0.829 0.041 0.842 0.038 0.858 0.034
TAILOREDBENCH 0.852 0.035 0.858 0.034 0.863 0.033 0.869 0.031 0.878 0.029

Winogrande

RANDOM 0.373 0.078 0.408 0.067 0.446 0.062 0.470 0.055 0.492 0.052
ANCHORPOINTS 0.472 0.086 0.487 0.085 0.514 0.075 0.521 0.087 0.518 0.073
GP-IRT 0.263 0.041 0.313 0.038 0.353 0.038 0.392 0.036 0.419 0.034
TAILOREDBENCH 0.565 0.028 0.568 0.026 0.604 0.024 0.608 0.023 0.618 0.022

POPE

RANDOM 0.488 0.058 0.510 0.054 0.507 0.048 0.515 0.044 0.547 0.040
ANCHORPOINTS 0.474 0.040 0.483 0.038 0.518 0.034 0.547 0.033 0.556 0.031
GP-IRT 0.481 0.038 0.470 0.037 0.462 0.036 0.482 0.034 0.477 0.033
TAILOREDBENCH 0.521 0.036 0.547 0.035 0.562 0.031 0.563 0.031 0.574 0.032

Table 6: Results on all benchmarks. Values in bold represent the best results, while values that are underlined
represent the second-best results.

(MAE) across various benchmarks and inference815

counts, demonstrating that the calibrated perfor-816

mance estimation process effectively enhances the817

performance estimation ability of our method.818

B.3 Preference for Intra-Family Native819

Source Models820

We conducted an additional analysis on the821

GSM8K dataset to investigate whether models822

within the same family (e.g., Llama, Mistral) tend823

to select their own family members as native source824

models. As shown in Table 8, with a similar num-825

ber of models from each family within the source826

and target model set, the results indicate a signif-827

icant intra-family preference. On average, each828

llama-series model selected approximately 5.3 Mis-829

tral models and 7.0 Llama models as their na-830

tive source models. Similarly, each Mistral-series831

model chose about 6.7 Mistral models and 3.7832

Llama models on average. These findings suggest833

that models exhibit a bias toward source models834

with similar architectures, potentially due to shared835

representation spaces or analogous decision bound-836

aries. This intra-family affinity may facilitate more837

accurate performance estimation, as the selected838

native source models can better capture the nu-839

ances and prediction patterns distinctive to their840

respective model lineages. 841

B.4 Comprehensive G-set Size Evaluation 842

Across Benchmarks 843

In this section, we present a comprehensive evalua- 844

tion of how varying G-set sizes affect our method’s 845

performance across multiple benchmarks. Table 846

9 reports Kendall’s τ and MAE metrics for G-set 847

sizes ranging from 5 to 25 for each benchmark. 848

These results provide deeper insights into selecting 849

the optimal G-set size and support the conclusions 850

drawn in the main text. 851

B.5 Comprehensive Distance Measures 852

Ablation Across Benchmarks 853

Here, we provide comprehensive results of our ab- 854

lation study evaluating the impact of different dis- 855

tance measures on our method’s performance with 856

30 inference counts across various benchmarks. 857

Table 10 presents detailed Kendall’s τ and MAE 858

metrics for cosine similarity, Manhattan distance, 859

and correlation distance across all datasets. These 860

results offer deeper insights into the effectiveness 861

of Element-Wise Distance measures in enhancing 862

benchmark compression. 863
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Distance ARC Challenge Hellaswag GSM8K Winogrande POPE
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

NON-CALIBRATED 0.748 0.026 0.910 0.017 0.862 0.036 0.588 0.028 0.531 0.043
CALIBRATED 0.756 0.028 0.913 0.018 0.863 0.033 0.604 0.024 0.562 0.031

Table 7: Detailed ablation results for calibrated performance estimation process across all benchmarks.

Model
Family

Avg. Selected
Mistral Models

Avg. Selected
Llama Models

Llama 5.3 7.0
Mistral 6.7 3.7

Table 8: Statistics of native source model selection
within model families on GSM8K benchmark.

B.6 Demonstration of Method Effectiveness864

with Variance865

In this section, we present visual comparisons of866

our method and other approaches, including their867

respective variances, as illustrated in Figures 5 to868

9. The results demonstrate that our method out-869

performs the baseline methods on all datasets and870

exhibits greater robustness (with smaller variance).871

B.7 More Analyses On the Impact of Native872

Source Model Quantity on Our Method873

In this section, we maintain the overall prediction874

consistency between the native source models and875

the target models constant, while varying the pro-876

portion of the source models designated as native877

source models from 20% to 100% for the target878

models across various benchmarks. The results are879

illustrated in Figures 10 to 14, indicating that, un-880

der the condition of maintaining the prediction con-881

sistency between the native source models and the882

target model, the number of native source models883

significantly influences the method’s performance.884

B.8 More Analyses On the Impact of Native885

Source Models’ Prediction Consistency886

on Our Method887

We conduct ablation studies by selecting native888

source models based on their prediction consis-889

tency with the target model across various bench-890

marks, ranging from the top 20% to the 80%~100%891

range. The results, presented in Figures 15 to 19,892

indicate that the performance of the method sig-893

nificantly declines as the prediction consistency894

between the native source models and the target895

model decreases, under the condition of keeping896

the number of native source models constant. 897

B.9 Extended Results on Optimal Native 898

Source Model Selection 899

This section presents the results of our method as 900

the number of native source models is incremen- 901

tally increased based on their prediction consis- 902

tency with the target model. The results in Figures 903

20 to 23 show that, overall, Kendall’s τ initially in- 904

creases and then decreases as the number of native 905

source models increases, while the MAE initially 906

decreases and then increases with the increase in 907

the number of native source models. 908

Moreover, Our method adaptively selects 45 909

native source models for the ARC Challenge 910

benchmark, 40 for the Hellaswag benchmark, 33 911

for the Winogrande benchmark, and 35 for the 912

POPE benchmark. These selections represent 913

near-optimal numbers of native source models, as 914

demonstrated in Figures 20 to 23. 915

C Models Used in Our Experiments 916

Tables 11, 12, 13, 14 provide comprehensive lists 917

of models corresponding to each benchmark. 918
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|G-set| ARC Challenge Hellaswag GSM8K Winogrande POPE
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

5 0.719 0.031 0.912 0.019 0.865 0.035 0.624 0.026 0.549 0.037
10 0.756 0.028 0.913 0.018 0.863 0.033 0.604 0.024 0.562 0.031
15 0.751 0.029 0.911 0.018 0.854 0.034 0.608 0.025 0.556 0.033
20 0.740 0.029 0.910 0.018 0.862 0.034 0.621 0.026 0.541 0.034
25 0.725 0.030 0.909 0.019 0.851 0.036 0.638 0.026 0.533 0.036

Table 9: Detailed results for G-set size across all benchmarks.

Distance ARC Challenge Hellaswag GSM8K Winogrande POPE
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

CORRELATION 0.766 0.033 0.903 0.019 0.828 0.041 0.557 0.029 0.547 0.038
COSINE 0.746 0.031 0.914 0.019 0.827 0.040 0.616 0.024 0.577 0.024
MANHATTAN 0.756 0.028 0.913 0.018 0.863 0.033 0.604 0.024 0.562 0.031

Table 10: Detailed ablation results for distance selection across all benchmarks.

Benchmark Model Names

ARC Challenge Qwen2-72B-Instruct, Meta-Llama-3-70B-Instruct, Qwen2-72B, zephyr-orpo-141b-A35b-v0.1,
Phi-3-medium-4k-instruct, Yi-1.5-34B-Chat, c4ai-command-r-plus, Qwen1.5-110B, Smaug-
72B-v0.1, Qwen1.5-110B-Chat, Yi-1.5-9B-Chat, Qwen1.5-32B-Chat, Nous-Hermes-2-Mixtral-
8x7B-DPO, deepseek-llm-67b-chat, Qwen1.5-32B, Yi-1.5-34B-32K, Meta-Llama-3-70B, Phi-
3-mini-4k-instruct, mixtral-8x22B-v0.3, Mixtral-8x22B-v0.1, Phi-3-mini-128k-instruct, Yi-
1.5-34B, c4ai-command-r-v01, Qwen2-7B-Instruct, Hermes-2-Theta-Llama-3-8B, aya-23-35B,
Mixtral-8x7B-Instruct-v0.1, notux-8x7b-v1, Meta-Llama-3-8B-Instruct, Yi-34B-Chat, Smaug-
34B-v0.1, Qwen2-7B, Nous-Hermes-2-SOLAR-10.7B, K2-Chat, Yi-1.5-9B-Chat-16K, Llama-
3-Refueled, WizardLM-70B-V1.0, Yi-34B, Yi-1.5-6B-Chat, NeuralDaredevil-8B-abliterated,
Yi-1.5-9B, Nous-Hermes-2-Mixtral-8x7B-SFT, Hermes-2-Pro-Mistral-7B, Hermes-2-Pro-Llama-
3-8B, openchat_3.5, neural-chat-7b-v3-2, OpenHermes-2-Mistral-7B, OpenHermes-2.5-Mistral-
7B, Qwen1.5-14B-Chat, Nous-Hermes-2-Mistral-7B-DPO, neural-chat-7b-v3-1, Starling-LM-
7B-alpha, Qwen1.5-14B, neural-chat-7b-v3-3, Yi-34B-200K, SOLAR-10.7B-Instruct-v1.0, Yi-
1.5-9B-32K, Mixtral-8x7B-v0.1, Mistral-7B-Instruct-v0.3, zephyr-7b-alpha, Mistral-7B-Instruct-
v0.2, dolphin-2.9-llama3-8b, Llama-2-70b-hf, Orca-2-13b, Llama-3-8B-Instruct-Gradient-1048k,
neural-chat-7b-v3, zephyr-7b-beta, Mistral-7B-OpenOrca, Yi-9B, Yi-9B-200K, DeciLM-7B-
instruct, gemma-1.1-7b-it, SOLAR-10.7B-v1.0, merlinite-7b, Qwen1.5-7B-Chat, 14B, Yi-1.5-6B,
stablelm-2-12b-chat, aya-23-8B, zephyr-7b-gemma-v0.1, Yarn-Solar-10b-32k, phi-2, phixtral-
2x2_8, gemma-7b, Qwen1.5-7B, WizardLM-13B-V1.2, LLaMA-Pro-8B-Instruct, Yarn-Solar-
10b-64k, DeciLM-7B, OrpoLlama-3-8B, Qwen1.5-MoE-A2.7B-Chat, deepseek-llm-7b-chat,
Mistral-7B-v0.1, CollectiveCognition-v1.1-Mistral-7B, Mistral_Pro_8B_v0.1, Mistral-7B-v0.3,
Orca-2-7b, Mistral-7B-v0.2, Yi-6B-Chat, Qwen2-1.5B-Instruct, stablelm-2-12b, openchat_v3.2,
falcon-11B, Yi-6B, Mistral-7B-Instruct-v0.1, Yarn-Mistral-7b-64k, Meta-Llama-3-8B, Yarn-
Mistral-7b-128k, gemma-7b-it, openchat_v3.2_super, Llama-2-70b-chat-hf, Qwen1.5-MoE-
A2.7B, stablelm-zephyr-3b, Qwen1.5-4B-Chat, starcoder2-15b, OpenHermes-13B, MetaMath-
Mistral-Pro, Yi-6B-200K, falcon-40b, Qwen1.5-4B, Llama-2-13b-chat-hf, Llama-2-13b-hf,
vicuna-7b-v1.5, OLMo-7B-Instruct-hf, internlm2-chat-1_8b, falcon-40b-instruct, Qwen2-
1.5B, deepseek-moe-16b-chat, OpenHermes-7B, Llama-2-7b-chat-hf, Nous-Hermes-llama-2-
7b, stablelm-2-zephyr-1_6b, Qwen1.5-1.8B, Qwen1.5-1.8B-Chat, LLaMA-Pro-8B, Llama-2-
7b-hf, stablelm-2-1_6b-chat, internlm2-1_8b, Yarn-Llama-2-13b-128k, NexusRaven-V2-13B,
starcoder2-7b, Llama-2-7B-32K-Instruct, deepseek-llm-7b-base, recurrentgemma-2b-it, gemma-
1.1-2b-it, granite-7b-base, deepseek-moe-16b-base, gemma-2b, stablelm-3b-4e1t, gemma-2b-it,
Yarn-Llama-2-7b-64k, Qwen2-0.5B, phi-1_5

Table 11: Models used for ARC Challenge benchmark.
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Benchmark Model Names

HellaSwag LLaMAntino-3-ANITA-8B-Inst-DPO-ITA, luxia-21.4b-alignment-v1.0, UNA-ThePitbull-21.4-
v1, T3Q-ko-solar-dpo-v6.0, MultiVerse_70B, RoleBeagle-11B, Capricorn-7B-DPO, Tess-
2.0-Llama-3-70B, Truthful_DPO_MOE_19B, multimaster-7b-v5, guanaco-65B-HF, Fusion-
Net_34Bx2_MoE_v0.1, Mixtral-8x7B-v0.1, Evangelion-7B, Lumina-5.5-Instruct, Mistral-
Hermes-2x7b, Bagel-Hermes-2x34B, shqiponja-15b-v1, CollectiveCognition-v1.1-Mistral-7B-
dare-0.85, etri-ones-solar, mpt-30b-instruct, openbuddy-mixtral-7bx8-v18.1-32k, bagel-dpo-
7b-v0.4, OpenHermes-2.5-Mistral-7B, NeuralHermes-2.5-Mistral-7B, dolphin-2.1-mistral-7b-
snr-math-laser, NeuralHermes-2.5-Mistral-7B, openbuddy-qwen1.5-32b-v21.1-32k, internlm2-
20b-llama, Matter-0.2-7B-DPO, airoboros-13b-gpt4-1.2, L3-SnowStorm-v1.15-4x8B-B,
Pallas-0.5-LASER-0.6, BgGPT-7B-Instruct-v0.1, Seagull-llama-3-8B-orpo-v0.5, vigogne-7b-
instruct, Llama-2-7b-chat-hf-activity-fine-tuned-v4, Llama-2-7b-chat-hf-activity-fine-tuned-v3,
vicuna-class-tutor-7b-ep3, Llama-2-7b-chat-hf-afr-200step-flan-v2, llama3-8b-instruct-align-
test1-kto, MFANN3bv0.7, openbuddy-yi1.5-9b-v21.1-32k, openbuddy-mixtral-7bx8-v17.1-
32k, odia_llama2_7B_base, MT7Bi-alpha-dpo-v0.2, llama-shishya-7b-ep3-v2, Instruct_Yi-
6B_Dolly15K, Gaja-v2.00-dpo, phi-2-OpenHermes-2.5, lion-gemma-7b-cn-v2, ToRoLaMa-7b-
v1.0, gogpt-7b, Amber, open_llama_3b_v2, openllama_3b_EvolInstruct_lora_merged, gemma-
7B-it-firefly, Qwen1.5-4B, google-gemma-7b-it-dpo-v1, openhermes-2b-gemma-sft-qlora,
RedPajama-INCITE-Chat-3B-v1, mistral_v1, gpt-j-6b, GPT-J-Pyg_PPO-6B, ScarletPajama-
3B-HF, LLama2-7B-Structural-Prune-1.5x, illuni-llama-2-ko-7b-test, RedPajama-INCITE-
Chat-3B-ShareGPT-11K, RedPajama-INCITE-Base-3B-v1, Guanaco-3B-Uncensored-v2-GPTQ,
glaive-coder-7b, xglm-7.5B, gpt-sw3-6.7b, cisco-iNAM-1.1B, pythia-2.7b, qd-phi-1_5,
pythia-2.8b-deduped, LLmRa-2.7B, Tinyllama-1.3B-Cinder-Reason-Test-2, TinyPoliticaLlama-
1.1B, Galpaca-30b-MiniOrca, finetune_test_qwen15-1-8b-sft-lora, TinyLlama-1.1B-Chat-
v0.3, TinyLlama-1.1B-Chat-v0.1, CroissantLLMBase, pygmalion-2.7b, blossom-v2-3b, fal-
con_1b_stage3, MiniMerlin-3b-v0.1, DPO-miniguanaco-1.5T, CodeQwen1.5-7B-Chat, yayi2-
30b-llama, rho-math-1b-v0.1, LLmRa-1.3B_V2, TinyLlama-1.1B-intermediate-step-480k-1T,
gemma-2b-ko-dev-pbmt192, gpt2-chatbot, CodeLlama-7b-Python-hf, Deita-500m, TinyWand-
SFT, tinyllama-coder-py-v13, d-Qwen1.5-1.8B, TinyLlama-1.1B-intermediate-step-240k-503b,
dlite-v1-1_5b, pythia-1b-deduped, gpt2-large, WizardCoder-Guanaco-15B-V1.0, Qwen1.5-0.5B-
vortex-v2, Sailor-0.5B-Chat, WizardCoder-Guanaco-15B-V1.1, Alpaca_refine_gpt2_e1_se0,
deepseek-coder-1.3b-chat, speechless-coder-ds-1.3b, Instruct_GPT, deepseek-coder-1.3b-chat-
and-function-calling, megatron-gpt2-345m, starcoderbase-3b, dlite-v1-355m, gov-qna-ko-
merged, SSH_355M, CodeLlama-34b-Instruct-hf, CodeLlama-34B-Instruct-fp16, mptk-1b,
KoAlpaca-Polyglot-5.8B, Llama-160M-Chat-v1, llama-160m, CodeLlama-34b-hf, KoAlpaca-
KoRWKV-6B, Quokka_590m, pruned-yi-3b-prerelease-ckpt01, gpt2_test, finetuned-gpt2-tiny,
Kaori-34b-v2, kaori-34b-v4, tiny_starcoder_py, GPT-2-Large-51k-steps, DialoGPT-small,
test_mistral2, pythia-31m-KI_v1-2048-scratch

Table 12: Models used for Hellaswag benchmark.
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Benchmark Model Names

GSM8K &
Winogrande

ExtremeDolphin-MoE, Mistral-7B-Instruct-v0.2-sparsity-20, PiVoT-SUS-RP, polyglot-math-
4x7b, SOLAR-10B-Nector-DPO-Jawade, Starling-LM-11B-alpha, NeuralPipe-7B-slerp, oswald-
7b, MistralTrixTest, Sensualize-Mixtral-bf16, Sensualize-Solar-10.7B, FusionNet_passthrough,
finance-chat, Kunoichi-7B, dolphin-2.2.1-mistral-7b, CarbonVillain-en-10.7B-v3, xDAN-
SlimOrca, Mistral-11B-v0.1, dm7b_sft_gpt88w_merge, Loyal-Macaroni-Maid-7B, Yi-
34B-200K-DARE-merge-v5, WinterGoddess-1.4x-70B-L2, vicuna-class-shishya-ac-hal-13b-
ep3, Kaori-34B-v1, mistral-megamerge-dare-7b, Chupacabra-8x7B-MoE, bagel-7b-v0.1,
Mixtral-8x7B-v0.1, openbuddy-deepseek-67b-v15-base, Falkor-7b, synapsellm-7b-mistral-
v0.4-preview3, llama2-13b-ft-openllm-leaderboard-v1, synapsellm-7b-mistral-v0.3-preview,
Tess-M-v1.3, monika-ddlc-7b-v1, speechless-mistral-7b-dare-0.85, mistral-7b-v0.1-layla-v1,
Mistral-v0.1-PeanutButter-v0.0.2-7B, chronos-70b-v2, L2-7b-Beluga-WVG-Test, llama-2-13b-
FINETUNE3_3.3w-r8-gate_up_down, airoboros-c34b-2.2.1, llama-2-13b-FINETUNE4_3.8w-
r8-q_k_v_o, llama-2-13b-FINETUNE3_3.3w-r16-gate_up_down, MLewd-Chat-v2-13B, Mistral-
7B-v0.1-Open-Platypus, llama-2-13b-FINETUNE1_17w-r4, EverythingLM-13b-V3-peft,
Llama2-7B-guanaco-1k, llama-2-13b-FINETUNE4_3.8w-r8-q_k_v_o_gate_up_down, Koss-
7B-chat, ReMM-v2.2-L2-13B, WizardLM-1.0-Uncensored-CodeLlama-34b, airoboros-13b,
airoboros-7b-gpt4-1.4.1-qlora, Wizard-Vicuna-7B-Uncensored-HF, Luban-Platypus2-13B-
QLora-0.80-epoch, CodeLlama-34b-hf, airoboros-33b-gpt4-m2.0, llama2-22b-blocktriangular,
GPT-JT-6B-v0, llama2-70b-oasst-sft-v10, vigogne-7b-instruct, based-30b, mpt-30b-chat,
qCammel-70x, GiftedConvo13bLoraNoEconsE4, llama-2-13b-platypus-vicuna-wizard, GOAT-
7B-Community, genz-13b-v2, chronolima-airo-grad-l2-13B, Vicuna-13B-CoT, Llama-2-7b-
ft-instruct-es, OpenOrca-Preview1-13B, Tulpar-7b-v0, zephyr-7b-sft-full, Mixtral-Orca-v0.1,
Marcoroni-7b-DPO-Merge, Aquila2-34B, SOLAR-10.7B-Instruct-v1.0-128k, dolphin-2.6-
mistral-7b-dpo-orca-v3, flux-7b-v0.1, Turdus, A0110, yayi2-30b-llama, NeuralMarcoro14-
7B, Deacon-34b-Adapter, test0, Pallas-0.5-LASER-0.4, Marcoro14-7B-ties, Antares-11b-v1,
CodegebraGPT-10b, Mistral-Syndicate-7B, Nous-Hermes-2-Yi-34B, Half-NSFW_Noromaid-
7b, neural-chat-7b-v3-3-wizardmath-dare-me, apricot-wildflower-20, SauerkrautLM-UNA-
SOLAR-Instruct, kalomaze-stuff, Walter-Mistral-7B, Starling-LM-alpha-8x7B-MoE, una-
neural-chat-v3-3-P2-OMA, Dans-07YahooAnswers-7b, Chupacabra-7B-v2.03, PlatYi-34B-
200K-Q, chinese-alpaca-2-13b-16k, ALMA-7B-Ja-V2, speechless-code-mistral-7b-v2.0, Mis-
tral7B_adaptor_v1, notus-7b-v1, Chupacabra-7B-v2, SciPhi-Self-RAG-Mistral-7B-32k, Ferret-
7B, llama-2-13B-instructed, glaive-coder-7b, Mistralic-7B-1, kuchiki-l2-7b, llama_7b_lora,
Slerpeno, Llama2-7b-openorca-mc-v2-dpo, CAMEL-13B-Role-Playing-Data, starchat-beta, test-
model2, Huginn-13b-v1.2, Dans-AdventurousWinds-7b, Wizard-Vicuna-13B-Uncensored-HF,
Llama-2-13b-hf-ds_wiki_1024_full_r_64_alpha_16_merged, Emerald-13B, koala-13B-HF, tulu-
7B-fp16, airoboros-c34b-2.1, airoboros-7b-gpt4-1.1, 13B-Chimera, Nous-Hermes-Platypus2-
13B-QLoRA-0.80-epoch, airoboros-l2-7b-gpt4-m2.0, llama-7b, llama-65b-instruct, Flash-Llama-
7B, StableBeluga-13B, huginnv1.2, llama_13b_sharegpt94k_fastchat, CAMEL-13B-Combined-
Data, MelangeC-70b, chronos-13b-v2, stack-llama-2, CodeLlama-34b-Python-hf, UltraLM-65b,
Platypus-30B, bimoGPT-llama2-13b, test-llama2-7b

Table 13: Models used for GSM8K and Winogrande benchmark.

Benchmark Model Names

POPE InternVL2-76B, paligemma-3b-mix-448, InternVL-Chat-V1-5, cambrian_13b, cogvlm-
chat, CloudWalk, Ovis1.5-Gemma2-9B, cambrian_8b, InternVL2-26B, Ovis1.5-Llama3-8B,
llava_next_vicuna_13b, glm-4v-9b, emu2_chat, llava_next_mistral_7b, llava_next_vicuna_7b,
WeMM, cambrian_34b, llava_next_llama3, 360VL-70B, Bunny-llama3-8B, GLM4V, MiniCPM-
V-2, llava_next_qwen_32b, Yi-Vision, InternVL2-2B, GeminiPro1-5, InternVL2-8B,
llava_next_interleave_7b_dpo, XComposer2d5, MiniCPM-V-2_6, Mini-InternVL-Chat-2B-
V1-5, cogvlm2-llama3-chat-19B, llava_next_yi_34b, Step1V, InternVL2-1B, InternVL2-
4B, Phi-3-Vision, llava_next_interleave_7b, monkey-chat, OmniLMM_12B, InternVL2-40B,
idefics2_8b, deepseek_vl_7b, GPT4o_20240806, sharecaptioner, monkey, llava-v1.5-7b-
xtuner, GPT4o_HIGH, RekaEdge, GPT4o, Mantis-8B-Idefics2, MiniCPM-Llama3-V-2_5,
llava-llama-3-8b, sharegpt4v_7b, Mini-InternVL-Chat-4B-V1-5, llava-internlm-7b, llava-v1.5-
13b-xtuner, sharegpt4v_13b, llava_v1.5_7b, GPT4o_MINI, deepseek_vl_1.3b, RekaFlash,
llava_v1.5_13b, Mantis-8B-siglip-llama3, MiniCPM-V, QwenVLPlus, Mantis-8B-clip-llama3,
Yi_VL_6B, llava-internlm2-20b, XComposer2_1.8b, mPLUG-Owl2, GPT4V, Yi_VL_34B,
llava-internlm2-7b, Claude3-5V_Sonnet, MMAlaya, instructblip_7b, XComposer2, XCom-
poser2_POPE_TEST, TransCore_M, Claude3V_Haiku, Claude3V_Sonnet, Claude3V_Opus,
idefics_9b_instruct, chameleon_30b, QwenVLMax, qwen_chat, llava_v1_7b, PandaGPT_13B,
qwen_base, XComposer, MiniGPT-4-v1-7B, VisualGLM_6b, flamingov2, MiniGPT-4-v2, VX-
VERSE, idefics_80b_instruct, chameleon_7b, XComposer2_4KHD

Table 14: Models used for POPE benchmark.
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Figure 5: Demonstration of method effectiveness with variance on ARC Challenge benchmark.
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Figure 6: Demonstration of method effectiveness with variance on Hellaswag benchmark.
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Figure 7: Demonstration of method effectiveness with variance on GSM8K benchmark.
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Figure 8: Demonstration of method effectiveness with variance on winogrande benchmark.
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Figure 9: Demonstration of method effectiveness with variance on POPE benchmark.
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Figure 10: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
ARC Challenge benchmark.
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Figure 11: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
Hellaswag benchmark.
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Figure 12: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
GSM8K benchmark.
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Figure 13: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
Winogrande benchmark.
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Figure 14: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
POPE benchmark.
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Figure 15: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on ARC Challenge benchmark.

Consistency Percentile Range

Ke
n
d
al
l’s
𝜏

Consistency Percentile Range

M
A

E

Figure 16: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on Hellaswag benchmark.

Consistency Percentile Range

K
en

d
al
l’s
𝜏

Consistency Percentile Range

M
A

E

Figure 17: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on GSM8K benchmark.
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Figure 18: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on Winogrande benchmark.
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Figure 19: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on POPE benchmark.
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Figure 20: Performance of TAILOREDBENCH with varying numbers of Native Source Models on ARC Challenge
benchmark.
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Figure 21: Performance of TAILOREDBENCH with varying numbers of Native Source Models on Hellaswag
benchmark.
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Figure 22: Performance of TAILOREDBENCH with varying numbers of Native Source Models on Winogrande
benchmark.
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Figure 23: Performance of TAILOREDBENCH with varying numbers of Native Source Models on POPE benchmark.
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