
FedJETs: Efficient Just-In-Time Personalization with
Federated Mixture of Experts

Chen Dun∗

Rice University
cd46@rice.edu

Mirian Hipolito Garcia∗
Microsoft

mirianh@microsoft.com

Guoqing Zheng
Microsoft

zheng@microsoft.com

Ahmed Hassan Awadallah
Microsoft

hassanam@microsoft.com

Robert Sim
Microsoft

rsim@microsoft.com

Anastasios Kyrillidis
Rice University

anastasios@rice.edu

Dimitrios Dimitriadis†
ddimitriadis@gmail.com

Abstract

One of the goals in Federated Learning (FL) is to create personalized models that
can adapt to the context of each participating client, while utilizing knowledge
from a shared global model. Yet, often, personalization requires a fine-tuning step
using clients’ labeled data in order to achieve good performance. This may not be
feasible in scenarios where incoming clients are fresh and/or have privacy concerns.
It, then, remains open how one can achieve just-in-time personalization in these
scenarios. We propose FedJETs, a novel solution by using a Mixture-of-Experts
(MoE) framework within a FL setup. Our method leverages the diversity of the
clients to train specialized experts on different subsets of classes, and a gating
function to route the input to the most relevant expert(s). Our gating function
harnesses the knowledge of a pretrained model (common expert) to enhance its
routing decisions on-the-fly. As a highlight, our approach can improve accuracy
up to 18% in state of the art FL settings, while maintaining competitive zero-
shot performance. In practice, our method can handle non-homogeneous data
distributions, scale more efficiently, and improve the state-of-the-art performance
on common FL benchmarks.

1 Introduction
Due to the success of large-scale deep learning [27, 3, 4, 14, 5, 17], it is now widely accepted as a
design philosophy that “the larger (model/dataset), the better". Yet, the increase of computational and
memory costs that come from training such large models raises a key question: “Are we spending the
available budget wisely when we focus on training a single, monolithic model?” Research stemming
from the so called “grandmother cell hypothesis” in neuroscience [2] suggests that, ideally, a model’s
parameters should be specialized on different data (e.g., different features/classes/domains), such that
we fully utilize the capacity of all parameters.

Mixture of experts (or MoEs)1 [10, 11] is a famous sparse expert model variant that is motivated by
the above premises. MoEs often utilize a gating function to activate parts of the global model, based

1We distinguish MoEs from ensemble models [7]: for the latter, “experts” are independently trained end-
to-end, before models make decisions in an aggregated manner. In contrast, MoEs –either as submodels or as
collections of disjoint models– are updated jointly before the testing phase.

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.

on the current input data. Successful instances of MoEs include the works of [29, 5, 17, 26, 24, 30],
where “experts” are defined as integral subparts of a neural network architecture (e.g., through a
vertical decomposition of the fully-connected layers).

Yet, such a use of experts is not clearly motivated by data distribution learning, but rather as a means
to scale up models [29, 5, 17, 26, 24, 30]. This perspective is strengthened by recent advances
on MoE research [32] that show, over a single domain dataset, a random gating function –which
essentially removes any specialization of the experts– lead to trained models that perform favorably
compared to more sophisticated gating functions. Works that aim to learn different data distributions
through MoEs mostly focus on multi-domain tasks [18, 6], which require that i) we clearly distinguish
between different data domains; and ii) each domain is an independent dataset for a separate expert.

Thus, it is still an open question on how to put flesh on the promise of specialized experts for strictly
better performance over a single domain dataset.

Here, we study a new perspective to this quarrel, using Federated Learning (FL) as our workhorse. FL
[22, 20, 12] is a distributed protocol that aims to achieve simultaneously three goals: i) to train a good
global model that can generalize well across clients; ii) to enhance the global model’s performance
via good personalized models that can adapt to clients, where iii) these models should also work well
on new incoming clients, ideally, without requiring additional data from them. Achieving these goals
is not trivial, especially when the data distribution across clients is non-i.i.d. E.g., goal iii) could be
achieved via fine-tuning, but this step requires access to labeled data, which may not be available.
Alternatively, one could just use the global model as a just-in-time/zero-shot model for each testing
client, which may not capture key aspects of incoming client’s data.

Our contributions. We propose FedJETs, a distributed system that connects and extends MoEs
in a FL setting (See Figure 1). Our system is comprised of multiple independent models that each
operate as experts, and uses a pretrained common expert model as feature extractor, that influences
which experts are chosen for each client on the fly. These “ingredients” are combined with a novel
gating functionality that guides the training: based on the common global model and current experts’
specialization, the gating function orchestrates the dispatch of specific experts to be trained per active
client, based on the local data. We argue that this approach can turn the bane of non-i.i.d. data into
a blessing for expert specialization, as the experts can learn from diverse and complementary data
sources and adapt to different client needs. Some of our findings include:
• FedJETs can exploit the characteristics of each client’s local dataset and adaptively select a subset

of experts that match those characteristics during training.
• FedJETs are able to dynamically select experts on-the-fly and achieve just-in-time personalization

on unseen clients during testing. FedJETs accurately classify unseen data, not included in training,
with small adaptations.

• We achieve these without violating data privacy, and by reducing the overall communication cost
by not sending the whole MoE module to all clients, compared to state of the art methods [28].

• Some highlights of FedJETs in practice: FedJETs achieve ∼ 95% accuracy on FL CIFAR10 and
∼ 78% accuracy on FL CIFAR100 as a just-in-time personalization method on unseen clients,
where the second best SOTA method achieves ∼ 71% and ∼ 74%, respectively.

2 Background
Notation. Vectors and matrices are represented with bold font (e.g., x), while scalars are represented
by plain font (e.g., x). We use capital letters to distinguish matrices from vectors (e.g., W vs w). We
use calligraphic uppercase letters to denote sets (e.g., D); the cardinality of a set D is denoted as |D|.
Given two sets S1 and S2 that contain data, S1 ̸=d S2 indicates that the data in S1 does not follow
the same distribution as that of S2, and vice versa. [N] is [N] = {1 . . . N}.

FL formulation. Let S be the total number of training clients. Each client s has its own local data,
denoted as Ds, such that Ds ̸=d Ds′ ,∀s ̸= s′. We will assume that Ds = {xi, yi}|Ds|

i=1 , where xi is
the i-th input sample and yi its corresponding label in a supervised setting. Let W denote abstractly
the collection of trainable model parameters. The goal in FL is to find values for W that achieve
good accuracy on all data D = ∪sDs, by minimizing the following optimization objective:

W⋆ ∈ argmin
W

{
L(W) := 1

S

S∑
s=1

ℓ (W,Ds)

}
,

2

where ℓ (W,Ds) = 1
|Ds|

∑
{xi,yi}∈Ds

ℓ (W, {xi, yi}). Here, with a slight abuse of notation,
ℓ (W,Ds) denotes the local loss function for user s, associated with a local model Ws (not in-
dicated above), that gets aggregated with the models of other users. The local model Ws denotes a
temporary image of the global model that gets updated locally at each client site, before sent to the
server for aggregation. E.g., Ws could be a full copy of the global model at the current training round,
or a selected submodel out of the global one, randomly chosen or based on client’s characteristics.

The learning scenario we consider. To be compatible with existing FL settings, we focus on image
classification supervised learning tasks, as the most prevalent in literature. As a benchmark dataset,
we use the CIFAR data suite [15, 8]; following existing works, we partition the data samples by
classes to turn full datasets into non-i.i.d. subsets. We assume the FL server-client protocol, where
clients participate in training using local data; we assume there are 100 clients while we can only
activate 10% clients per round. Our system deviates from traditional FL implementations [22, 20, 12];
in those, one assumes a sole global model that is being shared with active clients, and updates to this
model are being aggregated by the server per synchronization round. E.g., a large, ResNet-type of a
network –like ResNet34, ResNet101 or ResNet200– could be used [9] in those scenarios. For our
system, the “global” model is comprised by different independent ResNet34 models [9] that operate
as experts, as well as a common pretrained ResNet34 model, that influences expert choice on the fly,
and a novel gating function that guides both training and testing. In our scenarios, we assume a range
of experts between 5 to 10. More details about our system in the section that follows.

3 Overview of FedJETs

Overview. Our system is depicted in Figure 1. On the server side (using purple boxes), we have
access to a collection of experts (MoE module); see part (a) in Figure 1. These experts are selected
to be of the same architecture (here, ResNet34, motivated by FL classification tasks) and their
parameters are denoted as Wi, i ∈ [M]. Further, these experts could be randomly initialized or could
be a priori trained.

Beyond the MoE module, the server is responsible for a gating function; see part (b) in Figure 1. As
we explain below in more detail, the gating function is a simple MLP defined by a set of parameters,
denoted as Wr.

On the client side (using cyan boxes), we assume that each client has access to the same pretrained
expert; see part (c) in Figure 1. This common expert is used to embed local data to be further fed into
the server’s gating function; see part (d) in Figure 1. Note that the common expert is never retrained
during our procedure, but only used as an embedding mechanism.

The result of the gating function is a sparse selection of experts; see part (e) in Figure 1. The selected
experts, say experts i and j, are communicated to the client (see part (f) in Figure 1), to be locally
trained on the client side, where the selected experts’ parameters –denoted as Wi∈es , with a slight
abuse of notation– and the gating function’s parameters, Wr, are jointly trained; see part (g) in
Figure 1. Finally, the updated parameters Wi∈es

and Wr are sent to the server to be aggregated with
similar updates coming from other clients contributing in the same training round; see (h) in Figure 1.

4 System details

We dive into the details of our method in the following subsections.

 Common Expert

Pretrained on public dataset (CIFAR, ImageNet, etc)

Input

examples
Embeddings

Frozen / Fixed

Figure 2: Common expert module.

Pretraining. Each client utilizes a pretrained common
expert with parameters Wc; see Figure 2. The common
expert should have –to some extent– knowledge over the
global data distribution D = ∪sDs. E.g., such an expert
could be a pretrained model on CIFAR/ImageNet for im-
age classification purposes. We restrict our methodology
such that: i) we ensure our algorithm is agnostic to both
the common expert’s architecture and performance; ii) we
assume only access to the common expert’s embedding capabilities; and, iii) we do not modify/re-
train the common expert. The common expert is sent to all clients only once, before training. For
client s, we perform one-time inference on all local data using the common expert and store the
corresponding output features for each data sample; noted as x̂s

i for each xi ∈ Ds.

3

Client

Server

M
o

E
En

se
m

b
le

Expert 1 Expert 1 (a)

(b)

(d) (e) (g)(c)

(h)

Aggregate from active clients

Aggregate from active clients
Aggregate from active clients

Expert 2 Expert 2 Expert M Expert M

. . .

Common Expert

Select appropiate experts based on

Expert i Expert i Expert j Expert j

(f)

So
ft

m
ax

In
p

u
t

Em
b

ed
d

in
gs

Gating Function

(b)

Train

Send updates of
to server

Train

Send updates of
to server

Train

Send updates of
to server

Train

Send updates of
to server

Train

Send updates of
to server

Figure 1: For each client: i) The server uses the gating function to select a subset of experts based on
the local data distribution (parts (a), (b), (d), (e)); ii) The client updates expert and gating function’s
weights (part (g)) and sends these back to the server. iii) the server aggregates and update the new
weights (part (h)). The above are repeated for all FL rounds.

The set of expert models. Our methodology involves M experts, each being an independent model
of the same architecture.2 For the i-th expert, i ∈ [M], we denote its parameters as Wi and the
corresponding model function as f(·,Wi)). See also Figure 1(a). The M experts are randomly
initialized in our experiments to provide full plasticity during training.3 Each round, different subsets
of experts are selected to be communicated to and updated by active clients, based on their local data
(see Figure 1(f)). Per round, the updated experts are sent back to the server to be aggregated, before
the next round starts; see Figure 1(h).

The gating function. We randomly initialize an expert-ranking network with parameters Wr. This is
a small-scale, two-layer MLP network that, per active client, takes the embeddings from the common
expert based on local data, and predicts the specialization score of all experts. In particular, for client
s and given M experts, we denote the score as g(x̂s

i ,Wr) ∈ RM , for the i-th data sample, based on:

g(x̂s
i ,Wr) = Softmax(MLP(x̂s

i ,Wr)) ∈ RM .

The final decision on the top-k experts is made via the rule:

es = TOPK
(∑

i

g(x̂s
i ,Wr)

)
, over all embedded local data samples, x̂s

i , i ∈ [|Ds|],

where the TOPK(·) function selects the dominating experts, based on the current state of Wr and the
local data embeddings {x̂s

i}ni=1.

The “anchor clients” mechanism. Given M experts, we pre-select M special clients, with roughly
distinct local data distributions, as anchor clients; we call all other clients as normal clients. For
each anchor client4, we initially pre-assign a one-to-one relationship to an expert; we denote the
index of expert assigned to the q-th anchor client as Iq as an indicator function. At the beginning of
each round, we follow the FL process, where only a small subset of clients, say N , is active; i.e.,
N ≪ S, where S is the total number of clients. Based on the discussion above, the active clients N
are split into Na anchor and Nc normal clients, such that N = Na +Nc. Na clients are activated
from the pile of M anchor clients, and Nc clients from (S −M) normal clients.5 The idea is that,
since M ≪ (S −M), we more frequently sample the anchor clients, which –combined with special

2This choice is made for simplicity. We consider diverse architectures per expert as future work.
3Discussion about different initialization for experts is provided in Section 5.
4Selection process for anchor clients is detailed in Appendix.
5Discussion about the ratio Na : Nc is provided in the experimental section.

4

expert assignment– shall encourage expert specialization. I.e., we encourage experts to be trained
over the same data distributions of anchor clients to help specialization.

The training process. To both normal and anchor clients, the server sends the current copy of
parameters of the gating function, Wr. The gating function then selects experts; the output es
abstractly contains the set of chosen experts Wi for expert s, where i ∈ es. The server receives
es and sends the parameters Wi, for i ∈ es, to the corresponding client s; this routine reduces the
communication cost –as compared to existing methods [28]– and encourages expert specialization.

Per training round, each normal client, using the standard cross entropy loss, will locally update both
Wr and Wi’s; the same procedure is followed for all active clients, each containing a different set of
chosen experts. Formally, this amounts to (see also Figure 1, part (g)):

L (Wr,Wi∈es
,Ds) :=

1
|Ds|

∑
{xj ,yj}∈Ds

ℓ

(∑
i∈es

[g(x̂s
j ,Wr)]i · f(xj ,Wi), yj

)
.

For an anchor client q, we only send the Iq expert to encourage expert specialization. Such an expert
is trained regularly on the anchor’s local distribution. Accordingly, we encourage the expert ranker
network to recognize such rough specialization of the selected expert by using a simple independent
loss. The two loss functions for anchor clients are as below:

L
(
WIq ,Dq

)
= 1

|Dq|

∑
{xi,yi}∈Dq

ℓ
(
f(xi,WIq), yi

)
, L (Wr,Dq) =

1
|Dq|

∑
{xi,yi}∈Dq

ℓ
(
g(x̂i,Wr),1Iq

)
,

where 1Iq is the one-hot encoding indicating Iq .

After all clients finish the local training round, the server applies a simple aggregation step to average
the updated copies of Wr and Wi’s. The above is not trivial adaptation of MoE loss to FL settings.
After the selection of experts locally, the gating function can only “see” K ≪ M experts, facing a
significant challenge: If it chooses all incorrect experts, this will lead to a decrease in performance and
de-specialization of the selected experts. Our system though shows that, even with these restrictions,
the gating function can overcome this difficulty and achieve near-perfect expert selection based on
local data characteristics.

Testing procedure. During testing, we assume that we are given unseen new users with unseen
local data distributions. We only send K experts to each test client and we cannot get access to
local test data labels to perform fine-tuning. We first send Wr to the test client and select the top-K
experts, according to aggregated expert ranking score. Then, for each test sample, instead of using
the weighted average of the output of all selected experts, we use the output of the expert with the
highest expert ranking score to fully utilize the specialization of the expert. I.e., both experts might
be utilized for different data samples, instead of averaging their performance on each testing sample.

The above are summarized in pseudocode in Algorithm 1.

5 Experiments
Task and model description. For the experts’ architecture, we use ResNet34 [9]. For the gating
function, we use a two-layer MLP followed by a SoftMax layer at the output to weight each expert.
For the clients, we use the SGDM optimizer, with learning rate 0.01 and momentum 0.9; we set the
batch size to 256 and the number of local epochs to 1. For the gating function update, we use the
SGD optimizer with learning rate 0.001. The aggregation of the model weights on the server side is
performed with FedAvg [23].

Dataset. We conduct experiments on CIFAR10 and CIFAR100 [15]. Initially, the training dataset
is randomly partitioned across 100 clients. We followed the same procedure for the anchor clients
but we avoided replacement, aiming to preserve the label diversity in each subset. We establish a
one-to-one mapping between these clients and the experts, corresponding to each group of labels.
This path leads to: i) we have one expert available for each group; and ii) we retain flexibility to
activate the anchor clients during the training rounds. The complete client distribution for both
datasets is detailed in the Appendix.

Zero-Shot Personalization. Let us first describe the baselines to compare against:
• FedMix [28] trains an ensemble of specialized models that are adapted to sub-regions of the data

space. By definition, FedMix sends all the experts to each client in order to specialize them, heavily

5

Algorithm 1 FEDJETS

Parameters: T rounds, S training clients, U test-
ing clients, M experts, ℓ1 local iterations, experts’
function and parameters f(·,Wi), gating function’s
function and parameters g(·,Wr), common ex-
pert’s parameters Wc.

♠ Pretraining ♠
Send Wc to all clients;
// Data embedding
for s = 1, . . . , S do

x̂s
i = f(xs

i ,Wc)
end for

♠ Training ♠
for t = 0, . . . , T − 1 do

Activate Na anchor and Nc normal clients;
Send g(·,Wr) to all activated clients;
for q = 1, . . . , Na do

Send expert WIq to client q;
for l = 1, . . . , ℓ1 do

Wq
r = Wq

r − η
∂L(Wr,Dq)

W
q
r

;

WIq = WIq − η
∂L(WIq ,Dq)

WIq
;

end for
end for

for s = 1, . . . , Nc do
Select a subset of experts es for client s;
es = TOPK(

∑|Ds|
i=1 g(x̂s

i ,Wr));
Send experts Wi, i ∈ es to client s;
for l = 1, . . . , ℓ1 do

Ws
r = Ws

r − η
∂L(Wr,Wi∈es ,Ds)

Ws
r

;

Wi∈es = Wi∈es − η
∂L(Wr,Wi∈es ,Ds)

Wi∈es
;

end for
end for

// Send to server for aggregation
Wr = Aggregate(Wq

r ,W
s
r), ∀q, s;

Wi = Aggregate(Wi∈Eq ,Wi∈es), ∀q, s;
end for

♠ Testing ♠
for u = 1, . . . , U do

Send g(·,Wr) and common expert, Wc;
eu = TOPK(

∑|Du|
i=1 g(f(xu

i , Wc),Wr));
Send experts Wj , j ∈ eu to client u;
// Perform inference
j′ = maxj∈eu [g(f(xu

i ,Wc),Wr)]j ;
ŷu
i = f(xu

i , Wj′)
end for

increasing communication costs. For this implementation, we initialized the common expert from
the initial pretrained model checkpoint and we use it to embed local data in the gate function and
help the routing.

• FedAvg[23] is the de facto approach for FL and allows to have a fair comparison in terms of
fixed communication cost. Here, we initialize the global model with the initial common expert
checkpoint, and aggregate the updates from all sampled clients per iteration.

• FedProx [21] tackles heterogeneity by introducing a regularization term that limits the distance
between local/global model, at the cost of additional computation overhead per round. For
initialization, we follow the same strategy with FedAvg.

• Scaffold [13] handles non-iidness by applying control variates for the server and clients at the
expense of doubling communication cost per round compared to FedAvg. This method tends to
become unstable during training, as previous studies have shown [19]. For initialization, we follow
the same strategy with FedAvg.

• The Average Ensembles [16] train two models (initialized from the common expert) as in
FedAvg, but with different random seeds. It then combines them by averaging outputs probabilities.
While it provides flexibility w.r.t. resources, it has higher inference costs.

Table 1 summarizes our findings on this setup. Whereas FedMix requires all experts be transmitted to
each client, i.e., M = K, FedJETs allows the selection of K experts, here K = 2, enabling a larger
battery of experts without having to send them all. This not only reduces communication costs, but
also ensures that the client is receiving the most pertinent information from the relevant experts.

In terms of baselines, we observe that both datasets behave differently. We attribute this gap to
the number of classes each client holds. In the CIFAR10 scenario, each client has fewer classes,
which can amplify the model drift problem in all baselines. Furthermore, FedAvg’s performance
deteriorates sharply, when we test it on the new CIFAR10 clients that were not used for training, due
to the heterogeneous data distribution during training and then in testing phase. Similarly, Average
Ensembles faces a performance ceiling, as the ensembles inherit the limitations of the FedAvg
aggregation method. On the other hand, FedProx is able to surpass the initial performance of the
common expert for the CIFAR100 scenario, but degrades quickly when using few labels per client
as in the CIFAR10 setup. To the best of our ability, we attempted multiple hyperparameter settings

6

CIFAR 10 CIFAR 100- Running

Method # Clients Rounds M K Acc. Acc. Rounds M K Acc. Acc.

Common Expert – – – – 73% 93% – – – 67% 73%

FedMix [28] 100 1250 2 2 31.3% 42.9% 2000 2 2 49.7% 48.3%
FedAvg [23] 100 1250 – – 31.2% 58.4% 2000 – – 72.9% 74.0%
FedProx [21] 100 1250 – – 72.7% 71.4% 2000 – – 72.8% 74.0%
Average Ensembles [16] 100 1250 – – 23.9% 53.7% 2000 – – 72.8% 74.1%
FedJETs 100 1250 5 2 91.8% 95.7% 2000 10 2 75.7% 78.6%

Table 1: Average zero-shot personalization score for unseen test clients. The results are presented using two
different pretrained common experts as feature extractor for each dataset: a) The lower bound model at which
the gating function is able to outperform the initial common expert accuracy, illustrated in Figure 6; b) The
average model that represents a good accuracy that is relatively easy to achieve using ResNet-34 architecture.
Sampling is performed under the scheme of Na = 5 anchor + Nc = 5 normal clients per training round; here,
N = Na +Nc = 10. Appendix contains a thorough assessment of the FedJETs gating function’s effectiveness
on individual samples.

for Scaffold, yet we were unable to produce a useful model under this distribution; it became
unstable during training (10% for CIFAR10 / <5% for CIFAR100). Further comparison against
domain adaptation methods, as in FedADG [31] and FedSR [25], is shown in Appendix; for the cases
we consider, we observe that current implementations are bound to having a small number of clients
in order to perform competitively.

The global accuracy reported at the end of training demonstrates the effectiveness and consistency of
FedJETs in both datasets, with significantly better performance than other algorithms. Please refer to
Appendix for a detailed end-to-end performance of the methods in Table 1 under different clients’
distribution.

6 Conclusions
FedJETs is a novel distributed system that leverages multiple independent models –in contrast to
recent MoE applications, where parts of a single model are considered as experts– and a pretrained
common expert model to achieve just-on-time personalization in applications with diverse data
distributions, as in FL. Unlike existing methods that rely on predefined or fixed expert assignments,
FedJETs, via a novel gating functionality, can dynamically select a subset of experts that best suits
each client’s local dataset during training. Experiments show that FedJETs achieve ∼ 95% accuracy
on FL CIFAR10 and ∼ 78% accuracy on FL CIFAR100 as a just-on-time personalization method
on unseen clients, where the second best state of the art method achieves ∼ 58% and ∼ 74%,
respectively.

Overall, our work contributes to the development of more efficient and flexible ML systems that,
not only learn from, but also specialize on distributed data. Our approach can be extended to other
domains and applications –such as natural language processing models– and we plan to investigate
the potential of FedJETs in those areas as future work. Theoretically understanding the mechanism
behind FedJETs in simple scenarios is also considered an interesting future research direction. We
hope that our work will inspire further research on this path and help build a more sustainable and
equitable AI ecosystem.

7

References
[1] Ruqi Bai, Saurabh Bagchi, and David I. Inouye. Benchmarking algorithms for federated domain

generalization, 2023.

[2] H Barlow. Grandmother cells, symmetry, and invariance: how the term arose and what the facts
suggest. The cognitive neurosciences, pages 309–320, 2009.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[5] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. The Journal of Machine Learning Research,
23(1):5232–5270, 2022.

[6] Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A Smith, and Luke Zettlemoyer. DEMix
layers: Disentangling domains for modular language modeling. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 5557–5576, 2022.

[7] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions on pattern
analysis and machine intelligence, 12(10):993–1001, 1990.

[8] Chaoyang He, Alay Dilipbhai Shah, Zhenheng Tang, Di Fan1Adarshan Naiynar Sivashun-
mugam, Keerti Bhogaraju, Mita Shimpi, Li Shen, Xiaowen Chu, Mahdi Soltanolkotabi, and
Salman Avestimehr. FedCV: a federated learning framework for diverse computer vision tasks.
arXiv preprint arXiv:2111.11066, 2021.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[10] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991.

[11] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural computation, 6(2):181–214, 1994.

[12] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich,
and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning,
2019.

[13] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich,
and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning,
2021.

[14] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Moham-
mad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. arXiv preprint arXiv:2205.05198, 2022.

[15] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

[17] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

8

[18] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and
Luke Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language
models. arXiv preprint arXiv:2208.03306, 2022.

[19] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data
silos: An experimental study, 2021.

[20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks, 2018.

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks, 2020.

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[23] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. Communication-efficient learning of deep networks from decentralized data, 2023.

[24] Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multi-
modal contrastive learning with LIMoE: the language-image mixture of experts. arXiv preprint
arXiv:2206.02770, 2022.

[25] A. Tuan Nguyen, Philip Torr, and Ser Nam Lim. Fedsr: A simple and effective domain general-
ization method for federated learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 38831–38843. Curran Associates, Inc., 2022.

[26] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, Cedric Renggli, André Susano Pinto, Sylvain
Gelly, Daniel Keysers, and Neil Houlsby. Scalable transfer learning with expert models. arXiv
preprint arXiv:2009.13239, 2020.

[27] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language
models: Methods, analysis & insights from training Gopher. arXiv preprint arXiv:2112.11446,
2021.

[28] Matthias Reisser, Christos Louizos, Efstratios Gavves, and Max Welling. Federated mixture of
experts, 2021.

[29] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[30] Zhao You, Shulin Feng, Dan Su, and Dong Yu. SpeechMoE: Scaling to large acoustic models
with dynamic routing mixture of experts. arXiv preprint arXiv:2105.03036, 2021.

[31] Liling Zhang, Xinyu Lei, Yichun Shi, Hongyu Huang, and Chao Chen. Federated learning with
domain generalization, 2023.

[32] Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao,
and Jianfeng Gao. Taming sparsely activated transformer with stochastic experts. arXiv preprint
arXiv:2110.04260, 2021.

9

7 Appendix

A Clients distribution

We created a federated version of CIFAR10 and CIFAR100 datasets by introducing two partitioning
strategies to split the samples across 100 clients:

• Quantity-based label imbalance: Each client holds data samples of K labels. We first
randomly assign K different labels to each client. Then, per label, we randomly assign
samples to clients along with labels (with replacement). This way, the number of different
labels for each client is fixed. For CIFAR100 dataset, we use K = 10. For CIFAR10 dataset,
we use K = 4.

Anchor clients: We followed the same method as above to create the anchor clients, except
that we prevented replacement when randomly selecting the labels. This way, we
created a) 5 anchor clients with K = 2 on CIFAR10 and b) 10 anchor clients with
K = 10 on CIFAR100 dataset.

• Distribution-based on label imbalance: We simulated the label imbalance of each client by
allocating portion of the samples (with replacement) of each label according to the Dirichlet
distribution (α = 0.1). As illustrated in Figure 3, the test clients are completely random
unseen combinations of K labels that never appear during training.

Anchor clients: We use the same Dirichlet distribution (α = 0.1) to randomly create a) 5
anchor clients on CIFAR10 and b) 10 anchor clients on CIFAR100 dataset.

0 - - - 2 - - - - 7 8 - 20 - - 1 - - - 5 - - 8 - 40 - - - - - 4 - - - 8 - 60 - - - - - - - - 7 - 9 80 - - - - - - - - - - 9 0 - - - 2 - - - 6 7 - 9
1 - - - - 3 4 5 - - - 9 21 - - - - 3 - - - - - 9 41 - 0 - 2 - - - - 7 - - 61 - - 1 - 3 - 5 - - 8 - 81 - - - - - 4 - - - - 9 1 - - 1 2 - 4 - - - 8 -
2 - - - - - - 5 - - 8 - 22 - - 1 - - - - - 7 - - 42 - 0 1 - - - - - - - - 62 - 0 - - - - - - 7 - - 82 - - - - - - - 6 - 8 - 2 - 0 1 2 - - - - - 8 -
3 - 0 1 2 - - - - - - - 23 - - - - - - - - - - 9 43 - - - - - - 5 - 7 8 - 63 - 0 - - - - - - - - 9 83 - - - - 3 - 5 - - - 9 3 - 0 - - 3 - 5 - - - 9
4 - - 1 - 3 - - 6 - 8 - 24 - 0 - - - 4 - - - - - 44 - 0 1 - - - - - - - - 64 - 0 - - 3 - - - - - - 84 - - - - - 4 - 6 - - - 4 - 0 - - 3 - - - 7 8 -
5 - 0 - 2 - - - - - - - 25 - 0 - - - - - - - 8 9 45 - 0 - - - - - 6 - - - 65 - - - 2 - - - - - - 9 85 - - - 2 - - - 6 - - -
6 - - 1 - 3 - 5 - - - 9 26 - - 1 - - - - - - - 9 46 - - - 2 - - - - - - 9 66 - - - - - 4 - - 7 - 9 86 - 0 - - - - - - 7 - -
7 - - - - - 4 - - - - 9 27 - - - - - - - - - - 9 47 - - 1 - - 4 5 - - - - 67 - 0 - - - - - - 7 8 - 87 - - - - - - - - 7 - 9
8 - 0 - - - - - - - 8 - 28 - - 1 - - 4 5 - - 8 - 48 - - - 2 - - - - - - 9 68 - - - - - 4 - - - - - 88 - - - - - 4 - - - - -
9 - - - - 3 4 - - - - - 29 - - - - - - - - 7 8 - 49 - - - 2 - - - - - - 9 69 - - - - - 4 - 6 - - - 89 - 0 - - - - - 6 7 - -

10 - - - - 3 - 5 6 - - - 30 - - - - - 4 - - - - - 50 - 0 - - - 4 - - - - - 70 - - - - - 4 - 6 - - - 90 - 0 - - - - - 6 - - -
11 - - 1 - 3 - 5 - - 8 - 31 - - - - - 4 5 - - - - 51 - - 1 - - - - - - 8 9 71 - 0 - - - - - - - - 9 91 - - - - - 4 - 6 - - -
12 - - - 2 - 4 - - - - - 32 - - - - - 4 5 - - 8 - 52 - - - - 3 - - - - 8 9 72 - - - - 3 - - - 7 - 9 92 - - - - - - - - 7 8 -
13 - - - - 3 4 5 - - 8 - 33 - - - - - 4 5 - - - - 53 - - - - - 4 - - 7 - - 73 - - - - - 4 5 - - - - 93 - - - 2 - - - - 7 - -
14 - - - - - 4 - 6 - - - 34 - 0 - - - - - - - - 9 54 - 0 - - - 4 - - - - - 74 - - - - 3 - - 6 - 8 - 94 - - - 2 - - - 6 - - -
15 - - 1 - 3 - - - - 8 - 35 - - - 2 - - - 6 - - - 55 - 0 - - - - - - - - - 75 - - - - - - - 6 7 - - 95 - 0 - - - - - - - 8 -
16 - - 1 - - - - 6 - - - 36 - - - 2 - - - 6 - - - 56 - - - - 3 4 - - - - - 76 - - - - - 4 - - - - - 96 - - - - 3 - - - - - 9
17 - 0 - - - - - - - - 9 37 - - - 2 - - - 6 - - - 57 - - - - - - 5 - 7 - - 77 - 0 1 - 3 - 5 - - - - 97 - - - - - 4 - 6 - - -
18 - 0 - - - - - - - - - 38 - - - - - 4 - - 7 - - 58 - 0 - - - - - - 7 - - 78 - 0 - - - - - - - - 9 98 - 0 - - - - - - - - 9
19 - - - - - 4 5 - - - - 39 - 0 - - 3 - 5 - - 8 - 59 - 0 - - - 4 - - - - 9 79 - - 1 2 3 - - - - 8 - 99 - - - - - 4 - - - - 9

Labels

Testing Clients (α = 0.1)

C
lie

n
t

ID

Labels

Training Clients (α = 0.1)

A
n

ch
o

r

cl
ie

n
ts

Unseen clients during

training

Figure 3: Example of distribution-based label imbalance partition on CIFAR10 dataset (α = 0.1)

Note that for test users we do not repeat any distribution from the training clients, this way we create
an example where the distribution of the images over all users are different.

B Ablation Study

0 1000 2000
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

64
65
66
67
73

Figure 4: FedJETs’s performance on CI-
FAR100 dataset, using different initial accu-
racy for common expert (legends of the plot);
the setup in Table 1 is used.

Ablation study: Initial common expert impact. We con-
duct a thorough evaluation of the performance tradeoffs,
when utilizing different common experts for the gating
function decisions. Our findings indicate that the amount
of training allocated in the initial common expert has a crit-
ical effect on the overall performance of FedJETs. E.g., if
the gating function uses a poor common expert for training,
it can lead to poor performance (collapses to selecting a
single expert), and therefore not be able to improve beyond
the baseline.

Figures 4-6 show that the breakpoint of the gating function
for the CIFAR100 dataset is approximately 66% accuracy
by the common expert. In Figure 6, it becomes clear that
a major cause of this breakpoint is the fact that most of
the experts are unable to surpass the initial accuracy of the
common expert. This is attributed to the lack of an effective selection of experts, which is essential

10

for the gradient updates of each expert to be aligned with the same part of the task. Figure 4 also
reveals the following: the 67% case, given a few more iterations, is able to match the performance of
the 73% case. This suggests a “phase-transition” might exist, where more effort (i.e., communication)
is needed to improve beyond the common expert’s performance. This implies also the performance
of FedJETs depends on the quality of the experts.

Common Expert 73.73%

FedMix 73.78%
FedAvg 73.99%
Average Ensembles 74.10%
FedJETs 83.27%

Table 2: Average zero-shot accuracy for CI-
FAR100 after 2000 rounds.

Ablation study: Common expert boosts experts’ per-
formance. In order to test this hypothesis, we initialize
each expert from the common expert and continue train-
ing for 2000 rounds. In Table 2, we observe the final
score of each method. Surprisingly, for FedJETs it takes a
few more rounds to overcome the baseline than when the
experts are initialized from scratch. This is because the
pretrained model is optimal to the entire dataset. In order
to successfully specialize each expert, it is necessary to
retrain the model on the specific subset of labels.

0 250 500 750 1000 1250
Communication Rounds

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

Baseline
Na 3 Nc 7
Na 5 Nc 5
Random

Figure 5: FedJETs_Na_X_Nc_Y means that
X
Y = Na

Nc
, and N = Na + Nc. 30% an-

chor/normal client ration is enough to match
baseline accuracy.

We also plot in Figure 6 the performance of each expert
(denoted as expX) over the communication rounds for dif-
ferent initial accuracy of the common expert. It is obvious
that, for our setting, using a common expert with an ac-
curacy below 67% does not allow the gating function to
improve sufficiently, thus preventing experts from improv-
ing beyond the baseline. Once the gating function can
utilize a slightly better common expert, we are able to
outperform the rest of the methods.

Ablation study: The “anchor/normal” client ratio. To
ensure the best performance of FedJETs, the sampling
scheme must be carefully studied. This is due to the fact
that each expert has a distinct distribution; i.e., their local
objectives are only aligned with a particular subset of
labels. It is essential to ensure consistency in the experts’
updates to prevent them from drifting away from their own

“task”. As previously mentioned, we assume we have some control over the activation of the clients
during training.

Our solution is the proportional introduction of the anchor clients, whose main purpose is to act as
regularizers, ensuring consistency in the expert updates during training. To find the optimal ratio
of anchor/normal clients Na

Nc
we conduct experiments varying this ratio; see Figure 5. Sampling

half of the clients per round as anchor quickly surpasses the baseline of the common expert and
maintains high consistency in subsequent iterations. Using a lower ratio of 30% anchor clients per
round also achieved similar performance, allowing some flexibility in the sampling. Contrarily, when
we sampled clients randomly from the available pool (i.e., no “anchor clients”), FedJETs shows
difficulty improving performance, as experts’ updates become inconsistent. Appendix D shows the
end-to-end performance difference across different methods using these sampling ratios for both
datasets.

0 1000 2000

Communication Rounds

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

Initial Acc: 64%

0 1000 2000

Communication Rounds

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

Initial Acc: 65%

0 1000 2000

Communication Rounds

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

Initial Acc: 66%

0 1000 2000

Communication Rounds

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

Initial Acc: 67%

Common exp0 exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8 exp9

Figure 6: Zero-shot personalization accuracy per expert during training on CIFAR100.

11

0 200 400 600 800 1000 1200
Communication Rounds

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

EnsembleEnsembleEnsembleEnsembleEnsembleEnsemble

0 500 1000 1500 2000
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

A
cc

ur
ac

y

EnsembleEnsembleEnsembleEnsembleEnsembleEnsemble

Baseline FedAvg FedMix FedJETs FedProx Scaffold

Figure 7: FedJETs on CIFAR10 (left) and CIFAR100 (right) datasets, against FedMix, FedAvg and Average
Ensembles based on Table 1, using an initial common expert of 73% accuracy.

C FedJETs end-to-end performance

C.1 Quantity based strategy

We begin to evaluate the performance of our method and baselines, by measuring the zero-shot
personalized model accuracy on several unseen test clients with Quantity-based label imbalance
distribution strategy, as explained in Appendix A. The results are illustrated in Figure 7

In Figure 7 we can observe that FedAvg is not able to keep improving once it’s initialized from
the pretrained checkpoint. This surprising result stems from three major issues: the learning rate
parameters for the clients are not consistent with previous training, the heterogeneous data distribution
on the training clients introduces a high degree of model variability, and the pretrained expert struggles
to improve or adapt to the federated distribution. Moreover, implementing FedProx required careful
fine-tuning of the µ parameter to achieve good accuracy and fast convergence. On the other hand,
despite trying multiple hyperparameter settings, we could not produce a useful model using Scaffold
method; it became unstable during training and often collapsed or got stuck in a poor model. This
indicates that our method is more robust than these baselines in the current setup

C.2 Distribution based strategy

Using the distribution based strategy -detailed in Appendix A- we implement two additional challeng-
ing scenarios, where additional heterogeneity and complexity is inserted via labels distribution: i) we
use the Dirichlet probability rule to generate skewed and imbalanced label distributions, mimicking
real-world applications. ii) we relax the assumption of disjoint labels for the anchor clients and allow
label overlap, creating a more complex scenario, given that experts are initialized from scratch.

CIFAR 10 CIFAR 100

Common Expert 73.39% 73.73%

FedAvg 51.3% 73.6%
FedProx 52.8% 73.6%
Scaffold 10.0% 01.0%
FedMix 29.8% 65.3%
FedJETs 80.8% 77.8%%

Table 3: Best Global Test accuracies from the last 10 evaluations rounds reported on different non-iid algorithms
under Dirichlet distribution (α = 0.1).

Table 3 indicates FedJETs leverages the original 73% accuracy from the common expert to reach up
to 80% accuracy, even on highly skewed scenarios. Note that, while heterogeneity should decrease
the overall performance, FedJETs outperforms the methods under comparison, where experts learn
to better generalize to unseen data.

12

0 500 1000 1500
Communication Rounds

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

0 500 1000 1500 2000
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

Baseline FedAvg FedMix FedJETs FedProx Scaffold

Figure 8: Evaluation of different non-iid algorithms under Dirichlet distribution (α = 0.1) on
CIFAR10 dataset.

D Performance under different sampling ratios

There is an initial degree of randomness in the gating function: during the first couple of iterations,
it sends random top K experts to each client, while the experts learn to specialize in the different
regions of the label space. However, we found a way to keep consistency during these initial rounds:
through the anchor clients. Figure 5 shows that by introducing at least 30% anchor clients during
each round, we can ensure a balance against the wrong selection of the gating function by let them
act as regularizers. Additionaly, we present Figure 9 showing the impact in performance when we
remove the anchor clients rule from sampling and allow only random selection from the pool of
available clients.

0 1000 2000
Communication Rounds

0.0

0.2

0.4

0.6

Te
st

A
cc

ur
ac

y

EnsembleEnsembleEnsembleEnsemble

a)

0 1000 2000
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y EnsembleEnsembleEnsembleEnsemble

b)

0 500 1000
Communication Rounds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

A
cc

ur
ac

y

EnsembleEnsembleEnsembleEnsemble

c)

0 500 1000
Communication Rounds

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

EnsembleEnsembleEnsembleEnsemble

d)

Baseline FedAvg FedMix FedJETs

Figure 9: Global testing accuracy for CIFAR10 (a-b) and CIFAR100 (c-d) datasets on two different sampling
strategies: a), c) 10 random clients without replacement per iteration, b), d) 5 random anchor clients + 5 normal
clients without replacement per iteration along different methods.

E Gating function Per-Sample Performance

We perform a thorough evaluation of our gating function after training, using the checkpoints trained
with the 73% common expert on CIFAR10 and CIFAR100 datasets on the FedJETs algorithm. Our
fine-grained evaluation demonstrates that our gating function can analyze the characteristics of
each unseen test client’s local sample and adaptively select a subset of experts that match those
characteristics. This is a crucial step in ensuring that our gating function can generalize well to new
data. After selecting the top-K experts, the gating function chooses the highest score/confidence
expert to make the prediction for each test data sample. Our results, reported in Table 4, show that
our gating function can achieve high accuracy on the selection.

13

CIFAR100

Client Incorrect Correct Error Rate

0 278 722 27.8%
1 281 719 28.1%
2 263 737 26.3%
3 251 749 25.1%
4 261 739 26.1%
5 309 691 30.9%
6 260 740 26.0%
7 285 715 28.5%
8 255 745 25.5%
9 267 733 26.7%

Average Error Rate 27.1%

CIFAR10

Client Incorrect Correct Error Rate

0 227 3773 5.7%
1 122 3878 3.1%
2 563 3437 14.1%
3 103 3897 2.6%
4 78 3922 2.0%

Average Error Rate 5.5%

Table 4: Evaluation per-sample level on CIFAR10 and CIFAR100 datasets.

F Incremental Learning

Incremental learning is a paradigm that aims to update and refine existing knowledge from new
data, rather than discarding or retraining from scratch. This can be beneficial for scenarios where
data is dynamic, scarce, or costly to acquire, and where learning models need to adapt to changing
environments or tasks. We performed a comprehensive comparison using the same benchmarking
methods in Table 1 to contrast the learning process on each different algorithm.

F.1 Dynamically increase the client’s pool

For this setup, we splitted the CIFAR100 dataset into 5 different groups with non-overlapping labels.
Each group held 20 different clients with random samples within the labels range. Then, we allowed
only one group of labels to be trained for 200 iterations. Afterwards, we increased the pool of clients
with a new group each 200 iterations, monitoring the global accuracy of the models over time. In
Figure 10, we can observe that FedJETs is not affected if the entire set of clients is not present from
the outset; its gating function develops adaptively, without compromising its ability to capture the
old distributions. In contrast, Fed-Mix drops its performance by approximately 4% compared to the
original results in Table 1.

0 500 1000 1500 2000
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

EnsembleEnsembleEnsembleEnsemble

Baseline
FedAvg
FedMix
FedJETs

Figure 10: Incremental Learning scenario on CIFAR100, dynamically increasing the total pool of
clients.

F.2 Dynamically switch the client’s pool

For the second scenario, we employ a cyclical learning approach based on the first setup. Instead of
simply increasing the total pool of clients, we only allow one of the five groups of clients to contribute
to the training process at a time. This means that every 600 iterations, we switch the pool of available
clients, allowing us to see new labels and ensuring that the labels seen during the initial iterations
will never be seen again during the training process. This cyclical approach allows us to benefit
from the diversity of the data, while also ensuring that the model is constantly being exposed to new
information.

14

Figure 11 illustrates that even when FedJETs is approximately 2% below FedAvg at the end of
training, the former continues to improve while the other methods begin to decline over the iterations.
This is likely due to the anchor clients acting as regularizers to adjust the gradient directions during
optimization, as the clients pool presents a more difficult setup. The anchor clients are able to provide
a more stable optimization process.

0 500 1000 1500 2000
Communication Rounds

0.0

0.2

0.4

0.6

Te
st

A
cc

ur
ac

y EnsembleEnsembleEnsembleEnsemble
Baseline
FedAvg
FedMix
FedJETs

Figure 11: Incremental Learnins scenario on CIFAR100, dynamically switching the total pool of
clients

G Performance under matching number of experts M = K

We present additional experiments of more versions of FedMix vs FedJETs using the same number
of total experts, meaning M = K in order to disentangle the behaviour of our method under different
number of experts. The results are shown in Table 5

M = K = 2 M = K = 5

Common Expert 73.39% 73.39%

FedMix 42.76% 43.86%
FedJETs 60.16% 75.77%

Table 5: Best Global Test Accuracy reported during training on CIFAR10 dataset under Dirichlet distribution
(α = 0.1) with fixed number of models communicated to each client. Both methods were initialized from the
same common expert with an initial accuracy of 73.39%.

H Comparison against Domain Generalization Methods

Our target scenario can be framed as a Domain Generalization problem, thus we evaluated FedJETs
against state-of-art methods that handle robustness to distribution shifts on test-time. Results in Table
6 demonstrate that the ability of FedADG and FedSR to evaluate unseen domains is tightly bound to
a small number of clients. Once we increase the underlying distribution (e.g. 100 different clients)
these methos are not able to exploit the cross-relationship among domains [1].

Common Expert 93.05%

FedSR[25] 28.24%
FedADG[31] 41.83%
FedJETs 87.86%

Table 6: Best Global Test Accuracy reported during training on CIFAR10 dataset using quantity-based label
imbalance. We sample 10 (of 100 available) random clients during 900 iterations with replacement. All methods
were initialized from the same common expert reported on the Table.

I Clustering analysis

In order to provide a more extensive comparison of our expert models, it is important to highlight that
the core idea is not to summarize clients into several models, such as many clustering related works.

15

Clustering methods are limited to scenarios where clients are inherently grouped; that is, all clients in
the same group will have similar local data distributions, while clients across groups will share few
data. Instead, we target a more realistic scenario, where each client has a more non-iid and mixed
data distribution, making client clustering based on local distributions meaningless. To illustrate
this, we have performed an example of client clustering using K-means on local class distributions
as shown in Figure 12, where each dot represents one client and the annotated numbers are the two
main data classes of this client. The color represents the K-means clustering result. It is clear that
clustering does not create meaningful groups of clients, and training individual experts in each group
does not provide any specialization of experts.

Figure 12: Clients clustering with label frequency.

16

	Introduction
	Background
	Overview of FedJETs
	System details
	Experiments
	Conclusions
	Appendix
	Clients distribution
	Ablation Study
	FedJETs end-to-end performance
	Quantity based strategy
	Distribution based strategy

	Performance under different sampling ratios
	Gating function Per-Sample Performance
	Incremental Learning
	Dynamically increase the client's pool
	Dynamically switch the client's pool

	Performance under matching number of experts M=K
	Comparison against Domain Generalization Methods
	Clustering analysis

